WorldWideScience

Sample records for self-shielding

  1. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  2. Uncertainty Analysis with Considering Resonance Self-shielding Effect

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    If infinitely diluted multi-group cross sections were used for the sensitivity, the covariance data from the evaluated nuclear data library (ENDL) was directly applied. However, in case of using a self-shielded multi-group cross section, the covariance data should be corrected considering self-shielding effect. Usually, implicit uncertainty can be defined as the uncertainty change by the resonance self-shielding effect as described above. MUSAD ( Modules of Uncertainty and Sensitivity Analysis for DeCART ) has been developed for a multiplication factor and cross section uncertainty based on the generalized perturbation theory and it, however, can only quantify the explicit uncertainty by the self-shielded multi-group cross sections without considering the implicit effect. Thus, this paper addresses the implementation of the implicit uncertainty analysis module into the code and the numerical results for the verification are provided. The implicit uncertainty analysis module has been implemented into MUSAD based on infinitely-diluted cross section-based consistent method. The verification calculation was performed on MHTGR 350 Ex.I-1a and the differences with McCARD result decrease from 40% to 1% in CZP case and 3% in HFP case. From this study, it is expected that MUSAD code can reasonably produce the complete uncertainty on VHTR or LWR where the resonance self-shielding effect should be significantly considered.

  3. Uncertainty Analysis with Considering Resonance Self-shielding Effect

    International Nuclear Information System (INIS)

    Han, Tae Young

    2016-01-01

    If infinitely diluted multi-group cross sections were used for the sensitivity, the covariance data from the evaluated nuclear data library (ENDL) was directly applied. However, in case of using a self-shielded multi-group cross section, the covariance data should be corrected considering self-shielding effect. Usually, implicit uncertainty can be defined as the uncertainty change by the resonance self-shielding effect as described above. MUSAD ( Modules of Uncertainty and Sensitivity Analysis for DeCART ) has been developed for a multiplication factor and cross section uncertainty based on the generalized perturbation theory and it, however, can only quantify the explicit uncertainty by the self-shielded multi-group cross sections without considering the implicit effect. Thus, this paper addresses the implementation of the implicit uncertainty analysis module into the code and the numerical results for the verification are provided. The implicit uncertainty analysis module has been implemented into MUSAD based on infinitely-diluted cross section-based consistent method. The verification calculation was performed on MHTGR 350 Ex.I-1a and the differences with McCARD result decrease from 40% to 1% in CZP case and 3% in HFP case. From this study, it is expected that MUSAD code can reasonably produce the complete uncertainty on VHTR or LWR where the resonance self-shielding effect should be significantly considered

  4. Self-shielding models of MICROX-2 code: Review and updates

    International Nuclear Information System (INIS)

    Hou, J.; Choi, H.; Ivanov, K.N.

    2014-01-01

    Highlights: • The MICROX-2 code has been improved to expand its application to advanced reactors. • New fine-group cross section libraries based on ENDF/B-VII have been generated. • Resonance self-shielding and spatial self-shielding models have been improved. • The improvements were assessed by a series of benchmark calculations against MCNPX. - Abstract: The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. The MICROX-2 code has been updated to expand its application to advanced reactor concepts and fuel cycle simulations, including generation of new fine-group cross section libraries based on ENDF/B-VII. In continuation of previous work, the MICROX-2 methods are reviewed and updated in this study, focusing on its resonance self-shielding and spatial self-shielding models for neutron spectrum calculations. The improvement of self-shielding method was assessed by a series of benchmark calculations against the Monte Carlo code, using homogeneous and heterogeneous pin cell models. The results have shown that the implementation of the updated self-shielding models is correct and the accuracy of physics calculation is improved. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by ∼0.1% and ∼0.2% for the homogeneous and heterogeneous pin cell models, respectively, considered in this study

  5. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-01

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  6. MPACT Subgroup Self-Shielding Efficiency Improvements

    International Nuclear Information System (INIS)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2016-01-01

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as ''Lumped Parameter MOC''. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  7. Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe

    International Nuclear Information System (INIS)

    Hamzah, Amir; Budi R, Ita; Pinem, Suriam

    1996-01-01

    Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio

  8. New Improvements in Mixture Self-Shielding Treatment with APOLLO2 Code

    International Nuclear Information System (INIS)

    Coste-Delclaux, M.

    2006-01-01

    Full text of the presentation follows: APOLLO2 is a modular multigroup transport code developed at the CEA in Saclay (France). Previously, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Recently, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The goal of this paper is to describe the improvements on the self-shielding treatment of a resonant mixture and to present, as an application, the calculation of the ATRIUM-10 BWR benchmark. We will conclude by some prospects on remaining work in the self-shielding domain. (author)

  9. Monte Carlo validation of self shielding and void effect calculations

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.

    1995-01-01

    The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)

  10. A new formulation for resonance self-shielding factors

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.; Silva, Fernando C. da

    2007-01-01

    The activation technique allows either absolute or relative very precise neutron intensity measurements. This technique requires the knowledge of the Doppler broadening function to determine resonance self-shielding factors. In the present work a new formulation is proposed for the self-shielding factors where the Doppler broadening function is calculated using the Frobenius's method and compared to the values obtained from the four-pole Pade method. This calculation method is shown to be effective from the point of view of accuracy. (author)

  11. Self-shielding for thick slabs in a converging neutron beam

    CERN Document Server

    Mildner, D F R

    1999-01-01

    We have previously given a correction to the neutron self-shielding for a thin slab to account for the increased average path length through the slab when irradiated in a converging neutron beam. This expression overstates the case for the self-shielding for a thick (or highly absorbing) slab. We give a better approximation to the increase in effective shielding correction for a slab placed in a converging neutron beam. It is negligible at large absorption mean free paths. (author)

  12. A new formulation for resonance self-shielding factors

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P.; Martinez, Aquilino S.; Silva, Fernando C. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2007-07-01

    The activation technique allows either absolute or relative very precise neutron intensity measurements. This technique requires the knowledge of the Doppler broadening function to determine resonance self-shielding factors. In the present work a new formulation is proposed for the self-shielding factors where the Doppler broadening function is calculated using the Frobenius's method and compared to the values obtained from the four-pole Pade method. This calculation method is shown to be effective from the point of view of accuracy. (author)

  13. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  14. The problem of resonance self-shielding effect in neutron multigroup calculations

    International Nuclear Information System (INIS)

    Wang Qingming; Huang Jinghua

    1991-01-01

    It is not allowed to neglect the resonance self-shielding effect in hybrid blanket and fast reactor neutron designs. The authors discussed the importance as well as the method of considering the resonance self-shielding effect in hybrid blanket and fast reactor neutron multigroup calculations

  15. Self-shielding of hydrogen in the IGM during the epoch of reionization

    Science.gov (United States)

    Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.

    2018-04-01

    We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman-limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parameterization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.

  16. Enhancement of thermal neutron self-shielding in materials surrounded by reflectors

    International Nuclear Information System (INIS)

    Cornelia Chilian; Gregory Kennedy

    2012-01-01

    Materials containing from 41 to 1124 mg chlorine and surrounded by polyethylene containers of various thicknesses, from 0.01 to 5.6 mm, were irradiated in a research reactor neutron spectrum and the 38 Cl activity produced was measured as a function of polyethylene reflector thickness. For the material containing the higher amount of chlorine, the 38 Cl specific activity decreased with increasing reflector thickness, indicating increased neutron self-shielding. It was found that the amount of neutron self-shielding increased by as much as 52% with increasing reflector thickness. This is explained by neutrons which have exited the material subsequently reflecting back into it and thus increasing the total mean path length in the material. All physical and empirical models currently used to predict neutron self-shielding have ignored this effect and need to be modified. A method is given for measuring the adjustable parameter of a self-shielding model for a particular sample size and combination of neutron reflectors. (author)

  17. Resonance Self-Shielding Methodologies in SCALE 6

    International Nuclear Information System (INIS)

    Williams, Mark L.

    2011-01-01

    SCALE 6 includes several problem-independent multigroup (MG) libraries that were processed from the evaluated nuclear data file ENDF/B using a generic flux spectrum. The library data must be self-shielded and corrected for problem-specific spectral effects for use in MG neutron transport calculations. SCALE 6 computes problem-dependent MG cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic continuous-energy (CE) calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The CE calculation can be performed using an infinite medium approximation, a simplified two-region method for lattices, or a one-dimensional discrete ordinates transport calculation with pointwise (PW) cross-section data. This paper describes the SCALE-resonance self-shielding methodologies, including the deterministic calculation of the CE flux spectra using PW nuclear data and the method for using CE spectra to produce problem-specific MG cross sections for various configurations (including doubly heterogeneous lattices). It also presents results of verification and validation studies.

  18. Revisiting the stamm'ler self-shielding method

    International Nuclear Information System (INIS)

    Hebert, A.

    2004-01-01

    The generalized Stamm'ler method is been used in lattice codes such as PHOENIX, WIMS-AECL and DRAGON-IST for computing self-shielded cross sections, prior to the main flux calculation. This method is handicapped by deficiencies, such as its low accuracy and its inability to represent distributed self-shielding effects in a fuel rod or across a fuel bundle. The paper describes improvements that could be made to the generalized Stamm'ler method in order to mitigate these two defects. A validation is presented for the case of 238 U nuclides located in different geometries. The isotopic absorption rates obtained with the proposed numerical scheme are compared with exact values obtained with a fine-group elastic slowing-down calculation in the resolved energy domain. (author)

  19. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  20. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  1. URR-PACK: Calculating Self-Shielding in the Unresolved Resonance Energy Range

    International Nuclear Information System (INIS)

    Cullen, Dermott E.; Trkov, Andrej

    2016-07-01

    This report describes HOW to calculate self-shielding in the unresolved resonance region (URR), in terms of the computer codes we provide to allow a user to do these calculations himself. Here we only describe HOW to calculate; a longer companion report describes in detail WHY it is necessary to include URR self-shielding.

  2. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  3. Theoretical evaluation of self-shielding factors due to scattering resonances in foils

    International Nuclear Information System (INIS)

    Selander, W.N.

    1960-06-01

    A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)

  4. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Mohammadi, A.; Jalali, M.

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.

  5. Comparative study on the use of self-shielded packages or returnable shielding for the land disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Fitzpatrick, J.; Verrall, S.M.

    1985-01-01

    A comparative study has been carried out on the two philosophies for providing the radiological protection necessary for the transport and handling of packaged intermediate level wastes from their sites of origin to disposal. The two philosophies are self shielding and returnable shielding. The approach taken was to assess the cost and radiological impact differentials of two respective representative waste management procedures. The comparison indicated the merits of each procedure. As a consequence, a hybrid procedure was identified which combines the advantages of each philosophy. This hybrid procedure was used for further comparison. The results of the study indicate that the use of self shielded packages throughout will incur considerable extra expense and give only a small saving in radiological impact. (author)

  6. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  7. New improvements in the self-shielding formalism of the Apollo-2 code

    International Nuclear Information System (INIS)

    Coste, M.; Tellier, H.; Ribon, P.; Raepsaet, V.; Van der Gucht, C.

    1993-01-01

    One important modelization of a transport code working on a coarse energy mesh is the self-shielding. The French transport code APPOLO 2, developed at the Commissariat a l'Energie Atomique, uses a self-shielding formalism based on a double equivalence. First a homogenization gives the reaction rates in a heterogeneous geometry, and then a multigroup equivalence gives, once the reaction rates are known, the self-shielded cross-sections. The homogenization is a very sensitive part because it is the one which requires physical modelizations. We have added a new model which allows us to treat numerous narrow resonances statistically distributed in the same group of the multigroup mesh. It is important to notice that for a narrow resonance isolated in a group, that new model is equivalent to the previous narrow resonance model (NR)

  8. Radiation monitoring in a self-shielded cyclotron installation

    International Nuclear Information System (INIS)

    Capaccioli, L.; Gori, C.; Mazzocchi, S.; Spano, G.

    2002-01-01

    As nuclear medicine is approaching a new era with the spectacular growth of PET diagnosis, the number of medical cyclotrons installed within the major hospitals is increasing accordingly. Therefore modern medical cyclotron are highly engineered and highly reliable apparatus, characterised with reduced accelerating energies (as the major goal is the production of fluorine 18) and often self-shielded. However specific dedicated monitors are still necessary in order to assure the proper radioprotection. At the Careggi University Hospital in Florence a Mini trace 10 MeV self-shielded cyclotron produced by General Electric has been installed in 2000. In a contiguous radiochemistry laboratory, the preparation and quality control of 1 8F DG and other radiopharmaceuticals takes place. Aim of this work is the characterisation and the proper calibration of the above mentioned monitors and control devices

  9. License Application Design Selection Feature Report: Waste Package Self Shielding Design Feature 13

    International Nuclear Information System (INIS)

    Tang, J.S.

    2000-01-01

    In the Viability Assessment (VA) reference design, handling of waste packages (WPs) in the emplacement drifts is performed remotely, and human access to the drifts is precluded when WPs are present. This report will investigate the feasibility of using a self-shielded WP design to reduce the radiation levels in the emplacement drifts to a point that, when coupled with ventilation, will create an acceptable environment for human access. This provides the benefit of allowing human entry to emplacement drifts to perform maintenance on ground support and instrumentation, and carry out performance confirmation activities. More direct human control of WP handling and emplacement operations would also be possible. However, these potential benefits must be weighed against the cost of implementation, and potential impacts on pre- and post-closure performance of the repository and WPs. The first section of this report will provide background information on previous investigations of the self-shielded WP design feature, summarize the objective and scope of this document, and provide quality assurance and software information. A shielding performance and cost study that includes several candidate shield materials will then be performed in the subsequent section to allow selection of two self-shielded WP design options for further evaluation. Finally, the remaining sections will evaluate the impacts of the two WP self-shielding options on the repository design, operations, safety, cost, and long-term performance of the WPs with respect to the VA reference design

  10. Self Shielding in Nuclear Fissile Assay Using LSDS

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Song, Kee Chan

    2012-01-01

    The new technology for isotopic fissile material contents assay is under development at KAERI using lead slowing down spectrometer(LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. The accumulation of spent fuel is current big issue. The amount of spent fuels will reach the maximum storage capacity of the pools soon. Therefore, an interim storage must be searched and it should be optimized in design by applying accurate fissile content. When the storage has taken effect, all the nuclear materials must be also specified and verified for safety, economics and management. Generally, the spent fuel from PWR has unburned ∼1 % U235, produced ∼0.5 % plutonium from decay chain, ∼3 % fission products, ∼ 0.1 % minor actinides (MA) and uranium remainder. About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through pyro process. Fissile material contents in resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. In assay of fissile content of spent fuel and recycled fuel, intense radiation background gives limitation on the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in fissile assay. Based on the decided geometry setup, self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of the slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as that how much of absorption is created inside the fuel area when it is in the lead. Self shielding effect provides a non-linear property in the isotopic

  11. Self-shielding effect in unresolved resonance data in JENDL-4.0

    International Nuclear Information System (INIS)

    Konno, Chikara; Takakura, Kosuke; Ochiai, Kentaro; Sato, Satoshi; Kato, Yoshinari

    2012-01-01

    At International Conference on Nuclear Data for Science and Technology in 2007 we pointed out that most of unresolved resonance data in JENDL-3.3 have a problem related to self-shielding correction. Here with a simple calculation model we have investigated whether the latest JENDL, JENDL-4.0, was improved for the problem or not. The results suggest that unresolved resonance data in JENDL-4.0 have no problem, but it seems that self-shielding effects for the unresolved resonance data in JENDL-4.0 are too large. New benchmark experiments for unresolved resonance data are strongly recommended in order to verify unresolved resonance data. (author)

  12. Insufficient self-shielding correction in VITAMIN-B6

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Ohnishi, Seiki

    2011-01-01

    We carried out a simple benchmark calculation test with a multigroup cross-section library VITAMIN-B6 generated from ENDF/B-VI. The model of this test consisted of an iron sphere of 1 m in radius with an isotropic 20 MeV neutron source in the center. Neutron spectra in the sphere were calculated with an Sn code ANISN and VITAMIN-B6 or FENDL/MG-1.1. A calculation with MCNP and ENDF/B-VI was carried out as a reference. The neutron spectra with ANISN and FENDL/MG-1.1 agreed with those with MCNP, while those with ANISN and VITAMIN-B6 were at most 50% different from those with MCNP. We uncovered that the discrepancy came from insufficient self-shielding correction due to the followings; 1) The smallest background cross section of 56 Fe in VITAMIN-B6 is 1. 2) The weighting flux used in generating VITAMIN-B6 is not adequate. VITAMIN-B6 should be revised for adequate self-shielding correction. (author)

  13. Importance of self-shielding for improving sensitivity coefficients in light water nuclear reactors

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2014-01-01

    Highlights: • A new method has been developed for calculating sensitivity coefficients. • This method is based on the use of infinite dilution cross-sections instead of effective cross-sections. • The change of self-shielding factor due to cross-section perturbation has been considered. • SRAC and SAINT codes are used for calculating improved sensitivities, while MCNP code has been used for verification. - Abstract: In order to perform sensitivity analyzes in light water reactors where self-shielding effect becomes important, a new method has been developed for calculating sensitivity coefficient of core characteristics relative to the infinite dilution cross-sections instead of the effective cross-sections. This method considers the change of the self-shielding factor due to cross-section perturbation for different nuclides and reactions. SRAC and SAINT codes are used to calculate the improved sensitivity; while the accuracy of the present method has been verified by MCNP code and good agreement has been found

  14. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  15. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.......Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  16. Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Zou Jun; He Zhaozhong; Zeng Qin; Qiu Yuefeng; Wang Minghuang

    2010-01-01

    A multigroup library HENDL2.1/SS (Hybrid Evaluated Nuclear Data Library/Self-Shielding) based on ENDF/B-VII.0 evaluate data has been generated using Bondarenko and flux calculator method for the correction of self-shielding effect of neutronics analyses. To validate the reliability of the multigroup library HENDL2.1/SS, transport calculations for fusion-fission hybrid system FDS-I were performed in this paper. It was verified that the calculations with the HENDL2.1/SS gave almost the same results with MCNP calculations and were better than calculations with the HENDL2.0/MG which is another multigroup library without self-shielding correction. The test results also showed that neglecting resonance self-shielding caused underestimation of the K eff , neutron fluxes and waste transmutation ratios in the multigroup calculations of FDS-I.

  17. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  18. RZ calculations for self shielded multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z. [Commissariat a l' Energie Atomique CEA, Direction de l' Energie Nucleaire, DEN/DM2S/SERMA/LENR, 91191 Gif-sur-Yvette Cedex (France)

    2006-07-01

    A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

  19. RZ calculations for self shielded multigroup cross sections

    International Nuclear Information System (INIS)

    Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z.

    2006-01-01

    A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

  20. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-01-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, the parameters of each level are not known; only the average parameters. Therefore the authors simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the x 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, the authors survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors

  1. Evaluation of some resonance self-shielding procedures employed in high conversion light water reactor design

    International Nuclear Information System (INIS)

    Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The procedures employed in the treatment of the resonance shielding effect have been identified as one of the causes of the large discrepancies found in the neutronic calculation of high conversion light water reactors (HCLWRs), indicating the need for a revision of the self-shielding procedures employed. In this work some well known techniques applied in HCLWR self-shielding calculations are evaluated; the study involves the comparison of methods for the generation of group constants, the analysis of the impact of considering some isotopes as infinitely diluted and the evaluation of the usual approximations utilized for the treatment of heterogeneities

  2. Calculation of the electron trajectory for 200 kV self-shielded electron accelerator

    International Nuclear Information System (INIS)

    Wang Shuiqing

    2000-01-01

    In order to calculate the electron trajectory of 200 kV self-shielded electron accelerator, the electric field is calculated with a TRAJ program. In this program, following electron track mash points one by one, the electron beam trajectories are calculated. Knowing the effect of grid voltage on electron optics and gaining grid voltage focusing effect in the various energy grades, the authors have gained scientific basis for adjusting grid voltage, and also accumulated a wealth of experience for designing self-shielded electron accelerator or electron curtain in future

  3. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  4. Verification of effectiveness of borated water shield for a cyclotron type self-shielded; Verificacao da eficacia da blindagem de agua borada construida para um acelerador ciclotron do tipo autoblindado

    Energy Technology Data Exchange (ETDEWEB)

    Videira, Heber S.; Burkhardt, Guilherme M.; Santos, Ronielly S., E-mail: heber@cyclopet.com.br [Cyclopet Radiofarmacos Ltda., Curitiba, PR (Brazil); Passaro, Bruno M.; Gonzalez, Julia A.; Santos, Josefina; Guimaraes, Maria I.C.C. [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Lenzi, Marcelo K. [Universidade Federal do Parana (UFPR), Curitina (Brazil). Programa de Pos-Graduacao em Engenharia Quimica

    2013-04-15

    The technological advances in positron emission tomography (PET) in conventional clinic imaging have led to a steady increase in the number of cyclotrons worldwide. Most of these cyclotrons are being used to produce {sup 18}F-FDG, either for themselves as for the distribution to other centers that have PET. For there to be safety in radiological facilities, the cyclotron intended for medical purposes can be classified in category I and category II, ie, self-shielded or non-shielded (bunker). Therefore, the aim of this work is to verify the effectiveness of borated water shield built for a cyclotron accelerator-type Self-shielded PETtrace 860. Mixtures of water borated occurred in accordance with the manufacturer’s specifications, as well as the results of the radiometric survey in the vicinity of the self-shielding of the cyclotron in the conditions established by the manufacturer showed that radiation levels were below the limits. (author)

  5. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-09-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs

  6. Validation of calculated self-shielding factors for Rh foils

    Science.gov (United States)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  7. The self shielding module of Apollo.II; Module d`autoprotection du code Apollo.II

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.

    1994-06-01

    This note discusses the methods used in the APOLLO.II code for the calculation of self shielded multigroup cross sections. Basically, the calculation consists in characterizing a heterogenous medium with a single parameter: the background cross section, which is in then used to interpolate reaction rates from pre tabulated values. Very fine multigroup slowing down calculations in homogenous media are used to generate these tables, which contain absorption, diffusion and production reaction rates per group, resonant isotope, temperature and background cross section. Multigroup self shielded cross sections are determined from an equivalence that preserves absorption rates at a slowing down problem with given sources. This article gives a detailed description of the PIC and ``dilution matrix`` formalisms that are used in the homogenization step, as well as the utilization of Bell macro-groups and the different quadrature formulas that may be used in the calculations. Self shielding techniques for isotopic resonant mixtures are also discussed. (author). 2 refs., 193 figs., 2 tabs.

  8. Bonderenko self-shielded cross sections and multiband parameters derived from the LLL Evaluated-Nuclear-Data Library (ENDL)

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1978-01-01

    Bonderenko self-shielded cross sections and multiband parameters from the Lawrence Livermore Laboratory Evaluated-Nuclear-Data Library (ENDL) as of July 4, 1978 are presented. These data include total, elastic, capture, and fission cross sections in the TART 175 group structure. Multiband parameters are listed. Bonderenko self-shielded cross section and the multiband parameters are presented on microfiche

  9. CREST : a computer program for the calculation of composition dependent self-shielded cross-sections

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1977-01-01

    A computer program CREST for the calculation of the composition and temperature dependent self-shielded cross-sections using the shielding factor approach has been described. The code includes the editing and formation of the data library, calculation of the effective shielding factors and cross-sections, a fundamental mode calculation to generate the neutron spectrum for the system which is further used to calculate the effective elastic removal cross-sections. Studies to explore the sensitivity of reactor parameters to changes in group cross-sections can also be carried out by using the facility available in the code to temporarily change the desired constants. The final self-shielded and transport corrected group cross-sections can be dumped on cards or magnetic tape in a suitable form for their direct use in a transport or diffusion theory code for detailed reactor calculations. The program is written in FORTRAN and can be accommodated in a computer with 32 K work memory. The input preparation details, sample problem and the listing of the program are given. (author)

  10. Success and prospects for low energy, self-shielded electron beam accelerators

    International Nuclear Information System (INIS)

    Laeuppi, U.V.

    1988-01-01

    The advantages of self-shielded, low energy, electron beam accelerators for electron beam processing are described. Applications of these accelerators for cross-linking plastic films, drying of coated materials and printing inks and for curing processes are discussed. (U.K.)

  11. AUTOSECOL: an automatic calculation of the self-shielding of heavy isotope resonances

    International Nuclear Information System (INIS)

    Grandotto-Biettoli, Marc.

    The formalism is based on separating both types of resonance effects: local energy effects creating a fine structure in the flux, and bulk effects resulting in a slow variation in the flux. Effective reaction rates are defined that, used as tables in a multigroup calculation of cells with a large pitch in regard to resonance widths, allow an exact account of the dependence of the effective integral upon fast variations in the flux. These tables are used to introduce this phenomenon of resonance self-shielding in the multigroup Apollo program for solving the neutron transport equation, they are derived from nuclear data with using some parameters relating to the physical state of the resonant isotope inside the fuel medium. The AUTOSECOL system provides a library of effective reaction rates for taking account of the resonance self-shielding effect on the neutron flux in nuclear reactor cells. Its versatility in regard to the methods previously used for solving the same problem allows a rapid testing of the consequences of considering the self-shielding effect of new isotope resonances, a following up of the evolution in nuclear data evaluation, and rapidly studying the interest lying in new data. Results obtained with AUTOSECOL are compared with those obtained when using the SECOL code for computing the effective reaction rates of 235 U, 239 Pu, 107 Ag, 109 Ag, and 241 Pu [fr

  12. Self-shielding factors

    International Nuclear Information System (INIS)

    Kaul, D.C.

    1982-01-01

    Throughout the last two decades many efforts have been made to estimate the effect of body self-shielding on organ doses from externally incident neutrons and gamma rays. These began with the use of simple geometry phantoms and have culminated in the use of detailed anthropomorphic phantoms. In a recent effort, adjoint Monte Carlo analysis techniques have been used to determine dose and dose equivalent to the active marrow as a function of energy and angle of neutron fluence externally incident on an anthropomorphic phantom. When combined with fluences from actual nuclear devices, these dose-to-fluence factors result in marrow dose values that demonstrate great sensitivity to variations in device type, range, and body orientation. Under a state-of-the-art radiation transport analysis demonstration program for the Japanese cities, sponsored by the Defense Nuclear Agency at the request of the National Council on Radiation Protection and Measurements, the marrow dose study referred to above is being repeated to obtain spectral distributions within the marrow for externally incident neutrons and gamma rays of arbitrary energy and angle. This is intended to allow radiobiologists and epidemiologists to select and to modify numbers of merit for correlation with health effects and to permit a greater understanding of the relationship between human and laboratory subject dosimetry

  13. Multifunctional Shielding and Self-Healing HybridSil Smart Composites for Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary multifunctional, super lightweight, self-healing and radiation shielding carbon fiber reinforced polymer (CFRP) composites as a...

  14. Performance of advanced self-shielding models in DRAGON Version4 on analysis of a high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Karthikeyan, Ramamoorthy; Hebert, Alain

    2008-01-01

    A high conversion light water reactor lattice has been analysed using the code DRAGON Version4. This analysis was performed to test the performance of the advanced self-shielding models incorporated in DRAGON Version4. The self-shielding models are broadly classified into two groups - 'equivalence in dilution' and 'subgroup approach'. Under the 'equivalence in dilution' approach we have analysed the generalized Stamm'ler model with and without Nordheim model and Riemann integration. These models have been analysed also using the Livolant-Jeanpierre normalization. Under the 'subgroup approach', we have analysed Statistical self-shielding model based on physical probability tables and Ribon extended self-shielding model based on mathematical probability tables. This analysis will help in understanding the performance of advanced self-shielding models for a lattice that is tight and has a large fraction of fissions happening in the resonance region. The nuclear data for the analysis was generated in-house. NJOY99.90 was used for generating libraries in DRAGLIB format for analysis using DRAGON and A Compact ENDF libraries for analysis using MCNP5. The evaluated datafiles were chosen based on the recommendations of the IAEA Co-ordinated Research Project on the WIMS Library Update Project. The reference solution for the problem was obtained using Monte Carlo code MCNP5. It was found that the Ribon extended self-shielding model based on mathematical probability tables using correlation model performed better than all other models

  15. Application of the characteristics method combined with advanced self-shielding models to an ACR-type cell

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.

    2005-01-01

    In this paper, we present the usage of the method of characteristics (MOC) with advanced self-shielding models for a fundamental lattice calculation on an ACR-type cell i.e. a cluster geometry with light water coolant and heavy water moderator. Comparison with the collision probability method (CP) show the consistency of the method of characteristics as implemented both in flux and self-shielding calculations. Acceleration techniques are tested in the different calculations and prove to be efficient. Comparisons with the Monte-Carlo code Tripoli4 show the advantage of a subgroup approach for self-shielding calculations : the difference in k eff is less than one standard deviation of the Tripoli4 calculation and in terms of total absorption rates, in the resolved resonances group, the maximum relative error is of the order of 3% localised in the most outer region of the central pin. (author)

  16. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  18. SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-06

    The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shielding method is the subgroup method.

  19. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    International Nuclear Information System (INIS)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2017-01-01

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.

  20. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    Directory of Open Access Journals (Sweden)

    Shane Stimpson

    2017-09-01

    Full Text Available An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1 a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications Progression Problem 2a and (2 a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

  1. Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night.

    Science.gov (United States)

    Ayaki, Masahiko; Hattori, Atsuhiko; Maruyama, Yusuke; Nakano, Masaki; Yoshimura, Michitaka; Kitazawa, Momoko; Negishi, Kazuno; Tsubota, Kazuo

    2016-01-01

    We investigated sleep quality and melatonin in 12 adults who wore blue-light shield or control eyewear 2 hours before sleep while using a self-luminous portable device, and assessed visual quality for the two eyewear types. Overnight melatonin secretion was significantly higher after using the blue-light shield (P light shield (P light shield as providing acceptable visual quality.

  2. Analysis of mixed oxides critical experiments using the Hammer-Technion code with self-shielding treatment by Bondarenko method

    International Nuclear Information System (INIS)

    Abe, Alfredo Y.; Santos, Adimir dos

    1995-01-01

    The present work summarizes the verification of the treatment of self-shielding based on Bondarenko method in HAMMER-TECHNION cell code for the Pu O 2 -U O 2 critical system using JENDL-3 nuclear data library. The results obtained are in excellent agreement with the original treatment of self-shielding employed by HAMMER-TECHNION cell code. (author). 9 refs, 1 fig, 9 tabs

  3. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  4. Situations of potential exposure in self-shielding electron accelerators

    International Nuclear Information System (INIS)

    Rios, D.A.S.; Rios, P.B.; Sordi, G.M.A.A.; Carneiro, J.C.G.G.

    2017-01-01

    The study discusses situations in the industrial environment that may lead to potential exposure of Occupationally Exposed Individuals and Public Individuals in self-shielding electron accelerators. Although these exposure situations are unlikely, simulation exercises can lead to improvements in the operating procedure as well as suggest changes in production line design in order to increase radiation protection at work. These studies can also be used in training and demonstrate a solid application of the ALARA principle in the daily activities of radiative installations

  5. CO Self-Shielding as a Mechanism to Make 16O-Enriched Solids in the Solar Nebula

    Directory of Open Access Journals (Sweden)

    Joseph A. Nuth, III

    2014-05-01

    Full Text Available Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, 16O-depleted solar system. This is distinct from the relatively 16O-enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in 16O-depleted solids, we argue that complementary enhancements of 16O-enriched solids can also be produced via C16O-based, Fischer-Tropsch type (FTT catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed 16O enrichment in calcium-aluminum-rich inclusions (CAIs, such as those from the meteorite, Isheyevo (CH/CHb, as well as in chondrules from the meteorite, Acfer 214 (CH3. CO self-shielding results in an overall increase in the 17O and 18O content of nebular solids only to the extent that there is a net loss of C16O from the solar nebula. In contrast, if C16O reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  6. Advances in the development of a subgroup method for the self-shielding of resonant isotopes in arbitrary geometries

    International Nuclear Information System (INIS)

    Hebert, A.

    1997-01-01

    The subgroup method is used to compute self-shielded cross sections defined over coarse energy groups in the resolved energy domain. The validity of the subgroup approach was extended beyond the unresolved energy domain by partially taking into account correlation effects between the slowing-down source with the collision probability terms of the transport equation. This approach enables one to obtain a pure subgroup solution of the self-shielding problem without relying on any form of equivalence in dilution. Specific improvements are presented on existing subgroup methods: an N-term rational approximation for the fuel-to-fuel collision probability, a new Pade deflation technique for computing probability tables, and the introduction of a superhomogenization correction. The absorption rates obtained after self-shielding are compared with exact values obtained using an elastic slowing-down calculation where each resonance is modeled individually in the resolved energy domain

  7. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING

    International Nuclear Information System (INIS)

    Owen, J.

    1999-01-01

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes

  8. Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Sic; Park, Ju Kyeong; Lee, Seung Hun; Kim, Yang Su; Lee, Sun Young; Cha, Seok Yong [Dept. of Radiation Oncology, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-12-15

    To reduce the radiation dose to the thyroid that is affected to scattered radiation, the shield was used. And we evaluated the shielding effect for the thyroid during whole brain radiation therapy. To measure the dose of the thyroid, 300cGy were delivered to the phantom using a linear accelerator(Clinac iX VARIAN, USA.)in the way of the 6MV X-ray in bilateral. To measure the entrance surface dose of the thyroid, five glass dosimeters were placed in the 10th slice's surface of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. In the same location, to measure the depth dose of the thyroid, five glass dosimeters were placed in the 10th slice by 2.5 cm depth of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. Entrance surface dose of the thyroid were respectively 44.89 mGy at the unshield, 36.03 mGy at the bismuth shield, 31.03 mGy at the 0.5 mmPb shield and 23.21 mGy at a self-made 1.0 mmPb shield. In addition, the depth dose of the thyroid were respectively 36.10 mGy at the unshield, 34.52 mGy at the bismuth shield, 32.28 mGy at the 0.5 mmPb shield and 25.50 mGy at a self-made 1.0 mmPb shield. The thyroid was affected by the secondary scattering dose and leakage dose outside of the radiation field during whole brain radiation therapy. When using a shield in the thyroid, the depth dose of thyroid showed 11-30% reduction effect and the surface dose of thyroid showed 20-48% reduction effect. Therefore, by using the thyroid shield, it is considered to effectively protect the thyroid and can perform the treatment.

  9. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  10. A Modeling of BWR-MOX assemblies based on the characteristics method combined with advanced self-shielding models

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.; Le Tellier, R.; Santamarina, A.; Litaize, O.

    2008-01-01

    Calculations based on the characteristics method and different self-shielding models are presented for 9 x 9 boiling water reactor (BWR) assemblies fully loaded with mixed-oxide (MOX) fuel. The geometry of these assemblies was recovered from the BASALA experimental program. We have focused our study on three configurations simulating the different voiding conditions that an assembly can undergo in a BWR pressure vessel. A parametric study was carried out with respect to the spatial discretization, the tracking parameters, and the anisotropy order. Comparisons with Monte Carlo calculations in terms of k eff , radiative capture, and fission rates were performed to validate the computational tools. The results are in good agreement between the stochastic and deterministic approaches. The mutual self-shielding model recently introduced within the framework of the Ribon extending self-shielding method appears to be useful for this type of assemblies. Indeed, in the calculation of these MOX benchmarks, the overlapping of resonances, especially between 238 U and 240 Pu, plays an important role due to the spectral strengthening of the flux as the voiding percentage is increased. The method of characteristics is shown to be adequate to perform accurate calculations handling a fine spatial discretization. (authors)

  11. Elastic removal self-shielding factors for light and medium nuclides with strong-resonance scattering

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Ishiguro, Yukio; Tokuno, Yukio.

    1978-01-01

    The self-shielding factors for elastic removal cross sections of light and medium weight nuclides were calculated for the parameter, σ 0 within the conventional concept of the group constant sets. The numerical study were performed for obtaining a simple and accurate method. The present results were compared with the exact values and the conventional ones, and shown to be remarkably improved. It became apparent that the anisotropy of the elastic scattering did not affect to the self-shielding factors though it did to the infinite dilution cross sections. With use of the present revised set, the neutron flux were calculated in an iron medium and in a prototype FBR and compared with those by the fine spectrum calculations and the conventional set. The present set showed the considerable improvement in the vicinity of the large resonance regions of sodium, iron and oxygen. (auth.)

  12. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  13. GROUPIE2007, Bondarenko Self-Shielded Cross sections from ENDF/B

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of problem or function - GROUPIE reads evaluated data in ENDF/B Format and uses these to calculate unshielded group averaged Cross sections, Bondarenko self-shielded Cross sections, and multiband parameters. The program allows the user to specify arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighting function). IAEA0849/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. 2 - Modifications from previous versions: Groupie VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 120,000 to 600,000 points. 3 - Method of solution: All integrals are performed analytically; in no case is iteration or any approximate form of integration used. GROUPIE reads either the 0 deg. Kelvin Cross sections or the Doppler broadened Cross sections to calculate the self-shielded Cross sections and multiband parameters for 25 values of the 'background' Cross sections (representing the combined effects of all other isotopes and of leakage). 4 - Restrictions on the complexity of the problem: GROUPIE requires that the energy-dependent neutron spectrum and all Cross sections be given in tabular form, with linear interpolation between tabulated values. There is no limit to the size of the table used to describe the spectrum, so the spectrum may be described in as much detail as required. - If only unshielded averages are calculated, the program can handle up to 3000 groups. If self-shielded averages and/or multiband parameters are calculated, the program can handle up to 175 groups. These limits can easily be extended. - The program only uses the

  14. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  15. Measurement of the thermal neutron self shielding coefficient in the Syrian miniature neutron source reactor inner irradiation site using the dy soils

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    Measurement of the thermal self shielding coefficient ( Gth ) in the Syrian Miniature Neutron Source Reactor (MNSR) inner irradiation site using Dy foils is presented in this paper. The thermal self shielding coefficient is measured as a function of the foil thickness or numbers. The mathematical equation which calculates the average relative radioactivity (Bq/g) versus the foil number is found as well.

  16. New developments in resonant mixture self-shielding treatment with Apollo code and application to Jules Horowitz reactor core calculation

    International Nuclear Information System (INIS)

    Coste-Delclaux, M.; Aggery, A.; Huot, N.

    2005-01-01

    APOLLO2 is a modular multigroup transport code developed by Cea in Saclay. Until last year, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Last year, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The calculations of a simplified Jules Horowitz reactor using a Monte-Carlo code (TRIPOLI4) as a reference and APOLLO2 in its standard and improved versions, show that, as far as the effective multiplication factor is concerned, the mixture treatment does not bring an improvement, because the new treatment suppresses compensation between the reaction rate discrepancies. The discrepancy of 300 pcm that appears with the reference calculation is in accordance with the technical specifications of the Jules Horowitz reactor

  17. Self-similar regimes of fast ionization waves in shielded discharge tubes

    International Nuclear Information System (INIS)

    Gerasimov, D.N.; Sinkevich, O.A.

    1999-01-01

    An analytical self-similar solution to the problem of the propagation of a fast ionization wave (FIW) in a long shielded tube is constructed. An expression determining the influence of the device parameters on the FIW velocity is obtained; the velocity is found to be the nonmonotonic function of the working-gas pressure. The theoretical predictions are compared with the results of experiments carried out with helium and nitrogen. The calculation and experimental results agree within experimental errors

  18. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1990-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling by Doppler broadened cross-sections. The various self-shielding factors are computer numerically as Lebesgue integrals over the cross-section probability tables

  19. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  20. Resonance self-shielding effect analysis of neutron data libraries applied for the dual-cooled waste transmutation blanket of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Liu Haibo; Wu Yican; Zheng Shanliang; Zhang Chunzao

    2004-01-01

    Based on the Fusion-Driven Subcritical System (FDS-I), the 25 groups, 175 groups and 620 groups neutron nuclear data libraries with/without resonance self-shielding correction are made with the Njoy and Transx codes, and the K eff and reaction rates are calculated with the Anisn code. The conclusion indicates that the resonance self-shielding effect affects the reaction rates strongly. (authors)

  1. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  2. A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Sudarshan, K.; Tripathi, R.; Nair, A.G.C.; Acharya, R.; Reddy, A.V.R.; Goswami, A.

    2005-01-01

    A simple method using an internal standard is proposed to correct for the self-shielding effect of B, Cd and Gd in a matrix. This would increase the linear dynamic range of PGNAA in analyzing samples containing these elements. The method is validated by analyzing synthetic samples containing large amounts of B, Cd, Hg and Gd, the elements having high neutron absorption cross-section, in aqueous solutions and solid forms. A simple Monte-Carlo simulation to find the extent of self-shielding in the matrix is presented. The method is applied to the analysis of titanium boride alloy containing large amount of boron. The satisfactory results obtained showed the efficacy of the method of correcting for the self-shielding effects in the sample

  3. Cross-section fluctuations and self-shielding effects in the unresolved resonance region - International Evaluation Co-operation volume 15

    International Nuclear Information System (INIS)

    Froehner, F.H.; Larson, Duane C.; Tagesen, Siegfried; Petrizzi, Luigi; Hasegawa, Akira; Nakagawa, Tsuneo; Hogenbirk, Alfred; Weigmann, H.

    1995-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). NEA/NSC Subgroup 15 has had the task to assess self-shielding effects in the unresolved resonance range of structural materials, in particular their importance at various energies, and possible ways to deal with them in shielding and activation work. The principal results achieved are summarised briefly, in particular: - New data base consisting of high-resolution transmission data measured at Oak Ridge and Geel; - Improved theoretical understanding of cross-section fluctuations, including their prediction, that has been derived from the Hauser-Feshbach theory; - Benchmark results on the importance of self-shielding in iron at various energies; - Consequences for information storage in evaluated nuclear data files; - Practical utilisation of self-shielding information from evaluated files. Benchmark results as well as the Hauser-Feshbach theory show that self-shielding effects are important up to a 4-or 5-MeV neutron energy. Fluctuation factors extracted from high-resolution total cross-section data can be

  4. Adaptive algorithms for a self-shielding wavelet-based Galerkin method

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.

    2009-01-01

    The treatment of the energy variable in deterministic neutron transport methods is based on a multigroup discretization, considering the flux and cross-sections to be constant within a group. In this case, a self-shielding calculation is mandatory to correct sections of resonant isotopes. In this paper, a different approach based on a finite element discretization on a wavelet basis is used. We propose adaptive algorithms constructed from error estimates. Such an approach is applied to within-group scattering source iterations. A first implementation is presented in the special case of the fine structure equation for an infinite homogeneous medium. Extension to spatially-dependent cases is discussed. (authors)

  5. Revised neutral gas shielding model for pellet ablation - combined neutral and plasma shielding

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Schuresko, D.D.; Attenberger, S.E.

    1986-01-01

    The ablation and penetration of pellets in early ORMAK and ISX-A experiments were reliably predicted by the neutral gas shielding model of Milora and Foster. These experiments demonstrated that the principle components of the model - a self-generated shield which reduces the heat flux at the plasma surface - were correct. In more recent experiments with higher temperature plasmas, this model consistently predicts greater penetration than observed in the experiments. Upgarding known limitations of the original model brings the predicted and observed penetration values into agreement. These improvements include: (1) treating the incident electrons as having distribution in energy rather than being monoenergetic; (2) including the shielding effects of cold, dense plasma extending along the magnetic field outside the neutral shield; and (3) modifying the finite plasma, self-limiting incident heat flux so that it represents a collisionless plasma limit rather than a collisional limit. Comparisons are made between the models for a selection of ISX-B Alcator-C, and TFTR shots. The net effect of the changes in the model is an increase in pellet ablation rates and decrease in penetration for current and future experiments

  6. CO Self-Shielding as a Mechanism to Make O-16 Enriched Solids in the Solar Nebula

    Science.gov (United States)

    Nuth, Joseph A. III; Johnson, Natasha M.; Hill, Hugh G. M.

    2014-01-01

    Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, O-16 depleted solar system. This is distinct from the relatively O-16 enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in O-16 depleted solids, we argue that complementary enhancements of O-16 enriched solids can also be produced via CO-16 based, Fischer-Tropsch type (FTT) catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed O-16 enrichment in calcium-aluminum-rich inclusions (CAIs), such as those from the meteorite, Isheyevo (CH/CHb), as well as in chondrules from the meteorite, Acfer 214 (CH3). CO selfshielding results in an overall increase in the O-17 and O-18 content of nebular solids only to the extent that there is a net loss of CO-16 from the solar nebula. In contrast, if CO-16 reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  7. Determination of self shielding factors and gamma attenuation effects for tree ring samples

    International Nuclear Information System (INIS)

    Dagistan Sahin; Kenan Uenlue

    2012-01-01

    Determination of tree ring chemistry using Neutron Activation Analysis (NAA) is part of an ongoing research between Penn State University (PSU) and Cornell University, The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology. Tree-ring chemistry yields valuable data for environmental event signatures. These signatures are a complex function of elemental concentration. To be certain about concentration of signature elements, it is necessary to perform the measurements and corrections with the lowest error and maximum accuracy possible. Accurate and precise values of energy dependent neutron flux at dry irradiation tubes and detector efficiency for tree ring sample are calculated for Penn State Breazeale Reactor (PSBR). For the calculation of energy dependent and self shielding corrected neutron flux, detailed model of the TRIGA Mark III reactor at PSU with updated fuel compositions was prepared using the MCNP utility for reactor evolution (MURE) libraries. Dry irradiation tube, sample holder and sample were also included in the model. The thermal flux self-shielding correction factors due to the sample holder and sample for were calculated and verified with previously published values. The Geant-4 model of the gamma spectroscopy system, developed at Radiation Science and Engineering Center (RSEC), was improved and absolute detector efficiency for tree-ring samples was calculated. (author)

  8. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  9. Effect of interpolation error in pre-processing codes on calculations of self-shielding factors and their temperature derivatives

    International Nuclear Information System (INIS)

    Ganesan, S.; Gopalakrishnan, V.; Ramanadhan, M.M.; Cullan, D.E.

    1986-01-01

    We investigate the effect of interpolation error in the pre-processing codes LINEAR, RECENT and SIGMA1 on calculations of self-shielding factors and their temperature derivatives. We consider the 2.0347 to 3.3546 keV energy region for 238 U capture, which is the NEACRP benchmark exercise on unresolved parameters. The calculated values of temperature derivatives of self-shielding factors are significantly affected by interpolation error. The sources of problems in both evaluated data and codes are identified and eliminated in the 1985 version of these codes. This paper helps to (1) inform code users to use only 1985 versions of LINEAR, RECENT, and SIGMA1 and (2) inform designers of other code systems where they may have problems and what to do to eliminate their problems. (author)

  10. Effect of interpolation error in pre-processing codes on calculations of self-shielding factors and their temperature derivatives

    International Nuclear Information System (INIS)

    Ganesan, S.; Gopalakrishnan, V.; Ramanadhan, M.M.; Cullen, D.E.

    1985-01-01

    The authors investigate the effect of interpolation error in the pre-processing codes LINEAR, RECENT and SIGMA1 on calculations of self-shielding factors and their temperature derivatives. They consider the 2.0347 to 3.3546 keV energy region for /sup 238/U capture, which is the NEACRP benchmark exercise on unresolved parameters. The calculated values of temperature derivatives of self-shielding factors are significantly affected by interpolation error. The sources of problems in both evaluated data and codes are identified and eliminated in the 1985 version of these codes. This paper helps to (1) inform code users to use only 1985 versions of LINEAR, RECENT, and SIGMA1 and (2) inform designers of other code systems where they may have problems and what to do to eliminate their problems

  11. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    Zeb, J.; Arshed, W.; Ahmad, S.S.

    2007-06-01

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  12. Resonance self-shielding calculation with regularized random ladders

    Energy Technology Data Exchange (ETDEWEB)

    Ribon, P.

    1986-01-01

    The straightforward method for calculation of resonance self-shielding is to generate one or several resonance ladders, and to process them as resolved resonances. The main drawback of Monte Carlo methods used to generate the ladders, is the difficulty of reducing the dispersion of data and results. Several methods are examined, and it is shown how one (a regularized sampling method) improves the accuracy. Analytical methods to compute the effective cross-section have recently appeared: they are basically exempt from dispersion, but are inevitably approximate. The accuracy of the most sophisticated one is checked. There is a neutron energy range which is improperly considered as statistical. An examination is presented of what happens when it is treated as statistical, and how it is possible to improve the accuracy of calculations in this range. To illustrate the results calculations have been performed in a simple case: nucleus /sup 238/U, at 300 K, between 4250 and 4750 eV.

  13. An ''exact'' treatment of self-shielding and covers in neutron spectra determinations

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1995-01-01

    Most neutron spectrum determination methodologies ignore self-shielding effects in dosimetry foils and treat covers with an exponential attenuation model. This work provides a quantitative analysis of the approximations in this approach. It also provides a methodology for improving the fidelity of the treatment of the dosimetry sensor response to a level consistent with the user's spectrum characterization approach. A library of correction functions for the energy-dependent sensor response has been compiled that addresses dosimetry foils/configurations in use at the Sandia National Laboratories Radiation Metrology Laboratory

  14. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1989-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self- indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling the Doppler broadened cross-section. The various shelf-shielded factors are computed numerically as Lebesgue integrals over the cross-section probability tables. 6 refs

  15. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  16. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    Science.gov (United States)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  17. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    International Nuclear Information System (INIS)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.; Flores-Moreno, A.; Trejo-Ballado, F.; Avila-Rodriguez, Miguel A.

    2012-01-01

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL’s was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  18. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  19. The resonance self-shielding calculation with regularized random ladders

    International Nuclear Information System (INIS)

    Ribon, P.

    1986-01-01

    The straightforward method for calculation of resonance self-shielding is to generate one or several resonance ladders, and to process them as resolved resonances. The main drawback of Monte Carlo methods used to generate the ladders, is the difficulty of reducing the dispersion of data and results. Several methods are examined, and it is shown how one (a regularized sampling method) improves the accuracy. Analytical methods to compute the effective cross-section have recently appeared: they are basically exempt from dispersion, but are inevitably approximate. The accuracy of the most sophisticated one is checked. There is a neutron energy range which is improperly considered as statistical. An examination is presented of what happens when it is treated as statistical, and how it is possible to improve the accuracy of calculations in this range. To illustrate the results calculations have been performed in a simple case: nucleus 238 U, at 300 K, between 4250 and 4750 eV. (author)

  20. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.

    1996-01-01

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  1. Validation of a new 39 neutron group self-shielded library based on the nucleonics analysis of the Lotus fusion-fission hybrid test facility performed with the Monte Carlo code

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.

    1985-02-01

    The Swiss LOTUS fusion-fission hybrid test facility was used to investigate the influence of the self-shielding of resonance cross sections on the tritium breeding and on the thorium ratios. Nucleonic analyses were performed using the discrete-ordinates transport codes ANISN and ONEDANT, the surface-flux code SURCU, and the version 3 of the MCNP code for the Li 2 CO 3 and the Li 2 O blanket designs with lead, thorium and beryllium multipliers. Except for the MCNP calculation which bases on the ENDF/B-V files, all nuclear data are generated from the ENDF/B-IV basic library. For the deterministic methods three NJOY group libraries were considered. The first, a 39 neutron group self-shielded library, was generated at EIR. The second bases on the same group structure as the first does and consists of infinitely diluted cross sections. Finally the third library was processed at LANL and consists of coupled 30+12 neutron and gamma groups; these cross sections are not self-shielded. The Monte Carlo analysis bases on a continuous and on a discrete 262 group library from the ENDF/B-V evaluation. It is shown that the results agree well within 3% between the unshielded libraries and between the different transport codes and theories. The self-shielding of resonance cross sections results in a decrease of the thorium capture rate and in an increase of the tritium breeding of about 6%. The remaining computed ratios are not affected by the self-shielding of cross sections. (Auth.)

  2. Malakit: an innovative pilot project to self-diagnose and self-treat malaria among illegal gold miners in the Guiana Shield.

    Science.gov (United States)

    Douine, Maylis; Sanna, Alice; Galindo, Muriel; Musset, Lise; Pommier de Santi, Vincent; Marchesini, Paola; Magalhaes, Edgard Dias; Suarez-Mutis, Martha; Hiwat, Helene; Nacher, Mathieu; Vreden, Stephen; Garancher, Laure

    2018-04-10

    Illegal gold miners in French Guiana, a French overseas territory ('département') located in Amazonia, often carry malaria parasites (up to 46.8%). While the Guiana Shield Region aims at malaria elimination, the high prevalence of Plasmodium in this hard-to-reach population in conjunction with frequent incorrect use of artemisinin-based anti-malarials could favour the emergence of resistant parasites. Due to geographical and regulatory issues in French Guiana, usual malaria control strategies cannot be implemented in this particular context. Therefore, new strategies targeting this specific population in the forest are required. Numerous discussions among health institutions and scientific partners from French Guiana, Brazil and Suriname have led to an innovative project based on the distribution of kits for self-diagnosis and self-treatment of Plasmodium infections. The kit-distribution will be implemented at "resting sites", which are areas across the border of French Guiana regularly frequented by gold miners. The main objective is to increase the appropriate use and complete malaria treatment after a positive malaria diagnosis with a rapid test, which will be evaluated with before-and-after cross-sectional studies. Monitoring indicators will be collected from health mediators at the time of kit distribution and during subsequent visits, and from illegal gold miners themselves, through a smartphone application. The project funding is multisource, including Ministries of Health of the three countries, WHO/PAHO, and the European Union. This project will start in April 2018 as a 18 month pilot study led by the Clinical Investigation Centre of Cayenne. Results should be available at the end of 2019. This innovative approach may have several limitations which should be taken into account, as potential side effects, kit misuse or resale, declarative main criteria, or no Plasmodium vivax curative treatment. Close monitoring is thus needed. This project may be the

  3. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  4. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  5. Neutron shielding material based on colemanite and epoxy resin

    International Nuclear Information System (INIS)

    Okuno, K.

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or up-gradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252 Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use. (authors)

  6. Neutron shielding material

    International Nuclear Information System (INIS)

    Suzuki, Shigenori; Iimori, Hiroshi; Kobori, Junzo.

    1980-01-01

    Purpose: To provide a neutron shielding material which incorporates preferable shielding capacity, heat resistance, fire resistance and workability by employing a mixture of thermosetting resin, polyethylene and aluminium hydroxide in special range ratio and curing it. Constitution: A mixture containing 20 to 60% by weight of thermosetting resin having preferable heat resistance, 10 to 40% by weight of polyethylene powder having high hydrogen atom density and 1000 to 60000 of molecular weight, and 15 to 55% by weight of Al(OH) 3 for imparting fire resistance and self-fire extinguishing property thereto is cured. At this time approx. 0.5 to 5% of curing catalyst of the thermosetting resin is contained in 100 parts by weight of the mixture. (Sekiya, K.)

  7. Graphs of neutron cross sections in JSD1000 for radiation shielding safety analysis

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    Graphs of neutron cross sections and self-shielding factors in the JSD1000 library are presented for radiation shielding safety analysis. The compilation contains various reaction cross sections for 42 nuclides from 1 H to 241 Am in the energy range from 3.51 x 10 -4 eV to 16.5 MeV. The Bondarenko-type self-shielding factors of each reaction are given by the background cross sections from σ 0 = 0 to σ 0 = 10000. (author)

  8. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    Science.gov (United States)

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the

  9. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  10. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  11. Shielded transient self-interaction of a bunch entering a circle from a straight path

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    When a short (mm-length) bunch with high (nC-regime) charge is transported through a magnetic bending system, self-interaction via coherent synchrotron radiation (CSR) and space charge may alter the bunch dynamics significantly. The authors consider a Gaussian rigid-line-charge bunch following a straight-path trajectory into a circle, with the trajectory centered between two infinite, parallel, perfectly conducting plates. Transients associated with CSR and space charge generated from source particles both on the straight path and the circle are calculated, and their net effect on the radiated power is contrasted with that of shielded steady-state CSR

  12. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  13. Shielded transient self-interaction of a bunch entering a circle from a straight path

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straight path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented

  14. Resonance self-shielding methodology of new neutron transport code STREAM

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung; Hong, Ser Gi

    2015-01-01

    This paper reports on the development and verification of three new resonance self-shielding methods. The verifications were performed using the new neutron transport code, STREAM. The new methodologies encompass the extension of energy range for resonance treatment, the development of optimum rational approximation, and the application of resonance treatment to isotopes in the cladding region. (1) The extended resonance energy range treatment has been developed to treat the resonances below 4 eV of three resonance isotopes and shows significant improvements in the accuracy of effective cross sections (XSs) in that energy range. (2) The optimum rational approximation can eliminate the geometric limitations of the conventional approach of equivalence theory and can also improve the accuracy of fuel escape probability. (3) The cladding resonance treatment method makes it possible to treat resonances in cladding material which have not been treated explicitly in the conventional methods. These three new methods have been implemented in the new lattice physics code STREAM and the improvement in the accuracy of effective XSs is demonstrated through detailed verification calculations. (author)

  15. Investigating spatial self-shielding and temperature effects for homogeneous and double heterogeneous pebble models with MCNP

    International Nuclear Information System (INIS)

    Li, J.; Nuenighoff; Pohl, C.; Allelein, H.J.

    2010-01-01

    The gas-cooled, high temperature reactor (HTR) represents a valuable option for the future development of nuclear technology, because of its excellent safety features. One main safety feature is the negative temperature coefficient which is due to the Doppler broadening of the (n,y) resonance absorption cross section. A second important effect is the spatial self-shielding due to the double heterogeneous geometry of a pebble bed reactor. At FZ-Juelich two reactor analysis codes have been developed: VSOP for core design and MGT for transient analysis. Currently an update of the nuclear cross section libraries to ENDF/B-VII.0 of both codes takes place. In order to take the temperature dependency as well as the spatial self-shielding into account the absorption cross sections σ (n,y) for the resonance absorbers like 232 Th and 238 U have to be provided as function of incident neutron energy, temperature and nuclide concentration. There are two reasons for choosing the Monte-Carlo approach to calculate group wise cross sections. First, the former applied ZUT-DGL code to generate the resonance cross section tables for MGT is so far not able to handle the new resonance description based on Reich-Moore instead of Single-level Breit-Wigner. Second, the rising interest in PuO 2 fuel motivated an investigation on the generation of group wise cross sections describing thermal resonances of 240 Pu and 242 Pu. (orig.)

  16. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  17. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires

    Directory of Open Access Journals (Sweden)

    Zeng Huilin

    2014-10-01

    Full Text Available In order to realize the automatic welding of pipes in a complex operation environment, an automatic welding system has been developed by use of all-position self-shielded flux cored wires due to their advantages, such as all-position weldability, good detachability, arc's stability, low incomplete fusion, no need for welding protective gas or protection against wind when the wind speed is < 8 m/s. This system consists of a welding carrier, a guide rail, an auto-control system, a welding source, a wire feeder, and so on. Welding experiments with this system were performed on the X-80 pipeline steel to determine proper welding parameters. The welding technique comprises root welding, filling welding and cover welding and their welding parameters were obtained from experimental analysis. On this basis, the mechanical properties tests were carried out on welded joints in this case. Results show that this system can help improve the continuity and stability of the whole welding process and the welded joints' inherent quality, appearance shape, and mechanical performance can all meet the welding criteria for X-80 pipeline steel; with no need for windbreak fences, the overall welding cost will be sharply reduced. Meanwhile, more positive proposals were presented herein for the further research and development of this self-shielded flux core wires.

  18. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  19. ICRF antenna Faraday shield plasma sheath model

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1990-01-01

    A two-dimensional nonlinear formulation that explicitly considers the plasma edge near a Faraday shield in a self-consistent manner is used in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Two models are considered that may provide significant insight into the generation of impurities for ion cyclotron resonance heating (ICRH) antennas. In one of these models a significant sheath periodically forms next to the Faraday screen, with ion acoustic waves heating the ions in the plasma. (orig.)

  20. Evaluation of the room shielding thickness of Hi-Art tomotherapy system

    International Nuclear Information System (INIS)

    Liu Haikuan; Wu Jinhai; Gu Naigu; Gao Yiming; Wang Li; Huang Weiqin; Wang Fengxian

    2010-01-01

    In this paper, we calculate and evaluate the room shielding thickness of a Hi-Art tomotherapy system, which is a new type of radiotherapy facility. Due to the self-shielding of the accelerator,only scattered beam and beam leakage were considered in calculating the room shielding thickness. The radiation field of the tomotherapy system was used as the basic data to calculate the shielding thickness of every 15 degree solid angle. The maximum shielding thickness required of each shielding wall was at the position with the angle of 15 degree, and the calculated shielding thickness were 1023, 975, 917, 1460, 1147 and 1189 mm for the east wall,south wall,west wall, north wall, the roof and the floor,respectively. According to the calculation results, all shielding walls, ceiling and floor could meet the requirement of the radiation protection, but the north wall thickness of 1200 mm was a little thinner. (authors)

  1. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  2. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  3. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  4. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  5. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  6. MINX, Multigroup Cross-Sections and Self-Shielding Factors from ENDF/B for Program SPHINX

    International Nuclear Information System (INIS)

    Soran, P.D.; MacFarlane, R.E.; Harris, D.R.; LaBauve, R.J.; Hendricks, J.S.; Kidman, R.B.; Weisbin, C.R.; White, J.E.

    1977-01-01

    1 - Description of problem or function: MINX calculates fine-group averaged infinitely diluted cross sections and self-shielding factors from ENDF/B-IV data. Its primary purpose is to generate a pseudo-composition-independent multigroup library which is input to the SPHINX space-energy collapse program (2) (PSR-0129) through standard CCCC-III (8) interfaces. MINX incorporates and improves upon the resonance capabilities of existing codes such as ETOX (5) (NESC0388) and ENDRUN (9) and the high-order group-to-group transfer matrices of SUPERTOG (10) (PSR-0013) and ETOG (11). Fine group energy boundaries, Legendre expansion order, gross spectral shape component (in the Bondarenko flux model), temperatures and dilutions can all be used specifically. 2 - Method of solution: Infinitely dilute, un-broadened point cross sections are obtained from resolved resonance parameters using a modified version of the RESEND program (3) (NESC0465). The SIGMA1 (4) (IAEA0854) kernel-broadening method is used to Doppler broaden and thin the tabulated linearized pointwise cross sections at 0 K (outside of the unresolved energy region). Effective temperature- dependent self-shielded pointwise cross sections are derived from the formulation in the ETOX code. The primary modification to the ETOX algorithm is associated with the numerical quadrature scheme used to establish the mean values of the fluctuation intervals. The selection of energy mesh points, at which the effective cross sections are calculated, has been modified to include the energy points given in the ENDF/B file or, if the energy-independent formalism was employed, points at half-lethargy intervals. Infinitely dilute group cross sections and self-shielding factors are generated using the Bondarenko flux weighting model with the gross spectral shape under user control. The integral over energy for each group is divided into a set of panels defined by the union of the grid points describing the total cross section, the

  7. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  8. The use of portable shields in industrial radiography

    International Nuclear Information System (INIS)

    Oliveira e Silva, J.A. de.

    1988-01-01

    This paper shows techniques actually used to reduce radiations exposure taxes during examinations execution by gamma radiography in regions of high population density. A portable equipment of radiation shield for using in exams by gamma radiography in pipelines, that is an adjustable device in an object body that will be examined, joining a measured collimator and a shield geometrically arranged so that the radiation restrict to impress the radiographic film used in examination without reaching people, objects or self-movings injurious that are nearness. (C.M.) [pt

  9. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Noda, Tetsuji [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2001-03-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for {gamma}-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  10. Design of a control system for self-shielded irradiators with remote access capability

    International Nuclear Information System (INIS)

    Iyengar, R.D.; Verma, P.B.; Prasad, V.V.S.S.; George, Jain R.; Das, Tripti; Deshmukh, D.K.

    2001-01-01

    With self-shielded irradiators like Gamma chambers, and Blood irradiators are being sold by BRIT to customers both within and outside the country, it has become necessary to improve the quality of service without increasing the overheads. The recent advances in the field of communications and information technology can be exploited for improving the quality of service to the customers. A state of the art control system with remote accessibility has been designed for these irradiators enhancing their performance. This will provide an easy access to these units wherever they might be located, through the Internet. With this technology it will now be possible to attend to the needs of the customers, as regards fault rectification, error debugging, system software update, performance testing, data acquisition etc. This will not only reduce the downtime of these irradiators but also reduce the overheads. (author)

  11. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji

    2001-01-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for γ-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  12. ICRF Faraday shield plasma sheath models: Low and high conductivity limits

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1989-01-01

    Using a 2-D nonlinear formulation which explicitly considers the plasma edge near a Faraday shield in a self consistent manner, progress is indicated in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Several models are considered which may provide significant insight into the impurities generation for ICRH antennas. 6 refs., 8 figs

  13. Unresolved resonance range cross section, probability tables and self shielding factor

    International Nuclear Information System (INIS)

    Sublet, J.Ch.; Blomquist, R.N.; Goluoglu, S.; Mac Farlane, R.E.

    2009-07-01

    The performance and methodology of 4 processing codes have been compared in the unresolved resonance range of a selected set of isotopes. Those isotopes have been chosen to encompass most cases encountered in the unresolved energy range contained in major libraries like Endf/B-7 or Jeff-3.1.1. The code results comparison is accompanied by data format and formalism examinations and processing code fine-interpretation study. After some improvements, the results showed generally good agreement, although not perfect with infinite dilute cross-sections. However, much larger differences occur when shelf-shielded effective cross-sections are compared. The infinitely dilute cross-section are often plot checked but it is the probability table derived and shelf-shielded cross sections that are used and interpreted in criticality and transport calculations. This suggests that the current evaluation data format and formalism, in the unresolved resonance range should be tightened up, ambiguities removed. In addition production of the shelf shielded cross-sections should be converged to a much greater accuracy. (author)

  14. New approximations for the Doppler broadening function applied to the calculation of resonance self-shielding factors

    International Nuclear Information System (INIS)

    Palma, Daniel A.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C.

    2008-01-01

    The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function ψ(x,ξ) to determine the resonance self-shielding factors in the epithermal range G epi (τ,ξ). Two new analytical approximations for the Doppler broadening function ψ(x,ξ) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the ψ(x,ξ) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G epi (τ,ξ). The results obtained provided satisfactory accuracy. (authors)

  15. New approximations for the Doppler broadening function applied to the calculation of resonance self-shielding factors

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A. [CEFET QUIMICA de Nilopolis/RJ, Rio de Janeiro (Brazil); Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)

    2008-07-01

    The activation technique allows much more precise measurements of neutron intensity, relative or absolute. The technique requires the knowledge of the Doppler broadening function psi(x,xi) to determine the resonance self-shielding factors in the epithermal range G{sub epi} (tau,xi). Two new analytical approximations for the Doppler broadening function psi(x,xi) are proposed. The approximations proposed are compared with other methods found in literature for the calculation of the psi(x,xi) function, that is, the 4-pole Pade method and the Frobenius method, when applied to the calculation of G{sub epi} (tau,xi). The results obtained provided satisfactory accuracy. (authors)

  16. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  17. A support shield for a powered support

    Energy Technology Data Exchange (ETDEWEB)

    Korczynski, P; Rojicek, P

    1982-08-31

    The subject of this invention is a support shield for a powered support. This shield resists creep of the coal from the longwall face, including an inclined longwall. It involves an arrangement wherein the distributor hinge is separated into upper and lower sections. The lower section holds a second hinge and the end of the rod of the pressure cylinder, one end of which is connected to the roof support. An advantage of the support is that compared to existing supports, it is self-advancing and holds stopes with coal which slopes in its formation or has inrushes. To a certain degree it prevents the stope space from ejecting fine pieces of rock from the longwall roof using an inter-timber support between the powered support and the stope. The support shield is moved by a simple system of levers which makes it possible, using a pressurized cylinder, to transmit a significant force to the coal stope. In this case, when the coal inrushes exceed the designed capabilities of the shield, a wooden extension piece is placed between the support and the face, through which the support pressure is applied.

  18. AP1000 shield building: a constructability challenge

    International Nuclear Information System (INIS)

    Di Giuseppe, Giovanni; Bonanno, Domenico

    2010-01-01

    The AP1000 Shield Building, an enhanced structure which surrounds the containment vessel, consists of standard Reinforced Concrete (RC) and composite Steel and Concrete (SC) construction. In the SC module the surface steel plates, (with attached shear studs and angles) filled with concrete, act as the steel reinforcement in concrete. This is a relatively new design technology that required the appropriate use of structural codes, supplemented with information from applicable tests on similar composite steel and concrete construction. Being a newer design concept, existing codes do not provide explicit guidance on SC construction so a review of literature and test data on composite structures similar to AP1000 shield building was done in order to confirm the technical basis for the design. The SC walls, air inlet structure and roof of the Shield Building will be constructed using modular construction practices and then transported to site and lifted into place. These modules, working also as permanent form-work, will be filled with high strength Self- Consolidating Concrete. (SCC) This paper provides a focused and integrated presentation of the enhanced shield building design methodology, testing, constructability and inspection. (authors)

  19. Capsule shields the function of short bacterial adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Dalsgaard, D.; Klemm, Per

    2004-01-01

    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can...

  20. FCXSEC: multigroup cross-section libraries for nuclear fuel cycle shielding calculations

    International Nuclear Information System (INIS)

    Ford, W.E. III; Webster, C.C.; Diggs, B.R.; Pevey, R.E.; Croff, A.G.

    1980-05-01

    Starting with the pseudo-composition-independent VITAMIN-C cross-sectin library, composition-dependent fine-(171n-36γ) and broad-group (22n-21γ) self-shielded AMPX master, broad-group microscopic ANISN-formatted, and broad-group macroscopic ANISN-formatted cross-section libraries were generated to be used for nuclear fuel cycle shielding calculations. The specifications for the data and the procedure used to prepare the libraries are described

  1. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  2. About the Scythian Shields

    Directory of Open Access Journals (Sweden)

    About the Scythian Shields

    2017-10-01

    Full Text Available Shields played major role in the armament system of the Scythians. Made from organic materials, they are poorly traced on the materials of archaeological excavations. Besides, scaly surface of shields was often perceived in practice as the remnants of the scaly armor. E. V. Chernenko was able to discern the difference between shields’ scaly plates and armor scales. The top edge of the scales was bent inwards, and shield plates had a wire fixation. These observations let significantly increase the number of shields, found in the burial complexes of the Scythians. The comparison of archaeological materials and the images of Scythian warriors allow distinguishing the main forms of Scythian shields. All shields are divided into fencing shields and cover shields. The fencing shields include round wooden shields, reinforced with bronze sheet, and round moon-shaped shields with a notch at the top, with a metal scaly surface. They came to the Scythians under the Greek influence and are known in the monuments of the 4th century BC. Oval shields with scaly surface (back cover shields were used by the Scythian cavalry. They protected the rider in case of frontal attack, and moved back in case of maneuver or closein fighting. Scythian battle tactics were based on rapid approaching the enemy and throwing spears and further rapid withdrawal. Spears stuck in the shields of enemies, forcing them to drop the shields, uncover, and in this stage of the battle the archers attacked the disorganized ranks of the enemy. That was followed by the stage of close fight. Oval form of a wooden shield with leather covering was used by the Scythian infantry and spearmen. Rectangular shields, including wooden shields and the shields pleached from rods, represented a special category. The top of such shield was made of wood, and a pleached pad on leather basis was attached to it. This shield could be a reliable protection from arrows, but it could not protect against javelins

  3. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  4. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  5. Calculation of self-shielding factors for cross-sections in the unresolved resonance region using the GRUCON applied program package

    International Nuclear Information System (INIS)

    Sinitsa, V.V.

    1984-11-01

    The author gives a scheme for the calculation of the self-shielding factors in the unresolved resonance region using the GRUCON applied program package. This package is especially created to be used in the conversion of evaluated neutron cross-section data, as available in existing data libraries, into multigroup microscopic constants. A detailed description of the formulae and algorithms used in the programs is given. Some typical examples of calculation are considered and the results are compared with those of other authors. The calculation accuracy is better than 2%

  6. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  7. Self-shielding factors for TLD-600 and TLD-100 in an isotropic flux of thermal neutrons

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Dubi, A.; Ben Shahar, B.

    1976-01-01

    The applications of lithium fluoride thermoluminescent dosemeters in mixed n-γ environments, and the dependence of LiF-TL on linear energy transfer are both topics of current interest. Monte Carlo calculations have therefore been carried out to determine the thermal neutron absorption probability (and consequently the self-shielding factor) for an isotropic flux of neutrons impinging on different sized cylindrical samples of LiF TLD-100 and TLD-600. The calculations were performed for cylinders of radius up to 10 cm and heights of 0.1 to 1.5 cm. The Monte Carlo results were found to be significantly different from the analytic calculations for infinitely long cylinders, but, as expected, converged to the same value for (r/h) << 1. (U.K.)

  8. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  9. Verification of the accuracy of Doppler broadened, self-shielded multigroup cross sections for fast power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Gopalakrishnan, V.; Ramanadhan, M.M.; Cullen, D.E.

    1988-01-01

    Verification results for Doppler broadening and self-shielding are presented. One of the important results presented is that the original SIGMA1 method of numerical Doppler broadening has now been demonstrated to be inaccurate and not capable of producing results to within required accuracies. Fortunately, due to this study, the SIGMA1 method has been significantly improved and the new SIGMA1 is now capable of producing results to within required accuracies. Although this paper presents results based upon using only one code system, it is important to realize that the original SIGMA1 method is presently used in many cross-section processing code systems; the results of this paper indicate that unless these other code systems are updated to include the new SIGMA1 method, the results produced by these code systems could be very inaccurate. The objectives of the IAEA nuclear data processing code verification project are reviewed as well as the requirements for the accuracy of calculation of Doppler coefficients and the present status of these calculations. The initial results of Doppler broadening and self-shielding calculations are presented and the inconsistency of the results which led to the discovery of errors in the original SIGMA1 method of Doppler broadening are pointed out. Analysis of the errors found and improvements in the SIGMA1 method are presented. Improved results are presented in order to demonstrate that the new SIGMA1 method can produce results within required accuracies. Guidelines are presented to limit the uncertainty introduced due to cross-section processing in order to balance available computer resources to accuracy requirements. Finally cross-section processing code users are invited to participate in the IAEA processing code verification project in order to verify the accuracy of their calculated results. (author)

  10. Shielding member for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori

    1997-06-30

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  11. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  12. Why do mothers use nipple shields and how does this influence duration of exclusive breastfeeding?

    DEFF Research Database (Denmark)

    Kronborg, Hanne; Foverskov, Else; Nilsson, Ingrid

    2017-01-01

    with introducing nipple shields were lower- gestational age and birthweight. The use of nipple shields was furthermore found to be associated with a threefold increased risk of earlier cessation of exclusive breastfeeding: among primiparae odds ratio = 3.80 (confidence interval 2.61–5.53); among multiparae odds......The present study addressed the contentious discussions about the benefits and risks of nipple shield use. The objective was to explore self-reported reasons for using a nipple shield and examine associations pertaining to the mother, the infant and duration of breastfeeding. Data were collected...... breastfeeding period. Primiparae used nipple shields more often than multiparae, and early breastfeeding problems as well as background factors like lower age, education and higher body mass index were associated with a higher likelihood of using nipple shields. Characteristics of infants associated...

  13. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  14. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  15. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  16. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  17. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  18. Comparison of calculational methods for liquid metal reactor shields

    International Nuclear Information System (INIS)

    Carter, L.L.; Moore, F.S.; Morford, R.J.; Mann, F.M.

    1985-09-01

    A one-dimensional comparison is made between Monte Carlo (MCNP), discrete ordinances (ANISN), and diffusion theory (MlDX) calculations of neutron flux and radiation damage from the core of the Fast Flux Test Facility (FFTF) out to the reactor vessel. Diffusion theory was found to be reasonably accurate for the calculation of both total flux and radiation damage. However, for large distances from the core, the calculated flux at very high energies is low by an order of magnitude or more when the diffusion theory is used. Particular emphasis was placed in this study on the generation of multitable cross sections for use in discrete ordinates codes that are self-shielded, consistent with the self-shielding employed in the generation of cross sections for use with diffusion theory. The Monte Carlo calculation, with a pointwise representation of the cross sections, was used as the benchmark for determining the limitations of the other two calculational methods. 12 refs., 33 figs

  19. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  20. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  1. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  2. Optimal beta-ray shielding thicknesses for different therapeutic radionuclides and shielding materials

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides. (authors)

  3. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  4. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  5. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  6. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    International Nuclear Information System (INIS)

    Sheu, Rong-Jiun; Chen, Yen-Fu; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2012-01-01

    Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth–dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.

  7. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  8. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  9. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  10. News from the Library: Facilitating access to a program for radiation shielding - the Library can help

    CERN Multimedia

    CERN Library

    2013-01-01

    MicroShield® is a comprehensive photon/gamma ray shielding and dose assessment programme. It is widely used for designing shields, estimating source strength from radiation measurements, minimising exposure to people, and teaching shielding principles.   Integrated tools allow the graphing of results, material and source file creation, source inference with decay (dose-to-Bq calculations accounting for decay and daughter buildup), the projection of exposure rate versus time as a result of decay, access to material and nuclide data, and decay heat calculations. The latest version is able to export results using Microsoft Office (formatted and colour-coded for readability). Sixteen geometries accommodate offset dose points and as many as ten standard shields plus source self-shielding and cylinder cladding are available. The library data (radionuclides, attenuation, build-up and dose conversion) reflect standard data from ICRP 38 and 107* as well as ANSI/ANS standards and RSICC publicat...

  11. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  12. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  13. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  14. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  15. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  16. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  17. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  18. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  19. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  20. Evaluation of the shielding integrity of end-shields in PHWR type NPPs

    International Nuclear Information System (INIS)

    Sah, B.M.L.; Ramamirtham, B.; Kutty, B.S.

    1996-01-01

    In the new plants (Narora Atomic Power Plants (NAPP) onwards) relatively higher radiation fields exist on the north and south fuelling machine (FM) vault walls of the E1 100m accessible area passages. These fields were first noticed at NAPS-1 and subsequently at NAPS-2 and KAPS-1. Such surveys done at RAPS have indicated that the fields on these walls would come out to be quite low (only 1-2 mR/h) from sources other than that arising from 41 Ar contamination. RAPS/MAPS experience pointed to adequacy of shielding of the FM vault walls and sufficient overall shielding thickness of the end-shields. Further, radiometry tests of end-shields carried out at Kaiga and RAPP 3 and 4 indicated fairly satisfactory and uniform filling of balls. Hence, incomplete filling of water column of the end-shields due to any venting problem was suspected to be one possible reason for the observed high fields in NAPS and Kakrapar Atomic Power Station (KAPS). Since the presence of high radiation fields, both neutron and gamma, is of long-term concern, a special study/measurement of radiation levels on reactor face during high power operation was undertaken. In order to compare the shielding integrity of the older (RAPS/MAPS solid plate type shielding) and newer (NAPS/KAPS steel ball-filled type) end shields, these experiments were done at MAPS-2 and NAPS-2. (author). 2 refs., 2 tabs

  1. Heavy nucleus resonant absorption in heterogeneous lattices. I- Apollo 2 self-shielding formalism; Absorption resonnante des noyaux lourds dans les reseaux heterogenes. I -Formalisme du module d`autoprotection d`Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste, M.

    1994-01-01

    This note gives in detailed way the self-shielding formalism which is used in the multigroup transport code APOLLO2. The self-shielded cross-sections are performed with the same scheme as in APOLLO1. We use two equivalencies, first an heterogeneous/homogeneous equivalence which gives the reaction rates and then a multigroup equivalence in order to obtain the cross-sections which preserve these reaction rates. However, numerous improvements were implemented, specially in the homogenization step. Homogenization can be performed group per group with different modelizations of the heavy slowing-down operator (statistical, intermediary and ``wide resonance`` models), which allows us to fit correctly the resonance shapes. Moreover, we can take exactly into account the spatial interferences between resonant isotopes with the background matrix model. Consequently, we are now able to perform, for instance, the radial distribution of the resonant absorption inside a fuel pin. (author). 7 refs., 3 figs.

  2. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  3. A study of the effect of intermediate structure in the fission cross section of 239Pu on self-shielding factors

    International Nuclear Information System (INIS)

    Ganesan, S.

    1978-01-01

    A set of energy dependent fission widths of 1 + spin state corresponding to the recommended fission cross sections of Sowerby et al is evaluated by adjustment in the energy region 600 ev to 25 Kev. Corresponding to these mean fission widths of 1 + spin state, the intermediate resonance parameters based on Weigmann's formulation of Struitinsky's double humped fission barrier model are then obtained. Pseudorandom resonances are generated with and without the intermediate structure in the mean fission but leading to the same value of infinite dilution fission cross section. The effect of the intermediate structure on the self shielding factors was then investigated. (author)

  4. Electron correlation effects on geometries and 19F shieldings of fluorobenzenes

    International Nuclear Information System (INIS)

    Webb, G.A.; Karadakov, P.B.; England, J.A.

    2000-01-01

    In order to include the effects of electron correlation in ab initio molecular orbital calculations it is necessary to go beyond the single determinant Hartree-Fock (HF) level of theory. In the present investigation the influences of both dynamic and non-dynamic correlation effects on the optimised geometries and 19 F nuclear shielding calculations of the twelve fluorobenzenes are reported.The non-dynamic electron correlation effects are represented by complete-active space self-consistent field (CASSCF) calculations. Second- and fourth-order Moller-Plesset (MP2 and MP4) calculations are used to describe the dynamic electron correlation effects. Some density-functional (DFT) results are also reported which do not distinguish between dynamic and non-dynamic electron correlation. Following the correlated geometry optimisations 19 F nuclear shielding calculations were performed using the gauge-included atomic orbitals (GIAO) procedure, these were undertaken with wave functions which include various levels of electron correlation including HF, CASSCF and MP2. For the calculations of the optimised geometries, and some of the nuclear shieldings the 6-13G** basis set s used whereas the locally-dense [6-13G** on C and H and 6-311++G(2d,2p) on F] set is used for some of the shielding calculations. A comparison of the results of HF shielding calculations using other basis sets is included. Comparison of the calculated geometry and shielding results with relevant, reported, experimental data is made. (author)

  5. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  6. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  7. solvent effect on 14n nmr shielding of glycine, serine, leucine

    African Journals Online (AJOL)

    a

    constants favor the more polar tautomers. Ab initio calculation of nuclear magnetic shielding has become an indispensable aid in the investigation of molecular structure and accurate assignment of NMR spectra of compounds. The solvation effect is taken into account via the self-consistent reaction field (SCRF) method.

  8. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  9. ICRF Faraday shield plasma sheath physics: The Perkins paradigm

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1989-01-01

    Using a 2-D nonlinear formulation which considers the plasma edge near a Faraday shield in a self consistent manner, progress is indicated in the modeling of the ion motion for a Perkins embodiment. Ambiguities in the formulation are also indicated, the resolution of which will provide significant insight into the impurities generation for ICRH antennas. 6 refs., 3 figs

  10. Ice shielding in the large scale GENIUS experiment for double beta decay and dark matter search

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Zdesenko, Yu.G.

    1998-01-01

    We suggest here the use of ice as shielding material in the large scale GENIUS experiment for the ultimate sensitive double beta decay and dark matter search. The idea is to pack a working volume of several tons of liquid nitrogen, which contains the ''naked'' Ge detectors, inside an ice shielding. Very thin plastic foil would be used in order to prevent leakage of the liquid nitrogen. Due to the excellent advantages of ice shielding (high purity and low cost, self-supporting ability, thermo-isolation and optical properties, safety) this could be another possible way of realization of the GENIUS project. (orig.)

  11. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  12. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  13. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  14. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  15. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  16. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  17. Simulations of the instability of the m=1 self-shielding diocotron mode in finite-length nonneutral plasmas

    International Nuclear Information System (INIS)

    Mason, Grant W.; Spencer, Ross L.

    2002-01-01

    The 'self-shielding' m=1 diocotron mode in Malmberg-Penning traps has been known for over a decade to be unstable for finite length nonneutral plasmas with hollow density profiles. Early theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified distribution function as a consequence of the protocol used to form the hollow profiles in experiments. We have investigated both of these finite length mechanisms in selected test cases using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic effects. We find that a persistent discrepancy of a factor of 2-3 remains between simulation and experimental values of the growth rate

  18. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  19. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Olson, A.P.

    1988-01-01

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  20. Superhydrophilic poly (styrene co acrylonitrile)-ZnO nanocomposite surfaces for UV shielding and self-cleaning applications

    Science.gov (United States)

    Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj

    2017-11-01

    UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.

  1. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  2. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  3. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  4. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  5. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  6. Situations of potential exposure in self-shielding electron accelerators; Situações de exposição potencial em aceleradores de elétrons autoblindados

    Energy Technology Data Exchange (ETDEWEB)

    Rios, D.A.S.; Rios, P.B., E-mail: denise@inovafi.com.br [Inovafi Física aplicada à Inovação Ltda, Sorocaba, SP (Brazil); Sordi, G.M.A.A.; Carneiro, J.C.G.G. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The study discusses situations in the industrial environment that may lead to potential exposure of Occupationally Exposed Individuals and Public Individuals in self-shielding electron accelerators. Although these exposure situations are unlikely, simulation exercises can lead to improvements in the operating procedure as well as suggest changes in production line design in order to increase radiation protection at work. These studies can also be used in training and demonstrate a solid application of the ALARA principle in the daily activities of radiative installations.

  7. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  8. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  9. Passive magnetic shielding in MRI-Linac systems

    Science.gov (United States)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  10. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  11. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  12. Capsule Shields the Function of Short Bacterial Adhesins

    OpenAIRE

    Schembri, Mark A.; Dalsgaard, Dorte; Klemm, Per

    2004-01-01

    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can occur in other gram-negative bacteria. Likewise, we show that other short adhesins exemplified by the AIDA-I protein are blocked by the presence of a capsule. The results support the notion that cap...

  13. EBT-P gamma-ray-shielding analysis

    International Nuclear Information System (INIS)

    Gohar, Y.

    1983-01-01

    First, a one-dimensional scoping study was performed for the gamma-ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose-equivalent results are analyzed as a function of the radiation-shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma-ray sources. Also, a detailed biological-dose survey was performed which included: (a) the dose equivalent inside and outside the building, (b) the dose equivalent from the two mazes of the building, and (c) the skyshine contribution to the dose equivalent

  14. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  15. Will Organic Synthesis Within Icy Grains or on Dust Surfaces in the Primitive Solar Nebula Completely Erase the Effects of Photochemical Self Shielding?

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.

  16. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  17. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  18. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  19. A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)

  20. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires

    International Nuclear Information System (INIS)

    Zhang, Tianli; Li, Zhuoxin; Kou, Sindo; Jing, Hongyang; Li, Guodong; Li, Hong; Jin Kim, Hee

    2015-01-01

    The effect of inclusions on the microstructure and toughness of the deposited metals of self-shielded flux cored wires was investigated by optical microscopy, electron microscopy and mechanical testing. The deposited metals of three different wires showed different levels of low temperature impact toughness at −40 °C mainly because of differences in the properties of inclusions. The inclusions formed in the deposited metals as a result of deoxidation caused by the addition of extra Al–Mg alloy and ferromanganese to the flux. The inclusions, spherical in shape, were mixtures of Al 2 O 3 and MgO. Inclusions predominantly Al 2 O 3 and 0.3–0.8 μm in diameter were effective for nucleation of acicular ferrite. However, inclusions predominantly MgO were promoted by increasing Mg in the flux and were more effective than Al 2 O 3 inclusions of the same size. These findings suggest that the control of inclusions can be an effective way to improve the impact toughness of the deposited metal

  1. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  2. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  3. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  4. Optimization of multi-layered metallic shield

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Dubinsky, A.; Elperin, T.

    2011-01-01

    Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.

  5. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  6. SHIELD verification and validation report

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation

  7. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  8. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  9. Prevalence of self-reported diagnosis of diabetes mellitus and associated risk factors in a national survey in the US population: SHIELD (Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes).

    Science.gov (United States)

    Bays, Harold E; Bazata, Debbra D; Clark, Nathaniel G; Gavin, James R; Green, Andrew J; Lewis, Sandra J; Reed, Michael L; Stewart, Walter; Chapman, Richard H; Fox, Kathleen M; Grandy, Susan

    2007-10-03

    Studies derived from continuous national surveys have shown that the prevalence of diagnosed diabetes mellitus in the US is increasing. This study estimated the prevalence in 2004 of self-reported diagnosis of diabetes and other conditions in a community-based population, using data from the Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD). The initial screening questionnaire was mailed in 2004 to a stratified random sample of 200,000 households in the US, to identify individuals, age > or = 18 years of age, with diabetes or risk factors associated with diabetes. Follow-up disease impact questionnaires were then mailed to a representative, stratified random sample of individuals (n = 22,001) in each subgroup of interest (those with diabetes or different numbers of risk factors for diabetes). Estimated national prevalence of diabetes and other conditions was calculated, and compared to prevalence estimates from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Response rates were 63.7% for the screening, and 71.8% for the follow-up baseline survey. The SHIELD screening survey found overall prevalence of self-reported diagnosis of diabetes (either type 1 or type 2) was 8.2%, with increased prevalence with increasing age and decreasing income. In logistic regression modeling, individuals were more likely to be diagnosed with type 2 diabetes if they had abdominal obesity (odds ratio [OR] = 3.50; p or =28 kg/m2 (OR = 4.04; p self-report only) to those from NHANES 1999-2002 (self-report, clinical and laboratory evaluations), the prevalence of diabetes was similar. SHIELD allows the identification of respondents with and without a current diagnosis of the illness of interest, and potential longitudinal evaluation of risk factors for future diagnosis of that illness.

  10. Handout on shielding calculation

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.

    1991-01-01

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  11. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  12. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  13. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  14. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  15. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  16. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  17. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  18. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  19. Radiation shielding

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    Shields for equipment in which ionising radiation is associated with high electrical gradients, for example X-ray tubes and particle accelerators, incorporate a radiation-absorbing metal, as such or as a compound, and are electrically non-conducting and can be placed in the high electrical gradient region of the equipment. Substances disclosed include dispersions of lead, tungsten, uranium or oxides of these in acrylics polyesters, PVC, ABS, polyamides, PTFE, epoxy resins, glass or ceramics. The material used may constitute an evacuable enclosure of the equipment or may be an external shield thereof. (U.K.)

  20. Computed tomography shielding methods: a literature review.

    Science.gov (United States)

    Curtis, Jessica Ryann

    2010-01-01

    To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning. Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield's effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice. Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose. Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.

  1. Radiation shielding cloth

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Tamura, Shoji.

    1989-01-01

    Radiation shielding cloth having radiation shielding layers comprising a composition of inorganic powder of high specific gravity and rubber are excellentin flexibility and comfortable to put on. However, since they are heavy in the weight, operators are tired upon putting them for a long time. In view of the above, the radiation ray shielding layers are prepared by calendering sheets obtained by preliminary molding of the composition to set the variation of the thickness within a range of +15% to -0% of prescribed thickness. Since the composition of inorganic powder at high specific gravity and rubber used for radiation ray shielding comprises a great amount of inorganic powder at high specific gravity blended therein, it is generally poor in fabricability. Therefor, it is difficult to attain fine control for the sheet thickness by merely molding a composition block at once. Then, the composition is at first preliminarily molded into a sheet-like shape which is somewhat thickener than the final thickness and then finished by calendering, by which the thickness can be reduced in average as compared with conventional products while keeping the prescribed thickness and reducing the weight reduce by so much. (N.H.)

  2. Radiation shielding glass

    International Nuclear Information System (INIS)

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  3. Shielding modification design of the N.S. Mutsu

    International Nuclear Information System (INIS)

    Yamaji, A.; Miyakoshi, J.; Kageyama, T.; Futamura, Y.

    1983-01-01

    Shielding modification design of the N.S. Mutsu was performed for reducing the radiation doses outside the primary and the secondary shields by providing shields for neutrons streaming through the air gap between the pressure vessel and the primary shield. This was accomplished by replacing parts of the shields and adding new shields in the upper and lower sections of both primary and secondary shields, and also replacing the thermal insulator in the gap. The shielding design calculations were made using one- and two-dimensional discrete ordinates codes and also a point kernel code. Special attention was paid to the calculations of, (1) the neutrons streaming through the gap between the pressure vessel and the primary shield, (2) the radiations transmitted through the radial shield of the core in the primary shield, (3) the radiations transmitted through the upper and lower sections of the secondary shield, and (4) the dose rate equivalent in the accommodation area. Their calculational accuracies were estimated by analyzing various experiments. To support the modification, a variety of experiments and tests were carried out, which were material tests, cooling test of the primary shield, mechanical strength test of the double bottom, trial fabrication tests of new shields, performance degradation test of heavy concrete and duct streaming experiment in the secondary shield. (author)

  4. Gamma ray absorption of cylindrical fissile material with dual shields

    International Nuclear Information System (INIS)

    Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)

  5. Radiation shielding curtain

    International Nuclear Information System (INIS)

    Winkler, N.T.

    1976-01-01

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  6. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  7. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  8. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  9. Shield calculations, optimization vs. paradigm

    International Nuclear Information System (INIS)

    Cornejo D, N.; Hernandez S, A.; Martinez G, A.

    2006-01-01

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of μSv.h -1 , independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  10. Several problems in accelerator shielding study

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Hirayama, Hideo; Ban, Shuichi.

    1980-01-01

    Recently, the utilization of accelerators has increased rapidly, and the increase of accelerating energy and beam intensity is also remarkable. The studies on accelerator shielding have become important, because the amount of radiation emitted from accelerators increased, the regulation of the dose of environmental radiation was tightened, and the cost of constructing shielding rose. As the plans of constructing large accelerators have been made successively, the survey on the present state and the problems of the studies on accelerator shielding was carried out. Accelerators are classified into electron accelerators and proton accelerators in view of the studies on shielding. In order to start the studies on accelerator shielding, first, the preparation of the cross section data is indispensable. The cross sections for generating Bremsstrahlung, photonuclear reactions generating neutrons, generation of neutrons by hadrons, nuclear reaction of neutrons and generation of gamma-ray by hadrons are described. The generation of neutrons and gamma-ray as the problems of thick targets is explained. The shielding problems are complex and diversified, but in this paper, the studies on the shielding, by which basic data are obtainable, are taken up, such as beam damping and side wall shielding. As for residual radioactivity, main nuclides and the difference of residual radioactivity according to substances have been studied. (J.P.N.)

  11. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  12. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  13. Gonadal Shielding in Radiography: A Best Practice?

    Science.gov (United States)

    Fauber, Terri L

    2016-11-01

    To investigate radiation dose to phantom testes with and without shielding. A male anthropomorphic pelvis phantom was imaged with thermoluminescent dosimeters (TLDs) placed in the right and left detector holes corresponding to the testes. Ten exposures were made of the pelvis with and without shielding. The exposed TLDs were packaged securely and mailed to the University of Wisconsin Calibration Laboratory for reading and analysis. A t test was calculated for the 2 exposure groups (no shield and shielded) and found to be significant, F = 8.306, P shield was used during pelvic imaging. Using a flat contact shield during imaging of the adult male pelvis significantly reduces radiation dose to the testes. Regardless of the contradictions in the literature on gonadal shielding, the routine practice of shielding adult male gonads during radiographic imaging of the pelvis is a best practice. © 2016 American Society of Radiologic Technologists.

  14. Estimating ISABELLE shielding requirements

    International Nuclear Information System (INIS)

    Stevens, A.J.; Thorndike, A.M.

    1976-01-01

    Estimates were made of the shielding thicknesses required at various points around the ISABELLE ring. Both hadron and muon requirements are considered. Radiation levels at the outside of the shield and at the BNL site boundary are kept at or below 1000 mrem per year and 5 mrem/year respectively. Muon requirements are based on the Wang formula for pion spectra, and the hadron requirements on the hadron cascade program CYLKAZ of Ranft. A muon shield thickness of 77 meters of sand is indicated outside the ring in one area, and hadron shields equivalent to from 2.7 to 5.6 meters in thickness of sand above the ring. The suggested safety allowance would increase these values to 86 meters and 4.0 to 7.2 meters respectively. There are many uncertainties in such estimates, but these last figures are considered to be rather conservative

  15. Selective shielding device for scintiphotography

    International Nuclear Information System (INIS)

    Harper, J.W.; Kay, T.D.

    1976-01-01

    A selective shielding device to be used in combination with a scintillation camera is described. The shielding device is a substantially oval-shaped configuration removably secured to the scintillation camera. As a result of this combination scanning of preselected areas of a patient can be rapidly and accurately performed without the requirement of mounting any type of shielding paraphernalia on the patient. 1 claim, 2 drawing figures

  16. Radiation shielding material

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Isobe, Eiji.

    1976-01-01

    Purpose: To increase the shielding capacity of the radiation shielding material having an abundant flexibility. Constitution: A mat consisting of a lead or lead alloy fibrous material is covered with a cloth, and the two are made integral by sewing in a kilted fashion by using a yarn. Thereafter, the system is covered with a gas-tight film or sheet. The shielding material obtained in this way has, in addition to the above merits, advantages in that (1) it is free from restoration due to elasticity so that it can readily seal contaminants, (2) it can be used in a state consisting of a number of overlapped layers, (3) it fits the shoulder well and is readily portable and (4) it permits attachment of fasteners or the like. (Ikeda, J.)

  17. Radiation shielding in dental radiography

    International Nuclear Information System (INIS)

    Stenstroem, B.; Rehnmark-Larsson, S.; Julin, P.; Richter, S.

    1983-01-01

    The protective effect in the thyroid region from different types of radiation shieldings at intraoral radiography has been studied as well as the reduction of the absorbed dose to the sternal and the gonadal regions. The shieldings tested were five different types of leaded aprons, of which three had an attached leaded collar and the other two were used in combination with separate soft leaded collars. Furthermore one of the soft leaded collars and an unflexible horizontal leaded shield were tested separately. Two dental x-ray machines of 60 and 65 kVp with rectangular and circular tube collimators were used. The exposure time corresponded to speed group E film. The absorbed doses were measured with two ionization chambers. No significant difference in the protective effect in the thyroid gland could be found between the different types of radiation shieldings. There was a dose reduction by approximately a factor of 2 to the thyroid region down to 0.08 mGy per full survey using parallelling technique, and below 0.001 mGy per single bitewing exposure. The shieldings reduced the thyroid dose using bisecting-angle technique by a factor of 5 down to 0.15 mGy per full survey (20 exposures). In the sternal region the combinations of apron and collar reduced the absorbed dose from a full survey to below 2 μGy compared with 18 μGy (parallelling) and 31 μGy (biscting-angle) without any shielding. With the horizontal leaded shield a reduction by a factor of 6 was obtained but no significant sternal dose reduction could be detected from the soft collar alone. The gonadal dose could be reduced by a factor of 10 with the horizontal leaded shield, parallelling technique and circular collimator. Using leaded aprons the gonadal dose was approximately one per cent of the dose without any shielding, i.e. below 0.01 μGy per single intraoral exposure. (Authors)

  18. Simulations of the instability of the m=1 self-shielding diocotron mode in finite-length non-neutral plasmas

    International Nuclear Information System (INIS)

    Mason, Grant W.; Spencer, Ross L.

    2002-01-01

    The 'self-shielding' m=1 diocotron mode in Malmberg-Penning traps has been known for over a decade to be unstable for finite length non-neutral plasmas with hollow density profiles. Early theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified distribution function as a consequence of the protocol used to form the hollow profiles in experiments. Both of these finite length mechanisms have been investigated in selected test cases using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic effects. A persistent discrepancy of a factor of 2-3 remains between simulation and experimental values of the growth rate. Simulations reported here are more in agreement with theoretical predictions and fail to explain the discrepancy

  19. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  20. Shielding effectiveness of superconductive particles in plastics

    International Nuclear Information System (INIS)

    Pienkowski, T.; Kincaid, J.; Lanagan, M.T.; Poeppel, R.B.; Dusek, J.T.; Shi, D.; Goretta, K.C.

    1988-09-01

    The ability to cool superconductors with liquid nitrogen instead of liquid helium has opened the door to a wide range of research. The well known Meissner effect, which states superconductors are perfectly diamagnetic, suggests shielding applications. One of the drawbacks to the new ceramic superconductors is the brittleness of the finished material. Because of this drawback, any application which required flexibility (e.g., wire and cable) would be impractical. Therefore, this paper presents the results of a preliminary investigation into the shielding effectiveness of YBa 2 Cu 3 O/sub 7-x/ both as a composite and as a monolithic material. Shielding effectiveness was measured using two separate test methods. One tested the magnetic (near field) shielding, and the other tested the electromagnetic (far field) shielding. No shielding was seen in the near field measurements on the composite samples, and only one heavily loaded sample showed some shielding in the far field. The monolithic samples showed a large amount of magnetic shielding. 5 refs., 5 figs

  1. Shielding and grounding in large detectors

    International Nuclear Information System (INIS)

    Radeka, V.

    1998-09-01

    Prevention of electromagnetic interference (EMI), or ''noise pickup,'' is an important design aspect in large detectors in accelerator environments. Shielding effectiveness as a function of shield thickness and conductivity vs the type and frequency of the interference field is described. Noise induced in transmission lines by ground loop driven currents in the shield is evaluated and the importance of low shield resistance is emphasized. Some measures for prevention of ground loops and isolation of detector-readout systems are discussed

  2. Tax Shield, Insolvenz und Zinsschranke

    OpenAIRE

    Arnold, Sven; Lahmann, Alexander; Schwetzler, Bernhard

    2010-01-01

    Dieser Beitrag analysiert den Wertbeitrag fremdfinanzierungsbedingter Steuervorteile (Tax Shield) unter realistischen Bedingungen (keine Negativsteuer; mögliche Insolvenz) für unterschiedliche Finanzierungspolitiken. Zusätzlich wird der Effekt der sogenannten Zinsschranke auf den Wert des Tax Shield ermittelt. Die Bewertung des Tax Shield mit und ohne Zinsschranke findet im einperiodigen Fall auf der Basis von Optionspreismodellen und im mehrperiodigen Fall auf der Basis von Monte Carlo Simul...

  3. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  4. Gonad shielding in computerized tomography

    International Nuclear Information System (INIS)

    Rockstroh, G.

    1984-01-01

    The reduction of gonadal dose by shielding of the gonads was investigated for a Somatom 2 using an anthropomorphic phantom. For small distances from the slice examined the gonadal dose results from intracorporal secondary radiation and is only insignificantly reduced by shielding. For greater distances shielding is relatively more effective, the gonadal dose however is small because of the approximately exponential decay. Shielding of the gonads therefore does not seem adequate for the reduction of gonadal dose. From dose measurements in cylinder phantoms of several diameters it appears that no different results would be obtained for children and young adults. An effective reduction of gonadal dose is only possible with lead capsules for males. (author)

  5. Survivor shielding. Part A. Nagasaki factory worker shielding

    International Nuclear Information System (INIS)

    Santoro, Robert T.; Barnes, John M.; Azmy, Yousry Y.; Kerr, George D.; Egbert, Stephen D.; Cullings, Harry M.

    2005-01-01

    Recent investigations based on conventional chromosome aberration data by the RERF suggest that the DS86 doses received by many Nagasaki factory workers may have been overestimated by as much as 40% relative to those for other survivors in Japanese-type houses and other shielding configurations (Kodama et al. 2001). Since the factory workers represent about 25% of the Nagasaki survivors with DS86 doses in excess of 0.5 Gy (50 rad), systematic errors in their dose estimates can have a major impact on the risk coefficients from RERF studies. The factory worker doses may have been overestimated for a number of reasons. The calculation techniques, including the factory building modeling, weapon source spectra and cross-section data used in the DS86 shielding calculations were not detailed enough to replicate actual conditions. The models used did not take into account local shielding provided by machinery, tools, and the internal structure in the buildings. In addition, changes in the disposition of shielding following collapse of the building by the blast wave were not considered. The location of large factory complexes may be uncertain, causing large numbers of factory survivors, correctly located relative to each other, to be uniformly too close to the hypocenter. Any or all of these reasons are sufficient to result in an overestimate of the factory worker doses. During the DS02 studies, factory worker doses have been reassessed by more carefully modeling the factory buildings, incorporating improved radiation transport methods and cross-section data and using the most recent bomb leakage spectra (Chapter 2). Two-dimensional discrete ordinates calculations were carried out initially to estimate the effects of workbenches and tools on worker doses to determine if the inclusion of these components would, in fact, reduce the dose by amounts consistent with the RERF observations (Kodama et al. 2001). (author)

  6. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  7. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Mannudeep K.; Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo Anne O. [Massachusetts General Hospital, Boston (United States)

    2009-04-15

    To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The 'shielded' phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. In-plane shields are associated with greater image noise, artificially increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield.

  8. Improving the shielding effectiveness of a board-level shield by bonding it with the waveguide-below-cutoff principle

    OpenAIRE

    Degraeve, Andy; Pissoort, Davy; Armstrong, Keith

    2015-01-01

    This paper discusses the shielding performance or shielding effectiveness of a board-level shield in function of its bonding method. Improved shielding performance at board-level in order to harden integrated circuits against unintentional and intentional electromagnetic interference, and this under harsh environmental conditions, is getting more and more important to achieve the desired levels of functional performance and operational reliability despite an ever more aggressive electromagnet...

  9. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  10. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  11. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  12. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  13. Shielding design of ITER pressure suppression system

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Kawasaki, Hiromitsu

    2006-01-01

    The duct shield from streaming D-T neutrons has been designed for the ITER pressure suppression system. Streaming calculations are performed with the DUCT-III code for the region from the inlet of the pressure relief line to the rupture disk. Next, the neutron permeation through the shield is studied by Monte Carlo calculations with the MCNP code. It is found that 0.15 m thick iron shield is enough to suppress the permeating component from the outside. In addition, it is suggested that the volume of the shield can be reduced by about 30% if the optimized iron shield structure having localized thickness across intense permeation paths is employed to shield the pressure suppression line. (T.I.)

  14. Superconducting magnetic shields production. Realisation d'ecrans magnetiques supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lainee, F; Kormann, R [Thomson-CSF, Domaine de Corbeville, 91 - Orsay (FR); Lainee, F [Ecole des Mines de Paris, 91 - Evry (FR)

    1992-02-01

    Low fields and low frequency shielding properties of YBCO magnetic shields are measured at 77 K. They compare favourably with shielding properties of mumetal shields. Therefore high-T{sub c} superconducting magnetic shields can already be used to shield small volumes. The case of magnetic shields for large volumes is also discussed. 3 refs; 6 figs; 4 tabs.

  15. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  16. Neutron shielding for a 252 Cf source

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Eduardo Gallego, Alfredo Lorente

    2006-01-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source. During calculations a detailed model for the 252 Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare 252 Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  17. Radiation shielding application of lead glass

    International Nuclear Information System (INIS)

    Nathuram, R.

    2017-01-01

    Nuclear medicine and radiotherapy centers equipped with high intensity X-ray or teletherapy sources use lead glasses as viewing windows to protect personal from radiation exposure. Lead is the main component of glass which is responsible for shielding against photons. It is therefore essential to check the shielding efficiency before they are put in use. This can be done by studying photon transmission through the lead glasses. The study of photon transmission in shielding materials has been an important subject in medical physics and is potential useful in the development of radiation shielding materials

  18. Shielding Factor Method for producing effective cross sections: MINX/SPHINX and the CCCC interface system

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Weisbin, C.R.; Paik, N.C.

    1978-01-01

    The Shielding Factor Method (SFM) is an economical designer-oriented method for producing the coarse-group space and energy self-shielded cross sections needed for reactor-core analysis. Extensive experience with the ETOX/1DX and ENDRUN/TDOWN systems has made the SFM the method of choice for most US fast-reactor design activities. The MINX/SPHINX system was designed to expand upon the capabilities of the older SFM codes and to incorporate the new standard interfaces for fast-reactor cross sections specified by the Committee for Computer Code Coordination (CCCC). MINX is the cross-section processor. It generates multigroup cross sections, shielding factors, and group-to-group transfer matriccs from ENDF/B-IV and writes them out as CCCC ISOTXS and BRKOXS files. It features detailed pointwise resonance reconstruction, accurate Doppler broadening, and an efficient treatment of anisotropic scattering. SPHINX is the space-and-energy shielding code. It uses specific mixture and geometry information together with equivalence principles to construct shielded macroscopic multigroup cross sections in as many as 240 groups. It then makes a flux calculation by diffusion or transport methods and collapses to an appropriate set of cell-averaged coarse-group effective cross sections. The integration of MINX and SPHINX with the CCCC interface system provides an efficient, accurate, and convenient system for producing effective cross sections for use in fast-reactor problems. The system has also proved useful in shielding and CTR applications. 3 figures, 4 tables

  19. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  20. Program GROUPIE (version 79-1): calculation of Bondarenko self-shielded neutron cross sections and multiband parameters from data in the ENDF/B format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1980-01-01

    Program GROUPIE reads evaluated data in the ENDF/B format and uses these data to calculate Bondarenko self-shielded cross sections and multiband parameters. To give as much generality as possible, the program allows the user to specify arbitrary energy groups and an arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighing function). To guarantee the accuracy of the results, all integrals are performed analytically; in no case is iteration or any approximate form of integration used. The output from this program includes both listings and multiband parameters suitable for use either in a normal multigroup transport calculation or in a multiband transport calculation. A listing of the source deck is available on request

  1. Practical radiation shielding for biomedical research

    International Nuclear Information System (INIS)

    Klein, R.C.; Reginatto, M.; Party, E.; Gershey, E.L.

    1990-01-01

    This paper reports on calculations which exist for estimating shielding required for radioactivity; however, they are often not applicable for the radionuclides and activities common in biomedical research. A variety of commercially available Lucite shields are being marketed to the biomedical community. Their advertisements may lead laboratory workers to expect better radiation protection than these shields can provide or to assume erroneously that very weak beta emitters require extensive shielding. The authors have conducted a series of shielding experiments designed to simulate exposures from the amounts of 32 P, 51 Cr and 125 I typically used in biomedical laboratories. For most routine work, ≥0.64 cm of Lucite covered with various thicknesses of lead will reduce whole-body occupational exposure rates of < 1mR/hr at the point of contact

  2. BRH Gonad Shielding Program: where it has led

    International Nuclear Information System (INIS)

    Arcarese, J.S.

    1975-01-01

    Some topics discussed are: Bureau of Radiological Health guidelines; types of gonad shields; specific area shielding; gonad shielding guidelines; and publication of pamphlet on types of shields and circumstances under which they should be used

  3. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  4. The effect of some organic and non-organic additions on the shielding and mechanical properties of radiation shielding concrete

    International Nuclear Information System (INIS)

    Kharita, M. H.; Yousef, S.; Al-Nassar, M.

    2011-04-01

    Few studies on the effect of some additives on the shielding properties of concrete have been carried out in this research. These studies included the effect of carbon powder, boron compounds, and waste polyethylene. The effect of water to cement ratio has been studied too. The research results showed that carbon powder and some boron compounds could be used to improve shielding concrete properties, and the possibility to add waste polyethylene in shielding concrete without effects on shielding properties. No significant effect for water to cement ratio on shielding properties of concrete. (author)

  5. Technical products for radiation shielding. Shield assembled from lead blocks for radiation protection. General technical requirements

    International Nuclear Information System (INIS)

    1981-01-01

    The object of this standard description is the general technological requirements of 50 and 100 mm thick radiation protection shields assembled from lead blocks. The standard contains the definitions, types, parameters and dimensions of shields, their technical and acceptance criteria with testing methods, tagging, packaging, transportation and storage requirements, producer's liability. Some illustrated assembling examples, preferred parameters and dosimetry methods for shield inspection are given. (R.P.)

  6. Shield support frame. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, K.

    1981-09-17

    A powered shield support frame for coal sheds is described comprising of two bottom sliding shoes, a large area gob shield and a larg area roof assembly, all joined movable together. The sliding shoes and the gob shield are joined by a lemniscate guide. Two hydraulic props are arranged at the face-side at one third of the length of the sliding shoes and at the goaf-side at one third of the length of the roof assembly. A nearly horizontal lying pushing prop unit joins the bottom wall sliding shoes to the goaf-side lemniscate guide. This assembly can be applied to seams with a thickness down to 45 cm. (OGR).

  7. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.

    1992-01-01

    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  8. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  9. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  10. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  11. Final report of Shield System Trade Study. Volume II. WANL support activities for shielding trade study

    International Nuclear Information System (INIS)

    1970-07-01

    Based on the trades made within this study BATH (mixture of B 4 C, aluminum and TiH 1 . 8 ) was selected as the internal shield material. Borated titanium hydride can also meet the criteria with a competitive weight but was rejected because of schedular constraints. A baseline internal shield design was accomplished. This design resulted in a single internal shield weighing about 3300 lb for both manned and unmanned missions. WANL checks on ANSC calculations are generally in agreement, but with some difference in the prediction of the effectiveness of the Boral liner. All of the alternate NSS concepts in the system weight reduction program were rejected. While some did save shield weight, they complicated the NSS design to an unacceptable degree. Studies were made of the feasibility of manual maintenance of NSS components outside of the pressure vessel. The requirements of the NSS components located forward of the internal shield were considered from a thermal and radiation damage standpoint. (auth)

  12. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  13. Shielding calculations. Optimization vs. Paradigms

    International Nuclear Information System (INIS)

    Cornejo Diaz, Nestor; Hernandez Saiz, Alejandro; Martinez Gonzalez, Alina

    2005-01-01

    Many radiation shielding barriers in Cuba have been designed according to the criterion of Maxi-mum Projected Dose Rates. This fact has created the paradigm of low dose rates. Because of this, dose rate levels greater than units of Sv.h-1 would be considered unacceptable by many specialists, regardless of the real exposure times. Nowadays many shielding barriers are being designed using dose constraints in real exposure times. Behind the new barriers, dose rates could be notably greater than those behind the traditional ones, and it does not imply inadequate designs or constructive errors. In this work were obtained significant differences in dose rate levels and shield-ing thicknesses calculated by both methods for some typical installations. The work concludes that real exposure time approach is more adequate in order to optimise Radiation Protection, although this method should be carefully applied

  14. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  15. Radiation shielding bricks

    International Nuclear Information System (INIS)

    Crowe, G.J.W.

    1983-01-01

    A radiation shielding brick for use in building dry walls to form radiation proof enclosures and other structures is described. It is square in shape and comprises a sandwich of an inner layer of lead or similar shielding material between outer layers of plastics material, for structural stability. The ability to mechanically interlock adjacent bricks is provided by shaping the edges as cooperating external and internal V-sections. Relatively leak-free joints are ensured by enlarging the width of the inner layer in the edge region. (author)

  16. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina Chow

    2016-11-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  17. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  18. A study of gamma shielding

    International Nuclear Information System (INIS)

    Roogtanakait, N.

    1981-01-01

    Gamma rays have high penetration power and its attenuation depends upon the thickness and the attenuation coefficient of the shield, so it is necessary to use the high density shield to attenuate the gamma rays. Heavy concrete is considered to be used for high radiation laboratory and the testing of the shielding ability and compressibility of various types of heavy concrete composed of baryte, hematite, ilmenite and galena is carried out. The results of this study show that baryte-ilmenite concrete is the most suitable for high radiation laboratory in Thailand

  19. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  20. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  1. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  2. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  3. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  4. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  5. Development of point Kernel radiation shielding analysis computer program implementing recent nuclear data and graphic user interfaces

    International Nuclear Information System (INIS)

    Kang, S.; Lee, S.; Chung, C.

    2002-01-01

    There is an increasing demand for safe and efficient use of radiation and radioactive work activity along with shielding analysis as a result the number of nuclear and conventional facilities using radiation or radioisotope rises. Most Korean industries and research institutes including Korea Power Engineering Company (KOPEC) have been using foreign computer programs for radiation shielding analysis. Korean nuclear regulations have introduced new laws regarding the dose limits and radiological guides as prescribed in the ICRP 60. Thus, the radiation facilities should be designed and operated to comply with these new regulations. In addition, the previous point kernel shielding computer code utilizes antiquated nuclear data (mass attenuation coefficient, buildup factor, etc) which were developed in 1950∼1960. Subsequently, the various nuclear data such mass attenuation coefficient, buildup factor, etc. have been updated during the past few decades. KOPEC's strategic directive is to become a self-sufficient and independent nuclear design technology company, thus KOPEC decided to develop a new radiation shielding computer program that included the latest regulatory requirements and updated nuclear data. This new code was designed by KOPEC with developmental cooperation with Hanyang University, Department of Nuclear Engineering. VisualShield is designed with a graphical user interface to allow even users unfamiliar to radiation shielding theory to proficiently prepare input data sets and analyzing output results

  6. New applications and developments in the neutron shielding

    Directory of Open Access Journals (Sweden)

    Uğur Fatma Aysun

    2017-01-01

    Full Text Available Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  7. New applications and developments in the neutron shielding

    Science.gov (United States)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  8. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57 Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240 Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  9. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Gallegoc, E.; Lorentec, A.; Hernandez-Davila, V.M.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (M.C.N.P. code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  10. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  11. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  12. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  13. Development of HANARO ST3 shield

    International Nuclear Information System (INIS)

    Park, K. N.; Lee, J. S.; Shim, H. S.

    2004-12-01

    This report contains the design, fabrication and accurate installation of ST3 shield, which would be installed at ST3 beam port of HANARO. At first, we designed and fabricated ST3 shield casemate composed of 14 blocks. We filled it with heavy concrete, lead ingot and polyethylene that mixed B 4 C powder and epoxy. The average filling density of total shield casemate was 4.7g/cm 3 . The developed ST3 shield was installed at the ST3 beam port and the accuracy of installation for each beam path and channel was evaluated. We found that the extraction of neutron beam to meet the requirement of neutron spectrometer is possible. Also, we developed ancillary equipment such as BGU, quick shutter and exterior shield door for the effective opening and closing of neutron beam. As a result of this study, it was found that neutron spectrometer such as neutron reflectometer and high intensity powder diffractomater can be installed at the ST3 beam port

  14. Cage for shield-type support. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Harryers, W; Blumenthal, G; Irresberger, H

    1981-08-13

    A cage for shield-type support containing a fracture shield supported by a hydraulic stamp and a projecting roof bar was constructed in such a way that no cellular shirt is needed to timber the caved room. The roof bar which is linked at a joint axis at the face-side end of the fracture shield is formed at the face side as a multiply foldable bar. (HGOE).

  15. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  16. Shielding calculation for bremsstrahlung from β-emitters

    International Nuclear Information System (INIS)

    Ichimiya, Tsutomu

    1990-01-01

    Accompanying the revision of radiation injury prevention law, the shielding calculation method for photon corresponding to the dose equivalent was shown. However, regarding the electron from β decay nuclide and bremsstrahlung caused by shielding material, the shielding calculation method corresponding to the 1 cm dose equivalent has not been reported, hence, in this report, the spectrum of β-ray is calculated and the 1 cm dose equivalent transmission rate of the bremsstrahlung was calculated for three kinds of shielding materials (iron, lead, concrete). As the result of consideration, it is sufficient to think about the bremsstrahlung due to negative electron emission accompanying β-decay. In β-decay, electrons which constitute the continuous spectrum with maximum energy are emitted. The shape of the spectrum differs with nuclides. The maximum energy of β-ray of generally used nuclides is mostly below 3MeV and, besides, the electron ray itself is easily shielded, while the strength of bremsstrahlung depends on the atomic number of shielding materials and its generating mechanism is complicated. In this report, the actual shielding calculation method for bremsstrahlung is shown with regard to the most frequently used β-decay nuclides. (M.T.)

  17. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  18. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  19. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    1975-06-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. This pamphlet will provide physicians and radiologic technologists with information which will aid their appropriate use of gonad shielding

  20. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    International Nuclear Information System (INIS)

    Joshi, S; Vanderhoek, M

    2016-01-01

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  1. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S; Vanderhoek, M [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  2. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  3. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  4. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  5. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  6. PC based temporary shielding administrative procedure (TSAP)

    International Nuclear Information System (INIS)

    Olsen, D.E.; Pederson, G.E.; Hamby, P.N.

    1995-01-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison's six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative procedure and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met

  7. PC based temporary shielding administrative procedure (TSAP)

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.E.; Pederson, G.E. [Sargent & Lundy, Chicago, IL (United States); Hamby, P.N. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison`s six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative procedure and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met.

  8. Mechanical design of the TIBER breeding shield

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, J.; Deutsch, L. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-04-01

    TIBER features a segmented shield assembly that provides the nuclear shielding for the superconducting toroidal field coils. In addition to its primary function, the shield also provides tritium breeding through the use of water coolant that contains 16 wt% dissolved lithium nitrate. Because the TIBER reactor need not provide electrical power, the coolant is maintained at low pressure (0.2 MPa) and low temperature (75/sup 0/C). The shield is made in several segments to facilitate assembly and allow for replacement of high heat flux components (divertor blades). The segments are designated as inboard, outboard, upper, lower, and divertor modules. In total, there are 96 separate modules in the machine, consisting of six different types. The design features of the different modules vary primarily depending on the thickness of the shield in a given location. The very thick outboard shield has a breeding zone in the inboard portion of the module, with a shielding zone behind it. The breeding zone consists of a stainless steel casing filled with beryllium spheres. The shielding zone consists of the same casing filled with steel spheres. Both of these zones have lithiated water circulated throughout to provide cooling and breeding. In zones with minimal thickness, tungsten alloys are used to achieve the required shielding. These alloys are incoprorated in subassemblies utilizing stainless steel casings surrounding blocks of tungsten heavy metal alloy. These are infiltrated with lead on final assembly to form a thermally continuous panel. Several of these panels are then assembled into an outer stainless steel case to form an inboard module. These modules also use the lithiated coolant. The details of the design are presented and discussed. (orig.).

  9. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  10. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  11. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  12. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus

    2012-01-01

    Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed concentra......Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed...

  13. 21 CFR 886.4750 - Ophthalmic eye shield.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4750 Ophthalmic eye shield. (a) Identification. An ophthalmic eye shield is a device that consists of a plastic or aluminum eye covering intended to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic eye shield. 886.4750 Section 886.4750...

  14. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  15. Design report for shielded glove box

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Bang, K. S.; Lee, D. W.; Kim, J. H.; Min, D. K.; Park, S. W.

    1999-05-01

    For the examination of spent fuels and high radioactive specimens using a specially equipped scanning electron microscope, a shielded glove box was designed and constructed at PIE facility of KAERI. This glove box consisted of shielding walls, containment box, lead glasses, manipulators, gloves, ventilation systems, doors, hot-cell specimen cask adapter, etc. It was emphasized that both the easy operation and radiation safety are important factors in the shielded glove box were installed also considered as a important factor to build the basic concept of the assembling. Two sliding doors and one hinge-type door were installed for the easy installation, operation and maintenance of scanning electron microscope. Containment box which confines the radioactive material into the box consisted of reinforced transparent glasses, aluminum frames and stainless steel plate liner. Therefore everything beyond the containment box can be seen through the lead glass which installed at the front shielding wall. All shielding walls and doors were introduced separately into the room and assembled by bolting. (author). 3 refs., 5 tabs., 18 figs

  16. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  17. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2005-11-15

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to {approx}11% by 50 {mu}m thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article.

  18. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2005-01-01

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to ∼11% by 50 μm thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article

  19. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  20. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  1. Potential of Nanocellulose Composite for Electromagnetic Shielding

    Directory of Open Access Journals (Sweden)

    Nabila Yah Nurul Fatihah

    2017-01-01

    Full Text Available Nowadays, most people rely on the electronic devices for work, communicating with friends and family, school and personal enjoyment. As a result, more new equipment or devices operates in higher frequency were rapidly developed to accommodate the consumers need. However, the demand of using wireless technology and higher frequency in new devices also brings the need to shield the unwanted electromagnetic signals from those devices for both proper operation and human health concerns. This paper highlights the potential of nanocellulose for electromagnetic shielding using the organic environmental nanocellulose composite materials. In addition, the theory of electromagnetic shielding and recent development of green and organic material in electromagnetic shielding application has also been reviewed in this paper. The use of the natural fibers which is nanocelllose instead of traditional reinforcement materials provides several advantages including the natural fibers are renewable, abundant and low cost. Furthermore, added with other advantages such as lightweight and high electromagnetic shielding ability, nanocellulose has a great potential as an alternative material for electromagnetic shielding application.

  2. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  3. Shield design development of nuclear propulsion merchant ship

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa

    1975-01-01

    Shielding design both in Japan and abroad for nuclear propulsion merchant ships is explained, with emphasis on the various technological problems having occurred in the shield design for one-body type and separate type LWRs as conceptual design. The following matters are described: the peculiarities of the design as compared with the case of land-based nuclear reactors, problems in the design standards of shielding, the present status and development of the design methods, and the instances of the design; thereby, the trends of shielding design are disclosed. The following matters are pointed out: Importance of the optimum design, of shielding, significance of radiation streaming through large voids, activation of the secondary water in built-in type steam generators, and the need of the guides for shield design. (Mori, K.)

  4. Estimation of temperature distribution in a reactor shield

    International Nuclear Information System (INIS)

    Agarwal, R.A.; Goverdhan, P.; Gupta, S.K.

    1989-01-01

    Shielding is provided in a nuclear reactor to absorb the radiations emanating from the core. The energy of these radiations appear in the form of heat. Concrete which is commonly used as a shielding material in nuclear power plants must be able to withstand the temperatures and temperature gradients appearing in the shield due to this heat. High temperatures lead to dehydration of the concrete and in turn reduce the shielding effectiveness of the material. Adequate cooling needs to be provided in these shields in order to limit the maximum temperature. This paper describes a method to estimate steady state and transient temperature distribution in reactor shields. The results due to loss of coolant in the coolant tubes have been studied and presented in the paper. (author). 5 figs

  5. Nuclear shields

    International Nuclear Information System (INIS)

    Linares, R.C.; Nienart, L.F.; Toelcke, G.A.

    1976-01-01

    A process is described for preparing melt-processable nuclear shielding compositions from chloro-fluoro substituted ethylene polymers, particularly PCTFE and E-CTFE, containing 1 to 75 percent by weight of a gadolinium compound. 13 claims, no drawings

  6. Analysis of Shield Construction in Spherical Weathered Granite Development Area

    Science.gov (United States)

    Cao, Quan; Li, Peigang; Gong, Shuhua

    2018-01-01

    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  7. Method of constructing shielding wall

    International Nuclear Information System (INIS)

    Nagao, Tetsuya.

    1990-01-01

    For instance, surfaces of lead particles each formed into a sphere of about 0.5 to 0.3 mm grain size are coated with a coating material of a synthetic resin comprising a polymeric material such as teflon. Subsequently, the floated lead particle are kneaded with concrete materials and then poured into a molding die by way of a hose. After coagulation, the molding die is removed to complete shielding walls in which lead particles are scattered substantially at an equal distance. In this way, since the lead particles are mixed into the shielding walls, shielding effects can be improved by so much as the lead particles are mixed, thereby enabling to reduce the thickness of the shielding walls. Further, since the lead particles are coated with the coating material, the lead particles are insulated from the concrete materials, thereby enabling to prevent the corrosion of the lead particles. Furthermore, since the lead particles and the concrete materials can be transported with ease, operation labors can be reduced. (T.M.)

  8. Shield cost minimization using SWAN

    International Nuclear Information System (INIS)

    Watkins, E.F.; Annese, C.E.; Greenspan, E.

    1993-01-01

    The common approach to the search for minimum cost shield designs is open-quotes trial-and-errorclose quotes; it proceeds as follows: 1. Based on prior experience and intuition, divide the shield into zones and assume their composition. 2. Solve the transport equation and calculate the relevant performance characteristics. 3. Change the composition or the geometry of one or a few of the zones and repeat step 2. 4. Repeat step 3 many times until the shield design appears to be optimal. 5. Select a different set of constituents and repeat steps 2,3, and 4. 6. Repeate step 5 a few or many times until the designer can point to the most cost-effective design

  9. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  10. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  11. Shielding device for control rod in nuclear reactor

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Tomatsu, Tsutomu.

    1995-01-01

    The device of the present invention shields radiation emitted from control rods to greatly reduce an operator's radiation exposure even if reactor water level is lowered and the upper portion of the control rod is exposed upon inspection of a BWR type reactor. Namely, a shield assembly has a structure comprising a set of four columnar shields in a two-row and two-column arrangement, which can be inserted into a control rod guide tube. Upon conducting inspection, the control rod is lowered into the control rod guide tube, and in this state, the columnar shields of the shield assembly are inserted to the control rod in the control rod guide tube. With such procedures, the upper portion of the control rod protruded from the control rod guide tube is covered with the shield assembly. As a result, radiation leaked from the control rod is shielded. Accordingly, irradiation in the reactor due to leaked radiation can be prevented thereby enabling to reduce an operator's radiation exposure. (I.S.)

  12. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  13. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  14. Concrete shielding exterior to iron

    International Nuclear Information System (INIS)

    Yurista, P.; Cossairt, D.

    1983-08-01

    A rule of thumb at Fermilab has been to use 3 feet of concrete exterior to iron shielding. A recent design of a shield with a severe dimensional constraint has prompted a re-evaluation of this rule of thumb and has led to the following calculations of the concrete thickness required to nullify this problem. 4 references, 4 figures

  15. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  16. Shielding features of quarry stone

    International Nuclear Information System (INIS)

    Hernandez V, C.; Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Vega C, H. R.

    2010-10-01

    Quarry stone lineal attenuation coefficient for gamma-rays has been obtained. In Zacatecas, quarry stone is widely utilized as a decorative item in buildings, however its shielding features against gamma-rays unknown. The aim of this work is to determine the shielding properties of quarry stone against γ-rays using Monte Carlo calculations where a detailed model of a good geometry experimental setup was carried out. In the calculations 10 pieces 10 X 10 cm 2 of different thickness were utilized to evaluate the photons transmission as the quarry stone thickness is increased. It was noticed that transmitted photons decay away as the shield thickness is increased, these results were fitted to an exponential function were the linear attenuation coefficient was estimated. Also, using XCOM code the linear attenuation coefficient from several keV up to 100 MeV was estimated. From the comparison between Monte Carlo results and XCOM calculations a good agreement was found. For 0.662 MeV γ-rays the attenuation coefficient of quarry stone, whose density is 2.413 g-cm -3 , is 0.1798 cm -1 , this mean a X 1/2 = 3.9 cm, X 1/4 = 7.7 cm, X 1/10 = 12.8 cm, and X 1/100 = 25.6 cm. Having the information of quarry stone performance as shielding give the chance to use this material to shield X and γ-ray facilities. (Author)

  17. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Fisher, J.J.

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures

  18. Radiation shielding method for pipes, etc

    International Nuclear Information System (INIS)

    Nagao, Tetsuya; Takahashi, Shuichi.

    1988-01-01

    Purpose: To constitute shielding walls of a dense structure around pipes and enable to reduce the wall thickness thereof upon periodical inspection, etc. for nuclear power plants. Constitution: For those portions of pipes requring shieldings, cylindrical vessels surrounding the portions are disposed and connected to a mercury supply system, a mercury discharge system and a freezing system for solidifying mercury. After charging mercury in a tank by way of a supply hose to the cylindrical vessels, the temperature of the mercury is lowered below the freezing point thereof to solidify the mercury while circulating cooling medium, to thereby form dense cylindrical radioactive-ray shielding walls. The specific gravity of mercury is greater than that of lead and, accordingly, the thickness of the shielding walls can be reduced as compared with the conventional wall thickness of the entire laminates. (Takahashi, M.)

  19. Testing of the PELSHIE shielding code using Benchmark problems and other special shielding models

    International Nuclear Information System (INIS)

    Language, A.E.; Sartori, D.E.; De Beer, G.P.

    1981-08-01

    The PELSHIE shielding code for gamma rays from point and extended sources was written in 1971 and a revised version was published in October 1979. At Pelindaba the program is used extensively due to its flexibility and ease of use for a wide range of problems. The testing of PELSHIE results with the results of a range of models and so-called Benchmark problems is desirable to determine possible weaknesses in PELSHIE. Benchmark problems, experimental data, and shielding models, some of which were resolved by the discrete-ordinates method with the ANISN and DOT 3.5 codes, were used for the efficiency test. The description of the models followed the pattern of a classical shielding problem. After the intercomparison with six different models, the usefulness of the PELSHIE code was quantitatively determined [af

  20. Shield verification and validation action matrix summary

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed

  1. Scale-4 shipping cask shielding applications

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Parks, C.V.

    1991-01-01

    This paper reports the application of the SCALE-4 shielding sequences SAS1 and SAS4 to the problem set distributed by the Organization for Economic Cooperation and Development (OECD) Working Group on Shielding Assessment of Transportation Packages. In many cases, additional comparison are made with MCNP and QADS solutions to provide a complete cross-check of methods, cross sections, geometry, etc. The results from this effort permit the evaluation of a number of approximations and effects that must be considered in a typical shielding analysis of a transportation cask

  2. Radiation shielding for TFTR DT diagnostics

    International Nuclear Information System (INIS)

    Ku, L.P.; Johnson, D.W.; Liew, S.L.

    1994-01-01

    The authors illustrate the designs of radiation shielding for the TFTR DT diagnostics using the ACX and TVTS systems as specific examples. The main emphasis here is on the radiation transport analyses carried out in support of the designs. Initial results from the DT operation indicate that the diagnostics have been functioning as anticipated and the shielding designs are satisfactory. The experience accumulated in the shielding design for the TFTR DT diagnostics should be useful and applicable to future devices, such as TPX and ITER, where many similar diagnostic systems are expected to be used

  3. Using natural local materials for developing special radiation shielding concretes, and deduction of its shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassar, M.; Yousef, S.

    2006-06-01

    Concrete is considered as the most important material to be used for radiation shielding in facilities contain radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the construction of the concrete, which is highly relative to the composing aggregates i.e. aggregates consist about 70 - 80% of the total weight of normal concrete. In this project tow types of concrete used in Syria (in Damascus and Aleppo) had been studied and their shielding properties were defined for gamma ray from Cs-137 and Co-60 sources, and for neutrons from Am-Be source. About 10% reduction in HVL was found in the comparison between the tow concrete types for both neutrons and gammas. Some other types of concrete were studied using aggregates from different regions in Syria, to improve the shielding properties of concrete, and another 10% of reduction was achieved in comparison with Damascene concrete (20% in comparison with the concrete from Aleppo) for both neutrons and gamma rays. (author)

  4. [Trial manufacture of a plunger shield for a disposable plastic syringe].

    Science.gov (United States)

    Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki

    2008-08-20

    A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.

  5. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  6. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  7. Gonadal shield.

    Science.gov (United States)

    Purdy, J A; Stiteler, R D; Glasgow, G P; Mill, W B

    1975-10-01

    A secondary gonadal shield for use in the pelvic irradiation of males was designed and built using material and apparatus available with the Cerrobend blocking system. The gonadal dose was reduced to approximately 1.5 to 2.5% of the given dose.

  8. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  9. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    International Nuclear Information System (INIS)

    Shanmugam, S

    2016-01-01

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  10. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S

    2016-06-15

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  11. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  12. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  13. Radiation shielding fiber and its manufacturing method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koji; Ono, Hiroshi.

    1988-08-17

    Purpose: To manufacture radiation shielding fibers of excellent shielding effects. Method: Fibers containing more than 1 mmol/g of carboxyl groups are bonded with heavy metals, or they are impregnated with an aqueous solution containing water-soluble heavy metal salts dissolved therein. Fibers as the substrate may be any of forms such as short fibers, long fibers, fiber tows, webs, threads, knitting or woven products, non-woven fabrics, etc. It is however necessary that fibers contain more than 1 mmol/g, preferably, from 2 to 7 mmol/g of carboxylic groups. Since heavy metals having radiation shielding performance are bonded to the outer layer of the fibers and the inherent performance of the fibers per se is possessed, excellent radiation shielding performance can be obtained, as well as they can be applied with spinning, knitting or weaving, stitching, etc. thus can be used for secondary fiber products such as clothings, caps, masks, curtains, carpets, cloths, etc. for use in radiation shieldings. (Kamimura, M.).

  14. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  15. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  16. Development of neutron shielding material using metathesis-polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori E-mail: ysakurai@rri.kyoto-u.ac.jp; Sasaki, Akira; Kobayashi, Tooru

    2004-04-21

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin.

  17. Shielding evaluation of moving bed onion irradiator by radiometry

    International Nuclear Information System (INIS)

    Venkataramani, R.; Sangurdekar, P.R.; Sarangapani, R.; Raipurkar, D.R.; Mehta, S.K.; Shastri, S.P.; Patil, K.B.; Bongirwar, D.R.

    1994-01-01

    A moving bed onion irradiator made from m.s. cladded lead slab shields designed to hold 20 kCi of 60 Co source was evaluated by radiometry with an 8 Ci 60 Co source from CRC-2 radiography camera. Some shielding losses in the irradiator noted by radiometry could be visualized by a thermocole model of the complex shielding assembly. These were rectified by appropriate lead filling. Significant shielding losses noted at cladding layer positions of slabs were attributed to lack of interlocking features in the slabs. These had to be rectified by provision of 3 TVL of additional all round shielding supplemented by local shielding at some positions. (author). 1 fig., 1 tab

  18. Status report of shielding investigation in Japan

    International Nuclear Information System (INIS)

    Shindo, M.

    1964-01-01

    The Japan Atomic Energy Research Institute (JAERI) was established in 1954, and immediately proceeded with the construction of a research reactor. The first symposium in Japan on nuclear energy was held in 1957. Most of the papers presented in the field of reactor shielding were limited to shielding materials and their fabrication. In the first stage of our investigations, our efforts were devoted to practical design studies of reactor shielding. As a result of these studies, it was found that the formulae at hand for calculations were inadequate, but at that time no electronic computer was available in Japan nor were theoretical calculations very actively undertaken. Problems on nuclear ship shielding had been investigated at the Ship Research Institute, since 1956 and many fruitful results had been obtained. About that time the Japan Atomic Industry Forum started activities and took the initiative in organizing shielding research. Research workers in the shipbuilding industry in particular have been seriously studying shielding problems. Few years after the first symposium, problems concerning more fundamental studies were treated by many research workers. Shielding experiments using radioisotopes were carried out and many fruitful results were obtained. They are described in the this paper. Medium size electronic computers became available in Japan, permitting a theoretical study group to make an active contribution. They produced some codes, and their results are also described in the following sections. This constituted the second stage of our investigations. A swimming-pool reactor, JRR-4 (Japan Research Reactor-4), has been under construction at JAERI since 1962 and will become critical in autumn 1964. After characteristic tests it will be a very powerful tool for the shielding investigations. This id the beginning of the third stage of investigations

  19. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  20. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  1. An attenuation Layer for Electromagnetic Shielding in X- Band Frequency

    Directory of Open Access Journals (Sweden)

    Vida Zaroushani

    2015-06-01

    Full Text Available Uncontrolled exposure to X-band frequency leads to health damage. One of the principles of radiation protection is shielding. But, conventional shielding materials have disadvantages. Therefore, studies of novel materials, as an alternative to conventional shielding materials, are required to obtain new electromagnetic shielding material. Therefore, this study investigated the electromagnetic shielding of two component epoxy thermosetting resin for the X - band frequency with workplace approach. Two components of epoxy resin mixed according to manufacturing instruction with the weight ratio that was 100:10 .Epoxy plates fabricated in three different thicknesses (2, 4 and 6mm and shielding effectiveness measured by Vector Network Analyzer. Then, shielding effectiveness measured by the scattering parameters.The results showed that 6mm thickness of epoxy had the highest and 2mm had the lowest average of shielding effectiveness in X-band frequency that is 4.48 and 1.9 dB, respectively. Also, shielding effectiveness increased by increasing the thickness. But this increasing is useful up to 4mm. Percentage shielding effectiveness of attenuation for 6, 4 and 2mm thicknesses is 64.35%, 63.31% and 35.40%. Also, attenuation values for 4mm and 6mm thicknesses at 8.53 GHz and 8.52 GHz frequency are 77.15% and 82.95%, respectively, and can be used as favourite shields for the above frequency. 4mm-Epoxy is a suitable candidate for shielding application in X-band frequency range but, in the lower section, 6mm thickness is recommended. Finely, the shielding matrix can be used for selecting the proper thickness for electromagnetic shielding in X- Band frequency.

  2. Using the Monte Carlo Coupling Technique to Evaluate the Shielding Ability of a Modular Shielding House to Accommodate Spent-Fuel Transportable Storage Casks

    International Nuclear Information System (INIS)

    Ueki, Kohtaro; Kawakami, Kazuo; Shimizu, Daisuke

    2003-01-01

    The Monte Carlo coupling technique with the coordinate transformation is used to evaluate the shielding ability of a modular shielding house that accommodates four spent-fuel transportable storage casks for two units. The effective dose rate distributions can be obtained as far as 300 m from the center of the shielding house. The coupling technique is created with the Surface Source Write (SSW) card and the Surface Source Read/Coordinate Transformation (SSR/CRT) card in the MCNP 4C continuous energy Monte Carlo code as the 'SSW-SSR/CRT calculation system'. In the present Monte Carlo coupling calculation, the total effective dose rates 100, 200, and 300 m from the center of the shielding house are estimated to be 1.69, 0.285, and 0.0826 (μSv/yr per four casks), respectively. Accordingly, if the distance between the center of the shielding house and the site boundary of the storage facility is kept at >300 m, approximately 2400 casks are able to be accommodated in the modular shielding houses, under the Japanese severe criterion of 50 μSv/yr at the site boundary. The shielding house alone satisfies not only the technical conditions but also the economic requirements.It became evident that secondary gamma rays account for >60% of the effective total dose rate at all the calculated points around the shielding house, most of which are produced from the water in the steel-water-steel shielding system of the shielding house. The remainder of the dose rate comes mostly from neutrons; the fission product and 60 Co activation gamma rays account for small percentages. Accordingly, reducing the secondary gamma rays is critical to improving not only the shielding ability but also the radiation safety of the shielding house

  3. Study on box shield tunneling method in trial field operation; Box shield koho jissho seko ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tada, K.; Taniguchi, T. [Toda Corp., Tokyo, (Japan); Furukawa, K.; Nakagawa, K. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering

    1997-03-20

    This paper describes a rectangular section shield tunneling method as a part of developments of non-circular section shield tunneling methods. The non-circular shield is drawing attention because of need of excavation in small land available in urban areas and between congested existing structures, as well as reduction in the excavated soil amount. A full-scale machine was fabricated to perform a natural ground excavation experiment. The cutter units comprising two each of drum cutters and ring cutters were arranged above and below, by which two tunnels of 40 m long with a cross section of 2.85 m {times} 2.85 m were excavated. The natural ground was supported safely by holding mud water pressures at cutting points constant, thus stability of the cutting points was ensured. Back-filling has made complete filling of tail void (clearance between a segment and the ground) possible, resulting in suppression in conditional change of the surrounding ground. Attitude control has been performed properly as a result of correct selection of shield jacks and use of deflection jacks. Broken-type over-cutters were used to have constructed tunnels with curve radius of 80 and 100 m with high accuracy. Thrust and propulsion speed of the shield do not differ from those of circular shields. Possibilities of this construction method were verified. 8 refs., 26 figs., 2 tabs.

  4. The construction of radiation shielding for baby ebm

    International Nuclear Information System (INIS)

    Mohd Rizal Md Chulan; Leo Kwee Wah; Lee Chee Huei; Muhamad Zahidee Taat; Fadzlie Nordin; Abu Bakar Mhd Ghazali; Mohd Yusof Ali; Mohd Rizal Mamat Ibrahim; Syed Nasaruddin Syed Idris; Mahmud Hamid; Mohd Khairi Mohd Said

    2005-01-01

    The construction of radiation shielding for electron beam machine, Baby EBM is necessary for prevention from x-ray (Bremstrahlung) that produced when electron bombarded the target material. The strength of produced x-ray is depending on electron energy and the atomic number of target material. In the construction process of radiation shielding, a few aspects need to be considered such as shielding material and its thickness to be used, mainframe for radiation shielding and the way fabrication to be done. In this project, the thickness of radiation shielding is calculated manually following the NCRP 51 guidelines whereas for frame design, shielding walls and fabrication is considered that the accelerator devices (accelerating tube, focusing device and neck) is vertically and the whole weight of Baby EBM. From the calculations, the thickness and the material for radiation shielding is to be used are 6mm lead. This radiation shielding has been tested (using the parameters that have been considered) to know the leak of radiation (at all surfaces) and direct radiation below 5 cm from the window. The value of high voltage that applied at accelerating tube is 80 kV and the voltage, current supply at electron gun is 3.0 V, 7.1 A respectively. The result of the testing found that dose rate under the window foil is more than 2000 mSv/hr and at all shielding surfaces are less than 0.5 mSv/hr, which is background reading and this is acceptable as compared to the theoretical calculation. The measurement was done using a survey meter typed Ludlum-model 3. (Author)

  5. The Fabrication of Internal Shielding using Provil and Cerrobend

    International Nuclear Information System (INIS)

    Kim Jong Hwa; Lee, Kang Hyun; Son, Jeong Hye

    1996-01-01

    The skin cancer is a highly curable disease which frequently occurs in the head and neck region exposed to the sun. When the eyelid is treated usually eye shield made of lead is used to protect the eyeball as a internal shield. For the same reason on internal shield should be used when the nose is treated when electron to protect the nasal mucosa. Our hospital made an internal shield for the treatment of the skin cancer on the nose using provil and cerrobend. The characteristics of the internal shield were examined.

  6. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  7. Preliminary radiation shielding design for BOOMERANG

    International Nuclear Information System (INIS)

    Donahue, Richard J.

    2002-01-01

    Preliminary radiation shielding specifications are presented here for the 3 GeV BOOMERANG Australian synchrotron light source project. At this time the bulk shield walls for the storage ring and injection system (100 MeV Linac and 3 GeV Booster) are considered for siting purposes

  8. Shielding Effectiveness of a Thin Film Window

    National Research Council Canada - National Science Library

    Johnson, Eric

    1998-01-01

    .... The predicted shielding effectiveness was 29 dB based on theoretical calculations. The error analysis of the shielding effectiveness showed that this predicted value was within the measurement error...

  9. Superconducting magnetic shields for neutral beam injectors. Final report

    International Nuclear Information System (INIS)

    1985-04-01

    Large high energy deuterium neutral beams which must be made from negative ions require extensive magnetic shielding against the intense fringe fields surrounding a magnetic fusion power plant. The feasibility of shielding by multilayer sheets of copper-superconducting laminated material was investigated. It was found that, if necessary fabrication techniques are developed, intrinsically stable type II superconductors will be able to shield against the magnetic fields of the fusion reactors. Among the immediate benefits of this research is better magnetic shields for neutral beam injectors in support of DOE's fusion program. Another application may be in the space vehicles, where difficulties in transporting heavy μ-metal sections may make a comparatively light superconducting shield attractive. Also, as high-field superconducting magnets find widespread applications, the need for high-intensity magnetic shielding will increase. As a result, the commercial market for the magnetic shields should expand along with the market for superconducting magnets

  10. Radiation shielding structure for concrete structure

    International Nuclear Information System (INIS)

    Oya, Hiroshi

    1998-01-01

    Crack inducing members for inducing cracks in a predetermined manner are buried in a concrete structure. Namely, a crack-inducing member comprises integrally a shielding plate and extended plates situated at the center of a wall and inducing plates vertically disposed to the boundary portion between them with the inducing plates being disposed each in a direction perforating the wall. There are disposed integrally a pair of the inducing plate spaced at a predetermined horizontal distance on both sides of the shielding plate so as to form a substantially crank-shaped cross section and extended plates formed in the extending direction of the shielding plate, and the inducing plates are disposed each in a direction perforating the wall. Then, cracks generated when stresses are exerted can be controlled, and generation of cracks passing through the concrete structure can be prevented reliably. The reliability of a radiation shielding effect can be enhanced remarkably. (N.H.)

  11. Evaluation of syringe shield effectiveness in handling radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Cho Yong-In

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of the radiation shield of radionuclide syringes and the personal dose equivalent by performing a simulation of radionuclides used in nuclear medicine diagnosis. In order to evaluate the dose depending on the distance between the radiation source and the ICRU sphere against the thickness of the shielding device, the distance at which a nuclear medicine worker may inadvertently come into contact with radiation from the radiation source was set at 0 cm to 30 cm according to the thickness of the shield, thus fixing the ICRU sphere. For a dose evaluation, Hp(10, Hp(3, and Hp(0.07 measurable in specific depth of the ICRU were evaluated. It was found that a dose measured on skin surface of nuclear medicine workers was relatively higher, that the dose varied in relation to the thickness of the radiation shield, and that the shielding effect decreased for some radiation sources such as 67Ga and 111In. It proved necessary to increase thickness of shielding device to the radiation sources such as 67Ga and 111In. It is also considered that a study of proper shielding thickness will be needed in future.

  12. Cooling Performance of TBM-shield Designed for Manufacturability

    International Nuclear Information System (INIS)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung; Ahn, Mu Young

    2016-01-01

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model

  13. Cooling Performance of TBM-shield Designed for Manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model.

  14. Poor Utility of Gonadal Shielding for Pediatric Pelvic Radiographs.

    Science.gov (United States)

    Lee, Mark C; Lloyd, Jessica; Solomito, Matthew J

    2017-07-01

    Plain pelvic radiographs are commonly used for a variety of pediatric orthopedic disorders. Lead shielding is typically placed over the gonads to minimize radiation exposure to these sensitive tissues. However, misplaced shielding can sabotage efforts to protect patients from excessive radiation exposure either by not covering radiosensitive tissues or by obscuring anatomic areas of interest, prompting repeat radiographic examinations. The goal of this study was to determine the incidence of misplaced shielding for pelvic radiographs obtained for pediatric orthopedic evaluation. Children 8 to 16 years old who had an anteroposterior or frog lateral pelvic radiograph between 2008 and 2014 were included. A total of 3400 patients met the inclusion criteria, and 84 boys and 84 girls were randomly selected for review. For both boys and girls, the percentage of incorrectly positioned or missing shields was calculated. Chi-square testing was used to compare the frequency of missing or incorrectly placed shields between sexes and age groups. Pelvic shields were misplaced in 49% of anteroposterior and 63% of frog lateral radiographs. Shielding was misplaced more frequently for girls than for boys on frog lateral radiographs (76% vs 51%; P<.05). Pelvic bony landmarks were often obscured by pelvic shielding, with a frequency of 7% to 43%, depending on the specific landmark. The femoral head and acetabulum were obscured by shielding in up to 2% of all images. The findings suggest that accepted pelvic shielding protocols are ineffective. Consideration should be given to alternative protocols or abandonment of this practice. [Orthopedics. 2017; 40(4):e623-e627.]. Copyright 2017, SLACK Incorporated.

  15. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassri, M.; Yousef, S.

    2008-01-01

    Concrete is one of the most important materials used for radiation shielding in facilities containing radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the composite of the concrete. Aggregates is the largest constituent (about 70-80% of the total weight of normal concrete). The aim of this work is to develop special concrete with good shielding properties for gamma and neutrons, using natural local materials. For this reason two types of typical concrete widely used in Syria (in Damascus and Aleppo) and four other types of concrete, using aggregates from different regions, have been prepared. The shielding properties of these six types were studied for gamma ray (from Cs-137 and Co-60 sources)and for neutrons (from am-Be source). A reduction of about 10% in the HVL was obtained for the concrete from Damascus in comparison with that from Aleppo, for both neutrons and gammas. One of the other four types of concrete (from Rajo site, mostly Hematite), was found to further reduce the HVL by about 10% for both neutrons and gamma rays.(author)

  16. Irrigoscopy - irrigography method, dosimetry and radiation shielding

    International Nuclear Information System (INIS)

    Zubanov, Z.; Kolarevic, G.

    1999-01-01

    Use of patient's radiation shielding during radiology diagnostic procedures in our country is insufficiently represent, so patients needlessly receive very high entrance skin doses in body areas which are not in direct x-ray beam. During irrigoscopy, patient's radiation shielding is very complex problem, because of the organs position. In the future that problem must be solved. We hope that some of our suggestions about patient's radiation shielding during irrigoscopy, can be a small step in that way. (author)

  17. Shielding reproductive organs of orthopaedic patients during pelvic radiography.

    Science.gov (United States)

    Wainwright, A. M.

    2000-01-01

    The use of gonadal shielding has been advocated for patients undergoing pelvic radiography before and during the reproductive years. The aim of this study is to look at the adequacy of gonadal shielding used in a district general hospital for young patients having pelvic radiographs. A total of 200 radiographs were reviewed of 49 patients below the age of 45 years. Full coverage was achieved in only 36% of cases. Amongst females, only 22% received adequate shielding. None of the patients in their reproductive years (16-45 years) had gonad shields. The reasons for inadequate coverage were, in order of frequency: (i) no shielding was used; (ii) malposition of the shielding device; and (iii) the use of inappropriately shaped or sized devices. Suggestions for improvement are proposed. Images Figure 3 Figure 4 PMID:11041029

  18. Shielding benchmark test

    International Nuclear Information System (INIS)

    Kawai, Masayoshi

    1984-01-01

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  19. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  20. The new IBA self-shielded dynamitron accelerator for industrial applications

    International Nuclear Information System (INIS)

    Galloway, R.A.; DeNeuter, S.; Lisanti, T.F.; Cleland, M.R.

    2004-01-01

    Radiation Dynamics Inc. (RDI), currently a member of the IBA Group (Ion Beam Applications based Louvain-la-Neuve, Belgium), has been supplying accelerators since its founding in 1958. These systems supplied for both industrial processing and research application for electrons and ions have proven to be reliable and robust. Today's demands in the industrial sector have driven the design and development of a new version of our Dynamitron [reg] . This new system, envisioned to operate at electron energies up to 1.5 MeV, in many cases can be supplied with integral shielding providing a small footprint requirement for placement in a facility. In the majority of these lower energy applications this allows the appropriate material handling system to be installed inside the steel radiation enclosure. Designed to deliver beam power outputs as high as 100 kW, this new system is capable of servicing the high throughput demands of today's manufacturing lines. Still retaining the positive aspects of the industrially proven Dynamitron system, this compact system can be tailored to meet a variety of in-line or off-line processing applications

  1. Experimental analysis of an MIM capacitor with a concave shield

    International Nuclear Information System (INIS)

    Liu Lintao; Yu Mingyan; Wang Jinxiang

    2009-01-01

    A novel shielding scheme is developed by inserting a concave shield between a metal-insulator-metal (MIM) capacitor and the silicon substrate. Chip measurements reveal that the concave shield improves the quality factor by 11% at 11.8 GHz and 14% at 18.8 GHz compared with an unshielded MIM capacitor. It also alleviates the effect on shunt capacitance between the bottom plate of the MIM capacitor and the shield layer. Moreover, because the concave shields simplify substrate modeling, a simple circuit model of the MIM capacitor with concave shield is presented for radio frequency applications.

  2. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  3. Shielding modefication and safety review on Mutsu

    International Nuclear Information System (INIS)

    Osanai, Masao

    1978-01-01

    The Japan Atomic Energy Commission requests strongly to repair the shielding and make general safety inspection on Mutsu after an accident of radiation leakage from the reactor. The content and procedure of this repair of shielding and general safety inspection are outlined. The neutron leakage location in the reactor proper, technical shielding investigation, conceptual design of relating shielding repair, the mock up test of the shielding on the neutron streaming, the final conceptual design of repair, the relating research and development experiment and the detailed basic design of repair are explained, comparing the original design and the modified one. The modified design depends on the experimental results of neutron streaming test between the reactor vessel and the primary shield. As for the general safety inspection, the functional test of control rod driving mechanism and other main components, the flaw detection for heat transfer tubes of the steam generator and primary cooling pipings are carried out in hardwares, and the integrity analysis of fuel assemblies, stress corrosion cracking of fuel claddings and primary cooling pipings, the natural circulation analysis of primary cooling system, and integrity check of the heat transfer tubes of steam generator are carried out in softwares. The burst test and the strength test after high temperature oxidation for fuel claddings made of stainless steel were carried out. (Nakai, Y.)

  4. Radiation protection and shielding design - Strengthening the link

    International Nuclear Information System (INIS)

    Hobson, J.; Cooper, A.

    2005-01-01

    The improvement in quality and flexibility of shielding methods and data has been progressive and beneficial in opening up new opportunities for optimising radiation protection in design. The paper describes how these opportunities can best be seized by taking a holistic view of radiation protection, with shielding design being an important component part. This view is best achieved by enhancing the role of 'shielding assessors' so that they truly become 'radiation protection designers'. The increase in speed and efficiency of shielding calculations has been enormous over the past decades. This has raised the issue of how the assessor's time now can be best utilised; pursuing ever greater precision and accuracy in shielding/dose assessments, or improving the contribution that shielding assessment makes to radiological protection and cost-effective design. It is argued in this paper that the latter option is of great importance and will give considerable benefits. Shielding design needs to form part of a larger radiation protection perspective based on a deep understanding/appreciation of the opportunities and constraints of operators and designers, enabling minimal design iterations, cost optimisation of alternative designs (with a 'lifetime' perspective) and improved realisation of design intent in operations. The future of shielding design development is argued to be not in improving the 'tool-kit', but in enhanced understanding of the 'product' and the 'process' for achieving it. The holistic processes being developed in BNFL to realise these benefits are described in the paper and will be illustrated by case studies. (authors)

  5. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  6. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1980-01-01

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  7. Shielding of the contralateral breast during tangential irradiation.

    Science.gov (United States)

    Goffman, Thomas E; Miller, Michael; Laronga, Christine; Oliver, Shelly; Wong, Ping

    2004-08-01

    The purpose of this study was to investigate both optimal and practical contralateral breast shielding during tangential irradiation in young patients. A shaped sheet of variable thickness of lead was tested on a phantom with rubber breasts, and an optimized shield was created. Testing on 18 consecutive patients 50 years or younger showed shielding consistently reduced contralateral breast dose to at least half, with small additional reduction after removal of the medial wedge. For younger patients in whom radiation exposure is of considerable concern, a simple shield of 2 mm lead thickness proved practical and effective.

  8. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  9. Shielding design study of the demonstration fast breeder reactor. 2. Shielding design on the basis of the JASPER analysis

    International Nuclear Information System (INIS)

    Suzuoki, Zenro; Tabayashi, Masao; Handa, Hiroyuki; Iida, Masaaki; Takemura, Morio

    2000-01-01

    Conceptual shielding design has been performed for the Demonstration Fast Breeder Reactor (DFBR) to achieve further optimization and reduction of the plant construction cost. The design took into account its implications in overall plant configuration such as reduction of shields in the core, adoption of fission gas plenum in the lower portion of fuel assemblies, and adoption of gas expansion modules. Shielding criteria applied for the design are to secure fast neutron fluence on in-vessel structures as well as responses of the nuclear instrumentation system and to restrict secondary sodium activation. The design utilized the cross sections and the one- and two-dimensional discrete ordinates transport codes, whose verification had been performed by the JASPER experiment analysis. Correction factors yielded by the JASPER analysis were applied to the design calculations to obtain design values with improved accuracy. Design margins, which are defined by the ratios of the design criteria to the design values, were more than two for all shielding issues of interest, showing the adequacy of the shielding design of the DFBR. (author)

  10. Development of Neutron Shielding Material for Cask and Accelerator

    International Nuclear Information System (INIS)

    Kang, Hee Young; Seo, Ki Seog; Lee, Byung Chul; Park, Chang Jae; Kim, Ho Dong

    2008-01-01

    The neutron shielding materials are used as a neutron shield for spent fuel shipping cask, beam accelerators and neutron generators. At early stage, the neutron attenuations of materials were evaluated with the cross sections. After that, benchmark or mock-up experiments on the multi-layer problem to confirm the shielding characteristics or to evaluate analysis accuracy were reported. Recently, the need to transport spent nuclear fuels is increasing due to the current limited storage capacity. The on-site storage capacity at some of nuclear power plants is expected to be full in near future. With a growing inventory of spent fuels at power plants, these spent fuels need to be transported to other storage facilities. Shipping casks have been developed to safely transport spent fuels that emit high neutrons and gamma-ray radiation. The external radiation level of the shipping cask from the spent fuel must be limited to meet the standards specified by the IAEA radioactive material package regulation, so it is important to develop a proper neutron shielding material for a shipping cask. Neutron shielding experiments and analyses on the shielding effects of materials have been conducted, and some experiments have been performed to examine the shielding effects of selected materials. The shielding experiments consist of evaluating not only the shielding effects of a material alone but also the effects of the material thickness. The experimental results were compared with those obtained by using the MCNP-5c code

  11. Safety shield for vacuum/pressure-chamber windows

    Science.gov (United States)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  12. Analysis of shield for the nuclear ship MUTSU

    International Nuclear Information System (INIS)

    Fuse, Takayoshi; Takeuchi, Kiyoshi; Yamaji, Akio

    1975-01-01

    On the nuclear ship MUTSU, a higher-than-expected level of radiation was found, with output raised to 1.4 per cent. To investigate the radiation leakage, the analysis of the shielding problem utilized a four-step sequence of PALLAS-2DCY cylindrical r-z calculations with fixed sources distributions in the core. The neutron dose contours show the importance of streaming in the gap between the reactor vessel and the primary shield. Dominant consideration of thermal insulation exclude shielding from this area resulting in an imbalance in the shielding effectiveness. The neutron dose rate at the upper part of the reactor vessel is increased by neutrons incident on the head from cavity scattering. The calculation indicates that the neutron dose rate at the top of the primary shield is 5 rem/hr at 100 per cent output. (auth.)

  13. Calculation of parameters for an iron shield experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-01-01

    In this text is carreid out the evaluation of radiation transport methodology, comparying the calculated reactions and dose rates, for neutrons and gama-rays, with the experimental measurements obtained on iron shield, irradiated in YAYOI reactor. Were employed the ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system for generation of cross sections, collapsed by the ANISN code. The tranpsort calculations were made by using the DOT 3.5 code, adjusting the spectrum of the iron shield boundary source to the reaction and doses rates, measured at the beginning of shield. The distributions calculated for neutrons and gamma-rays, on iron shield, presented reasonable concordance with the experimental measurements. Finally, is presented a proposal for setting up of an experimental arrangement, using the IEA-R1 reactor, with the purpose of lay down a shielding benchmark. (Author) [pt

  14. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  15. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847])

  16. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  17. Important aspects of radiation shielding for fusion reactor tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation shielding is a key subsystem in tokamak reactors. Design of this shield must evolve from economic and technological trade-off studies that account for the strong interrelations among the various components of the reactor system. These trade-offs are examined for the bulk shield on the inner side of the torus and for the special shields of major penetrations. Results derived are applicable for a large class of tokamak-type reactors

  18. 1 1/2 years of experience with a 10 MeV self-shielded on-line e-beam sterilization system

    International Nuclear Information System (INIS)

    Lambert, Byron; Tang, Fuh-Wei; Riggs, Brian; Allen, Thomas; Williams, C.B.

    2000-01-01

    The Vascular Intervening Group of the Guidant Corporation (Guidant IV) has been operating a self-shielded, 10 MeV 4 kW, electron beam sterilization system since July of 1988. The system was designed, built and installed in a 70 square meter area in an existing Guidant manufacturing facility by Titan Scan Corporation and performance of the system was validated in conformance with 1S0-11137 standards. The goal of this on-site e-beam system was 'just in time' JIT, sterilization, i.e. the ability to manufacture, sterilize and ship, high intrinsic value medical devices in less than 24 hours. The benefits of moving from a long gas sterilization cycle of greater than one week to a JIT process were envisioned to be a) speed to market with innovated new products b) rapid response to customer requirements c) reduced inventory carrying costs and finally manufacturing and quality system efficiency. The ability of Guidant to realize these benefits depended upon the ability of the Guidant VI business units to adapt to the new sterilization modality and functionality and on the overall system reliability. This paper reviews the operating experience to date and the overall system reliability. (author)

  19. Neutron shield analysis and design for the PDX fusion facility

    International Nuclear Information System (INIS)

    Grimesey, R.A.; Nigg, D.W.; Scott, A.J.; Wheeler, F.J.; Jassby, D.L.; Perry, E.D.

    1979-01-01

    The basic component of the biological shield for PDX is an existing 81 cm thick high-density concrete shielding wall surrounding the machine. The principal additional shielding requirement is a roof shield over the machine to reduce air-scattered skyshine dose into the PDX control room and to the site boundary. The roof shield is designed in removable sections on a steel support structure permitting overhead crane access to major PDX components. After analysis of a number of alternate concepts, a roof shield consisting of 50 cm of water in polyethylene tanks was selected to meet design objectives of effectiveness, weight, removability, and cost

  20. A study on the shielding element using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Jeong [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Shim, Jae Goo [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of)

    2017-06-15

    In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.

  1. Shielding in ungated field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [U.S. Navy Reserve, Navy Operational Support Center New Orleans, New Orleans, Louisiana 70143 (United States); Jensen, K. L. [Code 6854, Naval Research Laboratory, Washington, D.C. 20375 (United States); Shiffler, D. A. [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Petillo, J. J. [Leidos, Billerica, Massachusetts 01821 (United States)

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  2. Alignment modification for pencil eye shields

    International Nuclear Information System (INIS)

    Evans, M.D.; Pla, M.; Podgorsak, E.B.

    1989-01-01

    Accurate alignment of pencil beam eye shields to protect the lens of the eye may be made easier by means of a simple modification of existing apparatus. This involves drilling a small hole through the center of the shield to isolate the rayline directed to the lens and fabricating a suitable plug for this hole

  3. Next generation self-shielded flux cored electrode with improved toughness for off shore oil well platform structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daya; Soltis, Patrick; Narayanan, Badri; Quintana, Marie; Fox, Jeff [The Lincoln Electric Company (United States)

    2005-07-01

    Self-shielded flux cored arc welding electrodes (FCAW-S) are ideal for outdoor applications, particularly open fabrication yards where high winds are a possibility. Development work was carried out on a FCAW-S electrode for welding 70 and 80 ksi yield strength base materials with a required minimum average Charpy V-Notch (CVN) absorbed energy value of 35 ft-lb at -40 deg F in the weld metal. The effect of Al, Mg, Ti, and Zr on CVN toughness was evaluated by running a Design of Experiments approach to systematically vary the levels of these components in the electrode fill and, in turn, the weld metal. These electrodes were used to weld simulated pipe joints. Over the range of compositions tested, 0.05% Ti in the weld metal was found to be optimum for CVN toughness. Ti also had a beneficial effect on the usable voltage range. Simulated offshore joints were welded to evaluate the effect of base metal dilution, heat input, and welding procedure on the toughness of weld metal. CVN toughness was again measured at -40 deg F on samples taken from the root and the cap pass regions. The root pass impact toughness showed strong dependence on the base metal dilution and the heat input used to weld the root and fill passes. (author)

  4. Shielding of the child's head during x-ray studies

    International Nuclear Information System (INIS)

    Tolmach, Eh.U.

    1985-01-01

    Three devices for X-ray shielding of child's head are suggested; the first one is a protective attachment for shielding a child being in horizontal position on an X-ray table; the second one is a protective stand for shielding head and body at roentgenofraphy of upper extremities of a child sitting near the X-ray table; the third one is a prot ctive suspension for shielding the head of a child being in vertical position

  5. The clinical testing of male gonad shields. Technical report

    International Nuclear Information System (INIS)

    Church, W.W.; Burnett, B.M.

    1975-11-01

    Two types of male gonad shields, designed for use with support garments, were tested in a number of hospitals and clinics throughout the United States. The clinical evaluation consisted of: (1) measuring dose reduction with thermoluminescent dosimeters; and (2) determining acceptability of the shields for routine use in x-ray facilities, through the use of survey forms completed by patients, technologists, and facilities. The shields proved to provide a basis for a very satisfactory male gonad shield program

  6. The clinical testing of male gonad shields. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Church, W.W.; Burnett, B.M.

    1975-11-01

    Two types of male gonad shields, designed for use with support garments, were tested in a number of hospitals and clinics throughout the United States. The clinical evaluation consisted of: (1) measuring dose reduction with thermoluminescent dosimeters; and (2) determining acceptability of the shields for routine use in x-ray facilities, through the use of survey forms completed by patients, technologists, and facilities. The shields proved to provide a basis for a very satisfactory male gonad shield program. (GRA)

  7. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  8. Uranium-lead shielding for nuclear material transportation systems

    International Nuclear Information System (INIS)

    Lusk, E.C.; Miller, N.E.; Basham, S.J. Jr.

    1978-01-01

    The basis for the selection of shielding materials for spent fuel shipping containers is described with comments concerning the favorable and unfavorable aspects of steel, lead, and depleted uranium. A concept for a new type of material made of depleted uranium and lead is described which capitalizes on the best cask shielding characteristics of both materials. This cask shielding is made by filling the shielding cavity with pieces of depleted uranium and then backfilling the interstitial voids with lead. The lead would be bonded to the uranium and also to the cask shells if desired. Shielding density approaching 80 percent of that of solid uranium could be achieved, while a density of 65 percent is readily obtainable. This material should overcome the problems of the effect of lead melting in the fire accident, high thermal gradients at uranium-stainless steel interfaces and at a major reduction in cost over that of a solid uranium shielded cask. A development program is described to obtain information on the properties of the composite material to aid in design analysis and licensing and to define the fabrication techniques

  9. Slipforming of reinforced concrete shield building

    International Nuclear Information System (INIS)

    Hsieh, M.C.; King, J.R.

    1982-01-01

    The unique design and construction features of slipforming the heavily reinforced concrete cylindrical shield walls at the Satsop nuclear plant in Washington, D.C. site are presented. The shield walls were designed in compliance with seismic requirements which resulted in the need for reinforcing steel averaging 326 kg/m/sup 3/. A 7.6 m high, three-deck moving platform was designed to permit easy installation of the reinforcing steel, embedments, and blockouts, and to facilitate concrete placement and finishing. Two circular box trusses, one on each side of the shield wall, were used in combination with a spider truss to meet both the tolerance and strength requirements for the slipform assembly

  10. Application of a dummy eye shield for electron treatment planning

    International Nuclear Information System (INIS)

    Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik

    2013-01-01

    Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by -19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. (author)

  11. Neutron shielding properties of boron-containing ore and epoxy composites

    International Nuclear Information System (INIS)

    Li Zhifu; Xue Xiangxin

    2011-01-01

    Using the boron-containing iron ore concentrate and boron-rich slag as studying object, the starting materials were got after the specific green ore containing boron dressing in China and blast furnace separation respectively. Monte-Carlo method was used to study the effect of the boron-containing iron ore concentrate and boron-rich slag and their composites with epoxy on the neutron shielding abilities. The reasons that affecting the shielding materials properties was discussed and the suitable proportioning of boron-containing ore to epoxy composites was confirmed; the 14.1 MeV fast neutron removal cross section and the total thermal neutron attenuation coefficient were obtained and compared with that of the common used concrete. The results show that the shielding property of 14.1 MeV fast neutron is mainly concerned with the low-Z elements in the shielding materials, the thermal neutron shielding ability is mainly concerned with boron concentrate in the composite, the attenuation of the accompany γ-ray photon is mainly concerned with the high atom number elements content in the ore and the density of the shielding material. The optimum Janume fractions of composites are in the range of 0.4-0.6 and the fast neutron shielding properties are similar to concrete while the thermal neutron shielding properties are higher than concrete. The composites are expected to be used as biological concrete shields crack injection and filling of the anomalous holes through the concrete shields around the radiation fields or directly to be prepared as shielding materials.(authors)

  12. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  13. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  14. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  15. Hydrogen-Induced Cracking of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944])

  16. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  17. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  18. Semi-analytic flux formulas for shielding calculations

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1976-06-01

    A special coordinate system based on the work of H. Ono and A. Tsuro has been used to derive exact semi-analytic formulas for the flux from cylindrical, spherical, toroidal, rectangular, annular and truncated cone volume sources; from cylindrical, spherical, truncated cone, disk and rectangular surface sources; and from curved and tilted line sources. In most of the cases where the source is curved, shields of the same curvature are allowed in addition to the standard slab shields; cylindrical shields are also allowed in the rectangular volume source flux formula. An especially complete treatment of a cylindrical volume source is given, in which dose points may be arbitrarily located both within and outside the source, and a finite cylindrical shield may be considered. Detector points may also be specified as lying within spherical and annular source volumes. The integral functions encountered in these formulas require at most two-dimensional numeric integration in order to evaluate the flux values. The classic flux formulas involving only slab shields and slab, disk, line, sphere and truncated cone sources become some of the many special cases which are given in addition to the more general formulas mentioned above

  19. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    International Nuclear Information System (INIS)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun; Ye, Sung Joon

    2011-01-01

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality

  20. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

  1. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  2. Normalization of shielding structure quality and the method of its studying

    International Nuclear Information System (INIS)

    Bychkov, Ya.A.; Lavdanskij, P.A.

    1987-01-01

    Method for evaluation of nuclear facility radiation shield quality is suggested. Indexes of shielding structure radiation efficiency and face efficiency are used as the shielding structure quality indexes. The first index is connected with radiation dose rate during personnel irradiation behind the shield, and the second one - with the stresses in shielding structure introduction of the indexes presented allows to evaluate objectively the quality of nuclear facility shielding structure quality design construction and operation and to economize labour and material resources

  3. Preliminary shielding analysis of VHTR reactors

    International Nuclear Information System (INIS)

    Flaspoehler, Timothy M.; Petrovic, Bojan

    2011-01-01

    Over the last 20 years a number of methods have been established for automated variance reduction in Monte Carlo shielding simulations. Hybrid methods rely on deterministic adjoint and/or forward calculations to generate these parameters. In the present study, we use the FWCADIS method implemented in MAVRIC sequence of the SCALE6 package to perform preliminary shielding analyses of a VHTR reactor. MAVRIC has been successfully used by a number of researchers for a range of shielding applications, including modeling of LWRs, spent fuel storage, radiation field throughout a nuclear power plant, study of irradiation facilities, and others. However, experience in using MAVRIC for shielding studies of VHTRs is more limited. Thus, the objective of this work is to contribute toward validating MAVRIC for such applications, and identify areas for potential improvement. A simplified model of a prismatic VHTR has been devised, based on general features of the 600 MWt reactor considered as one of the NGNP options. Fuel elements have been homogenized, and the core region is represented as an annulus. However, the overall mix of materials and the relatively large dimensions of the spatial domain challenging the shielding simulations have been preserved. Simulations are performed to evaluate fast neutron fluence, dpa, and other parameters of interest at relevant positions. The paper will investigate and discuss both the effectiveness of the automated variance reduction, as well as applicability of physics model from the standpoint of specific VHTR features. (author)

  4. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  5. Development of shielding design analysis system

    International Nuclear Information System (INIS)

    Tada, Keiko; Shiraki, Takako

    2001-03-01

    The aim of this work is to develop insufficient auxiliary routines which manage input and output data and interface the main codes and to establish a shielding design analysis system on work stations (SUN, DEC). In shielding design analyses, one- and two- dimensional (1-D and 2-D) transport Sn codes are used mainly with some auxiliary codes which generate input data of Sn calculation and edit Sn calculation outputs. The main transport calculation codes can be obtained from the Code Center of RIST (Research Organization for Information Science and Technology). In this work, peripheral codes are developed to generate cross sections, produce Sn quadrature sets, edit calculation outputs or draw contour figures. In shielding calculations around a reactor, the boot-strapping technique is often employed to treat a large area extending from the core to the biological shield to improve the calculation accuracy. When a three-dimensional (3-D) calculation for a complex geometry with shielding defects, 2-D and 3-D coupling calculation is employed frequently. To use this coupling method conversion cods are prepared which read flux file from DORT and prepare an external boundary source file for the 2-D or the 3-D calculation codes. For further conveniences well used data such as the Sn quadrature sets, the dose rate conversion factors, the reaction cross section sets are stored as a data base and code manuals including sample inputs of typical problems are prepared which are comprehensible to beginners. (author)

  6. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  7. Female gonadal shielding with automatic exposure control increases radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Summer L.; Zhu, Xiaowei [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Magill, Dennise; Felice, Marc A. [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Xiao, Rui [University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, PA (United States); Ali, Sayed [Temple University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2018-02-15

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation. (orig.)

  8. Female gonadal shielding with automatic exposure control increases radiation risks

    International Nuclear Information System (INIS)

    Kaplan, Summer L.; Zhu, Xiaowei; Magill, Dennise; Felice, Marc A.; Xiao, Rui; Ali, Sayed

    2018-01-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation. (orig.)

  9. Female gonadal shielding with automatic exposure control increases radiation risks.

    Science.gov (United States)

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  10. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  11. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  12. On shielding from death as an important yet malleable motive of worldview defense: Christian versus Muslim beliefs modulating the self-threat of mortality salience

    NARCIS (Netherlands)

    van den Bos, K.; Buurman, J.; de Theije, V.; Doosje, B.; Loseman, A.; van Laarhoven, D.; van Veldhuizen, T.; Veldman, J.

    2012-01-01

    This article argues that shielding from death is an important yet malleable motive. In particular, on the basis of conceptual insights into the psychology of Christianity and Islam we propose that shielding from death fulfills a more important psychological function among Christians than among

  13. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  14. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  15. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  16. Radiation protection and shielding standards for the 1980s

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The American Nuclear Society (ANS) is a standards-writing organization member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Radiation Protection and Shielding, whose charge is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. This paper is a progress report of this subcommittee. Significant progress has been made since the last comprehensive report to the Society

  17. Current status of methods for shielding analysis

    International Nuclear Information System (INIS)

    Engle, W.W.

    1980-01-01

    Current methods used in shielding analysis and recent improvements in those methods are discussed. The status of methods development is discussed based on needs cited at the 1977 International Conference on Reactor Shielding. Additional areas where methods development is needed are discussed

  18. Collection shield for ion separation apparatus

    International Nuclear Information System (INIS)

    Ford, K.L.; Pugh, R.A.

    1981-01-01

    The ion separation electrodes in isotope separation apparatus are provided with removable collection shields to collect neutral particles which would normally pass through the ionization region. A preferred collection shield comprises a u-shaped section for clipping onto the leading edge of an electrode and a pair of flanges projecting substantially perpendicular to the clipping section for collecting neutral particles

  19. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  20. Light shielding apparatus

    Science.gov (United States)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  1. Thermal shield support degradation in pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Fry, D.N.

    1986-01-01

    Damage to the thermal shield support structures of three pressurized water reactors (PWRs) due to flow-induced vibrations was recently discovered during refueling. In two of the reactors, severe damage occurred to the thermal shield, and in one reactor the core support barrel (CSB) was damaged, necessitating extended outages for repairs. In all three reactors, several of the thermal shield supports were either loose, damaged, or missing. The three plants had been in operation for approximately 10 years before the damage was apparent by visual inspection. Because each of the three US PWR manufacturers have experienced thermal shield support degradation, the Nuclear Regulatory Commission requested that Oak Ridge National Laboratory analyze ex-core neutron detector noise data to determine the feasibility of detecting incipient thermal shield support degradation. Results of the noise data analysis indicate that thermal shield support degradation probably began early in the life of both severely damaged plants. The degradation was characterized by shifts in the resonant frequencies of core internal structures and the appearance of new resonances in the ex-core neutron detector noise. Both the data analyses and the finite element calculations indicate that these changes in resonant frequencies are less than 3 Hz. 11 refs., 16 figs

  2. Thyroid shields and neck exposures in cephalometric radiography

    International Nuclear Information System (INIS)

    Hujoel, Philippe; Hollender, Lars; Bollen, Anne-Marie; Young, John D; Cunha-Cruz, Joana; McGee, Molly; Grosso, Alex

    2006-01-01

    The thyroid is among the more radiosensitive organs in the body. The goal of this study was twofold: (1) to evaluate age-related changes in what is exposed to ionizing radiation in the neck area, and (2) to assess thyroid shield presence in cephalometric radiographs Cephalometric radiographs at one academic setting were sampled and neck exposure was related to calendar year and patient's gender and age. In the absence of shields, children have more vertebrae exposed than adults (p < 0.0001) and females have more neck tissue exposed inferior to the hyoid bone than males (p < 0.0001). The hyoid bone-porion distance increased with age (p <0.01). Thyroid shields were visible in 19% of the radiographs and depended strongly on the calendar year during which patient was seen (p-value <0.0001). Compared to adults, children were less likely to wear thyroid shields, particularly between 1973 and 1990 (1.8% versus 7.3% – p-value < 0.05) and between 2001 and 2003 (7.1% versus 42.9% – p-value < 0.05). In the absence of a thyroid shield, children have more neck structure exposed to radiation than adults. In agreement with other reports, thyroid shield utilization in this study was low, particularly in children

  3. Pre-evaluation of fusion shielding benchmark experiment

    International Nuclear Information System (INIS)

    Hayashi, K.; Handa, H.; Konno, C.

    1994-01-01

    Shielding benchmark experiment is very useful to test the design code and nuclear data for fusion devices. There are many types of benchmark experiments that should be done in fusion shielding problems, but time and budget are limited. Therefore it will be important to select and determine the effective experimental configurations by precalculation before the experiment. The authors did three types of pre-evaluation to determine the experimental assembly configurations of shielding benchmark experiments planned in FNS, JAERI. (1) Void Effect Experiment - The purpose of this experiment is to measure the local increase of dose and nuclear heating behind small void(s) in shield material. Dimension of the voids and its arrangements were decided as follows. Dose and nuclear heating were calculated both for with and without void(s). Minimum size of the void was determined so that the ratio of these two results may be larger than error of the measurement system. (2) Auxiliary Shield Experiment - The purpose of this experiment is to measure shielding properties of B 4 C, Pb, W, and dose around superconducting magnet (SCM). Thickness of B 4 C, Pb, W and their arrangement including multilayer configuration were determined. (3) SCM Nuclear Heating Experiment - The purpose of this experiment is to measure nuclear heating and dose distribution in SCM material. Because it is difficult to use liquid helium as a part of SCM mock up material, material composition of SCM mock up are surveyed to have similar nuclear heating property of real SCM composition

  4. A history of radiation shielding of x-ray therapy rooms

    International Nuclear Information System (INIS)

    McGinley, P.H.; Miner, M.S.

    1996-01-01

    In this report the history of shielding for radiation treatment rooms is traced from the time of the discovery of x rays to the present. During the early part of the twentieth century the hazards from ionizing radiation were recognized and the use of lead and other materials became common place for shielding against x rays. Techniques for the calculation of the shield thickness needed for x ray protection were developed in the 1920's, and shielding materials were characterized in terms of the half value layer or simple exponential factors. At the same time, better knowledge of the interaction between radiation and matter was acquired. With the development of high energy medical accelerators after 1940, new and more complex shielding problems had to be addressed. Recently, shielding requirements have become more stringent as standards for exposure of personnel and the general public have been reduced. The art of shielding of radiation treatment facilities is still being developed, and the need for a revision of the reports on shielding of medical accelerators from the National Council on Radiation Protection and Measurements is emphasized in this article. (author). 61 Refs., 3 Tabs

  5. Improved Metal-Polymeric Laminate Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding will...

  6. A practical neutron shielding design based on data-base interpolation

    International Nuclear Information System (INIS)

    Jiang, S.H.; Sheu, R.J.

    1993-01-01

    Neutron shielding design is an important part of the construction of nuclear reactors and high-energy accelerators. Neutron shielding design is also indispensable in the packaging and storage of isotopic neutron sources. Most efforts in the development of neutron shielding design have been concentrated on nuclear reactor shielding because of its huge mass and strict requirement of accuracy. Sophisticated computational tools, such as transport and Monte Carlo codes and detailed data libraries have been developed. In principle, now, neutron shielding, in spite of its complexity, can be designed in any detail and with fine accuracy. However, in most practical cases, neutron shielding design is accomplished with simplified methods. Unlike practical gamma-ray shielding design, where exponential attenuation coupled with buildup factors has been applied effectively and accurately, simplified neutron shielding design, either by using removal cross sections or by applying charts or tables of transmission factors such as the National Council on Radiation Protection and Measurements (NCRP) 38 (Ref. 1) for general neutron protection or to NCRP 51 (Ref. 2) for accelerator neutron shielding, is still very primitive and not well established. The available data are limited in energy range, materials, and thicknesses, and the estimated results are only roughly accurate. It is the purpose of this work to establish a simple, convenient, and user-friendly general-purpose computational tool for practical preliminary neutron shielding design that is reasonably accurate. A wide-range (energy, material, and thickness) data base of dose transmission factors has been generated by applying one-dimensional transport calculations in slab geometry

  7. Subsurface Shielding Source Term Specification Calculation

    International Nuclear Information System (INIS)

    S.Su

    2001-01-01

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations

  8. Shielding methods development in the United States

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1977-01-01

    A generalized shielding methodology has been developed in the U.S.A. that is adaptable to the shielding analyses of all reactor types. Thus far used primarily for liquid-metal fast breeder reactors, the methodology includes several component activities: (1) developing methods for calculating radiation transport through reactor-shield systems; (2) processing cross-section libraries; (3) performing design calculations for specific systems; (4) performing and analyzing pertinent integral experiments; (5) performing sensitivity studies on both the design calculations and the experimental analyses; and, finally, (6) calculating shield design parameters and their uncertainties. The criteria for the methodology are a 5 to 10 percent accuracy for responses at locations near the core and a factor of 2 accuracy for responses at distant locations. The methodology has been successfully adapted to most in-vessel and ex-vessel problems encountered in the shield analyses of the Fast Flux Test Facility and the Fast Flux Test Facility and the Clinch River Breeder Reactor; however, improved techniques are needed for calculating regions in which radiation streaming is dominant. Areas of the methodology in which significant progress has recently been made are those involving the development of cross-section libraries, sensitivity analysis methods, and transport codes

  9. Shielding design to obtain compact marine reactor

    International Nuclear Information System (INIS)

    Yamaji, Akio; Sako, Kiyoshi

    1994-01-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author)

  10. Calculation and design for SSRF's bulk shield

    Energy Technology Data Exchange (ETDEWEB)

    Fang, K.M. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China)]. E-mail: fangkm@sinap.ac.cn; Xu, X.J. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China); Cai, J.H. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China)

    2006-12-15

    Shielding design objectives for the SSRF are chosen, assumptions for beam loss rates are given, the methods used on the APS by Moe are summarized and introduced to make calculation and design on bulk shield, the factor of skyshine is also considered, design thicknesses for SSRF's bulk shield are presented.

  11. Comparison of eye shields in radiotherapeutic beams

    International Nuclear Information System (INIS)

    Currie, B.E.; Wellington Hospital, Wellington; Johnson, A.D.

    2004-01-01

    Full text: Both MeV electrons and kV photons are used in the treatment of superficial cancers. The advantages and disadvantages for each of these modalities have been widely reported in the literature (See for example [1-2]). Of particular note in the literature is the use of lead and tungsten eye shields to protect ocular structures during radiotherapy. An investigation addressing issues raised in the literature that are relevant to the Wellington Cancer Centre method of treatment of lesions near the eye shall be summarised. Various small sized fields were irradiated to determine depth dose and profile curves in a water phantom shielded by various commercially available eye shields. Transmission factors relevant to critical ocular structures and particle distribution theories are used to further elucidate the comparison between the use of MeV electrons and kV photons in the treatment of superficial cancers. Superficial X-rays from a Pantak Therapax unit SXT 150 model of HVL 4.90mm Al were used for the lead eye shield measurements and electrons from a Varian Clinac 2100C nominal energies 6MeV and 9MeV (R p 3.00cm and 4.34cm respectively) were used for the tungsten eye shield measurements. For the photon measurements circular applicators of 3cm, 4cm and 5cm diameter were used and for the electrons standard 6x6cm and 10x 10cm applicators were used, with no custom inserts. A Scanditronix RFA-300 water phantom and Scanditronix RFAplus version 5.3 software application were used to collect and collate all data. The eye shields were the Radiation Products Design Inc. medium lead eye shield (item 934-014) and the MED-TEC tungsten eye shields MT-T-45 M and MT-T-45 S. It is demonstrated that electron fields have appreciably greater scatter into the area directly under the eye shields than the photon fields. Similarly at the region of d max for the electron fields the relative dose is appreciably greater than the photon fields at similar depth. The relative merits for

  12. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    1993-05-01

    Hot-cell shielding walls consist of building blocks made of lead according to DIN 25407 part 1, and of special elements according to DIN 25407 part 2. Alpha-gamma cells can be built using elements for protective contamination boxes according to DIN 25480 part 1. This standards document intends to provide planning engineers, manufacturers, future users and the competent authorities and experts with a basis for the design of hot cells with lead shielding walls and the design of hot-cell equipment. (orig./HP) [de

  13. Annotated references on shielding experiment and calculation of high energy particles

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1990-12-01

    The literature on shielding experiment and calculation of high energy particles above 20 MeV has been surveyed. The survey covers thirteen journals, from 1965 up to 1989. For each paper, applicable information is listed on type and energy of the projectile, the accelerator used, composition and thickness of the target and shielding materials, shielding geometry, the experimental and calculational methods, and the quantities obtained. The references on shielding experiment and on shielding calculation are accessed through two indices which list the projectile-target and shielding material combination, shielding geometry and the projectile energy range. The literature on neutron, photon and hadron production from thick target bombarded by charged particles has been surveyed mainly from 1984 as a complement of the previous work. (author)

  14. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  15. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  16. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  17. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1979-01-01

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  18. Actively shielded low level gamma - spectrometric system

    International Nuclear Information System (INIS)

    Mrdja, D.; Bikit, I.; Forkapic, S.; Slivka, J.; Veskovic, M.

    2005-01-01

    The results of the adjusting and testing of the actively shielded low level gamma-spectrometry system are presented. The veto action of the shield reduces the background in the energy region of 50 keV to the 2800 keV for about 3 times. (author) [sr

  19. System for detecting and processing abnormality in electromagnetic shielding

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    The present invention relates to a system for detecting and processing an abnormality in electromagnetic shielding of an intelligent building which is constructed using an electromagnetic shielding material for the skeleton and openings such as windows and doorways so that the whole of the building is formed into an electromagnetic shielding structure. (author). 4 figs

  20. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction

    International Nuclear Information System (INIS)

    Raissaki, Maria; Perisinakis, Kostas; Damilakis, John; Gourtsoyiannis, Nicholas

    2010-01-01

    CT scans of the brain, sinuses and petrous bones performed as the initial imaging test for a variety of indications have the potential to expose the eye-lens, considered among the most radiosensitive human tissues, to a radiation dose. There are several studies in adults discussing the reduction of orbital dose resulting from the use of commercially available bismuth-impregnated latex shields during CT examinations of the head. To evaluate bismuth shielding-induced artefacts and to provide suggestions for optimal eye-lens shielding in paediatric head CT. A bismuth shield was placed over the eyelids of 60 consecutive children undergoing head CT. Images were assessed for the presence and severity of artefacts with regard to eye-shield distance and shield wrinkling. An anthropomorphic paediatric phantom and thermoluminescence dosimeters (TLDs) were used to study the effect of eye lens-to-shield distance on shielding efficiency. Shields were tolerated by 56/60 children. Artefacts were absent in 45% of scans. Artefacts on orbits, not affecting and affecting orbit evaluation were noted in 39% and 14% of scans, respectively. Diagnostically insignificant artefacts on intracranial structures were noted in 1 case (2%) with shield misplacement. Mean eye-lens-to-shield distance was 8.8 mm in scans without artefacts, and 4.3 mm and 2.2 mm in scans with unimportant and diagnostically important artefacts, respectively. Artefacts occurred in 8 out of 9 cases with shield wrinkling. Dose reduction remained unchanged for different shield-to-eye distances. Bismuth shielding-related artefacts occurring in paediatric head CT are frequent, superficial and diagnostically insignificant when brain pathology is assessed. Shields should be placed 1 cm above the eyes when orbital pathology is addressed. Shield wrinkling should be avoided. (orig.)

  1. Thyroid shields and neck exposures in cephalometric radiography

    Directory of Open Access Journals (Sweden)

    Cunha-Cruz Joana

    2006-06-01

    Full Text Available Abstract Background The thyroid is among the more radiosensitive organs in the body. The goal of this study was twofold: (1 to evaluate age-related changes in what is exposed to ionizing radiation in the neck area, and (2 to assess thyroid shield presence in cephalometric radiographs Methods Cephalometric radiographs at one academic setting were sampled and neck exposure was related to calendar year and patient's gender and age. Results In the absence of shields, children have more vertebrae exposed than adults (p Conclusion In the absence of a thyroid shield, children have more neck structure exposed to radiation than adults. In agreement with other reports, thyroid shield utilization in this study was low, particularly in children.

  2. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  3. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  4. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  5. Development of radiation shielding standards in the American Nuclear Society

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1975-11-01

    The American Nuclear Society (ANS) is a standards-writing organization-member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Shielding, whose charge is to establish standards in connection with radiation protection and shielding, to provide shielding information to other standards writing groups, and to prepare recommended sets of shielding data and test problems. This paper is a progress report of this subcommittee

  6. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  7. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  8. The UK shielding Forum. Best Practice through consensus

    International Nuclear Information System (INIS)

    Hobson, J.; Gunston, K.; Gunston, K.

    2000-01-01

    The UK national shielding Forum has been established to represent all key industry groups in the UK (including the Nuclear Installations Inspectorate (NII), the national regulatory authority). The Forum's aim is to increase awareness and confidence in the range of professional practice within the UK shielding community, with a view to having a coherent and dynamic role within the international shielding community. In the past, no comprehensive representative body covering the whole UK nuclear industry has existed, and the different industry shielding groups have developed local ways of working to address their particular requirements. Inevitably, there are common issues arising from these requirements which benefit from a wider consensus. As a result of the formation of the Forum (initiated by the NII and subsequently chaired by BNFL as an industry key player), expertise, experience and best working practice are now being actively shared between shielding professionals, and there has been a strong and successful drive to achieving consensus on key issues, which is also reflected in the increasing quality of industry-regulator relationships. (author)

  9. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  10. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  11. Method of measurement on materials shielding effectiveness test in time domain

    International Nuclear Information System (INIS)

    Liu Shunkun; Han Jun; Chen Xiangyue

    2009-01-01

    Windows method is a measurement of slot coupling effect in nature when it is used to measure material's shielding effectiveness. The error of measurement will become serious when it is used to measure material's shielding effectiveness in low frequency band. It is difficult to measure material's shielding effectiveness of electromagnetic pulse with Windows method. Device under test method (DUT method) was presented in this paper to overcome the limitations of Windows method in material's shielding effectiveness test. The method can be used to measure any material's shielding Effectiveness effectively through the design and the test of the DUT.The method was used to measure shielding effectiveness of special cement .Compared with theoretical analysis,the measurement result prove the DUT method to be very efficient in material's shielding effectiveness test. (authors)

  12. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  13. Radiation shielding material

    International Nuclear Information System (INIS)

    Kawakubo, Takamasa; Yamada, Fumiyuki; Nakazato, Kenjiro.

    1976-01-01

    Purpose: To provide a material, which is used for printing a samples name and date on an X-ray photographic film at the same time an X-ray radiography. Constitution: A radiation shielding material of a large mass absorption coefficient such as lead oxide, barium oxide, barium sulfate, etc. is added to a solution of a radiation permeable substance capable of imparting cold plastic fluidity (such as microcrystalline wax, paraffin, low molecular polyethylene, polyvinyl chloride, etc.). The resultant system is agitated and then cooled, and thereafter it is press fitted to or bonded to a base in the form of a film of a predetermined thickness. This radiation shielding layer is scraped off by using a writing tool to enter information to be printed in a photographic film, and then it is laid over the film and exposed to X-radiation to thereby print the information on the film. (Seki, T.)

  14. Multilayer radiation shield

    Science.gov (United States)

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  15. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    Science.gov (United States)

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  16. Where have the neutrons gone: A history of the Tower Shielding Facility

    International Nuclear Information System (INIS)

    Muckenthaler, F.J.

    1992-01-01

    In the early 1950's, the concept of the unit shield for the nuclear powered aircraft reactor changed to one of the divided shield concept where the reactor and crew compartment shared the shielding load. Design calculations for the divided shield were being made based on data obtained in studies for the, unit shield. It was believed that these divided shield designs were subject to error, the magnitude of which could not be estimated. This belief led to the design of the Tower Shielding Facility where divided-shield-type measurements could be made without interference from ground or structural scattering. This paper discusses that facility, its reactors, and some chosen experiments from the list of many that were performed at that facility during the past 38 years

  17. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  18. Acoustic Metacages for Omnidirectional Sound Shielding

    OpenAIRE

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2017-01-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. The strong parallel momentum on the metacage surface rejects in-pl...

  19. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.

    1995-05-01

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  20. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)