WorldWideScience

Sample records for self-selected materials continuing

  1. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  2. Stochastic Modelling and Self Tuning Control of a Continuous Cement Raw Material Mixing System

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1980-01-01

    Full Text Available The control of a continuously operating system for cement raw material mixing is studied. The purpose of the mixing system is to maintain a constant composition of the cement raw meal for the kiln despite variations of the raw material compositions. Experimental knowledge of the process dynamics and the characteristics of the various disturbances is used for deriving a stochastic model of the system. The optimal control strategy is then obtained as a minimum variance strategy. The control problem is finally solved using a self-tuning minimum variance regulator, and results from a successful implementation of the regulator are given.

  3. Exponential growth and selection in self-replicating materials from DNA origami rafts

    Science.gov (United States)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  4. Continuous Self-Selection Processes in Teacher Education: The Way for Survival.

    Science.gov (United States)

    Zak, Itai

    1981-01-01

    Three selection phases were found in a study investigating the selection process of students into the teaching profession: (1) self selection by the potential teacher; (2) admission to the teacher-training program; and (3) election to undergo the course of instruction. Results suggest that personality traits are more important than cognitive…

  5. Self-similar continued root approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.

    2012-01-01

    A novel method of summing asymptotic series is advanced. Such series repeatedly arise when employing perturbation theory in powers of a small parameter for complicated problems of condensed matter physics, statistical physics, and various applied problems. The method is based on the self-similar approximation theory involving self-similar root approximants. The constructed self-similar continued roots extrapolate asymptotic series to finite values of the expansion parameter. The self-similar continued roots contain, as a particular case, continued fractions and Padé approximants. A theorem on the convergence of the self-similar continued roots is proved. The method is illustrated by several examples from condensed-matter physics.

  6. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  7. The Continued Assessment of Self-Continuity and Identity

    Science.gov (United States)

    Dunkel, Curtis S.; Minor, Leslie; Babineau, Maureen

    2010-01-01

    Studies have found that self-continuity is predictive of a substantial number of important outcome variables. However, a recent series of studies brings into question the traditional method of measuring self-continuity in favor of an alternative (B. M. Baird, K. Le, & R. E. Lucas, 2006). The present study represents a further comparison of…

  8. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  9. Selection of refractory materials for acid tanks at the CSN continuous pickling line

    International Nuclear Information System (INIS)

    Silva, Sidiney Nascimento; Marques, Oscar Rosa; Bueno, Mauricio Chaves; Longo, Elson; Silva Pinheiro, Adriano da

    1997-01-01

    Aiming at the revamping of the CSN continuous pickling line 4 acid tanks, a Post Mortem study of the refractory lining was carried out. The collected samples were characterized through techniques such as chemical analysis, mercury porosimetry, X-ray diffraction and scanning electronic microscopy. Trying to reproduce the operational conditions closely, laboratorial simulations were carried out. Such simulations lead to the addition of some alterations on the test method proposed by ABNT. Primarily, the sulfuric acid was substituted by hydrochloric acid (30%), containing iron in solution (130g/l). As result, it was concluded that acid resistant refractories containing a smaller alumina and /or corundum and mullite concentrations, presenting a smaller open porosity and average pore diameter, have a better performance face to corrosion due to hydrochloric acid solution. In addition, abrasion wear resistance tests, according to the ASTM-G65-85 standard were carried out in order to select different materials to the acid tanks cells. (author)

  10. Out-of-equilibrium self-assembly approaches for new soft materials

    NARCIS (Netherlands)

    Hendriksen, W.E.

    2015-01-01

    Living creatures exists for an important part out of soft material, such as skin, organs and cells, that are out-of-equilibrium formed by the self-assembly of molecular building blocks. Natural materials are continuously active with dynamic processes occurring, such as growth, shrinkage and

  11. Synthesis of Macroporous Silica Particles by Continuous Generation of Droplets for Insulating Materials.

    Science.gov (United States)

    Cho, Young-Sang; Lee, Dokyoung

    2018-09-01

    We report on the synthesis of porous silica particles by self-assembly routes in a continuous manner for application to thermal insulators. A continuous process was employed to produce tiny droplets containing precursor materials such as silica and organic templates for self-organization to fabricate particles with well defined pores. A rotating cylinder system or a spray drying process was adopted to form emulsions or aerosol droplets as micro-reactors for self-assembly, and the physical properties including the thermal conductivity of the resulting porous particles were compared between the two methods. The porous particles could be coated as a thick film by solution dripping, and the fluorination treatment using a silane coupling agent was performed to produce superhydrophobic surfaces of insulating layers by a lotus effect.

  12. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Physical and Materials Chemistry Division, National Chemical Laboratory,. Pune 411 008, India e-mail: viji@ems.ncl.res.in. Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with ...

  13. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  14. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Science.gov (United States)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-01-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens. PMID:24813421

  15. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Science.gov (United States)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David J.; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-07-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

  16. Self-similar pattern formation and continuous mechanics of self-similar systems

    Directory of Open Access Journals (Sweden)

    A. V. Dyskin

    2007-01-01

    Full Text Available In many cases, the critical state of systems that reached the threshold is characterised by self-similar pattern formation. We produce an example of pattern formation of this kind – formation of self-similar distribution of interacting fractures. Their formation starts with the crack growth due to the action of stress fluctuations. It is shown that even when the fluctuations have zero average the cracks generated by them could grow far beyond the scale of stress fluctuations. Further development of the fracture system is controlled by crack interaction leading to the emergence of self-similar crack distributions. As a result, the medium with fractures becomes discontinuous at any scale. We develop a continuum fractal mechanics to model its physical behaviour. We introduce a continuous sequence of continua of increasing scales covering this range of scales. The continuum of each scale is specified by the representative averaging volume elements of the corresponding size. These elements determine the resolution of the continuum. Each continuum hides the cracks of scales smaller than the volume element size while larger fractures are modelled explicitly. Using the developed formalism we investigate the stability of self-similar crack distributions with respect to crack growth and show that while the self-similar distribution of isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the isotropically oriented cracks scaling of permeability is determined. For permeable materials (rocks with self-similar crack distributions permeability scales as cube of crack radius. This property could be used for detecting this specific mechanism of formation of self-similar crack distributions.

  17. Materials selection in mechanical design

    International Nuclear Information System (INIS)

    Ashby, M.F.; Cebon, D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape. (orig.)

  18. Materials selection in mechanical design

    OpenAIRE

    Ashby , M.; Cebon , D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape.

  19. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  20. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  1. Selection and challenges for LFR reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisenburger, A.; Jianu, A.; Del Giacco, M.; Fetzer, R.; Heinzel, A.; Mueller, G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Pulsed Power and Microwave Technology

    2013-07-01

    Nuclear energy using Fast GenIV reactors can fulfil future demands concerning CO2 free, base load capability and sustainability. One of the most promising coolants especially due to its high thermal inertia is liquid lead (Pb). Since several years researches all over the world investigate this coolant and its impact on the reactor design and by that on the materials to be selected. The LEADER project, a follow up of ELSY, aims to design a prototypical demonstrator ALFRED and to continue with several design related aspects of the ELFR reactor. For a demonstrator the criteria of material selection are somewhat different to a commercial type like the ELFR. Material selection for ELFR of course considers all the aspects relevant for ALFRED plus the targeted burn up and the expected total dpa related damage especially of the fuel pins. In the past compatibility of structural material (steels like 316L, T91 and 15-15Ti (1.4970)) that can be employed for Pb cooled fast nuclear reactors were investigated in several EU projects like EUROTRANS and worldwide. Solubility of steel alloying elements like Ni, Fe, Cr is the driving force for the reduced corrosion resistance in contact with Pb. In-situ oxidation is the acknowledged measure to protect steels in Pb up to certain temperatures that are material dependent. Based on experiments and the derived temperature limits the average core outlet temperatures of ALFRED and the ELFR are set to 480 C. The most challenging conditions with respect to temperature are at the fuel assembly and the heat exchangers. For both, thin stable oxide scales with negligible reduction in heat transfer are the requested protection method. This presentation will give an overview on the selected materials for ALFRED and ELFR considering, beside pure compatibility, the influence of mechanical interaction like creep and fretting. (orig.)

  2. Materials design considerations and selection for a large rad waste incinerator

    International Nuclear Information System (INIS)

    Vormelker, P.R.; Jenkins, C.F.; Burns, H.H.

    1997-01-01

    A new incinerator has been built to process self-generated, low level radioactive wastes at the Department of Energy's Savannah River Site. Wastes include protective clothing and other solid materials used during the handling of radioactive materials, and liquid chemical wastes resulting from chemical and waste management operations. The basic design and materials of construction selected to solve the anticipated corrosion problems from hot acidic gases are reviewed. Problems surfacing during trial runs prior to radioactive operations are discussed

  3. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  4. Serial Entrepreneurship, Learning by Doing and Self-selection

    DEFF Research Database (Denmark)

    Rocha, Vera; Carneiro, Anabela; Varum, Celeste

    2015-01-01

    of the person-specific effect, using information on individuals’ past histories in paid employment, confirm that serial entrepreneurs exhibit, on average, a larger person-specific effect than non-serial business owners. Moreover, ignoring serial entrepreneurs’ self-selection overestimates learning by doing......It remains a question whether serial entrepreneurs typically perform better than their novice counterparts owing to learning by doing effects or mostly because they are a selected sample of higher-than-average ability entrepreneurs. This paper tries to unravel these two effects by exploring a novel...... empirical strategy based on continuous time duration models with selection. We use a large longitudinal matched employer-employee dataset that allows us to identify about 220,000 individuals who have left their first entrepreneurial experience, out of which over 35,000 became serial entrepreneurs. We...

  5. Deciding what kind of course to take: Factors that influence modality selection in accounting continuing professional development

    OpenAIRE

    Kathleen Ross; Terry Anderson

    2013-01-01

    This study used a cross sectional sample created by self-selection from a researchers' email invitation to accountants in Canada to determine which modalities accountants preferred when selecting Continuing Professional Development (CPD), and the selection factors they used in making those choices. The survey contacted 32,000 accountants in Canada and a total of 428 accountants from across Canada completed the online survey. Live seminars and live webinars were the highest ranked and accounta...

  6. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  7. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  8. Deciding what kind of course to take: Factors that influence modality selection in accounting continuing professional development

    Directory of Open Access Journals (Sweden)

    Kathleen Ross

    2013-06-01

    Full Text Available This study used a cross sectional sample created by self-selection from a researchers' email invitation to accountants in Canada to determine which modalities accountants preferred when selecting Continuing Professional Development (CPD, and the selection factors they used in making those choices. The survey contacted 32,000 accountants in Canada and a total of 428 accountants from across Canada completed the online survey. Live seminars and live webinars were the highest ranked and accountants preferred synchronous over asynchronous courses. The factors most important to accountants are content, cost and CPD hour requirements. The ranking of selection factors for synchronous courses in general did not differ from those for asynchronous courses with the exception of self-paced courses where the selection factors of “pace” and “time away from work” were ranked higher than for other courses. The results of the study indicate a continuing need for providers to ensure that courses are relevant and accessible to accountants. Further research is suggested into the differences noted between genders as well as other categorical differences. Work-life balance was a recurring theme that should also be explored further. Pedagogical use in the design of modalities is a further avenue for future research.

  9. Information resources and material selection in bonded restorations among Korean dentists.

    Science.gov (United States)

    Chang, Juhea; Kim, Hae-Young; Cho, Byeong Hoon; Lee, In Bog; Son, Ho Hyun

    2009-12-01

    To elucidate how dentists access knowledge sources when choosing adhesive agents for bonded restoration and whether these resources influenced the selection of materials. A national survey was carried out involving dentists in South Korea. The questionnaire included the status of the operator, clinical techniques, and materials. A total of 12,193 e-mails were distributed, 2632 were opened by recipients, and 840 responses were collected. For primary information resources in material selection, 55.8% (n = 469) of the responders mentioned continuing education. This selection criteria varied according to the working status of the clinician (p choice of bonding system was influenced by of the length of the career (p < 0.0001), and the preferred bonding systems differed according to the source of the information (p = 0.035). The popular bonding systems were not ranked according to the bonding strategy, but a preference was found for specific brands or manufacturers. To decrease the confusion of clinicians related to the selection of bonding materials, evidence-based guidelines need to be comprehensibly organized and efficiently approached in clinics.

  10. Materials selection for cutting tools

    International Nuclear Information System (INIS)

    Burkhis, Adel M.

    2008-01-01

    The selection of proper tool steel for a given application is a difficult task. So; the most important selection factors in choosing cutting tool materials are based on their tool material requirements, cutting tool design and service conditions which is mainly considered as functional requirements. The processability requirements concerns in heat treat ability of the material tool. The classification of these tool materials were discussed with their properties requirement and percent of alloying element which is added to give best properties with a little increase in cost that highly appear in comparison of the selection. The cutting tool materials were evaluated based on two cases; The first was in case of rough surface; the high speed steels is the best material and the other was the ceramic material is the highest performance in cutting of soft or high rate of metal removal. (author)

  11. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  12. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    Science.gov (United States)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  13. Deep Brain Stimulation, Continuity over Time, and the True Self.

    Science.gov (United States)

    Nyholm, Sven; O'Neill, Elizabeth

    2016-10-01

    One of the topics that often comes up in ethical discussions of deep brain stimulation (DBS) is the question of what impact DBS has, or might have, on the patient's self. This is often understood as a question of whether DBS poses a threat to personal identity, which is typically understood as having to do with psychological and/or narrative continuity over time. In this article, we argue that the discussion of whether DBS is a threat to continuity over time is too narrow. There are other questions concerning DBS and the self that are overlooked in discussions exclusively focusing on psychological and/or narrative continuity. For example, it is also important to investigate whether DBS might sometimes have a positive (e.g., a rehabilitating) effect on the patient's self. To widen the discussion of DBS, so as to make it encompass a broader range of considerations that bear on DBS's impact on the self, we identify six features of the commonly used concept of a person's "true self." We apply these six features to the relation between DBS and the self. And we end with a brief discussion of the role DBS might play in treating otherwise treatment-refractory anorexia nervosa. This further highlights the importance of discussing both continuity over time and the notion of the true self.

  14. Model Selection in Continuous Test Norming With GAMLSS.

    Science.gov (United States)

    Voncken, Lieke; Albers, Casper J; Timmerman, Marieke E

    2017-06-01

    To compute norms from reference group test scores, continuous norming is preferred over traditional norming. A suitable continuous norming approach for continuous data is the use of the Box-Cox Power Exponential model, which is found in the generalized additive models for location, scale, and shape. Applying the Box-Cox Power Exponential model for test norming requires model selection, but it is unknown how well this can be done with an automatic selection procedure. In a simulation study, we compared the performance of two stepwise model selection procedures combined with four model-fit criteria (Akaike information criterion, Bayesian information criterion, generalized Akaike information criterion (3), cross-validation), varying data complexity, sampling design, and sample size in a fully crossed design. The new procedure combined with one of the generalized Akaike information criterion was the most efficient model selection procedure (i.e., required the smallest sample size). The advocated model selection procedure is illustrated with norming data of an intelligence test.

  15. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    deposition methods, namely nanocasting and atomic layer deposition (ALD) will be applied to fabricate compact, inter-connected, and continuous metal oxide films. In this way, the structure integrity will be preserved after template removal during the annealing procedure. Another objective of this project......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  16. Background Selection in Partially Selfing Populations

    Science.gov (United States)

    Roze, Denis

    2016-01-01

    Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726

  17. In-plane material continuity for the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...

  18. Self-weldability of various materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Self-Weldability of Various Materials in High Temperature Sodium. The self-welding behavior of various materials was evaluated by measuring the tensile breakaway force of the specimen which had been self-welded in high temperature sodium. Experiments were carried out to investigate the influence of the sodium temperature and the contact stress on the self-welding behavior. The results obtained are as follows: (1) The self-welding behavior in sodium was recognized to initiate by the diffusion of the principal element through the real contact area. (2) Remarkable self-welding behavior was observed for SUS 316 material at 650 0 C, and for 2 1/4Cr-1Mo steel at a sodium temperature of 600 0 C. The self-welding force acting on the real contact area corresponds to the tensile strength of each material. (3) Hard chrome plating or hardfacing material showed good self-weld resistance, but the different combinations of SUS 316 with either of these materials were observed to easily cause self-welding. (4) The self-weldability of Cr 3 C 2 /Ni-Cr material varied with the preparing methods, especially, with the distribution of the binder composition contained in this material. (5) A derived equation was proposed to evaluate the self-welding force. It was found that the measured breakaway force was relatively equal to the self-welding force derived from this equation. (author)

  19. Self-degradable Cementitious Sealing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final

  20. Design of self-growing, self-sensing, and self-repairing materials for engineering applications

    Science.gov (United States)

    Dry, Carolyn M.

    2001-04-01

    Like natural biological building systems these materials are inexpensive, and self-form through interaction of the materials. They sense and self-repair, respond to changes in the environment. The volume and scale, cost and end use are all considered from the start. The purpose of the particular system we will describe is an engineered bridge. The materials form as bone does from the innate attributes of the material without much labor. They sense the environment, respond to it, and repair any damage. This composite bridge is designed from a self-forming polymer and concrete system. Internal release of chemicals, their properties and location account for responsiveness to change and for repair. The choice of matrix additives also allow for the responsiveness. Bridge frames were fabricated for dynamic testing. The results showed that self repair and response to loads could be accomplished by careful placement of chemicals for later release and by use of chemicals which could alter such attributes as stiffness, flexure and permanent deformation. Internal viewing sensors could determine the state of the frames after testing.

  1. Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected

  2. Material selection for an aerospace component

    OpenAIRE

    Jönsson, Gustav

    2015-01-01

    In the world of today there is a drive for lighter and more effective products for various reasons e.g. reduced environmental impact, higher payload, fuel efficiency etc. There is also an expanding development of new materials for a large number of different applications. This makes it more and more difficult for engineers to make good material selections. This has led to the development of a large amount of material selection methods that require more or less effort to select material. An ef...

  3. Age Differences in Self-Continuity: Converging Evidence and Directions for Future Research.

    Science.gov (United States)

    Löckenhoff, Corinna E; Rutt, Joshua L

    2017-06-01

    Life-span development is inherently linked to the perception of time and associated temporal construals. Such concepts are multi-faceted in nature and have important practical implications in areas such as time management, financial planning, or medical choices. A large body of research has documented age-related limitations in global time horizons, but age differences in other aspects of temporal construal are comparatively poorly understood. The present article draws attention to developmental trajectories of self-continuity, defined as perceived associations of one's present self with past and future selves. After considering historical roots and contemporary views on self-continuity, we turn to the life-span developmental literature and review several convergent streams of research that provide indirect evidence for age-related increases in self-continuity. We then consider a small body of recent studies which have directly assessed age differences in self-continuity and summarize our current understanding of this phenomenon including associations between explicit and implicit measures, symmetry between past and future self-continuity, and differentiation from other aspects of time perception. We conclude by highlighting open theoretical questions and considering the practical implications of an increased sense of self-continuity with advancing age. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Critical care nurse learning of continuous renal replacement therapy: the efficacy of a self-learning manual].

    Science.gov (United States)

    Huang, Yi-Chen; Hsu, Li-Ling

    2011-02-01

    Many nurses have difficulty learning to use the complex, non-traditional, and regularly-updated critical care equipment. Failure to use such equipment properly can seriously compromise treatment and endanger patient health and lives. New self-learning materials for novice nurses are necessary to provide essential and effective guidance as a part of formal nursing training. Such materials can enhance the capabilities of critical care nurses and, thus, improve the general quality of critical care. The purpose of this research was to develop a continuous renal replacement therapy (CRRT)-themed self-learning manual that would provide easily absorbed and understood knowledge in an easy-to-carry format for ICU nursing staff. This study also investigated CCRT skill learning efficacy. This study adopted a quasi-experimental design with pretests and posttests. Purposive sampling generated a sample of 66 critical care nurses currently working at one hospital in Taipei City. Participants submitted a completed self-assessment survey that rated their command of continuous renal replacement therapy before and after the self-learning manual intervention. Survey data were analyzed using SPSS Version 17.0 for Windows. The two major findings derived from the study included: (1) The mean response score from the self-assessment survey filled out after the intervention was 91.06 and 79.75 (SD = 9.49 and 11.65), respectively, for experimental and control groups. Such demonstrated significant difference. (2) The mean posttest score after the intervention for the experimental group was 91.06 ± 9.49. This represents a significant increase of 10.35 ± 10.35 over their mean pretest score (80.71 ± 11.82). The experimental group showed other significant differences in terms of the CRRT self-assessment survey posttest. Self-learning manuals may be introduced in nursing education as useful aids and catalysts to achieve more effective and satisfying learning experiences.

  5. Selection of nutrient used in biogenic healing agent for cementitious materials

    Science.gov (United States)

    Tziviloglou, Eirini; Wiktor, Virginie; Jonkers, Henk M.; Schlangen, Erik

    2017-06-01

    Biogenic self-healing cementitious materials target on the closure of micro-cracks with precipitated inorganic minerals originating from bacterial metabolic activity. Dormant bacterial spores and organic mineral compounds often constitute a biogenic healing agent. The current paper focuses on the investigation of the most appropriate organic carbon source to be used as component of a biogenic healing agent. It is of great importance to use an appropriate organic source, since it will firstly ensure an optimal bacterial performance in terms of metabolic activity, while it should secondly affect the least the properties of the cementitious matrix. The selection is made among three different organic compounds, namely calcium lactate, calcium acetate and sodium gluconate. The methodology that was used for the research was based on continuous and non-continuous oxygen consumption measurements of washed bacterial cultures and on compressive strength tests on mortar cubes. The oxygen consumption investigation revealed a preference for calcium lactate and acetate, but an indifferent behaviour for sodium gluconate. The compressive strength on mortar cubes with different amounts of either calcium lactate or acetate (up to 2.24% per cement weight) was not or it was positively affected when the compounds were dissolved in the mixing water. In fact, for calcium lactate the increase in compressive strength reached 8%, while for calcium acetate the maximum strength increase was 13.4%.

  6. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    Science.gov (United States)

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  7. NREL Patents Method for Continuous Monitoring of Materials During

    Science.gov (United States)

    Manufacturing | News | NREL NREL Patents Method for Continuous Monitoring of Materials During Manufacturing News Release: NREL Patents Method for Continuous Monitoring of Materials During Manufacturing NREL's Energy Systems Integration Facility (ESIF). More information, including the published patent, can

  8. The Effects of Aural versus Notated Instructional Materials on Achievement and Self-Efficacy in Jazz Improvisation

    Science.gov (United States)

    Watson, Kevin E.

    2010-01-01

    The purpose of the present study was to investigate the effects of aural versus notated pedagogical materials on achievement and self-efficacy in instrumental jazz improvisation performance. A secondary purpose of this study was to investigate how achievement and self-efficacy may be related to selected experience variables. The sample for the…

  9. Eco-Material Selection for Auto Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Omar, Mohammed [Masdar Institute of Science & Technology; Hayajneh, Mohammed T. [Jordan University of Science and Technology

    2017-09-25

    In the last decades, majority of automakers started to include lightweight materials in their vehicles to meet hard environmental regulations and to improve fuel efficiency of their vehicles. As a result, eco-material selection for vehicles emerged as a new discipline under design for environment. This chapter will summarize methods of eco-material selections for automotive applications with more emphasis into auto-bodies. A set of metrics for eco-material selection that takes into account all economic, environmental and social factors will be developed using numerical and qualitative methods. These metrics cover products' environmental impact, functionality and manufacturability, in addition to the economic and societal factors.

  10. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  11. Ballistic Puncture Self-Healing Polymeric Materials

    Science.gov (United States)

    Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.

    2017-01-01

    Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.

  12. Principles and Procedures for Self-Access Materials

    OpenAIRE

    Brian Tomlinson

    2010-01-01

    Like all language learning materials, self-access materials need to be developed from principles driven by what is known about the needs and wants of the target users. In my view, there should be a specification of universal principles, delivery specific principles, and local principles before deciding what self-access materials to develop and how to develop them. Universal principles are principles of language acquisition and development (Tomlinson, 2007a) which are applicable to all learner...

  13. Self-healing phenomena in cement-based materials state-of-the-art report of RILEM Technical Committee 221-SHC Self-Healing Phenomena in Cement-Based Materials

    CERN Document Server

    Tittelboom, Kim; Belie, Nele; Schlangen, Erik

    2013-01-01

    Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".

  14. Nostalgia fosters self-continuity: Uncovering the mechanism (social connectedness) and consequence (eudaimonic well-being).

    Science.gov (United States)

    Sedikides, Constantine; Wildschut, Tim; Cheung, Wing-Yee; Routledge, Clay; Hepper, Erica G; Arndt, Jamie; Vail, Kenneth; Zhou, Xinyue; Brackstone, Kenny; Vingerhoets, Ad J J M

    2016-06-01

    Nostalgia, a sentimental longing for one's past, is an emotion that arises from self-relevant and social memories. Nostalgia functions, in part, to foster self-continuity, that is, a sense of connection between one's past and one's present. This article examined, in 6 experiments, how nostalgia fosters self-continuity and the implications of that process for well-being. Nostalgia fosters self-continuity by augmenting social connectedness, that is, a sense of belongingness and acceptance (Experiments 1-4). Nostalgia-induced self-continuity, in turn, confers eudaimonic well-being, operationalized as subjective vitality (i.e., a feeling of aliveness and energy; Experiments 5-6). The findings clarify and expand the benefits of nostalgia for both the self-system and psychological adjustment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Skateboard deck materials selection

    Science.gov (United States)

    Liu, Haoyu; Coote, Tasha; Aiolos; Charlie

    2018-03-01

    The goal of this project was to identify the ideal material for a skateboard deck under 200 in price, minimizing the weight. The material must have a fracture toughness of 5 MPa/m2, have a minimum lifetime of 10, 000 cycles and must not experience brittle fracture. Both single material and hybrid solutions were explored. When further selecting to minimize weight, woods were found to be the best material. Titanium alloy-wood composites were explored to determine the optimal percentage composition of each material.A sandwich panel hybrid of 50% titanium alloy and 50% wood (Ti-Wood) was found to be the optimum material, performing better than the currently used plywood.

  16. Strategies for selecting effective patient nutrition education materials.

    Science.gov (United States)

    Clayton, Laura H

    2010-10-01

    Nutrition and diet therapy are at the center of health promotion activities and self-management of chronic diseases. To assist an individual in making informed decisions regarding his or her diet and increase adherence to dietary recommendations or treatments, healthcare professionals must select health information that is appropriate to the client's level of understanding. A systematic approach in the evaluation of patient education material, whether in print or on the World Wide Web, must focus on the information's content, literacy level, graphical displays, layout and typography, motivating principles, cultural relevance, and feasibility. Additional criteria should be evaluated when accessing Web sites and include source, site credibility, conflict of interest, disclaimer, disclosure, navigation, and interactivity information.

  17. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    Science.gov (United States)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  18. Two intelligent materials, both of which are self-forming and self-repairing; one also self-senses and recycles

    Science.gov (United States)

    Dry, Carolyn M.

    1996-04-01

    Two self-forming and repair polymer cementitious composites were developed over a decade apart by the author. Both relied on a nature based paradigm as a model for building, in particular bone formation, repair, and degradation. For the first composite, the proposed material accreted from the ocean, made from a fluids based chemistry, that of seawater. The land based system was not built in-situ but relied on a man made supply of materials which were self-forming, self-repairing and dissolving. But in both cases a fluid based chemistry was necessary for self-building, repair and recycling of a bone-like composite material.

  19. Emotions experienced at event recall and the self: Implications for the regulation of self-esteem, self-continuity and meaningfulness.

    Science.gov (United States)

    Ritchie, Timothy D; Sedikides, Constantine; Skowronski, John J

    2016-01-01

    The intensity of positive affect elicited by recall of positive events exceeds the intensity of negative affect elicited by recall of negative events (fading affect bias, or FAB). The research described in the present article examined the relation between the FAB and three regulatory goals of the self: esteem, continuity and meaningfulness. The extent to which an event contributed to esteem (Study 1), continuity (Study 2) or meaningfulness (Study 3) was related to positive affect at event recall provoked by positive memories and to negative affect at event recall provoked by negative memories. The relation between affect experienced at recall and the three regulatory goals was bidirectional. The results showcase how individuals use recall for self-regulatory purposes and how they implement self-regulatory goals for positive affect.

  20. Choosing face: The curse of self in profile image selection.

    Science.gov (United States)

    White, David; Sutherland, Clare A M; Burton, Amy L

    2017-01-01

    People draw automatic social inferences from photos of unfamiliar faces and these first impressions are associated with important real-world outcomes. Here we examine the effect of selecting online profile images on first impressions. We model the process of profile image selection by asking participants to indicate the likelihood that images of their own face ("self-selection") and of an unfamiliar face ("other-selection") would be used as profile images on key social networking sites. Across two large Internet-based studies (n = 610), in line with predictions, image selections accentuated favorable social impressions and these impressions were aligned to the social context of the networking sites. However, contrary to predictions based on people's general expertise in self-presentation, other-selected images conferred more favorable impressions than self-selected images. We conclude that people make suboptimal choices when selecting their own profile pictures, such that self-perception places important limits on facial first impressions formed by others. These results underscore the dynamic nature of person perception in real-world contexts.

  1. Training self-assessment and task-selection skills to foster self-regulated learning: Do trained skills transfer across domains?

    Science.gov (United States)

    Raaijmakers, Steven F; Baars, Martine; Paas, Fred; van Merriënboer, Jeroen J G; van Gog, Tamara

    2018-01-01

    Students' ability to accurately self-assess their performance and select a suitable subsequent learning task in response is imperative for effective self-regulated learning. Video modeling examples have proven effective for training self-assessment and task-selection skills, and-importantly-such training fostered self-regulated learning outcomes. It is unclear, however, whether trained skills would transfer across domains. We investigated whether skills acquired from training with either a specific, algorithmic task-selection rule or a more general heuristic task-selection rule in biology would transfer to self-regulated learning in math. A manipulation check performed after the training confirmed that both algorithmic and heuristic training improved task-selection skills on the biology problems compared with the control condition. However, we found no evidence that students subsequently applied the acquired skills during self-regulated learning in math. Future research should investigate how to support transfer of task-selection skills across domains.

  2. Inducing self-selected human engagement in robotic locomotion training.

    Science.gov (United States)

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better

  3. Selfing for the design of genomic selection experiments in biparental plant populations.

    Science.gov (United States)

    McClosky, Benjamin; LaCombe, Jason; Tanksley, Steven D

    2013-11-01

    Self-fertilization (selfing) is commonly used for population development in plant breeding, and it is well established that selfing increases genetic variance between lines, thus increasing response to phenotypic selection. Furthermore, numerous studies have explored how selfing can be deployed to maximal benefit in the context of traditional plant breeding programs (Cornish in Heredity 65:201-211,1990a, Heredity 65:213-220,1990b; Liu et al. in Theor Appl Genet 109:370-376, 2004; Pooni and Jinks in Heredity 54:255-260, 1985). However, the impact of selfing on response to genomic selection has not been explored. In the current study we examined how selfing impacts the two key aspects of genomic selection-GEBV prediction (training) and selection response. We reach the following conclusions: (1) On average, selfing increases genomic selection gains by more than 70 %. (2) The gains in genomic selection response attributable to selfing hold over a wide range population sizes (100-500), heritabilities (0.2-0.8), and selection intensities (0.01-0.1). However, the benefits of selfing are dramatically reduced as the number of QTLs drops below 20. (3) The major cause of the improved response to genomic selection with selfing is through an increase in the occurrence of superior genotypes and not through improved GEBV predictions. While performance of the training population improves with selfing (especially with low heritability and small population sizes), the magnitude of these improvements is relatively small compared with improvements observed in the selection population. To illustrate the value of these insights, we propose a practical genomic selection scheme that substantially shortens the number of generations required to fully capture the benefits of selfing. Specifically, we provide simulation evidence that indicates the proposed scheme matches or exceeds the selection gains observed in advanced populations (i.e. F 8 and doubled haploid) across a broad range of

  4. New ion selective materials. Application to the selective extraction of caesium

    International Nuclear Information System (INIS)

    Favre-Reguillon, Alain

    1996-01-01

    This research thesis addresses the synthesis and assessment of ion selective materials. The first part reports the development of a general method of assessment of ion selective materials. In the second part, the author describes different methods used to insolubilize macro-cycles on hydrophilic polymers. The obtained polyurethanes are synthesised. These hydrophilic polymers display interesting complexing properties and selectivities with respect to cations of alkali metals. Then the author addresses the improvement of selectivity with respect to caesium of ion exchange resorcinol-formaldehyde resins. Different factors affecting selectivity are identified, and the concept of molecular print is used to study the improvement of selectivity. The effect of macro-cyclic structures on phenolic resins with respect to caesium is highlighted [fr

  5. A probabilistic method for determining the volume fraction of pre-embedded capsules in self-healing materials

    International Nuclear Information System (INIS)

    Lv, Zhong; Chen, Huisu

    2014-01-01

    Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance. (paper)

  6. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Dzhamanbalin, K.K.; Medetov, N.A.

    2003-01-01

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  7. FENOMENA, FEMINISME DAN POLITICAL SELF SELECTION BAGI PEREMPUAN

    Directory of Open Access Journals (Sweden)

    Nurwani Idris - -

    2012-05-01

    Full Text Available Abstract Democracy needs all participation people in the country, women and men.  The political right for women, as we know was feminism hard and long time struggled, therefore now the women have the high quality live in politic, the economic and social.  All the country in the world have ratificated the PBB of law for political freedom for women as the same as men. Especially in Indonesia now there’s no formal barriers for women leadership, if they select to participate in politics but it was the phenomenon for the women among self selection in politics, the freedom to be participating and children, husband, housing, that still stronger; from which one barrier “self selection” or “culture and religion” responsibility where significantly. Minangkabau women, forward analysis we can aim self selection or children, husband and family responsibility.  It is indisputable that the women’s awareness and struggle in the politics are debt to the feminists’ endless efforts. The feminists have fostered the women to empower themselves by which they reach equal position compared with their counterparts, in nearly all aspects of the social life.   Keywords:  phenomenon, feminism, and political self selection.

  8. Geometry directed self-selection in the coordination-driven self-assembly of irregular supramolecular polygons.

    Science.gov (United States)

    Zheng, Yao-Rong; Northrop, Brian H; Yang, Hai-Bo; Zhao, Liang; Stang, Peter J

    2009-05-01

    The self-assembly of irregular metallo-supramolecular hexagons and parallelograms has been achieved in a self-selective manner upon mixing 120 degrees unsymmetrical dipyridyl ligands with 60 degrees or 120 degrees organoplatinum acceptors in a 1:1 ratio. The polygons have been characterized using (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) as well as X-ray crystallography. Geometric features of the molecular subunits direct the self-selection process, which is supported by molecular force field computations.

  9. The materials selection in ITER and the first materials workshop

    International Nuclear Information System (INIS)

    Matera, R.; Barabash, V.; Kalinin, G.; Tanaka, S.

    1998-01-01

    The selection of materials and joining technologies to be used in ITER is a trade-off between multiple and often conflicting requirements derived from the unique features of the fusion environment. Materials selection must encompass a total engineering approach, by considering not only physical and mechanical properties, but also the components' manufacturing, their maintainability and reliability, and, finally, how they can be recycled or disposed of at the end of machine operation

  10. Continuous spray forming of functionally gradient materials

    International Nuclear Information System (INIS)

    McKechnie, T.N.; Richardson, E.H.

    1995-01-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers

  11. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  12. Self-assessed learning style correlates to use of supplemental learning materials in an online course management system.

    Science.gov (United States)

    Halbert, Caitlin; Kriebel, Richard; Cuzzolino, Robert; Coughlin, Patrick; Fresa-Dillon, Kerin

    2011-01-01

    The benefit of online learning materials in medical education is not well defined. The study correlated certain self-identified learning styles with the use of self-selected online learning materials. First-year osteopathic medical students were given access to review and/or summary materials via an online course management system (CMS) while enrolled in a pre-clinical course. At the end of the course, students completed a self-assessment of learning style based on the Index of Learning Styles and a brief survey regarding their usage and perceived advantage of the online learning materials. Students who accessed the online materials earned equivalent grades to those who did not. However, the study found that students who described their learning styles as active, intuitive, global, and/or visual were more likely to use online educational resources than those who identified their learning style as reflective, sensing, sequential, and/or verbal. Identification of a student's learning style can help medical educators direct students to learning resources that best suit their individual needs.

  13. Selective Lanthanides Sequestration Based on a Self-Assembled Organo-silica

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.; Reye, C.; Corriu, R.J. P. [Univ Montpellier, Inst Charles Gerhardt Montpellier, UMR 5253, Chim Mol and Org Solide, F-34095 Montpellier 5 (France); Besson, E. [ICSM Site Marcoule, UMR 5257, Inst Chim Separat Marcoule, F-30207 Bagnols Sur Ceze (France); Van der Lee, Arie [Univ Montpellier, Inst Europeen Membranes, UMR 5635, CNRS, F-34095 Montpellier 5 (France); Besson, E.; Chollet, H. [CEA Valduc, Dept Traitement Mat Nucl, F-21120 Is Sur Tille (France); Guilard, R. [Univ Bourgogne, Inst Chim Mol, CNRS, ICMUB, UMR 5260, F-21078 Dijon (France)

    2010-07-01

    In this paper, we investigate the cation-exchange properties of a self-assembled hybrid material towards trivalent ions, lanthanides (La{sup 3+}, Eu{sup 3+}, Gd{sup 3+}, Yb{sup 3+}) and Fe{sup 3+}. The bis-zwitterionic lamellar material was prepared by sol-gel process from only 3-aminopropyltriethoxysilane (APTES), succinic anhydride, and ethylenediamine. In ethanol heated under reflux, the exchange ethylenediammonium versus Ln{sup 3+} proved to be complete by complexometry measurements and elemental analyses, one Cl{sup -} ion per one Ln(III) remaining as expected for charge balance. In aqueous solution at 20 degrees C, the material was found to be selective towards lanthanide in spite of the similarity of their ionic radii. The cation uptake depends on the nature of the salt, the difference between two lanthanides reaching up to 20% in some cases. Finally, ion-exchange reaction with FeCl{sub 3} was chosen as a probe to get more information on the material after incorporation of trivalent ions. Based on Moessbauer spectroscopic investigations on the resulting material in conjunction with the XRD analysis of materials containing trivalent ions, a structural model was proposed to describe the incorporation of trivalent ions by exchange reaction within the original zwitterionic material. (authors)

  14. Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects

    International Nuclear Information System (INIS)

    Yu Biying; Junyi Zhang; Fujiwara, Akimasa

    2012-01-01

    It is expected that the residential location choice and household energy consumption behavior might correlate with each other. Besides, due to the existence of self-selection effects, the observed inter-relationship between them might be the spurious result of the fact that some unobserved variables are causing both. These concerns motivate us to (1) consider residential location choice and household energy consumption behavior (for both in-home appliances and out-of-home cars) simultaneously and, (2) explicitly control self-selection effects so as to capture a relatively true effect of land-use policy on household energy consumption behavior. An integrated model termed as joint mixed Multinomial Logit-Multiple Discrete-Continuous Extreme Value model is presented here to identify the sensitivity of household energy consumption to land use policy by considering multiple self-selection effects. The model results indicate that land-use policy do play a great role in changing Beijing residents’ energy consumption pattern, while the self-selection effects cannot be ignored when evaluating the effect of land-use policy. Based on the policy scenario design, it is found that increasing recreational facilities and bus lines in the neighborhood can greatly promote household's energy-saving behavior. Additionally, the importance of “soft policy” and package policy is also emphasized in the context of Beijing. - Highlights: ► Representing residential choice and household energy consumption behavior jointly. ► Land use policy is found effective to control the household energy use in Beijing. ► Multiple self-selection effects are posed to get the true effect of land use policy. ► Significant self-selection effects call an attention to the soft policy in Beijing. ► The necessity of package policy on saving Beijing residents’ energy use is confirmed.

  15. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  16. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    Science.gov (United States)

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  17. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  18. Continuous Materiality: Through a Hierarchy of Computational Codes

    Directory of Open Access Journals (Sweden)

    Jichen Zhu

    2008-01-01

    Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.

  19. Cementitious composite materials with improved self-healing potential

    Directory of Open Access Journals (Sweden)

    Cornelia BAERA

    2015-12-01

    Full Text Available Cement-based composites have proved, over the time, certain abilities of self-healing the damages (cracks and especially microcracs that occur within their structure. Depending on the level of damage and of the composite type in which this occurs, the self - healing process (SH can range from crack closing or crack sealing to the stage of partial or even complete recovery of material physical - mechanical properties. The aim of this paper is to present the general concept of Engineered Cementitious Composites (ECCs with their unique properties including their self-healing (SH capacity, as an innovative direction for a global sustainable infrastructure. The experimental steps initiated for the development in Romania of this unique category of materials, using materials available on the local market, are also presented.

  20. Immigration And Self-Selection

    OpenAIRE

    George J. Borjas

    1988-01-01

    Self-selection plays a dominant role in determining the size and composition of immigrant flows. The United States competes with other potential host countries in the "immigration market". Host countries vary in their "offers" of economic opportunities and also differ in the way they ration entry through their immigration policies. Potential immigrants compare the various opportunities and are non-randomly sorted by the immigration market among the various host countries. This paper presents ...

  1. Windscale inquiry. A selected list of material based on the DOE/DTp library

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, C M [comp.

    1981-01-01

    The nuclear debate, far from being concluded by the Windscale decision, was in fact opened up and its scope widened to take into account the political, international, environmental and social issues involved. This debate continues and the selection of literature presented here aims to illustrate all aspects of the Inquiry and its implications. The material is presented in two main sections. Section A is concerned with the Inquiry itself: the proceedings, the report and the government's decision. Section B presents a selection of the literature and debate that resulted.

  2. Crops: a green approach toward self-assembled soft materials.

    Science.gov (United States)

    Vemula, Praveen Kumar; John, George

    2008-06-01

    To date, a wide range of industrial materials such as solvents, fuels, synthetic fibers, and chemical products are being manufactured from petroleum resources. However, rapid depletion of fossil and petroleum resources is encouraging current and future chemists to orient their research toward designing safer chemicals, products, and processes from renewable feedstock with an increased awareness of environmental and industrial impact. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally known as the biorefinery concept. The swift integration of crop-based materials synthesis and biorefinery manufacturing technologies offers the potential for new advances in sustainable energy alternatives and biomaterials that will lead to a new manufacturing paradigm. This Account presents a novel and emerging concept of generating various forms of soft materials from crops (an alternate feedstock). In future research, developing biobased soft materials will be a fascinating yet demanding practice, which will have direct impact on industrial applications as an economically viable alternative. Here we discuss some remarkable examples of glycolipids generated from industrial byproducts such as cashew nut shell liquid, which upon self-assembly produced soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecular-weight gels, and liquid crystals. Synthetic methods applied to a "chiral pool" of carbohydrates using the selectivity of enzyme catalysis yield amphiphilic products derived from biobased feedstock including amygdalin, trehalose, and vitamin C. This has been achieved with a lipase-mediated regioselective synthetic procedure to obtain such amphiphiles in quantitative yields. Amygdalin amphiphiles showed unique gelation behavior in a broad range of solvents such as nonpolar hexanes to polar aqueous solutions

  3. Multicomponent and Dissipative Self-Assembly Approaches : Towards functional materials

    NARCIS (Netherlands)

    Boekhoven, J.

    2012-01-01

    The use of self-assembly has proven to be a powerful approach to create smart and functional materials and has led to a vast variety of successful examples. However, the full potential of self-assembly has not been reached. Despite the number of successful artificial materials based on

  4. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  5. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  6. Autobiographical reasoning in life narratives buffers the effect of biographical disruptions on the sense of self-continuity.

    Science.gov (United States)

    Habermas, Tilmann; Köber, Christin

    2015-01-01

    Personal identity depends on synchronic coherence and diachronic continuity of the self. Autobiographical remembering and autobiographical knowledge as well as the stability of bodily integrity, of social roles, of significant others and of physical and sociocultural environment have been suggested as supporting a pre-reflective sense of self-continuity. Stark biographical discontinuities or disruptions in these areas may destabilise the sense of self-continuity. To test the hypothesis that autobiographical reasoning in life narratives helps to compensate the effects of biographical discontinuities on the sense of self-continuity, life narratives of a lifespan sample with the ages of 16, 20, 24, 28, 44 and 69 (N = 150, 78 female) were investigated. Results confirm that if, and only if there have been biographical disruptions in the past four years, then autobiographical reasoning correlates positively with a sense of self-continuity. The findings contradict the thesis that mere remembering of past episodes is sufficient to maintain a sense of self-continuity under conditions of biographical change.

  7. Process for producing a self luminescent material

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E

    1962-01-28

    A self luminescent material is produced by a process comprising applying a hydroxide or fluoride of promethium-147 suspended in a medium of paraffinic acid to the surface of a fluorescent body. Promethium-147 decays with a half-life of 2.6 years and emits beta-rays but not alpha- and gamma-rays so that it is suitable for manufacturing self luminescent materials. A chloride of promethium-147 cannot be employed because its structure is destroyed by acids. Although fluorides and hydroxides of promethium-147 are difficult to mix with the fluorescent body material, they become mixable when paraffinic acids containing from 12 to 20 carbon atoms, (for example, steric acid, palmitic acid and margaric acid) are used as a medium. In embodiments, the self luminescent materials are prepared by either neutralization of a promethium-147 chloride solution having a specific radioactivity of 1.2 c/cc. with an ammonium hydroxide solution to form gelatinous hydroxide, or the reaction of a promethium-147 chloride solution with H/sub 2/SiF/sub 6/ by heating at 80/sup 0/C to form a fluoride of promethium-147. The products have a specific radioactivity of 8 to 12 mc/g. These products are suspended in vehicles of polystyrene and methacrylic resin to produce the self luminescent coating materials. Tests show that the initical brightness is comparatively high, the decreasing rate of brightness is small, no blackening effects by alpha-rays occur and costs are low. The brightness of the coating containing promethium-147 is 82-85 after 5 days, 100-105 after 100 days and 82-92 after 180 days. With respect to the coating containing radium the values are 31-70 after 5 days, 28-49 after 100 days and 19-31 after 180 days.

  8. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  9. Continuity and Change in Self-Esteem During Emerging Adulthood

    Science.gov (United States)

    Chung, Joanne M.; Robins, Richard W.; Trzesniewski, Kali H.; Noftle, Erik E.; Roberts, Brent W.; Widaman, Keith F.

    2014-01-01

    The present study examined the development of self-esteem in a sample of emerging adults (N = 295) followed longitudinally over 4 years of college. Six waves of self-esteem data were available. Participants also rated, at the end of their 4th year, the degree to which they thought their self-esteem had changed during college. Rank-order stability was high across all waves of data (Mdn disattenuated correlation = .87). On average, self-esteem levels dropped substantially during the 1st semester (d =−.68), rebounded by the end of the 1st year (d = .73), and then gradually increased over the next 3 years, producing a small (d = .16) but significant mean-level increase in self-esteem from the beginning to the end of college. Individuals who received good grades in college tended to show larger increases in self-esteem. In contrast, individuals who entered college with unrealistically high expectations about their academic achievement tended to show smaller increases in self-esteem, despite beginning college with relatively high self-esteem. With regard to perceived change, 67% reported that their self-esteem increased during college, whereas 12% reported that it declined; these perceptions tended to correspond with actual increases and decreases in their self-esteem scale scores (β= .56). Overall, the findings support the perspective that self-esteem, like other personality characteristics, can change in systematic ways while exhibiting continuity over time. PMID:24377355

  10. Material Selection for a Manual Winch Rope Drum

    OpenAIRE

    Moses F. Oduori; Enoch K. Musyoka; Thomas O. Mbuya

    2016-01-01

    The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials....

  11. The Effect of Self-Esteem on Corrupt Intention: The Mediating Role of Materialism

    Science.gov (United States)

    Liang, Yuan; Liu, Li; Tan, Xuyun; Huang, Zhenwei; Dang, Jianning; Zheng, Wenwen

    2016-01-01

    The present set of studies aimed to explore the effect of self-esteem on corrupt intention and the mediating role of materialism in generating this effect. In Study 1, we used questionnaires to investigate the correlation among self-esteem, materialism, and corrupt intention. In Study 2, we manipulated self-esteem to explore the causal effect of self-esteem on materialism and corrupt intention. In Study 3, we manipulated materialism to examine whether inducing materialism can reduce the relationship between self-esteem and corrupt intention. The three studies converged to show that increased self-esteem caused a low level of materialism, which in turn decreased corrupt intention. The theoretical and practical implications of the results are discussed. PMID:27462297

  12. The Effect of Self-Esteem on Corrupt Intention: The Mediating Role of Materialism.

    Science.gov (United States)

    Liang, Yuan; Liu, Li; Tan, Xuyun; Huang, Zhenwei; Dang, Jianning; Zheng, Wenwen

    2016-01-01

    The present set of studies aimed to explore the effect of self-esteem on corrupt intention and the mediating role of materialism in generating this effect. In Study 1, we used questionnaires to investigate the correlation among self-esteem, materialism, and corrupt intention. In Study 2, we manipulated self-esteem to explore the causal effect of self-esteem on materialism and corrupt intention. In Study 3, we manipulated materialism to examine whether inducing materialism can reduce the relationship between self-esteem and corrupt intention. The three studies converged to show that increased self-esteem caused a low level of materialism, which in turn decreased corrupt intention. The theoretical and practical implications of the results are discussed.

  13. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  14. Bioinspired self-healing materials: lessons from nature

    Science.gov (United States)

    Cremaldi, Joseph C

    2018-01-01

    Healing is an intrinsic ability in the incredibly biodiverse populations of the plant and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms were identified: reversible muscle control, clotting, cellular response, layering, protective surfaces, vascular networks or capsules, exposure, and replenishable functional coatings. Then the relationship between these mechanisms, nature’s best (evolutionary) methods of mitigating and healing damage, and existing technology in self-healing materials are described. The goals of this top-level overview are to provide a framework for relating the behavior seen in living nature to bioinspired materials, act as a resource to addressing the limitations/problems with existing materials, and open up new avenues of insight and research into self-healing materials. PMID:29600152

  15. Who am I? The relationship between self-concept uncertainty and materialism.

    Science.gov (United States)

    Noguti, Valeria; Bokeyar, Alexandra L

    2014-10-01

    It is well accepted that materialism may result in a number of negative consequences, hence the importance of improving its understanding. In this paper, we propose that materialism negatively relates to self-concept uncertainty. Uncertainty about oneself is aversive and those feeling uncertain may use the possession of material objects as a way to reduce the uncertainty. Inasmuch as material objects can serve as concrete signs of self-worth, self-concept uncertainty can therefore relate to more materialism. Over two studies, one in Australia and the other in the US, with a total of 390 participants, our research demonstrates that lower clarity about one's self-concept associates with higher levels of materialism. While this result holds for both genders, this relationship is considerably stronger for women compared to men. We also find that lower self-concept clarity relates to higher compulsive buying. We further demonstrate that materialism relates to higher positive moods during shopping, and also relates to higher negative moods after shopping, more notably negative moods towards what was purchased. This effect is significant even when controlling for general affective states. © 2014 International Union of Psychological Science.

  16. Multistate and phase change selection in constitutional multivalent systems.

    Science.gov (United States)

    Barboiu, Mihail

    2012-01-01

    Molecular architectures and materials can be constitutionally self-sorted in the presence of different biomolecular targets or external physical stimuli or chemical effectors, thus responding to an external selection pressure. The high selectivity and specificity of different bioreceptors or self-correlated internal interactions may be used to describe the complex constitutional behaviors through multistate component selection from a dynamic library. The self-selection may result in the dynamic amplification of self-optimized architectures during the phase change process. The sol-gel resolution of dynamic molecular/supramolecular libraries leads to higher self-organized constitutional hybrid materials, in which organic (supramolecular)/inorganic domains are reversibily connected.

  17. Optimal tariff design under consumer self-selection

    Energy Technology Data Exchange (ETDEWEB)

    Raesaenen, M.; Ruusunen, J.; Haemaelaeinen, R.

    1995-12-31

    This report considers the design of electricity tariffs which guides an individual consumer to select the tariff designed for his consumption pattern. In the model the utility maximizes the weighted sum of individual consumers` benefits of electricity consumption subject to the utility`s revenue requirement constraints. The consumers` free choice of tariffs is ensured with the so-called self-selection constraints. The relationship between the consumers` optimal choice of tariffs and the weights in the aggregated consumers` benefit function is analyzed. If such weights exist, they will guarantee both the consumers` optimal choice of tariffs and the efficient consumption patterns. Also the welfare effects are analyzed by using demand parameters estimated from a Finnish dynamic pricing experiment. The results indicate that it is possible to design an efficient tariff menu with the welfare losses caused by the self-selection constraints being small compared with the costs created when some consumers choose tariffs other than assigned for them. (author)

  18. Absence of singular continuous spectrum for certain self-adjoint operators

    International Nuclear Information System (INIS)

    Mourre, E.

    1979-01-01

    An adequate condition is given for a self-adjoint operator to show in the vinicity of a point E of its spectrum the following properties: its point spectrum is of finite size; its singular continuous spectrum is empty. In the way of new applications the absence of singular continuous spectrum is demonstrated in the following two cases: perturbations of pseudo-differential operators; Schroedinger operators of a three-body system [fr

  19. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Noda, Tetsuji [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2001-03-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for {gamma}-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  20. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji

    2001-01-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for γ-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  1. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2012-01-01

    .e. the use of hollow fibers, microencapsulation, expansive agents and mineral admixtures, bacteria and shape memory materials, are reviewed and summarized. A comparison study is conducted subsequently on different strategies to self-healing and on different healing agents used as well. Engineered...

  2. The Effect of Self-Esteem on Corrupt Intention: The Mediating Role of Materialism

    OpenAIRE

    Liang, Yuan; Liu, Li; Tan, Xuyun; Huang, Zhenwei; Dang, Jianning; Zheng, Wenwen

    2016-01-01

    The present set of studies aimed to explore the effect of self-esteem on corrupt intention and the mediating role of materialism in generating this effect. In Study 1, we used questionnaires to investigate the correlation among self-esteem, materialism, and corrupt intention. In Study 2, we manipulated self-esteem to explore the causal effect of self-esteem on materialism and corrupt intention. In Study 3, we manipulated materialism to examine whether inducing materialism can reduce the relat...

  3. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  4. Continuous process for selective metal extraction with an ionic liquid

    NARCIS (Netherlands)

    Parmentier, D.; Paradis, S.; Metz, S.J.; Wiedmer, S.K.; Kroon, M.C.

    2016-01-01

    This work describes for the first time a continuous process for selective metal extraction with an ionic liquid (IL) at room temperature. The hydrophobic fatty acid based IL tetraoctylphosphonium oleate ([P8888][oleate]) was specifically chosen for its low viscosity and high selectivity towards

  5. Paradoxical self-esteem and selectivity in the processing of social information.

    Science.gov (United States)

    Tafarodi, R W

    1998-05-01

    Paradoxical self-esteem is defined as contrasting levels of self-liking and self-competence. Consideration of the social and motivational implications of this uncommon form of self-esteem suggests that heightened selectivity in the processing of social information may be behind its persistence. Two experiments were conducted to confirm the prediction of heightened selectivity in paradoxicals. As expected, those paradoxically low in self-liking were more negatively biased in their memory for personality feedback (Study 1) and interpretation of valuatively ambiguous phrases (Study 2) than were their counterparts who shared the same low self-liking but were also low in self-competence. Symmetrical with this result, those paradoxically high in self-liking exhibited a heightened positive bias relative to those who were high in both self-liking and self-competence. The findings are discussed in relation to attitudes and motivation.

  6. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    Science.gov (United States)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and

  7. Does information overload prevent chronic patients from reading self-management educational materials?

    Science.gov (United States)

    Liu, Chung-Feng; Kuo, Kuang-Ming

    2016-05-01

    Self-care management is becoming an important part of care for chronic patients. However, various kinds of self-management educational materials which government or healthcare institutions provide for patients may not achieve the expected outcome. One of the critical reasons affecting patients' use intention could be patients' perceived information overload regarding the self-management educational materials. This study proposed an extended model of the Theory of Planned Behavior (TPB), which incorporated perceived information overload, to explore if information overload will prevent chronic patients from reading educational materials for self-care management. The independent variables are attitude, subject norm, perceived behavior control and perceived information overload while the dependent variable is behavior intention to use the self-management educational materials. Perceived information overload is also referred to as an antecedent variable which may has impacts on attitude and perceived behavior control. The cross-sectional study interviewed newly diagnosed chronic patients with coronary artery disease, who are the potential users of the self-management educational materials, in a medical center in Taiwan. Data were analyzed using descriptive statistics of the basic information distribution of the respondents, and structural equation modeling to study the reliability and validity for testing hypotheses. A total of 110 respondents were enrolled in this study and successful interview data were collected from 106 respondents. The result indicates that the patients' perceived information overload of self-management educational materials was validated to have impacts on attitude and perceived behavioral control constructs of the TPB as well as contributing a direct impact on patients' intentions to use self-management educational materials. Besides, subjective norm and perceived behavioral control constructs were validated to have significant impacts on

  8. Quality criteria for phase change materials selection

    International Nuclear Information System (INIS)

    Vitorino, Nuno; Abrantes, João C.C.; Frade, Jorge R.

    2016-01-01

    Highlights: • Selection criteria of phase change materials for representative applications. • Selection criteria based on reliable solutions for latent heat transfer. • Guidelines for the role of geometry and heat transfer mechanisms. • Performance maps based on PCM properties, operating conditions, size and time scales. - Abstract: Selection guidelines are primary criterion for optimization of materials for specific applications in order to meet simultaneous and often conflicting requirements. This is mostly true for technologies and products required to meet the main societal needs, such as energy. In this case, gaps between supply and demand require strategies for energy conversion and storage, including thermal storage mostly based on phase change materials. Latent heat storage is also very versatile for thermal management and thermal control by allowing high storage density within narrow temperature ranges without strict dependence between stored thermal energy and temperature. Thus, this work addressed the main issues of latent heat storage from a materials selection perspective, based on expected requirements of applications in thermal energy storage or thermal regulation. Representative solutions for the kinetics of latent heat charge/discharge were used to derive optimization guidelines for high energy density, high power, response time (from fast response to thermal inertia), etc. The corresponding property relations were presented in graphical forms for a wide variety of prospective phase change materials, and for wide ranges of operating conditions, and accounting for changes in geometry and mechanisms.

  9. Continuous fluid bed reactor for fissionable material

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Plutonium (Pu) purification and plutonium hexafluoride (PuF 6 ) formation are achieved on a continuous basis by feeding particulate material into one end of an elongated and horizontally disposed vessel having an upper section with generally converging side walls and a lower section with generally vertical side walls, compartmented throughout its length by transversely disposed baffles, so that particulate material flows through the vessel in vertical generally zigzag fashion, being fluidized by dispersing gas that enters the compartment from a lower narrow compartment and discharges through an upper widened compartment. Vaporous PuF 6 formed from a reaction between the dispersing gas and the particulate material discharges through the upper widened compartment and solid impurities discharge for collection through a port at a far or distal end of the elongated vessel. (U.S.)

  10. On the existence of continuous selections of solution and reachable ...

    African Journals Online (AJOL)

    We prove that the map that associates to the initial value the set of solutions to the Lipschitzian Quantum Stochastic Differential Inclusion (QSDI) admits a selection continuous from the locally convex space of stochastic processes to the adapted and weakly absolutely continuous space of solutions. As a corollary, we show ...

  11. Development of Micro and Nanostructured Materials for Interfacial Self-Healing

    Science.gov (United States)

    Blaiszik, Benjamin James

    2009-01-01

    Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…

  12. Augmented Self-Modeling as a Treatment for Children with Selective Mutism.

    Science.gov (United States)

    Kehle, Thomas J.; Madaus, Melissa R.; Baratta, Victoria S.; Bray, Melissa A.

    1998-01-01

    Describes the treatment of three children experiencing selective mutism. The procedure utilized incorporated self-modeling, mystery motivators, self-reinforcement, stimulus fading, spacing, and antidepressant medication. All three children evidenced a complete cessation of selective mutism and maintained their treatment gains at follow-up.…

  13. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications.

    Science.gov (United States)

    Hoppe, Cristina E; Williams, Roberto J J

    2018-03-01

    The self-assembly of n-alkyl chains at the bulk or at the interface of different types of materials and substrates has been extensively studied in the past. The packing of alkyl chains is driven by Van der Waals interactions and can generate crystalline or disordered domains, at the bulk of the material, or self-assembled monolayers at an interface. This natural property of alkyl chains has been employed in recent years to develop a new generation of materials for technological applications. These studies are dispersed in a variety of journals. The purpose of this article was to discuss some selected examples where these advanced properties arise from a process involving the self-assembly of alkyl chains. We included a description of electronic devices and new-generation catalysts with properties derived from a controlled two-dimensional (2D) or three-dimensional (3D) self-assembly of alkyl chains at an interface. Then, we showed that controlling the crystallization of alkyl chains at the bulk can be used to generate a variety of advanced materials such as superhydrophobic coatings, shape memory hydrogels, hot-melt adhesives, thermally reversible light scattering (TRLS) films for intelligent windows and form-stable phase change materials (FS-PCMs) for the storage of thermal energy. Finally, we discussed two examples where advanced properties derive from the formation of disordered domains by physical association of alkyl chains. This was the case of photoluminescent nanocomposites and materials used for reversible optical storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Selection, development and characterisation of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Akiba, M.; Ulrickson, M.; Vieider, G.

    1996-01-01

    The current status of the selection of the armour materials for first wall, limiters and divertor are presented. The candidate armour materials are beryllium, tungsten and carbon base materials (mainly carbon fiber composites). The selection of the references grades from these material classes is discussed and the candidate grades are described. The main reasons for the selection of the reference grades are also discussed. The urgent materials R and D needs for the development of the design are described briefly. (orig.)

  15. The roles of social factor and internet self-efficacy in nurses' web-based continuing learning.

    Science.gov (United States)

    Chiu, Yen-Lin; Tsai, Chin-Chung

    2014-03-01

    This study was conducted to explore the relationships among social factor, Internet self-efficacy and attitudes toward web-based continuing learning in a clinical nursing setting. The participants recruited were 244 in-service nurses from hospitals in Taiwan. Three instruments were used to assess their perceptions of social factor, Internet self-efficacy (including basic and advanced Internet self-efficacy) and attitudes toward web-based continuing learning (including perceived usefulness, perceived ease of use, affection and behavior). Structural equation modeling (SEM) was utilized to identify the hypothesized structural model. The results of this study support that social factor is a significant factor correlated to Internet self-efficacy and attitudes toward web-based continuing learning (including perceived usefulness, perceived ease of use and affection). In addition, nurses' basic Internet self-efficacy plays a key role in attitudes including perceived usefulness, perceived ease of use and affection. However, advanced self-efficacy was not correlated to any of the attitudes. The behavior dimension was not linked to social factor or Internet self-efficacy, but was linked to perceived ease of use and affection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Relay selection in cooperative communication systems over continuous time-varying fading channel

    Directory of Open Access Journals (Sweden)

    Ke Geng

    2017-02-01

    Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.

  17. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  18. Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning

    NARCIS (Netherlands)

    Kostons, Danny; Van Gog, Tamara; Paas, Fred

    2012-01-01

    Kostons, D., Van Gog, T., & Paas, F. (2012). Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning. Learning and Instruction, 22(2), 121-132. doi:10.1016/j.learninstruc.2011.08.004

  19. Self-repairing of material damage. Sonsho wo jiko shufuku yokushisuru zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, S [National Research Inst. for Metals, Tsukuba (Japan)

    1994-07-01

    In order to control the damage like crack or void formed during the use of structural material by the material itself, it is required to self-detect the damage, to self-judge the state of damage, and to self-control or self-repair the damage finally. Based on the parameter of length, the repair and control is classified into the 1mm-scale functional fine wire and thin film utilization type, 1[mu]m-scale microcapsule type, and 1nm-scale trace element utilization type. For the damage repair and control of functional fine wire and thin film utilization type, the damage is repaired and controlled by pasting thin film or by embedding fine wire of functional material, such as shape memory alloy, Ti-Ni, and piezoelectric ceramics PZT (lead zirconate titanate), on the material surface or inside the material. For the damage repair and control of microcapsule type, is illustrated the control mechanism of high temperature fatigue crack propagation by Y2O3 particles dispersed in the Fe-20Cr alloy. Furthermore, the formation mechanism of self-repairing film by the trace element is also illustrated. 13 refs., 5 figs.

  20. When is selective self-presentation effective? An investigation of the moderation effects of "self-esteem" and "social trust".

    Science.gov (United States)

    Kim, Yoonkyung; Baek, Young Min

    2014-11-01

    This study investigates the relationship between selective self-presentation and online life satisfaction, and how this relationship is influenced by respondents' perceptions of "self" (operationalized by "self-esteem") and "others" (operationalized by "social trust"). Relying on survey data from 712 Korean online users, two important findings were detected in our study. First, the positive relationship between selective self-presentation and online life satisfaction becomes more prominent among people with low self-esteem compared to those with high self-esteem, and second, this positive relationship is enhanced among people with high levels of social trust compared to those with low trust levels. Theoretical and practical implications of our findings as well as potential limitations are discussed.

  1. Comparison of Psychological and Physiological Responses to Imposed vs. Self-selected High-Intensity Interval Training.

    Science.gov (United States)

    Kellogg, Erin; Cantacessi, Cheyann; McNamer, Olivia; Holmes, Heather; von Bargen, Robert; Ramirez, Richard; Gallagher, Daren; Vargas, Stacy; Santia, Ben; Rodriguez, Karen; Astorino, Todd A

    2018-05-08

    Kellogg, E, Cantacessi, C, McNamer, O, Holmes, H, von Bargen, R, Ramirez, R, Gallagher, D, Vargas, S, Santia, B, Rodriguez, K, and Astorino, TA. Comparison of psychological and physiological responses to imposed vs. self-selected high-intensity interval training. J Strength Cond Res XX(X): 000-000, 2018-High-intensity interval training elicits similar physiological adaptations as moderate intensity continuous training (MICT). Some studies report greater enjoyment to a bout of high-intensity interval exercise (HIIE) vs. MICT, which is surprising considering that HIIE is more intense and typically imposed on the participant. This study compared physiological and perceptual responses between imposed and self-selected HIIE. Fourteen adults (age = 24 ± 3 years) unfamiliar with HIIE initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (V[Combining Dot Above]O2max) followed by 2 subsequent sessions whose order was randomized. Imposed HIIE consisted of eight 60 seconds bouts at 80 percent peak power output (%PPO) separated by 60 seconds recovery at 10 %PPO. Self-selected HIIE (HIIESS) followed the same structure, but participants freely selected intensity in increments of 10 %PPO to achieve a rating of perceived exertion (RPE) ≥7. During exercise, heart rate, V[Combining Dot Above]O2, blood lactate concentration (BLa), affect (+5 to -5), and RPE were assessed. Physical Activity Enjoyment Scale was measured after exercise. Results showed higher V[Combining Dot Above]O2 (+10%, p = 0.013), BLa (p = 0.001), and RPE (p = 0.001) in HIIESS vs. HIIEIMP, and lower affect (p = 0.01), and enjoyment (87.6 ± 15.7 vs. 95.7 ± 11.7, p = 0.04). There was a significantly higher power output in self-selected vs. imposed HIIE (263.9 ± 81.4 W vs. 225.2 ± 59.6 W, p < 0.001). Data suggest that intensity mediates affective responses rather than the mode of HIIE performed by the participant.

  2. ABOUT INDEX EVALUATION OF MATERIAL RESOURCE SUPPLIER SELECTION

    OpenAIRE

    V. A. Skochinskaya

    2008-01-01

    The paper analyzes existing methods for evaluation of material resource supplier selection. It shows advantages and shortcomings of the present evaluation systems. The necessity for application of an index evaluation is justified in the paper. The paper contains rating (index) evaluation for material resource supplier selection which is based on the application of quantitative (index) tool instead of an expert (numerical) evaluation. 

  3. Not looking yourself: The cost of self-selecting photographs for identity verification.

    Science.gov (United States)

    White, David; Burton, Amy L; Kemp, Richard I

    2016-05-01

    Photo-identification is based on the premise that photographs are representative of facial appearance. However, previous studies show that ratings of likeness vary across different photographs of the same face, suggesting that some images capture identity better than others. Two experiments were designed to examine the relationship between likeness judgments and face matching accuracy. In Experiment 1, we compared unfamiliar face matching accuracy for self-selected and other-selected high-likeness images. Surprisingly, images selected by previously unfamiliar viewers - after very limited exposure to a target face - were more accurately matched than self-selected images chosen by the target identity themselves. Results also revealed extremely low inter-rater agreement in ratings of likeness across participants, suggesting that perceptions of image resemblance are inherently unstable. In Experiment 2, we test whether the cost of self-selection can be explained by this general disagreement in likeness judgments between individual raters. We find that averaging across rankings by multiple raters produces image selections that provide superior identification accuracy. However, benefit of other-selection persisted for single raters, suggesting that inaccurate representations of self interfere with our ability to judge which images faithfully represent our current appearance. © 2015 The British Psychological Society.

  4. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  5. The microstructure of capsule containing self-healing materials: A micro-computed tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Van Stappen, Jeroen, E-mail: Jeroen.Vanstappen@ugent.be [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Bultreys, Tom [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); Gilabert, Francisco A. [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Hillewaere, Xander K.D. [Polymer Chemistry Research Group, Dept. of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Gómez, David Garoz [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Van Tittelboom, Kim [Magnel Laboratory for Concrete Research, Dept. of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Dhaene, Jelle [UGCT/Radiation Physics, Dept. of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Ghent (Belgium); De Belie, Nele [Magnel Laboratory for Concrete Research, Dept. of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Van Paepegem, Wim [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); Du Prez, Filip E. [Polymer Chemistry Research Group, Dept. of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent (Belgium); Cnudde, Veerle [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium)

    2016-09-15

    Autonomic self-healing materials are materials with built-in (micro-) capsules or vessels, which upon fracturing release healing agents in order to recover the material's physical and mechanical properties. In order to better understand and engineer these materials, a thorough characterization of the material's microstructural behavior is essential and often overlooked. In this context, micro-computed tomography (μCT) can be used to investigate the three dimensional distribution and (de)bonding of (micro-) capsules in their native state in a polymer system with self-healing properties. Furthermore, in-situ μCT experiments in a self-healing polymer and a self-healing concrete system can elucidate the breakage and leakage behavior of (micro-) capsules at the micrometer scale. While challenges related to image resolution and contrast complicate the characterization in specific cases, non-destructive 3D imaging with μCT is shown to contribute to the understanding of the link between the microstructure and the self-healing behavior of these complex materials. - Highlights: • μCT imaging allows for the analysis of microcapsule distribution patterns in self-healing materials. • μCT allows for qualitative and quantitative measurements of healing agent release from carriers in self-healing materials. • Experimental set-ups can be optimized by changing chemical compounds in the system to ensure maximum quality imaging.

  6. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  7. ABOUT INDEX EVALUATION OF MATERIAL RESOURCE SUPPLIER SELECTION

    Directory of Open Access Journals (Sweden)

    V. A. Skochinskaya

    2008-01-01

    Full Text Available The paper analyzes existing methods for evaluation of material resource supplier selection. It shows advantages and shortcomings of the present evaluation systems. The necessity for application of an index evaluation is justified in the paper. The paper contains rating (index evaluation for material resource supplier selection which is based on the application of quantitative (index tool instead of an expert (numerical evaluation. 

  8. An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments

    Science.gov (United States)

    Davis, Samuel Eddie

    2012-01-01

    The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.

  9. Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability.

    Science.gov (United States)

    Wang, Liming; Urata, Chihiro; Sato, Tomoya; England, Matt W; Hozumi, Atsushi

    2017-09-26

    Superhydrophobic coatings/materials are important for a wide variety of applications, but the majority of these man-made coatings/materials still suffer from poor durability because of their lack of self-healing ability. Here, we report novel superhydrophobic materials which can quickly self-heal from various severe types of damage. In this study, we used poly(dimethylsiloxane) (PDMS) infused with two liquids: trichloropropylsilane, which reacts with ambient moisture to self-assemble into grass-like microfibers (named silicone micro/nanograss) on the surfaces and low-viscosity silicone oil (SO), which remains within the PDMS matrices and acts as a self-healing agent. Because of the silicone micro/nanograss structures on the PDMS surfaces and the effective preserve/protection system of a large quantity of SO within the PDMS matrices, our superhydrophobic materials showed quick superhydrophobic recovery under ambient conditions (within 1-2 h) even after exposure to plasma (24 h), boiling water, chemicals, and outside environments. Such an ability is superior to the best self-healing superhydrophobic coatings/materials reported so far.

  10. Enhancement of thermal neutron self-shielding in materials surrounded by reflectors

    International Nuclear Information System (INIS)

    Cornelia Chilian; Gregory Kennedy

    2012-01-01

    Materials containing from 41 to 1124 mg chlorine and surrounded by polyethylene containers of various thicknesses, from 0.01 to 5.6 mm, were irradiated in a research reactor neutron spectrum and the 38 Cl activity produced was measured as a function of polyethylene reflector thickness. For the material containing the higher amount of chlorine, the 38 Cl specific activity decreased with increasing reflector thickness, indicating increased neutron self-shielding. It was found that the amount of neutron self-shielding increased by as much as 52% with increasing reflector thickness. This is explained by neutrons which have exited the material subsequently reflecting back into it and thus increasing the total mean path length in the material. All physical and empirical models currently used to predict neutron self-shielding have ignored this effect and need to be modified. A method is given for measuring the adjustable parameter of a self-shielding model for a particular sample size and combination of neutron reflectors. (author)

  11. Analytical Model for the Probability Characteristics of a Crack Penetrating Capsules in Capsule-Based Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Zhong LV

    2017-08-01

    Full Text Available Autonomous crack healing using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of capsule-based self-healing materials. Continuing our previous study, in this contribution a more practical rupturing mode of capsules characterizing the rupturing manner of capsules fractured by cracks in cementitious materials is presented, i.e., penetrating mode. With the underlying assumption that a crack penetrating capsules undoubtedly leads to crack healing, geometrical probability theory is employed to develop the quantitative relationship between crack size and capsule size, capsule concentration in capsule-based self-healing virtual cementitious material. Moreover, an analytical expression of probability of a crack penetrating with randomly dispersed capsules is developed in two-dimensional material matrix setup. The influences of the induced rupturing modes of capsules embedded on the self-healing efficiency are analyzed. Much attention is paid to compare the penetrating probability and the hitting probability, in order to assist the designer to make a choice of the optimal rupturing modes of capsules embedded. The accuracy of results of the theoretical model is also compared with Monte-Carlo numerical analysis of crack interacting with capsules. It shows that the developed probability characteristics of a crack interaction with capsules for different rupturing modes is helpful to provide guidelines for designer working with capsule-based self-healing cementitious materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16888

  12. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

  13. Training self-assessment and task-selection skills : A cognitive approach to improving self-regulated learning

    NARCIS (Netherlands)

    Kostons, Danny; van Gog, Tamara; Paas, Fred

    For self-regulated learning to be effective, students need to be able to accurately assess their own performance on a learning task and use this assessment for the selection of a new learning task. Evidence suggests, however, that students have difficulties with accurate self-assessment and task

  14. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  15. The effect of selected initiative and cultural activities on the self ...

    African Journals Online (AJOL)

    This study investigated the effect of selected initiative and cultural activities during an intervention programme on the self-concept of first year students at a multicultural tertiary institution. A self-concept scale based on the self-concept scale of Coopersmith (1967) and the Adolescent Sport Self-concept Scale of Vrey (1974) ...

  16. Self-esteem, narcissism, and stressful life events: Testing for selection and socialization.

    Science.gov (United States)

    Orth, Ulrich; Luciano, Eva C

    2015-10-01

    We examined whether self-esteem and narcissism predict the occurrence of stressful life events (i.e., selection) and whether stressful life events predict change in self-esteem and narcissism (i.e., socialization). The analyses were based on longitudinal data from 2 studies, including samples of 328 young adults (Study 1) and 371 adults (Study 2). The effects of self-esteem and narcissism were mutually controlled for each other and, moreover, controlled for effects of depression. After conducting the study-level analyses, we meta-analytically aggregated the findings. Self-esteem had a selection effect, suggesting that low self-esteem led to the occurrence of stressful life events; however, this effect became nonsignificant when depression was controlled for. Regardless of whether depression was controlled for or not, narcissism had a selection effect, suggesting that high narcissism led to the occurrence of stressful life events. Moreover, stressful life events had a socialization effect on self-esteem, but not on narcissism, suggesting that the occurrence of stressful life events decreased self-esteem. Analyses of trait-state models indicated that narcissism consisted almost exclusively of perfectly stable trait variance, providing a possible explanation for the absence of socialization effects on narcissism. The findings have significant implications because they suggest that a person's level of narcissism influences whether stressful life events occur, and that self-esteem is shaped by the occurrence of stressful life events. Moreover, we discuss the possibility that depression mediates the selection effect of low self-esteem on stressful life events. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Guidelines for the Development of Instructional Materials Selection Policies. Handbook I.

    Science.gov (United States)

    Motomatsu, Nancy, Ed.

    This manual was developed to assist school district personnel in the development of policies and procedures for selecting instructional materials. The manual describes State of Washington laws and regulations that govern the selection, use, and disposal of instructional materials and presents criteria and guidelines for selecting materials. Also…

  18. Fractional-Order Identification and Control of Heating Processes with Non-Continuous Materials

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2016-11-01

    Full Text Available The paper presents a fractional order model of a heating process and a comparison of fractional and standard PI controllers in its closed loop system. Preliminarily, an enhanced fractional order model for the heating process on non-continuous materials has been identified through a fitting algorithm on experimental data. Experimentation has been carried out on a finite length beam filled with three non-continuous materials (air, styrofoam, metal buckshots in order to identify a model in the frequency domain and to obtain a relationship between the fractional order of the heating process and the different materials’ properties. A comparison between the experimental model and the theoretical one has been performed, proving a significant enhancement of the fitting performances. Moreover the obtained modelling results confirm the fractional nature of the heating processes when diffusion occurs in non-continuous composite materials, and they show how the model’s fractional order can be used as a characteristic parameter for non-continuous materials with different composition and structure. Finally, three different kinds of controllers have been applied and compared in order to keep constant the beam temperature constant at a fixed length.

  19. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  20. Augmented Self-Modeling as an Intervention for Selective Mutism

    Science.gov (United States)

    Kehle, Thomas J.; Bray, Melissa A.; Byer-Alcorace, Gabriel F.; Theodore, Lea A.; Kovac, Lisa M.

    2012-01-01

    Selective mutism is a rare disorder that is difficult to treat. It is often associated with oppositional defiant behavior, particularly in the home setting, social phobia, and, at times, autism spectrum disorder characteristics. The augmented self-modeling treatment has been relatively successful in promoting rapid diminishment of selective mutism…

  1. Application of GRA for Sustainable Material Selection and Evaluation Using LCA

    Science.gov (United States)

    Jayakrishna, Kandasamy; Vinodh, Sekar; Sakthi Sanghvi, Vijayaselvan; Deepika, Chinadurai

    2016-07-01

    Material selection is identified as a successful key parameter in establishing any product to be sustainable, considering its end of life (EoL) characteristics. An accurate understanding of expected service conditions and environmental considerations are crucial in the selection of material plays a vital role with overwhelming customer expectations and stringent laws. Therefore, this article presents an integrated approach for sustainable material selection using grey relational analysis (GRA) considering the EoL disposal strategies with respect to an automotive product. GRA, an impact evaluation model measures the degree of similarity between the comparability (choice of material) sequence and reference (EoL strategies) sequence based on the relational grade. The ranking result shows that the outranking relationships in the order, ABS-REC > PP-INC > AL-REM > PP-LND > ABS-LND > ABS-INC > PU-LND > AL-REC > AL-LND > PU-INC > AL-INC. The best sustainable material selected was ABS and recycling was selected as the best EoL strategy with the grey relational value of 2.43856. The best material selected by this approach, ABS was evaluated for its viability using life cycle assessment and the estimated impacts also proved the practicability of the selected material highlighting the focus on dehumidification step in the manufacturing of the case product using this developed multi-criteria approach.

  2. Selection of views to materialize using simulated annealing algorithms

    Science.gov (United States)

    Zhou, Lijuan; Liu, Chi; Wang, Hongfeng; Liu, Daixin

    2002-03-01

    A data warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support or OLAP queries. It is important to select the right view to materialize that answer a given set of queries. The goal is the minimization of the combination of the query evaluation and view maintenance costs. In this paper, we have addressed and designed algorithms for selecting a set of views to be materialized so that the sum of processing a set of queries and maintaining the materialized views is minimized. We develop an approach using simulated annealing algorithms to solve it. First, we explore simulated annealing algorithms to optimize the selection of materialized views. Then we use experiments to demonstrate our approach. The results show that our algorithm works better. We implemented our algorithms and a performance study of the algorithms shows that the proposed algorithm gives an optimal solution.

  3. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2001-01-01

    The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can c...... a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics....

  4. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2002-01-01

    The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can c...... a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics....

  5. Designing Selectivity in Metal-Semiconductor Nanocrystals: Synthesis, Characterization, and Self-Assembly

    Science.gov (United States)

    Pavlopoulos, Nicholas George

    to challenges in preparing TP from ultrasmall ZB-CdSe seed size, thus preventing access to quasi-type II structures necessary for efficient photocatalysis. In this study, we successfully break through the type I/quasi-type II barrier for TP NCs, reclaiming lost ground in this field and demonstrating for the first time quasi-type II behavior in CdSe CdS TPs through transient absorption measurements. The fifth chapter continues with the study of CdSe CdS TPs, and elaborates on a new method for the selective functionalization of the highly symmetrical TP construct. TP materials have been notoriously difficult to selectively functionalize, owing to their symmetric nature. Using a novel photoinduced electrochemical Ostwald ripening process, we found that initially randomly deposited AuNPs could be ripened to a single, large AuNP tip at the end of one arm of a type I CdSe CdS TP with 40 nm arms. The sixth chapter elaborates further on the preparation of colloidal polymers, further extending the analogy between molecular and colloidal levels of synthetic control. One challenge in the field of colloidal science is the realization of new modes of self-assemble for compositionally distinct nanoparticles. In this work, it was found that Au Co nanoparticle dipole strength could be systematically varied by tuning of AuNP size on CdSe CdS nanorods/tetrapods. (Abstract shortened by ProQuest.).

  6. Assessment of adolescent self-constructed material use in physical education

    Directory of Open Access Journals (Sweden)

    Fernández-Río, Javier

    2012-07-01

    Full Text Available the goals of this research project were three: study how secondary education students value self-made materials, assess their effects while used to teach sport, and analyze how the students’ perspective on these materials change over age and gender. Students from a high school in the north part of Spain agreed to participate. They belonged to 1st, 2nd, and 4th year of secondary education. They were asked to build their own self-made cardboard ringo with recycled materials to use it during an ultimate learning unit. A hybrid instructional method (tactical games + sport education was used along 8-10 sessions. After the intervention, subjects filled out a 15-item questionnaire (1-5 likert point scale. Overall results showed that subjects did not consider that building the ringo was hard. Finding the material was not difficult, either. They also thought that using the ringo was more fun than using the traditional Frisbee. Younger students valued the experience higher than older subjects. The usage of self-made materials was more attractive, motivating and useful for 1st year subjects. They also though that this type of material had helped them improve their throwing and catching skills. They even wanted to use it in extracurricular settings

  7. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  8. Materials and proportion's design of self-compacting mortar used for low diffusion layer in sub-surface radioactive waste disposal facility in Japan

    International Nuclear Information System (INIS)

    Niwase, Kazuhito; Sugihashi, Naoyuki; Tsuji, Yukikazu

    2010-01-01

    This paper describes the design procedure for the material selection and mix proportion of the self-compacting mortar used for low diffusion layer cementitious material in the sub-surface radioactive waste disposal facility in Japan. The low diffusion layer is required for reducing transportation by controlling diffusion of a radionuclide. Therefore the low diffusion, cracks control, and low leaching are the important matters in the mix design. The process to select mortar mix design of the low diffusion layer is explained in detail. Of 33 kinds mix proportions used in laboratory comparative testing, the combinations of low heat portland cement, fly ash, lime powder and expansive addition was provisionally set to the mix proportion of the self-compacting mortar used for low diffusion layer. (author)

  9. Materials selection for a transport packaging of Mo-99

    International Nuclear Information System (INIS)

    Hara, Debora H.S.; Lucchesi, Raquel F.; Mancini, Victor A.; Rossi, Jesualdo L.; Fiore, Marina

    2015-01-01

    The radiopharmaceuticals are radioactive isotopes used in nuclear medicine for more accurate diagnosis and treatment of diseases or dysfunctions. Currently, the most important radionuclide for the preparation of radiopharmaceuticals for diagnostic purposes is technetium-99m ( 99m Tc), a product of the radioactive decay of molybdenum-99 (Mo-99). The aim of this work was the materials selection that can enable the manufacture of a package for Mo-99 transport with the aid of CES EduPack program and the methodology developed by Ashby. The ESTAR program was used to check the occurrence of Bremsstrahlung and the XCOM program was used to calculate the attenuation coefficient of gamma radiation from some of the selected materials for the shield; after, the thickness required for radiation shielding was calculated. From the results, the materials selected as potential candidates for the manufacture of the shielding were the tungsten alloys. Related to the thermal insulation and the impact protection, woods, plywoods and particle boards stand out. With regard to internal and external coatings, the selected materials focus on groups of steels and nickel alloys. (author)

  10. Device for continuous analysis of a stream of material

    International Nuclear Information System (INIS)

    Krampe, G.

    1981-01-01

    A radioactive radiation source and a radioactive detector are associated, as a unit, with equipment for conveying coal or other material in a continuous stream. One part of the conveying path or the whole path lies in the irradiation zone of the source, and the detector receives the radiation reflected by the material. The radiation source and the detector are carried by impacting means situated on the conveying path in such a way as to deflect the material from a portion of the conveying means travelling in a first direction, on to another portion travelling in a second direction intersecting the first direction. (author)

  11. Relevant parameters in the micro silica selection for the self-flowing ultra-low cement castables production

    International Nuclear Information System (INIS)

    Studart, A.R.; Pandolfelli, V.C.; Rodrigues, J.A.; Vendrasco, S.L.

    1997-01-01

    Self-flowing ultra-low cement castables typically contain a large fraction of the particles, usually fume silica, which increase their flowability and mechanical strength at low temperatures. Fume silicas available in the market differ mainly from their amount of impurities. It is assumed that the content of soluble alkali and free carbon containing in this raw-material affects strongly the processing of self-flowing castable. In this work high alumina castables with gap-sized particle size distribution were prepared to evaluate their flowability, workability and mechanical strength for each sort of fume silica studied. It was observed that the amount of impurities affects both deflocculation and setting time of the castables and their cold and hot mechanical strength. Considerations regarding the physical and chemical characteristics relevant for selecting fume silicas for the production of self-flowing castables are presented and discussed. (author)

  12. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    OpenAIRE

    Ma, Hui-qiang

    2014-01-01

    We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance effici...

  13. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  14. Self-assembled cellulose materials for biomedicine: A review.

    Science.gov (United States)

    Yang, Jisheng; Li, Jinfeng

    2018-02-01

    Cellulose-based materials have reached a growing interest for the improvement of biomedicine, due to their good biocompatibility, biodegradability, and low toxicity. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing steps. This article describes the modifications, properties and applications of cellulose and its derivatives, which including a detailed review of representative types of solvents such as NMMO, DMAc/LiCl, some molten salt hydrates, some aqueous solutions of metal complexes, ionic liquids and NaOH-water system etc. The modifications were frequently performed by esterification, etherification, ATRP, RAFT, ROP and other novel methods. Stimuli-responsive cellulose-based materials, such as temperature-, pH-, light- and redox-responsive, were synthesized for their superior performance. Additionally, the applications of cellulose-based materials which can self-assemble into micelles, vesicles and other aggregates, for drug/gene delivery, bioimaging, biosensor, are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Self-assembly strategies for the synthesis of functional nanostructured materials

    International Nuclear Information System (INIS)

    Perego, M.; Seguini, G.

    2016-01-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer selfassembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  16. Self-Selection and the Efficiency of Tournaments

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Teyssier, Sabrina; Villeval, Marie-Claire

    2009-01-01

    The literature has shown that the overall efficiency of exogenously imposed tournaments is reduced by a high variance in performance. This article reports results from an experiment analyzing whether allowing subjects to self-select into different payment schemes is reducing the variability...... is efficiency enhancing since it increases the homogeneity of the contestants....

  17. Selecting materialized views in a data warehouse

    Science.gov (United States)

    Zhou, Lijuan; Liu, Chi; Liu, Daxin

    2003-01-01

    A Data Warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support or OLAP queries. It is important to select the right view to materialize that answer a given set of queries. In this paper, we have addressed and designed algorithm to select a set of views to materialize in order to answer the most queries under the constraint of a given space. The algorithm presented in this paper aim at making out a minimum set of views, by which we can directly respond to as many as possible user"s query requests. We use experiments to demonstrate our approach. The results show that our algorithm works better. We implemented our algorithms and a performance study of the algorithm shows that the proposed algorithm gives a less complexity and higher speeds and feasible expandability.

  18. Y2O3-W Continuous Graded Materials by Co-sedimentation

    Directory of Open Access Journals (Sweden)

    WANG Shi-yang

    2017-09-01

    Full Text Available The raw Y2O3 powder was classified and graded based on modified co-sedimentation mathematical model,using the size distribution of W particles as the known condition. Y2O3-W continuous graded materials with the composition distribution index P values of 1.0, 0.7, 0.3 and 0.1 were prepared by co-sedimentation and hot-pressing. The results show that the Y2O3 powder consistent with the design requirements can be obtained by graduation method. The gradient continuity of materials can be verified by microstructure observation and hardness testing.

  19. Complexity of a kind of interval continuous self-map of finite type

    International Nuclear Information System (INIS)

    Wang Lidong; Chu Zhenyan; Liao Gongfu

    2011-01-01

    Highlights: → We find the Hausdorff dimension for an interval continuous self-map f of finite type is s element of (0,1) on a non-wandering set. → f| Ω(f) has positive topological entropy. → f| Ω(f) is chaotic such as Devaney chaos, Kato chaos, two point distributional chaos and so on. - Abstract: An interval map is called finitely typal, if the restriction of the map to non-wandering set is topologically conjugate with a subshift of finite type. In this paper, we prove that there exists an interval continuous self-map of finite type such that the Hausdorff dimension is an arbitrary number in the interval (0, 1), discuss various chaotic properties of the map and the relations between chaotic set and the set of recurrent points.

  20. Complexity of a kind of interval continuous self-map of finite type

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lidong, E-mail: wld@dlnu.edu.cn [Institute of Mathematics, Dalian Nationalities University, Dalian 116600 (China); Institute of Mathematics, Jilin Normal University, Siping 136000 (China); Chu Zhenyan, E-mail: chuzhenyan8@163.com [Institute of Mathematics, Dalian Nationalities University, Dalian 116600 (China) and Institute of Mathematics, Jilin University, Changchun 130023 (China); Liao Gongfu, E-mail: liaogf@email.jlu.edu.cn [Institute of Mathematics, Jilin University, Changchun 130023 (China)

    2011-10-15

    Highlights: > We find the Hausdorff dimension for an interval continuous self-map f of finite type is s element of (0,1) on a non-wandering set. > f|{sub {Omega}(f)} has positive topological entropy. > f|{sub {Omega}(f)} is chaotic such as Devaney chaos, Kato chaos, two point distributional chaos and so on. - Abstract: An interval map is called finitely typal, if the restriction of the map to non-wandering set is topologically conjugate with a subshift of finite type. In this paper, we prove that there exists an interval continuous self-map of finite type such that the Hausdorff dimension is an arbitrary number in the interval (0, 1), discuss various chaotic properties of the map and the relations between chaotic set and the set of recurrent points.

  1. Nostalgia fosters self-continuity : Uncovering the mechanism (social connectedness) and consequence (eudaimonic well-being)

    NARCIS (Netherlands)

    Sedikides, Constantine; Wildschut, Tim; Cheung, Wing-Yee; Routledge, Clay; Hepper, Erica G; Arndt, Jamie; Vail, Kenneth; Zhou, Xinyue; Brackstone, Kenny; Vingerhoets, A.J.J.M.

    2016-01-01

    Nostalgia, a sentimental longing for one's past, is an emotion that arises from self-relevant and social memories. Nostalgia functions, in part, to foster self-continuity, that is, a sense of connection between one's past and one's present. This article examined, in 6 experiments, how nostalgia

  2. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China

    Institute of Scientific and Technical Information of China (English)

    WEN Zhijian

    2008-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common features are the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposing high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. It is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation properties, thermal conductivity, chemical buffering property,canister supporting property, and stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy the above requirements. The Gaomiaozi deposit is selected as the candidate supplier for China's buffer material of high level radioactive waste repository. This paper presents the geological features of the GMZ deposit and basic properties of the GMZ Na-bentonite. It is a super-large deposit with a high content of montmorillonite (about 75%), and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as the reference material for China's buffer material study.

  3. Properties of selected superconductive materials, 1978 supplement. Technical note

    International Nuclear Information System (INIS)

    Roberts, B.W.

    1978-10-01

    This report includes data on additional superconductive materials extracted from the world literature up to fall 1977 and is an addendum to the data set published in J. Phys. Chem. Ref. Data 5, no. 3, 581-821 (1976) (Reprint no. 84). The data presented are new values and have not been selected or compared to values (except for selected values of the elements) previously assembled by the Superconductive Materials Data Center. The properties included are composition, critical temperature, critical magnetic field, crystal structure and the results of negative experiments. Special tabulations of high magnetic field materials with Type II behavior and materials with organic components are included. All entries are keyed to the literature. A list of recent reviews centered on superconductive materials is included

  4. Implications of material selection on the design of packaging machinery.

    Science.gov (United States)

    Merritt, J P

    2009-01-01

    Material selection has significant implications on the design and cost of horizontal-form-fill-seal packaging machinery. To avoid excessive costs, machine redesigns and project delays, material selection must be reconciled early in the project and revisited throughout the construction of the machine.

  5. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  6. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu; Zhang, Daliang; Chng, Leng Leng; Sun, Junliang; Zhao, L. J.; Zou, Xiaodong; Ying, Jackie

    2009-01-01

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  7. Effects of self-paced interval and continuous training on health markers in women

    DEFF Research Database (Denmark)

    Connolly, Luke J; Bailey, Stephen J; Krustrup, Peter

    2017-01-01

    PURPOSE: To compare the effects of self-paced high-intensity interval and continuous cycle training on health markers in premenopausal women. METHODS: Forty-five inactive females were randomised to a high-intensity interval training (HIIT; n = 15), continuous training (CT; n = 15) or an inactive...... control (CON; n = 15) group. HIIT performed 5 × 5 min sets comprising repetitions of 30-s low-, 20-s moderate- and 10-s high-intensity cycling with 2 min rest between sets. CT completed 50 min of continuous cycling. Training was completed self-paced, 3 times weekly for 12 weeks. RESULTS: Peak oxygen...... uptake (16 ± 8 and 21 ± 12%), resting heart rate (HR) (-5 ± 9 and -4 ± 7 bpm) and visual and verbal learning improved following HIIT and CT compared to CON (P HIIT (P 

  8. Self-exclusion as a harm minimization strategy: evidence for the casino sector from selected European countries.

    Science.gov (United States)

    Hayer, Tobias; Meyer, Gerhard

    2011-12-01

    As the international gambling market continues to expand, determining effective approaches to prevent gambling-related problems becomes increasingly important. Despite a lack of in-depth research into its benefits, self-exclusion is one such measure already in use around the world in various sectors of the gambling industry. The present study is the first of its kind to examine the effectiveness of self-exclusion schemes in the casino sector in selected European countries. A written survey yielded a sample of N = 152 (self)-excluded gamblers. In addition to this cross-section analysis, a small sub-group (n = 31) was monitored over time by means of follow-up surveys carried out 1, 6, and 12 month(s) after the exclusion agreement came into force. The results reveal that the self-excluded individuals are typically under a great deal of strain and show a relatively pronounced willingness to change. However, this largely reaches its peak at the time the decision to self-exclude is made. From a longitudinal perspective, various parameters indicate a clear improvement in psychosocial functioning; a favorable effect that also starts directly after the exclusion agreement was signed. Finally, considering theoretical and empirical findings, possibilities for optimizing (self-)exclusion schemes will be discussed.

  9. A fuzzy logic based PROMETHEE method for material selection problems

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2018-03-01

    Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.

  10. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    Science.gov (United States)

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  11. Assessment and selection of materials for ITER in-vessel components

    Science.gov (United States)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  12. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  13. Does self-selection affect samples' representativeness in online surveys? An investigation in online video game research.

    Science.gov (United States)

    Khazaal, Yasser; van Singer, Mathias; Chatton, Anne; Achab, Sophia; Zullino, Daniele; Rothen, Stephane; Khan, Riaz; Billieux, Joel; Thorens, Gabriel

    2014-07-07

    The number of medical studies performed through online surveys has increased dramatically in recent years. Despite their numerous advantages (eg, sample size, facilitated access to individuals presenting stigmatizing issues), selection bias may exist in online surveys. However, evidence on the representativeness of self-selected samples in online studies is patchy. Our objective was to explore the representativeness of a self-selected sample of online gamers using online players' virtual characters (avatars). All avatars belonged to individuals playing World of Warcraft (WoW), currently the most widely used online game. Avatars' characteristics were defined using various games' scores, reported on the WoW's official website, and two self-selected samples from previous studies were compared with a randomly selected sample of avatars. We used scores linked to 1240 avatars (762 from the self-selected samples and 478 from the random sample). The two self-selected samples of avatars had higher scores on most of the assessed variables (except for guild membership and exploration). Furthermore, some guilds were overrepresented in the self-selected samples. Our results suggest that more proficient players or players more involved in the game may be more likely to participate in online surveys. Caution is needed in the interpretation of studies based on online surveys that used a self-selection recruitment procedure. Epidemiological evidence on the reduced representativeness of sample of online surveys is warranted.

  14. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  15. Processing and performance of self-healing materials

    International Nuclear Information System (INIS)

    Tan, P S; Bhattacharyya, D; Zhang, M Q

    2009-01-01

    Two self-healing methods were implemented into composite materials with self-healing capabilities, using hollow glass fibres (HGF) and microencapsulated epoxy resin with mercaptan as the hardener. For the HGF approach, two perpendicular layers of HGF were put into an E-glass/epoxy composite, and were filled with coloured epoxy resin and hardener. The HGF samples had a novel ball indentation test method done on them. The samples were analysed using micro-CT scanning, confocal microscopy and penetrant dye. Micro-CT and confocal microscopy produced limited success, but their viability was established. Penetrant dye images showed resin obstructing flow of dye through damage regions, suggesting infiltration of resin into cracks. Three-point bend tests showed that overall performance could be affected by the flaws arising from embedding HGF in the material. For the microcapsule approach, samples were prepared for novel double-torsion tests used to generate large cracks. The samples were compared with pure resin samples by analysing them using photoelastic imaging and scanning electron microscope (SEM) on crack surfaces. Photoelastic imaging established the consolidation of cracks while SEM showed a wide spread of microcapsules with their distribution being affected by gravity. Further double-torsion testing showed that healing recovered approximately 24% of material strength.

  16. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  17. Optimal materials selection for bimaterial piezoelectric microactuators

    OpenAIRE

    Srinivasan, P.; Spearing, S.M.

    2008-01-01

    Piezoelectric actuation is one of the commonly employed actuation schemes in microsystems. This paper focuses on identifying and ranking promising active material/substrate combinations for bimaterial piezoelectric (BPE) microactuators based on their performance. The mechanics of BPE structures following simple beam theory assumptions available in the literature are applied to evolve critical performance metrics which govern the materials selection process. Contours of equal performance are p...

  18. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    Science.gov (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  19. Worker self-selection and the profits from cooperation

    NARCIS (Netherlands)

    Kosfeld, M.; von Siemens, F.A.

    2009-01-01

    We investigate a competitive labor market with team production. Workers differ in their motivation to exert team effort, and types are private information. We show that there can exist a separating equilibrium in which workers self-select into different firms and firms employing cooperative workers

  20. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    Science.gov (United States)

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  1. Multifunctional Materials Based on Self Assembly of Molecular Nanostructures

    National Research Council Canada - National Science Library

    Stupp, Samuel

    2001-01-01

    .... The objective was to integrate self assembly, encoded in the triblock structure, luminescent properties, and the properties characteristic of materials that have macroscopically polar structure...

  2. On Continuous Selection Sets of Non-Lipschitzian Quantum Stochastic Evolution Inclusions

    Directory of Open Access Journals (Sweden)

    Sheila Bishop

    2015-01-01

    Full Text Available We establish existence of a continuous selection of multifunctions associated with quantum stochastic evolution inclusions under a general Lipschitz condition. The coefficients here are multifunctions but not necessarily Lipschitz.

  3. Inefficient Self-Selection into Education and Wage Inequality

    Science.gov (United States)

    Ordine, Patrizia; Rose, Giuseppe

    2011-01-01

    This paper proposes a theoretical framework where "within graduates" wage inequality is related to overeducation/educational mismatch in the labor market. We show that wage inequality may arise because of inefficient self-selection into education in the presence of ability-complementary technological progress and asymmetric information…

  4. Does Self-Selection Affect Samples’ Representativeness in Online Surveys? An Investigation in Online Video Game Research

    Science.gov (United States)

    van Singer, Mathias; Chatton, Anne; Achab, Sophia; Zullino, Daniele; Rothen, Stephane; Khan, Riaz; Billieux, Joel; Thorens, Gabriel

    2014-01-01

    Background The number of medical studies performed through online surveys has increased dramatically in recent years. Despite their numerous advantages (eg, sample size, facilitated access to individuals presenting stigmatizing issues), selection bias may exist in online surveys. However, evidence on the representativeness of self-selected samples in online studies is patchy. Objective Our objective was to explore the representativeness of a self-selected sample of online gamers using online players’ virtual characters (avatars). Methods All avatars belonged to individuals playing World of Warcraft (WoW), currently the most widely used online game. Avatars’ characteristics were defined using various games’ scores, reported on the WoW’s official website, and two self-selected samples from previous studies were compared with a randomly selected sample of avatars. Results We used scores linked to 1240 avatars (762 from the self-selected samples and 478 from the random sample). The two self-selected samples of avatars had higher scores on most of the assessed variables (except for guild membership and exploration). Furthermore, some guilds were overrepresented in the self-selected samples. Conclusions Our results suggest that more proficient players or players more involved in the game may be more likely to participate in online surveys. Caution is needed in the interpretation of studies based on online surveys that used a self-selection recruitment procedure. Epidemiological evidence on the reduced representativeness of sample of online surveys is warranted. PMID:25001007

  5. Material control and accounting self-test program design

    International Nuclear Information System (INIS)

    Eggers, R.F.; Wilson, R.L.; Byers, K.R.

    1981-01-01

    This paper describes a controversial but potentially beneficial MCandA strategy that has not been widely attempted in the past, called Self-Test. In this strategy a processor of Strategic Special Nuclear Material (SSNM) devises a program of internally administered tests to determine if the MCandA system performs in a reliable, expedient manner in the face of a simulated loss or compromise. Self-Test procedures would include, for example, the actual removal of SSNM from process equipment in order to determine whether the MCandA system will detect the simulated theft. Self-Test programs have several potential problems. However, an approach with the potential for solving many of these problems has been devised and is discussed

  6. Teaching strategies for self-care of the intestinal stoma patients

    Directory of Open Access Journals (Sweden)

    Janaína da Silva

    2014-04-01

    Full Text Available Teaching self-care must ensure the intestinal stoma patient more independence concerning the family and health professionals. The planning involves the assessment of the clinical and socio-demographic data, and the conditions for the self-care. This study aimed at identifying strategies to teach self-care for intestinal stoma patients in the scientific production. We used an integrative review on MEDLINE, PUBMED, LILACS, CINAHL and COCHRANE bases from 2005 to 2011, 7 papers were selected. In the perioperative teaching, multimedia, telephone follow-up, personal meetings, interactive material through the Internet were used, besides the continuing education of the health professionals. These different strategies profess the needs of each individual that promote self-care learning about the surgery and its consequences, skills development and the necessary adaptation of the condition of a stoma patient. The nurse needs to have technical and scientific knowledge on surgical technique, demarcation, treatment, complications, and skills for the teaching of self-care.

  7. Karl Ove Knausgård’s My Struggle and the Serial Self

    Directory of Open Access Journals (Sweden)

    Inge van de Ven

    2016-06-01

    Full Text Available This article analyzes Karl Ove Knausgård’s six-volume autobiography My Struggle in the frame of an emerging cross-medial aesthetics of the ‘serial self’. This aesthetics is informed by the technological potentialities of digital media, and by social media practices like taking a selfie or posting a blog every single day and accumulating these self-representations, without selection. The serial self is marked by continuity, real-time effects, open-endedness, rhythm, repetition, and a thematic attention to the mundane. It can be discerned in the daily comic strip, the daily selfie, and time-lapse cinema. The article embeds My Struggle in this larger, intermedial framework. Moreover, it refers to the work of psychologist Galen Strawson to argue that the self-representations in Knausgård’s work should be understood as episodic rather than diachronic in nature. This results in a sequential and paratactic, rather than causal and hierarchical, presentation of memorial material. It is claimed that serial self-representations of this type are increasingly central to our current media ecology. They offer a valuable medium for investigating, materializing, and mapping on the page the traces left by the passage of time, as serialization lends itself to performative and cumulative representations of a ‘self’ in flux, that dramatize and perform the struggles of the episodic personality in search for continuity.

  8. An Investigation of Self-Concept, Clothing Selection, and Life Satisfaction among Disabled Consumers

    Science.gov (United States)

    Chang, Hyo Jung

    2012-01-01

    This dissertation investigates the relationships between various aspects of self-concept (i.e., generalized self-efficacy, public self-consciousness, state hope, and self-esteem), clothing selection (i.e., clothing that expresses individuality, clothing that improves the emotional state, clothing that camouflages the body), and life satisfaction…

  9. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Du, Jianjun; McGraw, Amy; Hestekin, Jamie

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...

  10. Material selection for design, manufacturing and application

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Developing a new engineering material product or changing an existing one requires new design selecting material and choosing appropriate and economical manufacturing processes. These three main factors play a great role on the performance of the product in service. These items are independent and should not be performed in isolation from each other. With the great advancement of technology in the last decade and with the greater number of engineering materials which are now available, together with the increasing pressure to produce more economic and get reliable products an integrated approach which considers design, material selection and the appropriate manufacturing process makes it easier to achieve the optimum product that combines the functional requirements with the reliability at competitive cost. These diverse activities or items are interdependent; therefore should not be considered in isolation from each other, for example, it is not sufficient that design of the product should satisfy the technical, safety and legal requirements, it must also be possible to be manufactured economically and to be sold at a competitive price and easily disposed at the end of its working life cycle. In this paper, the interaction of these items together in order to arrive to the optimum solution for a particular application are given and discussed. (author)

  11. Bottom-up influences of voice continuity in focusing selective auditory attention.

    Science.gov (United States)

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  12. Payment mechanism and GP self-selection: capitation versus fee for service.

    Science.gov (United States)

    Allard, Marie; Jelovac, Izabela; Léger, Pierre-Thomas

    2014-06-01

    This paper analyzes the consequences of allowing gatekeeping general practitioners (GPs) to select their payment mechanism. We model GPs' behavior under the most common payment schemes (capitation and fee for service) and when GPs can select one among them. Our analysis considers GP heterogeneity in terms of both ability and concern for their patients' health. We show that when the costs of wasteful referrals to costly specialized care are relatively high, fee for service payments are optimal to maximize the expected patients' health net of treatment costs. Conversely, when the losses associated with failed referrals of severely ill patients are relatively high, we show that either GPs' self-selection of a payment form or capitation is optimal. Last, we extend our analysis to endogenous effort and to competition among GPs. In both cases, we show that self-selection is never optimal.

  13. Improving Health Care Providers' Capacity for Self-Regulated Learning in Online Continuing Pharmacy Education: The Role of Internet Self-Efficacy.

    Science.gov (United States)

    Chiu, Yen-Lin; Liang, Jyh-Chong; Mao, Pili Chih-Min; Tsai, Chin-Chung

    2016-01-01

    Although Internet-based learning is widely used to improve health professionals' knowledge and skills, the self-regulated learning (SRL) activities of online continuing education in pharmacy are seldom discussed. The main purpose of this study was to explore the relationships between pharmacists' Internet self-efficacy (ISE) and their SRL in online continuing education. A total of 164 in-service pharmacists in Taiwan were surveyed with the Internet Self-Efficacy Survey, including basic ISE (B-ISE), advanced ISE (A-ISE) and professional ISE (P-ISE), as well as the Self-Regulated Learning Questionnaire consisting of preparatory SRL (P-SRL) and enactment SRL (E-SRL). Results of a 1-by-3 (educational levels: junior college versus bachelor versus master) analysis of variance and a 1-by-4 (institutions: community-based versus hospital versus clinic versus company) analysis of variance revealed that there were differences in ISE and SRL among different education levels and working institutions. The hierarchical regression analyses indicated that B-ISE and P-ISE were significant predictors of P-SRL, whereas P-ISE was a critical predictor of E-SRL. Moreover, the interaction of P-ISE × age was linked to E-SRL, implying that P-ISE has a stronger influence on E-SRL for older pharmacists than for younger pharmacists. However, the interactions between age and ISE (A-ISE, B-ISE, and P-ISE) were not related to P-SRL. This study highlighted the importance of ISE and age for increasing pharmacists' SRL in online continuing education.

  14. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  15. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  16. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  17. Integrated shape and material selection for single and multi-performance criteria

    International Nuclear Information System (INIS)

    Singh, Jasveer; Mirjalili, Vahid; Pasini, Damiano

    2011-01-01

    Research highlights: → The method of shape transformers is extended to torsional stiffness and combined load design. → The method is generalized for multi-criteria selection of shape and material. → Performance charts are presented for single and multi-objective selection of cross-section shape and material. → A four quadrant performance chart is presented to visualize the relation between objective function space and design variable space. -- Abstract: A shape and material selection method, based on the concept of shape transformers, has been recently introduced to characterize the mass efficiency of lightweight beams under bending and shear. This paper extends this method to deal with the case of torsional stiffness design, and generalize it to single and multi-crieria selection of lightweight shafts subjected to a combination of bending, shear, and torsional load. The novel feature of the paper is the useful integration of shape and material to model and visualize multi-objective selection problems. The scheme is centered on concept selection in structural design, and hinges on measures that govern the shape properties of a cross-section regardless of its size. These measures, referred as shape transformers, can classify shapes in a way similar to material classification. The procedure is exemplified by considering torsional stiffness as a constraint. The performance charts are developed for single and multi-criteria to visualize in a glance the whole range of cross-sectional shapes for each material. Each design chart is explained with a brief example.

  18. Preliminary selection criteria for the Yucca Mountain Project waste package container material

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1991-01-01

    The Department of Energy's Yucca Mountain Project (YMP) is evaluating a site at Yucca Mountain in Nevada for construction of a geologic repository for the storage of high-level nuclear waste. Lawrence Livermore National Laboratory's (LLNL) Nuclear Waste Management Project (NWMP) has the responsibility for design, testing, and performance analysis of the waste packages. The design is performed in an iterative manner in three sequential phases (conceptual design, advanced conceptual design, and license application design). An important input to the start of the advanced conceptual design is the selection of the material for the waste containers. The container material is referred to as the 'metal barrier' portion of the waste package, and is the responsibility of the Metal Barrier Selection and Testing task at LLNL. The selection will consist of several steps. First, preliminary, material-independent selection criteria will be established based on the performance goals for the container. Second, a variety of engineering materials will be evaluated against these criteria in a screening process to identify candidate materials. Third, information will be obtained on the performance of the candidate materials, and final selection criteria and quantitative weighting factors will be established based on the waste package design requirements. Finally, the candidate materials will be ranked against these criteria to determine whether they meet the mandated performance requirements, and to provide a comparative score to choose the material for advanced conceptual design activities. This document sets forth the preliminary container material selection criteria to be used in screening candidate materials. 5 refs

  19. Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report; FINAL

    International Nuclear Information System (INIS)

    BURNS, ALAN R.; SASAKI, DARRYL Y.; CARPICK, R.W.; SHELNUTT, JOHN A.; BRINKER, C. JEFFREY

    2001-01-01

    This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films

  20. Self-organisation processes in the chemistry of materials

    International Nuclear Information System (INIS)

    Tretyakov, Yuri D

    2003-01-01

    The review concerns conservative and dissipative self-organisation phenomena in those physicochemical systems, whose evolution involves formation of diverse chemically complex products, including functional ceramics, supramolecular compounds, and nanocomposites as well as fractal, template and epitaxial structures. It is demonstrated that the use of nonlinear dynamics approaches facilitates organisation of the reaction zone during the synthesis of materials under nonequilibrium conditions in an optimum manner and that biomimetism and biomineralisation processes open up new prospects for materials design.

  1. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  2. Self-organization and natural selection in the evolution of complex despotic societies

    NARCIS (Netherlands)

    Hemelrijk, C.K.

    2002-01-01

    Differences between related species are usually explained as separate adaptations produced by individual selection. I discuss in this paper how related species, which differ in many respects, may evolve by a combination of individual selection, self-organization, and group-selection, requiring an

  3. Phenomenological perspectives of self-care in healthcare professionals' continuing education

    Directory of Open Access Journals (Sweden)

    Daniele Bruzzone

    2014-12-01

    Full Text Available Healthcare professionals, daily confronted with existential failty, feel themselves emotionally vulnerable too. For this reason, they need knowledge and tools in order to take care for themselves. Phenomenology provides an epistemological model that includes subjective and affective dimensions and legitimates lived experience as a source of cognition. In the undergraduate and continuing education of healthcare professionals, the phenomenological approach can represent a way of promoting self-care through personal narrative and reflection.

  4. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    Hollow materials with interiors or voids and pores are a class of lightweight nanostructured matters that promise many future technological applications, and they have received significant research attention in recent years. On the basis of well-known physicochemical phenomena and principles, for example, several solution-based protocols have been developed for the general preparation of these complex materials under mild reaction conditions. This article is thus a short introductory review on the synthetic aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases, both synthesis and self-assembly are involved in the above processes. Further combinations of these methodologies appear to be very important, as they will allow one to prepare functional materials at a higher level of complexity and precision. The synthetic strategies are introduced through some simple case studies with schematic illustrations. Salient features of the methods developed have been summarized, and some urgent issues of this field have also been indicated. © 2011 The Royal Society of Chemistry.

  5. Continuous selections of set of mild solutions of evolution inclusions

    Directory of Open Access Journals (Sweden)

    Annamalai Anguraj

    2005-02-01

    Full Text Available We prove the existence of continuous selections of the set valued map $xio mathcal{S}(xi$ where $mathcal{S}(xi$ is the set of all mild solutions of the evolution inclusions of the form $$displaylines{ dot{x}(t in A(tx(t+int_0^tK(t,sF(s,x(sds cr x(0=xi ,quad tin I=[0,T], }$$ where $F$ is a lower semi continuous set valued map Lipchitzean with respect to $x$ in a separable Banach space $X$, $A$ is the infinitesimal generator of a $C_0$-semi group of bounded linear operators from $X$ to $X$, and $K(t,s$ is a continuous real valued function defined on $Iimes I$ with $tgeq s$ for all $t,sin I$ and $xi in X$.

  6. On the continuous selections of solution sets of Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2004-05-01

    We prove that a multifunction associated with the set of solutions of Lipschitzian quantum stochastic differential inclusion (QSDI) admits a selection continuous from some subsets of complex numbers to the space of the matrix elements of adapted weakly absolutely continuous quantum stochastic processes. In particular, we show that the solution set map as well as the reachable set of the QSDI admit some continuous representations. (author)

  7. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  8. Selection of refractory materials for pyrochemical processing

    International Nuclear Information System (INIS)

    Axler, K.M.; DePoorter, G.L.; Bagaasen, L.M.

    1991-01-01

    Several pyrochemical processing operations require containment materials that exhibit minimal chemical interactions with the system, good thermal shock resistance, and reusability. One example is Direct Oxide Reduction (DOR). DOR involves the conversion of PuO 2 to metal by an oxidation/reduction reaction with Ca metal. The reaction proceeds within a molten salt flux at temperatures above 800C. A combination of thermodynamics, system thermodynamic modeling, and experimental investigations are in use to select and evaluate potential containment materials

  9. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

    Science.gov (United States)

    Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.

    2015-01-01

    We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522

  10. Continuity theory

    CERN Document Server

    Nel, Louis

    2016-01-01

    This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...

  11. Drag reduction through self-texturing compliant bionic materials

    OpenAIRE

    Eryong Liu; Longyang Li; Gang Wang; Zhixiang Zeng; Wenjie Zhao; Qunji Xue

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, sem...

  12. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  13. Can Programmed or Self-Selected Physical Activity Affect Physical Fitness of Adolescents?

    Directory of Open Access Journals (Sweden)

    Neto Cláudio F.

    2014-12-01

    Full Text Available The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a a self-selected physical activity group (PAS with 55 students (aged 15.7 ± 0.7 years, who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b a physical fitness training group (PFT with 53 students (aged 16.0 ± 0.7 years, who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents.

  14. Can programmed or self-selected physical activity affect physical fitness of adolescents?

    Science.gov (United States)

    Neto, Cláudio F; Neto, Gabriel R; Araújo, Adenilson T; Sousa, Maria S C; Sousa, Juliana B C; Batista, Gilmário R; Reis, Victor M M R

    2014-09-29

    The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a) a self-selected physical activity group (PAS) with 55 students (aged 15.7 ± 0.7 years), who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b) a physical fitness training group (PFT) with 53 students (aged 16.0 ± 0.7 years), who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents.

  15. Effects of Advertising Exposure on Materialism and Self-Esteem: Advertised Luxuries as a Feel-Good Strategy?

    OpenAIRE

    Lens, I.; Pandelaere, Mario; Warlop, L.

    2010-01-01

    Two experiments investigate the relations between advertising exposure, self-esteem and materialism. Evidence is found that ads for luxury products may influence consumers’ levels of materialism and self-esteem. Consumers who claim being able to buy advertised luxuries report increased levels of materialism and an enhanced self-esteem after the exposure. In contrast, not being able to buy advertised luxuries appears to threaten consumers’ self-esteem and to diminish their materialistic pursui...

  16. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    Science.gov (United States)

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. © 2016 The Author(s).

  17. Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template

    Directory of Open Access Journals (Sweden)

    Hiroaki Wakayama

    2015-01-01

    Full Text Available Inorganic nanocomposites have characteristic structures that feature expanded interfaces, quantum effects, and resistance to crack propagation. These structures are promising for the improvement of many materials including thermoelectric materials, photocatalysts, and structural materials. Precise control of the inorganic nanocomposites’ morphology, size, and chemical composition is very important for these applications. Here, we present a novel fabrication method to control the structures of inorganic nanocomposites by means of a self-assembled block copolymer template. Different metal complexes were selectively introduced into specific polymer blocks of the block copolymer, and subsequent removal of the block copolymer template by oxygen plasma treatment produced hexagonally packed porous structures. In contrast, calcination removal of the block copolymer template yielded nanocomposites consisting of metallic spheres in a matrix of a metal oxide. These results demonstrate that different nanostructures can be created by selective use of processes to remove the block copolymer templates. The simple process of first mixing block copolymers and magnetic nanomaterial precursors and then subsequently removing the block copolymer template enables structural control of magnetic nanomaterials, which will facilitate their applicability in patterned media, including next-generation perpendicular magnetic recording media.

  18. Development of Knitted Materials Selection for Compression Underwear

    Directory of Open Access Journals (Sweden)

    Cheng Zhe

    2017-06-01

    Full Text Available The presented research deals with the development of comfortable male underwear taking into account the development of pattern block methods and the analysis of the relationships existing between the compression pressure, the knitted materials properties, and some push-up effects. The main aim of this study is to achieve the technical selection of the materials based on KES-FB evaluations.The ease value has been used as the main index to connect the structural design of underwear, on one hand, and the body sizes, on other hand. A “bodyshell” system for testing the soft tissue of male bodies by FlexiForce sensor has been implemented. The pressures under the shells at six different places on the male body with ease changing have been tested.The collected results including maximum-possible pressure and material tensile indexes measured thanks to KES-FB have been analyzed in order to find the most relevant indexes of the material properties. A mathematical equations based on relationships combining theoretical model with practical application have been established. These equations will be helpful for the consumers and designers to select “the suitable knitting materials for male underwear” and they can be used too in the perspective of parameterization in CAD, in order to improve product developments efficiency.

  19. Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe

    International Nuclear Information System (INIS)

    Guan Huimin; Zhu Lihua; Zhou Hehui; Tang Heqing

    2008-01-01

    Self-cleaning materials are widely applied, but the available methods for determining their photocatalytic activity are time consuming. A simple analysis method was proposed to evaluate rapidly the photocatalytic activity of self-cleaning materials. This method is based on monitoring of a highly fluorescent product generated by the self-cleaning materials after illumination. Under UV irradiation, holes photo-induced on the surface of self-cleaning materials can oxidize water molecules (or hydroxide ions) adsorbed on the surface to produce hydroxyl radicals, which then quantitatively oxidize coumarin to highly fluorescent 7-hydroxycoumarin. It was observed that the fluorescence intensity of photo-generated 7-hydroxycoumarin at 456 nm (excited at 346 nm) linearly increased with irradiation time, and the fluorescence intensity at a given irradiation time was linearly proportional to the photocatalytic activity of self-cleaning materials. Consequently, the photocatalytic activity of self-cleaning materials was able to be probed simply by using this new method, which requires an analysis time of 40 min, being much less than 250 min required for a dye method

  20. License Application Design Selection Feature Report: Waste Package Self Shielding Design Feature 13

    International Nuclear Information System (INIS)

    Tang, J.S.

    2000-01-01

    In the Viability Assessment (VA) reference design, handling of waste packages (WPs) in the emplacement drifts is performed remotely, and human access to the drifts is precluded when WPs are present. This report will investigate the feasibility of using a self-shielded WP design to reduce the radiation levels in the emplacement drifts to a point that, when coupled with ventilation, will create an acceptable environment for human access. This provides the benefit of allowing human entry to emplacement drifts to perform maintenance on ground support and instrumentation, and carry out performance confirmation activities. More direct human control of WP handling and emplacement operations would also be possible. However, these potential benefits must be weighed against the cost of implementation, and potential impacts on pre- and post-closure performance of the repository and WPs. The first section of this report will provide background information on previous investigations of the self-shielded WP design feature, summarize the objective and scope of this document, and provide quality assurance and software information. A shielding performance and cost study that includes several candidate shield materials will then be performed in the subsequent section to allow selection of two self-shielded WP design options for further evaluation. Finally, the remaining sections will evaluate the impacts of the two WP self-shielding options on the repository design, operations, safety, cost, and long-term performance of the WPs with respect to the VA reference design

  1. Associations between teaching effectiveness and participant self-reflection in continuing medical education.

    Science.gov (United States)

    Ratelle, John T; Bonnes, Sara L; Wang, Amy T; Mahapatra, Saswati; Schleck, Cathy D; Mandrekar, Jayawant N; Mauck, Karen F; Beckman, Thomas J; Wittich, Christopher M

    2017-07-01

    Effective medical educators can engage learners through self-reflection. However, little is known about the relationships between teaching effectiveness and self-reflection in continuing medical education (CME). We aimed to determine associations between presenter teaching effectiveness and participant self-reflection in conference-based CME. This cross-sectional study evaluated presenters and participants at a national CME course. Participants provided CME teaching effectiveness (CMETE) ratings and self-reflection scores for each presentation. Overall CMETE and CME self-reflection scores (five-point Likert scale with one as strongly disagree and five as strongly agree) were averaged for each presentation. Correlations were measured among self-reflection, CMETE, and presentation characteristics. In total, 624 participants returned 430 evaluations (response, 68.9%) for the 38 presentations. Correlation between CMETE and self-reflection was medium (Pearson correlation, 0.3-0.5) or large (0.5-1.0) for most presentations (n = 33, 86.9%). Higher mean (SD) CME reflection scores were associated with clinical cases (3.66 [0.12] vs. 3.48 [0.14]; p = 0.003) and audience response (3.66 [0.12] vs. 3.51 [0.14]; p = 0.005). To our knowledge, this is the first study to show a relationship between teaching effectiveness and participant self-reflection in conference-based CME. Presenters should consider using clinical cases and audience response systems to increase teaching effectiveness and promote self-reflection among CME learners.

  2. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  3. Income, self-selection, and return and onward interprovincial migration in Canada.

    Science.gov (United States)

    Newbold, K B

    1996-06-01

    "Estimated returns to migration based on comparison of individual migrants may be biased owing to self-selection in the migration process. Using data derived from the 1986 Canadian census, I will study the effects of expected wage differentials in determining the return or onward migration decision of nonnative adults aged 20 to 64 years. Evidence was found that return migrations were in the 'right' direction, as they are observed to respond to provincial economic variables (that is, average employment growth and income levels) in a rational manner. After accounting for self-selectivity, I found that...return migrants...are negatively selected, and experience lower income levels, following the return migration, than onward migrants would have, had they chosen the return migration option. This drop in expected wages decreases the propensity associated with making a return migration. Despite this drop in income, the large proportion selecting the return migration option suggests the importance of the province of birth in the mental map of nonnative migrants." excerpt

  4. Selection of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.; Chiocchio, S.

    1996-01-01

    ITER will be the first tokamak having long pulse operation using deuterium-tritium fuel. The problem of designing heat removal structures for steady state in a neutron environment is a major technical goal for the ITER Engineering Design Activity (EDA). The steady state heat flux specified for divertor components is 5 MW/m 2 for normal operation with transients to 15 MW/m 2 for up to 10 s. The selection of materials for plasma facing components is one of the major research activities. Three materials are being considered for the divertor; carbon fiber composites, beryllium, and tungsten. This paper discusses the relative advantages and disadvantages of these materials. The final section of plasma facing materials for the ITER divertor will not be made until the end of the EDA

  5. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  6. Materials selection in micromechanical design: an application of the Ashby approach

    OpenAIRE

    Srikar, V.T.; Spearing, S.M.

    2003-01-01

    The set of materials available to microsystems designers is rapidly expanding. Techniques now exist to introduce and integrate a large number of metals, alloys, ceramics, glasses, polymers, and elastomers into microsystems, motivating the need for a rational approach for materials selection in microsystems design. As a step toward such an approach, we focus on the initial stages of materials selection for micromechanical structures with minimum feature sizes greater than 1 /spl mu/m. The vari...

  7. Assessment and Selection of Materials for Melbourne City Council House 2

    Directory of Open Access Journals (Sweden)

    Dominique Hes

    2012-11-01

    Full Text Available This paper highlights the role of material selection in the development and contribution toward environmental excellence in the building project Council House 2 (CH2. The paper focuses on the assessment of material and the strategies used by the design team in CH2to ensure the best environmental result. The paper then goes on to explore in a case study the application of these strategies in the selection and specification of concrete on CH2. The purpose of the paper is to explore the difficulties and rewards of careful research of manufacturers' claims and the relative benefits of different materials. The paper concludes that the process of material selection adopted on this project has increased the education of architects and manufacturers alike as well as being environmentally beneficial.

  8. Methyl methacrylate as a healing agent for self-healing cementitious materials

    International Nuclear Information System (INIS)

    Van Tittelboom, K; De Belie, N; Adesanya, K; Dubruel, P; Van Puyvelde, P

    2011-01-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  9. Drag reduction through self-texturing compliant bionic materials

    Science.gov (United States)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  10. Supramolecular polymeric materials via cyclodextrin-guest interactions.

    Science.gov (United States)

    Harada, Akira; Takashima, Yoshinori; Nakahata, Masaki

    2014-07-15

    CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for

  11. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2017-01-01

    Full Text Available In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of thermal parameters measurement for various foods and food raw materials as: granular materials – corn flour and wheat flour; fruits, vegetables and fruit products – grated apple, dried apple and apple juice; liquid materials – milk, beer etc. Measurements were performed in two temperature ranges according to the character of examined material. From graphical relations of thermophysical parameter is evident, that thermal conductivity and diffusivity increases with temperature and moisture content linearly, only for granular materials were obtained non‑linear dependencies. Results shows, that foods and food raw materials have different thermal properties, which are influenced by their type, structure, chemical and physical properties. From presented results is evident, that basic thermal parameters are important for material quality detection in food industry.

  12. Significance of ITER IWS Material Selection and Qualification

    Science.gov (United States)

    Mehta, Bhoomi K.; Raval, Jigar; Maheshwari, Abha; Laad, Rahul; Singh, Gurlovleen; Pathak, Haresh

    2017-04-01

    In-Wall Shielding (IWS) is one of the important components of ITER Vacuum Vessel (VV) which fills the space between double walls of VV with cooling water. Procurement Arrangement (PA) for IWS has been signed with Indian Domestic Agency (INDA). Procurement of IWS materials, fabrication of IWS blocks and its delivery to respective Domestic Agency (DA) and ITER Organization (IO) are the main scope of this PA. Hence, INDIA is the only country which is contributing to VV IWS among all seven ITER partners. The main functions of the IWS are to provide Neutron Shielding with blanket, VV shells and water during plasma operations and to reduce ripple of the Toroidal Magnetic Field. To meet these functional requirements IWS blocks are made up of special materials (Borated Steels SS304 B4 & SS304 B7, Ferritic Steels SS 430, Austenitic Steel SS 316 L (N)-IG, XM-19 and Inconel-625) which are qualified, reliable and traceable for the design assessment. The choice of these materials has a significant influence on performance, maintainability, licensing, detailed design parameters and waste disposal. The main reasons for the materials selected for IWS are its high mechanical strength at operating temperatures, water chemistry properties, excellent fabrication characteristics and low cost relative to other similar materials. All the materials are qualified with respect to their respective codes (ASTM/EN standards with additional requirements as described in RCC-MR code 2007) and ITER requirements. Agreed Notified Body (ANB) has control conformity of materials certificates with approved material specification and traceability procedure for Safety Important Component (SIC). The procurement strategy for all the IWS materials has been developed in close collaboration with IO, ANB and Industries as per Product Procurement Specification (PPS). The R&D for sample, bulk material production, testing, inspection and handling as required are carried out by IN DA and IO. At present almost all

  13. Development of a team-based framework for conducting self-assessment of Continuous Improvement

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Gertsen, Frank; Boer, Harry

    2004-01-01

    The study presented in this article is based on two basic premises. First, successful continuous improvement (CI) is dependent on shop floor level involvement and participation in improvement efforts. Second, the term "self-assessment" clearly implies that those whose performance is being measured......, and who are involved in conducting the assessment process. Excerpts from longitudinal case studies in a single Danish manufacturing organization demonstrate how teams involved in the process of conducting self-assessment of CI developed a better understanding of the basic principles of CI. Furthermore...

  14. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    Science.gov (United States)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  15. Intersession reliability of self-selected and narrow stance balance testing in older adults.

    Science.gov (United States)

    Riemann, Bryan L; Piersol, Kelsey

    2017-10-01

    Despite the common practice of using force platforms to assess balance of older adults, few investigations have examined the reliability of postural screening tests in this population. We sought to determine the test-retest reliability of self-selected and narrow stance balance testing with eyes open and eyes closed in healthy older adults. Thirty older adults (>65 years) completed 45 s trials of eyes open and eyes closed stability tests using self-selected and narrow stances on two separate days (1.9 ± .7 days). Average medial-lateral center of pressure velocity was computed. The ICC results ranged from .74 to .86, and no significant systematic changes (P eyes open and closed balance testing using self-selected and narrow stances in older adults was established which should provide a foundation for the development of fall risk screening tests.

  16. Selective Postevent Review and Children's Memory for Nonreviewed Materials

    Science.gov (United States)

    Conroy, R.; Salmon, K.

    2005-01-01

    Two experiments investigated the impact of selective postevent questioning on children's memory for nonreviewed materials. In both experiments, children participated in a series of novel activities. Children in the selective-review condition were subsequently questioned about half of these and comparisons were made to memory in a no-review…

  17. Apparatus and method for continuous production of materials

    Science.gov (United States)

    Chang, Chih-hung; Jin, Hyungdae

    2014-08-12

    Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.

  18. Effects of self-paced interval and continuous training on health markers in women.

    Science.gov (United States)

    Connolly, Luke J; Bailey, Stephen J; Krustrup, Peter; Fulford, Jonathan; Smietanka, Chris; Jones, Andrew M

    2017-11-01

    To compare the effects of self-paced high-intensity interval and continuous cycle training on health markers in premenopausal women. Forty-five inactive females were randomised to a high-intensity interval training (HIIT; n = 15), continuous training (CT; n = 15) or an inactive control (CON; n = 15) group. HIIT performed 5 × 5 min sets comprising repetitions of 30-s low-, 20-s moderate- and 10-s high-intensity cycling with 2 min rest between sets. CT completed 50 min of continuous cycling. Training was completed self-paced, 3 times weekly for 12 weeks. Peak oxygen uptake (16 ± 8 and 21 ± 12%), resting heart rate (HR) (-5 ± 9 and -4 ± 7 bpm) and visual and verbal learning improved following HIIT and CT compared to CON (P HIIT (P HIIT and CT, and there were no changes in fasting serum lipids, fasting blood [glucose] or [glucose] during an oral glucose tolerance test following either HIIT or CT (P > 0.05). No outcome variable changed in the CON group (P > 0.05). Twelve weeks of self-paced HIIT and CT were similarly effective at improving cardiorespiratory fitness, resting HR and cognitive function in inactive premenopausal women, whereas blood pressure, submaximal HR, well-being and body mass adaptations were training-type-specific. Both training methods improved established health markers, but the adaptations to HIIT were evoked for a lower time commitment.

  19. Continuous welding of unidirectional fiber reinforced thermoplastic tape material

    Science.gov (United States)

    Schledjewski, Ralf

    2017-10-01

    Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.

  20. Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Jianjun Du; Amy McGraw; Jamie A. Hestekin

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...

  1. Selection of Ethanol-Tolerant Yeast Hybrids in pH-Regulated Continuous Culture

    OpenAIRE

    Jiménez, Juan; Benítez, Tahía

    1988-01-01

    Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemos...

  2. Selective buckling via states of self-stress in topological metamaterials.

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo

    2015-06-23

    States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.

  3. Low power and self-reconfigurable WBAN controller for continuous bio-signal monitoring system

    NARCIS (Netherlands)

    Lee, S.; Yoo, H.J.

    2013-01-01

    The WBAN controller with Branched Bus (BB) topology and Continuous Data Transmission (CDT) protocol with low power consumption and self- reconfigurability is proposed for wearable healthcare applications. The BB topology and CDT protocol is a combination of conventional Bus and Star topology and a

  4. The Selection of Materials for Roller Chains From The Perspective Of Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Rahmat Saptono

    2010-10-01

    Full Text Available The selection of materials for an engineering component is not only requested by its design function and shape, but also the sequence through which it is manufactured. The manufacturing operation of roller chains involves drawing and trimming processes aimed at producing semi-finished chain drives component with a well-standardized dimension. In addition to final combination of properties required by design constraints, the ability of materials to be formed into a desired shape and geometry without failure is also critical. The objective of materials selection should therefore involve additional attributes that are not typically  accommodated by the standard procedure of materials selection. The present paper deals with the selection of materials for roller chains from the perspective of manufacturing process. Ears and un-uniform wall thickness have been identified as a key problem in the mass production of component. Provided all process parameters were established, the  anisotropy factor of materials is critical. Simulative test can be reasonably used to obtain material performance indices that can be added up to the standard procedure of material selection. Of three commercially available steel grades evaluated with regard to the criteria defined, one grade is more suitable for the present objective.

  5. An integrated approach towards future ballistic neck protection materials selection.

    Science.gov (United States)

    Breeze, John; Helliker, Mark; Carr, Debra J

    2013-05-01

    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  6. Controlled molecular self-assembly of complex three-dimensional structures in soft materials.

    Science.gov (United States)

    Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy

    2018-01-02

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.

  7. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    Science.gov (United States)

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  8. Utilization of Self-Healing Materials in Thermal Protection System Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the Utilization of Self-Healing Materials for Thermal Protection System (TPS) Applications. Currently, the technology for repairing TPS from...

  9. Optimisation of strain selection in evolutionary continuous culture

    Science.gov (United States)

    Bayen, T.; Mairet, F.

    2017-12-01

    In this work, we study a minimal time control problem for a perfectly mixed continuous culture with n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the microorganisms. Our aim is to provide optimal feedback control laws to optimise the selection of the species of interest. Thanks to Pontryagin's Principle, we derive optimality conditions on optimal controls and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model which allows to introduce a near optimal strategy.

  10. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Virovska, Daniela [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Paneva, Dilyana, E-mail: panevad@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya, E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Karashanova, Daniela [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 109, BG-1113 Sofia (Bulgaria)

    2016-03-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C{sub 60}) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C{sub 60} hybrid. Mats with different content of EG or C{sub 60} were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C{sub 60} at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C{sub 60} hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  11. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    International Nuclear Information System (INIS)

    Virovska, Daniela; Paneva, Dilyana; Manolova, Nevena; Rashkov, Iliya; Karashanova, Daniela

    2016-01-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C_6_0) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C_6_0 hybrid. Mats with different content of EG or C_6_0 were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C_6_0 at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C_6_0 hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  12. Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.

    Science.gov (United States)

    Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V

    2018-03-19

    The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.

  13. Selective Memory to Apoptotic Cell-Derived Self-Antigens with Implications for Systemic Lupus Erythematosus Development.

    Science.gov (United States)

    Duhlin, Amanda; Chen, Yunying; Wermeling, Fredrik; Sedimbi, Saikiran K; Lindh, Emma; Shinde, Rahul; Halaby, Marie Jo; Kaiser, Ylva; Winqvist, Ola; McGaha, Tracy L; Karlsson, Mikael C I

    2016-10-01

    Autoimmune diseases are characterized by pathogenic immune responses to self-antigens. In systemic lupus erythematosus (SLE), many self-antigens are found in apoptotic cells (ACs), and defects in removal of ACs from the body are linked to a risk for developing SLE. This includes pathological memory that gives rise to disease flares. In this study, we investigated how memory to AC-derived self-antigens develops and the contribution of self-memory to the development of lupus-related pathology. Multiple injections of ACs without adjuvant into wild-type mice induce a transient primary autoimmune response without apparent anti-nuclear Ab reactivity or kidney pathology. Interestingly, as the transient Ab response reached baseline, a single boost injection fully recalled the immune response to ACs, and this memory response was furthermore transferable into naive mice. Additionally, the memory response contains elements of pathogenicity, accompanied by selective memory to selective Ags. Thus, we provide evidence for a selective self-memory that underlies progression of the response to self-antigens with implications for SLE development therapy. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. A continuous-discontinuous approach to simulate failure of quasi-brittle materials

    NARCIS (Netherlands)

    Moonen, P.; Sluys, L.J.; Carmeliet, J.

    2009-01-01

    A continuous-discontinuous approach to simulate failure is presented. The formulation covers both diffuse damage processes in the bulk material as well as the initiation and propagation of discrete cracks. Comparison with experimental data on layered sandstone shows that the modeling strategy

  15. Chirality- and sequence-selective successive self-sorting via specific homo- and complementary-duplex formations

    Science.gov (United States)

    Makiguchi, Wataru; Tanabe, Junki; Yamada, Hidekazu; Iida, Hiroki; Taura, Daisuke; Ousaka, Naoki; Yashima, Eiji

    2015-01-01

    Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium–carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation. PMID:26051291

  16. Considerations in selecting tubing materials for CANDU steam generators

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    1978-01-01

    Corrosion resistance is the major consideration in selecting tubing material for CANDU steam generators. Corrosion, and additional considerations, lead to the following steam generator tubing material recommendations: for CANDU-BPHWR's (boiling pressurized heavy water reactors) low-cobalt Incoloy-800; for CANDU-PHWR's (pressurized, non-boiling, heavy water reactors), low-cobalt Monel-400

  17. Metal selective co-ordinative self-assembly of π-donors

    Indian Academy of Sciences (India)

    Metal selective co-ordinative nanostructures were constructed by the supramolecular ... observed an anomalous binding of metal ion to the core sulphur groups causing redox changes in the TTF ... attention on metal-assisted co-ordinative self-assembly ..... M TTF-Py in 1:1 CHCl3: MeCN and (c) photographs showing visual.

  18. The Selection of Bridge Materials Utilizing the Analytical Hierarchy Process

    Science.gov (United States)

    Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt

    1997-01-01

    Effective decisions on the use of natural resources often require the input of many individuals. Determining how specific criteria affect the selection of materials can lead to better utilization of raw materials. Concrete, steel, and timber represent over 98% of the materials used for bridge construction in the United States. Highway officials must often consider...

  19. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    International Nuclear Information System (INIS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-01-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  20. Self-Repair and Language Selection in Bilingual Speech Processing

    Directory of Open Access Journals (Sweden)

    Inga Hennecke

    2013-07-01

    Full Text Available In psycholinguistic research the exact level of language selection in bilingual lexical access is still controversial and current models of bilingual speech production offer conflicting statements about the mechanisms and location of language selection. This paper aims to provide a corpus analysis of self-repair mechanisms in code-switching contexts of highly fluent bilingual speakers in order to gain further insights into bilingual speech production. The present paper follows the assumptions of the Selection by Proficiency model, which claims that language proficiency and lexical robustness determine the mechanism and level of language selection. In accordance with this hypothesis, highly fluent bilinguals select languages at a prelexical level, which should influence the occurrence of self-repairs in bilingual speech. A corpus of natural speech data of highly fluent and balanced bilingual French-English speakers of the Canadian French variety Franco-Manitoban serves as the basis for a detailed analysis of different self-repair mechanisms in code-switching environments. Although the speech data contain a large amount of code-switching, results reveal that only a few speech errors and self-repairs occur in direct code-switching environments. A detailed analysis of the respective starting point of code-switching and the different repair mechanisms supports the hypothesis that highly proficient bilinguals do not select languages at the lexical level.Le niveau exact de la sélection des langues lors de l’accès lexical chez le bilingue reste une question controversée dans la recherche psycholinguistique. Les modèles actuels de la production verbale bilingue proposent des arguments contradictoires concernant le mécanisme et le lieu de la sélection des langues. La présente recherche vise à fournir une analyse de corpus mettant l’accent sur les mécanismes d’autoréparation dans le contexte d’alternance codique dans la production verbale

  1. An Augmented Common Weight Data Envelopment Analysis for Material Selection in High-tech Industries

    Directory of Open Access Journals (Sweden)

    Iman Shokr

    2016-08-01

    Full Text Available Material selection is a challenging issue in manufacturing processes while the inappropriate selected material may lead to fail the manufacturing process or end user experience especially in high-tech industries such as aircraft and shipping. Every material has different quantitative and qualitative criteria which should be considered simultaneously when assessing and selecting the right material. A weighted linear optimization method (WLOM in the class of data envelopment analysis which exists in literature is adopted to address material selection problem while accounting for both qualitative and quantitative criteria. However, it is demonstrated the adopted WLOM method is not able to produce a full ranking vector for the material selection problems borrowed from the literature. Thus, an augmented common weight data envelopment analysis model (ACWDEA is developed in this paper with the aim of eliminating deficiencies of WLOM model. The proposed ACWDEA is able to produce full ranking vector in decision making problems with less computational complexities in superior to the WLOM. Two material selection problems are solved and results are compared with WLOM and previous methods. Finally, the robustness and effectiveness of the proposed ACWDEA method are evaluated through Spearman’s correlation tests.

  2. Pattern optimizing verification of self-align quadruple patterning

    Science.gov (United States)

    Yamato, Masatoshi; Yamada, Kazuki; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shouhei; Koike, Kyohei; Yaegashi, Hidetami

    2017-03-01

    Lithographic scaling continues to advance by extending the life of 193nm immersion technology, and spacer-type multi-patterning is undeniably the driving force behind this trend. Multi-patterning techniques such as self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) have come to be used in memory devices, and they have also been adopted in logic devices to create constituent patterns in the formation of 1D layout designs. Multi-patterning has consequently become an indispensible technology in the fabrication of all advanced devices. In general, items that must be managed when using multi-patterning include critical dimension uniformity (CDU), line edge roughness (LER), and line width roughness (LWR). Recently, moreover, there has been increasing focus on judging and managing pattern resolution performance from a more detailed perspective and on making a right/wrong judgment from the perspective of edge placement error (EPE). To begin with, pattern resolution performance in spacer-type multi-patterning is affected by the process accuracy of the core (mandrel) pattern. Improving the controllability of CD and LER of the mandrel is most important, and to reduce LER, an appropriate smoothing technique should be carefully selected. In addition, the atomic layer deposition (ALD) technique is generally used to meet the need for high accuracy in forming the spacer film. Advances in scaling are accompanied by stricter requirements in the controllability of fine processing. In this paper, we first describe our efforts in improving controllability by selecting the most appropriate materials for the mandrel pattern and spacer film. Then, based on the materials selected, we present experimental results on a technique for improving etching selectivity.

  3. Effects of self-paced interval and continuous training on health markers in women

    OpenAIRE

    Connolly, Luke J; Bailey, Stephen J; Krustrup, Peter; Fulford, Jonathan; Smietanka, Chris; Jones, Andrew M

    2017-01-01

    PURPOSE: To compare the effects of self-paced high-intensity interval and continuous cycle training on health markers in premenopausal women.METHODS: Forty-five inactive females were randomised to a high-intensity interval training (HIIT; n = 15), continuous training (CT; n = 15) or an inactive control (CON; n = 15) group. HIIT performed 5 × 5 min sets comprising repetitions of 30-s low-, 20-s moderate- and 10-s high-intensity cycling with 2 min rest between sets. CT completed 50 min of conti...

  4. Criteria for the selection of PEC primary circuit structural material

    International Nuclear Information System (INIS)

    Antoni, R.; Brunori, G.; Maesa, S.; Scibona, G.; Tomassetti, G.

    1977-01-01

    The choice of the structural materials is generally a compromise between the project requirements, the characteristics (mechanical and environmental) of the materials and the available technology to construct the various parts of the components. The criteria of selection of structural materials for the primary circuit of fast reactor are reported. The criteria concern both general and utilization aspects

  5. Using Negative Reinforcement to Increase Self-Feeding in a Child with Food Selectivity

    Science.gov (United States)

    Vaz, Petula C. M.; Volkert, Valerie M.; Piazza, Cathleen C.

    2011-01-01

    We examined the effects of a negative reinforcement-based treatment on the self-feeding of 1 child with food selectivity by type and texture. Self-feeding increased when the child could choose to either self-feed 1 bite of a target food or be fed 1 bite of the target food and 5 bites of another food. Possible mechanisms that underlie the…

  6. Chapter 8: Materials for Exploration Systems

    Science.gov (United States)

    Curreri, Peter A.

    2017-01-01

    Materials science and processing research in space can be thought of as a field of study that began with the sounding rocket experiments in the 1950s. Material science studies of the lunar surface materials returned during the Apollo missions enabled the study of lunar resource utilization. The study of materials science and processing in space continued with over 30 years of microgravity materials processing research which continues today in the International Space Station. These studies are the technical foundation that could enable lower cost human exploration through the use of in-situ propellant production, the production of energy from space resources, and the eventual establishment of a substantial portion of humanity living self sufficiently off Earth.

  7. Stochastic simulation of destruction processes in self-irradiated materials

    Directory of Open Access Journals (Sweden)

    T. Patsahan

    2017-09-01

    Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

  8. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    Science.gov (United States)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  9. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach.

    Science.gov (United States)

    Çorman, Mehmet Emin; Armutcu, Canan; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-11-01

    Molecular imprinting is a polymerization technique that provides synthetic analogs for template molecules. Molecularly imprinted polymers (MIPs) have gained much attention due to their unique properties such as selectivity and specificity for target molecules. In this study, we focused on the development of polymeric materials with molecular recognition ability, so molecular imprinting was combined with miniemulsion polymerization to synthesize self-orienting nanoparticles through the use of an epitope imprinting approach. Thus, L-lysine imprinted nanoparticles (LMIP) were synthesized via miniemulsion polymerization technique. Immunoglobulin G (IgG) was then bound to the cavities that specifically formed for L-lysine molecules that are typically found at the C-terminus of the Fc region of antibody molecules. The resulting nanoparticles makes it possible to minimize the nonspecific interaction between monomer and template molecules. In addition, the orientation of the entire IgG molecule was controlled, and random imprinting of the IgG was prevented. The optimum conditions were determined for IgG recognition using the imprinted nanoparticles. The selectivity of the nanoparticles against IgG molecules was also evaluated using albumin and hemoglobin as competitor molecules. In order to show the self-orientation capability of imprinted nanoparticles, human serum albumin (HSA) adsorption onto both the plain nanoparticles and immobilized nanoparticles by anti-human serum albumin antibody (anti-HSA antibody) was also carried out. Due to anti-HSA antibody immobilization on the imprinted nanoparticles, the adsorption capability of nanoparticles against HSA molecules vigorously enhanced. It is proved that the oriented immobilization of antibodies was appropriately succeeded. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. New membrane materials for potassium-selective ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    van der Wal, P.D.; van der Wal, Peter D.; Skowronska-Ptasinska, Maria; van den Berg, Albert; Bergveld, Piet; Sudholter, Ernst; Sudholter, Ernst J.R.; Reinhoudt, David

    1990-01-01

    Several polymeric materials were studied as membrane materials for potassium-selective ion-sensitive field-effect transistors (ISFETs) to overcome the problems related with the use of conventional plasticized poly(vinyl chloride) membranes casted on ISFET gate surfaces. Several acrylate materials,

  11. Beyond the realist turn: a socio-material analysis of heart failure self-care.

    Science.gov (United States)

    McDougall, Allan; Kinsella, Elizabeth Anne; Goldszmidt, Mark; Harkness, Karen; Strachan, Patricia; Lingard, Lorelei

    2018-01-01

    For patients living with chronic illnesses, self-care has been linked with positive outcomes such as decreased hospitalisation, longer lifespan, and improved quality of life. However, despite calls for more and better self-care interventions, behaviour change trials have repeatedly fallen short on demonstrating effectiveness. The literature on heart failure (HF) stands as a case in point, and a growing body of HF studies advocate realist approaches to self-care research and policymaking. We label this trend the 'realist turn' in HF self-care. Realist evaluation and realist interventions emphasise that the relationship between self-care interventions and positive health outcomes is not fixed, but contingent on social context. This paper argues socio-materiality offers a productive framework to expand on the idea of social context in realist accounts of HF self-care. This study draws on 10 interviews as well as researcher reflections from a larger study exploring health care teams for patients with advanced HF. Leveraging insights from actor-network theory (ANT), this study provides two rich narratives about the contextual factors that influence HF self-care. These descriptions portray not self-care contexts but self-care assemblages, which we discuss in light of socio-materiality. © 2018 Foundation for the Sociology of Health & Illness.

  12. Material Selection for Competition–A Case Study for Air Coolers

    Directory of Open Access Journals (Sweden)

    Luma A. H. Al Kindi

    2018-02-01

    Full Text Available Competition is one of the most important challenges that is facing the marketing of industrial products in today's markets. In this research study of the impact of material selection factor for air coolers of different materials is applied. Investigation on the air cooler windows which are part of the body of air coolers is conducted. Corrosion resistance, thermal conductivity, strength of material, weight, shape, cost and manufacturing process are the factors that are applied and calculated on three types of materials Aluminum, Galvanized steel and polypropylene. The physical properties of the three mentioned materials are used to calculate Merit Index .The corrosion average, according to Tafel Method depending the corrosion current and adopting contactors for the anodic and cathodic metals behaviors is performed. ANSYS is adopted using the three samples for the selected materials Aluminum, Galvanized steel and polypropylene to measure maximum stress and deflection are measured. Accordingly, the results are compared to choose the best alternative. It is observed that the polypropylene is the best choice depending three factors while the aluminum material is better depending two factors and the galvanized steel is regarded as the best in only one factor, the rest factors are identical when choosing  an alternative material for manufacturing the air cooler windows.

  13. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement.

    Science.gov (United States)

    Sun, Daquan; Sun, Guoqiang; Zhu, Xingyi; Guarin, Alvaro; Li, Bin; Dai, Ziwei; Ling, Jianming

    2018-05-09

    Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Leyang Lv

    2016-12-01

    Full Text Available Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol–formaldehyde (PF microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM. The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT. The synthesized PF microcapsules may find potential application in self-healing cementitious materials.

  15. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  16. An annotated history of container candidate material selection

    International Nuclear Information System (INIS)

    McCright, R.D.

    1988-07-01

    This paper documents events in the Nevada Nuclear Waste Storage Investigations (NNWSI) Project that have influenced the selection of metals and alloys proposed for fabrication of waste package containers for permanent disposal of high-level nuclear waste in a repository at Yucca Mountain, Nevada. The time period from 1981 to 1988 is covered in this annotated history. The history traces the candidate materials that have been considered at different stages of site characterization planning activities. At present, six candidate materials are considered and described in the 1988 Consultation Draft of the NNWSI Site Characterization Plan (SCP). The six materials are grouped into two alloy families, copper-base materials and iron to nickel-base materials with an austenitic structure. The three austenitic candidates resulted from a 1983 survey of a longer list of candidate materials; the other three candidates resulted from a special request from DOE in 1984 to evaluate copper and copper-base alloys. 24 refs., 2 tabs

  17. Training Self-Regulated Learning Skills with Video Modeling Examples: Do Task-Selection Skills Transfer?

    Science.gov (United States)

    Raaijmakers, Steven F.; Baars, Martine; Schaap, Lydia; Paas, Fred; van Merriënboer, Jeroen; van Gog, Tamara

    2018-01-01

    Self-assessment and task-selection skills are crucial in self-regulated learning situations in which students can choose their own tasks. Prior research suggested that training with video modeling examples, in which another person (the model) demonstrates and explains the cyclical process of problem-solving task performance, self-assessment, and…

  18. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    Science.gov (United States)

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  19. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh

    2008-12-01

    Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.

  20. The continuity and duration of depression and its relationship to non-suicidal self-harm and suicidal ideation and behavior in adolescents 12-17.

    Science.gov (United States)

    Zubrick, Stephen R; Hafekost, Jennifer; Johnson, Sarah E; Sawyer, Michael G; Patton, George; Lawrence, David

    2017-10-01

    There is a significant overlap between non-suicidal self-harm and suicidal ideation and behavior in young people with both symptom continuity and symptom duration implicated in this association. A population sample of Australian 12-17 year olds. Interviewers collected measures for DSM disorders, symptom duration and continuity, and background information from their parents, while young people self-reported symptoms of depression, non-suicidal self-harm and suicidal ideation and behaviors. This report focusses on the 265 young people who met the DSM criteria for Major Depressive Disorder based on their own self-reports. Relative to young people who had at least one period 2 months or longer without symptoms since first onset, young people who had the continuous presence of depressive symptoms since their first onset had significantly higher odds for life-time self-harm, 12-month self-harm, multiple self-harm, suicidal ideation and suicide attempt within the past 12 months. The duration of depressive symptoms and the continuity of these symptoms each independently contribute to elevating the risks of non-suicidal self-harming and suicidal ideation and behaviors. Reliance on self-report from the young people and time constraints prohibiting administering diagnostic modules other than the Major Depressive Disorder and estimating self-reported co-morbidity. Among young people with a Major Depressive Disorder, self-reports about duration of depressive symptoms as well as the continuity of symptoms, each independently contributes to elevated risks of non-suicidal self-harming and suicidal ideation and behaviors. As well, un-remitting as opposed to episodic symptoms in this group of young people are common and are a powerful indicator of suffering associated with both self-harm and suicidal behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  2. Selection of engineering materials for heat exchangers (An expert system approach)

    International Nuclear Information System (INIS)

    Ahmed, K.; Abou-Ali, M.; Bassuni, M.

    1997-01-01

    The materials selection as a part of the design process of the heat exchangers is one of the most important steps in the whole industry. The clear recognition of the service requirements of the different types of the heat exchangers is very important to select the adequate and economic materials to meet such requirements. of course the manufacturer should ensure that failure does not occur in service specially it is one of the main and fetal component of the nuclear reactor, pressurized water type (PWR). It is necessary to know the possible mechanisms of failure. Also the achievement of the materials selection using the expert system approach in the process sequence of heat exchanger manufacturing is introduced. Different parameters and requirements controlling each process and the linkage between these parameters and the final product will be shown. 2 figs., 3 tabs

  3. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    Science.gov (United States)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  4. Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials

    Science.gov (United States)

    Wong, William S. Y.; Li, Minfei; Nisbet, David R.; Craig, Vincent S. J.; Wang, Zuankai; Tricoli, Antonio

    2016-01-01

    One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica’s leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications. PMID:28861471

  5. Selection of IFE target materials from a safety and environmental perspective

    Science.gov (United States)

    Latkowski, J. F.; Sanz, J.; Reyes, S.; Gomez del Rio, J.

    2001-05-01

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S&E) characteristics. The present work focuses on the recycling, waste management and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S&E characteristics.

  6. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    Energy Technology Data Exchange (ETDEWEB)

    Berns, N.W.; Richardson, S.M.

    1977-12-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material.

  7. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    International Nuclear Information System (INIS)

    Berns, N.W.; Richardson, S.M.

    1977-01-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material

  8. Route selection for the transport of hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, F A

    1988-12-01

    The factors governing the risk-weighted selection of routes for transport of hazardous materials are analyzed. Starting from a formulation for the total risk of these transports that assumes complete information, approximations for the more realistic case of partial and uncertain information are discussed. These approximations involve well-known risk assessment techniques and mathematical methods; among the latter, Monte Carlo calculations hold the most promise. The actual route selection is based on an index of total societal cost, evaluated for a set of potential routes. (author)

  9. Continuous weighing of conveyor-transported materials based on gamma radiation conversion to electric current

    International Nuclear Information System (INIS)

    The principle is described of the continuous weighing of conveyer-transported materials applied in the food industry. The weighing technique is based on the measurement of the absorption of gamma radiation emitted by a source located behind the material to be scaled. (Z.M.)

  10. Self-compacting paste system using secondary raw materials

    International Nuclear Information System (INIS)

    Rizwan, S.A.

    2008-01-01

    A study has been carried out on self-compacting paste (SCP) systems using various cements and secondary raw materials (SRM's) including rice husk ash (RHA) and Silica Fume (SF). These systems were characterized by: SRM particle size, powder water demand (WD) and setting times, flow, strength, microstructure and early volume stability. The result show that WD increased by adding SRM's due to their smaller particle size, higher surface area and internal porosity. Inclusion of SRM's in SCP systems as cement replacements also increase strength of SCP systems due to filler, hydration and pozzolanic actions which translate into pore refinement. It is demonstrated that the resultant properties of self-compacting cementitious. System (SCCS) depend upon the nature of SRM used. (author)

  11. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    Science.gov (United States)

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  12. Material Selection for an Ultra High Strength Steel Component Based on the Failure Criteria of CrachFEM

    International Nuclear Information System (INIS)

    Kessler, L.; Beier, Th.; Werner, H.; Horstkott, D.; Dell, H.; Gese, H.

    2005-01-01

    An increasing use of combining more than one process step is noticed for coupling crash simulations with the results of forming operations -- mostly by inheriting the forming history like plastic strain and material hardening. Introducing a continuous failure model allows a further benefit of these coupling processes; it sometimes can even be the most attractive result of such a work. In this paper the algorithm CrachFEM for fracture prediction has been used to generate more benefit of the successive forming and crash simulations -- especially for ultra high strength steels. The choice and selection of the material grade in combination with the component design can therefore be done far before the prototyping might show an unsuccessful crash result; and in an industrial applicable manner

  13. Strategy of Cooling Parameters Selection in the Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Falkus J.

    2016-03-01

    Full Text Available This paper presents a strategy of the cooling parameters selection in the process of continuous steel casting. Industrial tests were performed at a slab casting machine at the Arcelor Mittal Poland Unit in Krakow. The tests covered 55 heats for 7 various steel grades. Based on the existing casting technology a numerical model of the continuous steel casting process was formulated. The numerical calculations were performed for three casting speeds - 0.6, 0.8 and 1 m min-1. An algorithm was presented that allows us to compute the values of the heat transfer coefficients for the secondary cooling zone. The correctness of the cooling parameter strategy was evaluated by inspecting the shell thickness, the length of the liquid core and the strand surface temperature. The ProCAST software package was used to construct the numerical model of continuous casting of steel.

  14. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  15. Self-repair of cracks in brittle material systems

    Science.gov (United States)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  16. Increased 1-year continuation of DMPA among women randomized to self-administration: results from a randomized controlled trial at Planned Parenthood.

    Science.gov (United States)

    Kohn, Julia E; Simons, Hannah R; Della Badia, Lisa; Draper, Elissa; Morfesis, Johanna; Talmont, Elizabeth; Beasley, Anitra; McDonald, Melanie; Westhoff, Carolyn L

    2018-03-01

    Self-administration of subcutaneous depot medroxyprogesterone acetate (DMPA-sc) is feasible, acceptable, and effective. Our objective was to compare one-year continuation of DMPA-sc between women randomized to self-administration versus clinic administration. We randomized 401 females ages 15-44 requesting DMPA at clinics in Texas and New Jersey to self-administration or clinic administration in a 1:1 allocation. Clinic staff taught participants randomized to self-administration to self-inject and observed the first injection; participants received instructions, a sharps container, and three doses for home use. Participants randomized to clinic administration received usual care. All participants received DMPA-sc at no cost and injection reminders via text message or email. We conducted follow-up surveys at six and 12 months. Three hundred thirty-six participants (84%) completed the 12-month survey; 316 completed both follow-up surveys (an 80% response rate excluding eight withdrawals). Participants ranged in age from 16-44. One-year DMPA continuous use was 69% in the self-administration group and 54% in the clinic group (p=.005). There were three self-reported pregnancies during the study period, all occurred in the clinic group; all three women had discontinued DMPA and one reported her pregnancy as intended. Among the self-administration group, 97% reported that self-administration was very or somewhat easy; 87% would recommend self-administration of DMPA-sc to a friend. Among the clinic group, 52% reported interest in self-administration in the future. Satisfaction was similar between groups. No serious adverse events were reported. DMPA self-administration improves contraceptive continuation and is a feasible and acceptable option for women and adolescents. Self-administration of subcutaneous DMPA can improve contraceptive access, autonomy, and continuation, and is a feasible and acceptable option for women and adolescents. It should be made widely available

  17. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  18. Materials selection as an interdisciplinary technical activity: basic methodology and case studies

    Directory of Open Access Journals (Sweden)

    M. Ferrante

    2000-04-01

    Full Text Available The technical activity known as Materials Selection is reviewed in its concepts and methodologies. Objectives and strategies are briefly presented and two important features are introduced and discussed; (i Merit Indices: a combination of materials properties, which maximises the objectives chosen by the designer and (ii Materials Properties Maps: a bi-dimensional space whose coordinates are pairs of properties in which materials can be plotted and compared directly in terms of their merit indices. A general strategy for the deduction of these indices is explained and a formal methodology to establish a ranking of candidate materials when multiple constraints intervene is presented. Finally, two case studies are discussed in depth, one related to materials substitution in the context of mechanical design and a less conventional case linking material selection to physical comfort in the home furniture industry.

  19. The spiritual brain: selective cortical lesions modulate human self-transcendence.

    Science.gov (United States)

    Urgesi, Cosimo; Aglioti, Salvatore M; Skrap, Miran; Fabbro, Franco

    2010-02-11

    The predisposition of human beings toward spiritual feeling, thinking, and behaviors is measured by a supposedly stable personality trait called self-transcendence. Although a few neuroimaging studies suggest that neural activation of a large fronto-parieto-temporal network may underpin a variety of spiritual experiences, information on the causative link between such a network and spirituality is lacking. Combining pre- and post-neurosurgery personality assessment with advanced brain-lesion mapping techniques, we found that selective damage to left and right inferior posterior parietal regions induced a specific increase of self-transcendence. Therefore, modifications of neural activity in temporoparietal areas may induce unusually fast modulations of a stable personality trait related to transcendental self-referential awareness. These results hint at the active, crucial role of left and right parietal systems in determining self-transcendence and cast new light on the neurobiological bases of altered spiritual and religious attitudes and behaviors in neurological and mental disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Selection of IFE target materials from a safety and environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J.F. E-mail: latkowski1@llnl.gov; Sanz, J.; Reyes, S.; Gomez del Rio, J

    2001-05-21

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S and E) characteristics. The present work focuses on the recycling, waste management and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S and E characteristics.

  1. Development of the material selection practice - a study exploring articulation of material requirements

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Hasling, Karen Marie

    2014-01-01

    indicates that students focus on technical requirements when using the matrix and justifying their selection of materials. This is surprising since the students attend an arts and crafts oriented design school and are encouraged and guided to consider non-technical requirements, as part of the course where...... the matrix is introduced. A possible reason for the undesired behavior could be that students are allowed very freely to define their own matrices, having only little guidance to which requirements to use. A more formal procedure for making the material matrices is therefore proposed. The procedure requires...

  2. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  3. Towards a Spiderman suit: large invisible cables and self-cleaning releasable superadhesive materials

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2007-01-01

    Spiders can produce cobwebs with high strength to density ratio and surprisingly display self-cleaning, strong and releasable adhesion (like geckos). Nanointerlocking, capillary and van der Waals forces, all potential adhesive mechanisms, are thus discussed, demonstrating the key role played by hierarchy in the design of superhydrophobic, i.e. self-cleaning (dry or wet and enhanced by activating Fakir drops as in lotus leaves) and superadhesive materials. The reversibility of the strong attachment is quantified thanks to an improved nonlinear peeling model including friction, for which the solution in closed form is provided. Thus, mimicking nature, thanks to carbon-nanotube-based technology, we suggest the feasibility of large invisible cables, as well as of self-cleaning, superadhesive and releasable hierarchical smart materials. We found that a man can theoretically be supported by a transparent cable with cross-section of 1 cm 2 and feasibly, with spider material gloves and boots, could remain attached even to a ceiling: a preliminary step towards a Spiderman suit

  4. Towards a Spiderman suit: large invisible cables and self-cleaning releasable superadhesive materials

    Science.gov (United States)

    Pugno, Nicola M.

    2007-10-01

    Spiders can produce cobwebs with high strength to density ratio and surprisingly display self-cleaning, strong and releasable adhesion (like geckos). Nanointerlocking, capillary and van der Waals forces, all potential adhesive mechanisms, are thus discussed, demonstrating the key role played by hierarchy in the design of superhydrophobic, i.e. self-cleaning (dry or wet and enhanced by activating Fakir drops as in lotus leaves) and superadhesive materials. The reversibility of the strong attachment is quantified thanks to an improved nonlinear peeling model including friction, for which the solution in closed form is provided. Thus, mimicking nature, thanks to carbon-nanotube-based technology, we suggest the feasibility of large invisible cables, as well as of self-cleaning, superadhesive and releasable hierarchical smart materials. We found that a man can theoretically be supported by a transparent cable with cross-section of 1 cm2 and feasibly, with spider material gloves and boots, could remain attached even to a ceiling: a preliminary step towards a Spiderman suit.

  5. Towards a Spiderman suit: large invisible cables and self-cleaning releasable superadhesive materials

    Energy Technology Data Exchange (ETDEWEB)

    Pugno, Nicola M [Department of Structural Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2007-10-03

    Spiders can produce cobwebs with high strength to density ratio and surprisingly display self-cleaning, strong and releasable adhesion (like geckos). Nanointerlocking, capillary and van der Waals forces, all potential adhesive mechanisms, are thus discussed, demonstrating the key role played by hierarchy in the design of superhydrophobic, i.e. self-cleaning (dry or wet and enhanced by activating Fakir drops as in lotus leaves) and superadhesive materials. The reversibility of the strong attachment is quantified thanks to an improved nonlinear peeling model including friction, for which the solution in closed form is provided. Thus, mimicking nature, thanks to carbon-nanotube-based technology, we suggest the feasibility of large invisible cables, as well as of self-cleaning, superadhesive and releasable hierarchical smart materials. We found that a man can theoretically be supported by a transparent cable with cross-section of 1 cm{sup 2} and feasibly, with spider material gloves and boots, could remain attached even to a ceiling: a preliminary step towards a Spiderman suit.

  6. Application of multi-criteria material selection techniques to constituent refinement in biobased composites

    International Nuclear Information System (INIS)

    Miller, Sabbie A.; Lepech, Michael D.; Billington, Sarah L.

    2013-01-01

    Highlights: • Biobased composites have the potential to replace certain engineered materials. • Woven reinforcement can provide better material properties in biobased composites. • Short fiber filler can provide lower environmental impact in biobased composites. • Per function, different fibers are desired to lower composite environmental impact. - Abstract: Biobased composites offer a potentially low environmental impact material option for the construction industries. Designing these materials to meet both performance requirements for an application and minimize environmental impacts requires the ability to refine composite constituents based on environmental impact and mechanical properties. In this research, biobased composites with varying natural fiber reinforcement in a poly(β-hydroxybutyrate)-co-(β-hydroxyvalerate) matrix were characterized based on material properties through experiments and environmental impact through life cycle assessments. Using experimental results, these biobased composites were found to have competitive flexural properties and thermal conductivity with certain short-chopped glass fiber reinforced plastics. Multi-criteria material selection techniques were applied to weigh desired material properties with greenhouse gas emissions, fossil fuel demand, and Eco-Indicator ’99 score. The effects of using different reinforcing fibers in biobased composites were analyzed using the developed selection scheme as a tool for choosing constituents. The use of multi-criteria material selection provided the ability to select fiber reinforcement for biobased composites and showed when it would be more appropriate to use a novel biobased composite or a currently available engineered material

  7. The analysis of the regional self-governing units forests in selected European countries

    Directory of Open Access Journals (Sweden)

    Barbora Lišková

    2013-01-01

    Full Text Available The article focuses on identification, analysis, description and comparison of the regional self-governing units (RSGU forests in selected European countries. The analysis deals not only with forests in the ownership of basic regional self-governing units such as villages but also with forests of higher regional self-governing unit such as regions or federated states. The identification and description of this type of ownership is not overly published in the Czech Republic. The published foreign overall studies and summaries state mainly the division into forests in public and private ownership. This article is created on the basis of the selection of relevant information sources according to corresponding key words. The methods of analysis of available literary sources, conspectus, comparison and interpretation were used to deal with the topic. The quantity of information is higher and more available within basic regional self-governing units than with higher regional self-governing units. On the basis of obtained information it can be stated that the share of forest ownership in the observed countries varies ranging from zero share in the ownership to fifty per cent share in Germany.

  8. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  9. Self-selected speeds and metabolic cost of longboard skateboarding.

    Science.gov (United States)

    Board, Wayne J; Browning, Raymond C

    2014-11-01

    The purpose of this study was to determine self-selected speeds, metabolic rate, and gross metabolic cost during longboard skateboarding. We measured overground speed and metabolic rate while 15 experienced longboarders traveled at their self-selected slow, typical and fast speeds. Mean longboarding speeds were 3.7, 4.5 and 5.1 m s(-1), during slow, typical and fast trials, respectively. Mean rates of oxygen consumption were 24.1, 29.1 and 37.2 ml kg(-1) min(-1) and mean rates of energy expenditure were 33.5, 41.8 and 52.7 kJ min(-1) at the slow, typical and fast speeds, respectively. At typical speeds, average intensity was ~8.5 METs. There was a significant positive relationship between oxygen consumption and energy expenditure versus speed (R(2) = 0.69 (P < 0.001), and R(2) = 0.78 (P < 0.001), respectively). The gross metabolic cost was ~2.2 J kg(-1) m(-1) at the typical speed, greater than that reported for cycling and ~50% smaller than that of walking. These results suggest that longboarding is a novel form of physical activity that elicits vigorous intensity, yet is economical compared to walking.

  10. Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework

    International Nuclear Information System (INIS)

    Zhou, X.Y.; Li, D.

    2000-01-01

    This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be 'embedded' into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem

  11. Stochastic isotropic hyperelastic materials: constitutive calibration and model selection

    Science.gov (United States)

    Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain

    2018-03-01

    Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.

  12. Countering the Consequences of Ego Depletion: The Effects of Self-Talk on Selective Attention.

    Science.gov (United States)

    Gregersen, Jón; Hatzigeorgiadis, Antonis; Galanis, Evangelos; Comoutos, Nikos; Papaioannou, Athanasios

    2017-06-01

    This study examined the effects of a self-talk intervention on selective attention in a state of ego depletion. Participants were 62 undergraduate students with a mean age of 20.02 years (SD = 1.17). The experiment was conducted in four consecutive sessions. Following baseline assessment, participants were randomly assigned into experimental and control groups. A two-session training was conducted for the two groups, with the experimental group using self-talk. In the final assessment, participants performed a selective attention test, including visual and auditory components, following a task inducing a state of ego depletion. The analysis showed that participants of the experimental group achieved a higher percentage of correct responses on the visual test and produced faster reaction times in both the visual and the auditory test compared with participants of the control group. The results of this study suggest that the use of self-talk can benefit selective attention for participants in states of ego depletion.

  13. Characterization of rich in calcium materials using X-ray selective absorbers

    International Nuclear Information System (INIS)

    Guereca, G.; Ruvalcaba, J.L.

    2004-01-01

    For Particle Induced X-ray Emission Spectroscopy (PIXE) and X-ray Fluorescence Technique (FRX), the analysis of materials rich in one or two elements may present some difficulties due to high counting rates and saturation effects in X-ray detectors. In this case, it is possible to use selective absorbers in order to reduce the intensity of the major elements with low attenuation for the X-rays of other elements of the material. Using selective absorbers, the detection limits and the sensitivity are increased. For rich Ca materials (shells, bone, teeth and stucco, for instance), the high intensity of Ca X-rays interferes with the detection of lighter and heavier elements. Cl, Ar and Ag compounds are good candidates for Ca selective absorbers, but only Ag and Ar may have a practical absorber thickness. A selective absorber for Ca X-rays using a combination of thin Ag films and a flux of Ar and He was tested at the external beam setup of the Tandem Pelletron Accelerator for PIXE measurements. The improvement on elements detection on bone and colored stucco is shown. (Author) 8 refs., 2 tabs., 8 figs

  14. Asymmetric Information, Self-selection, and Pricing of Insurance Contracts

    DEFF Research Database (Denmark)

    Donnelly, Catherine; Englund, Martin Kristian; Nielsen, Jens Perch

    2014-01-01

    This article presents an optional bonus-malus contract based on a priori risk classification of the underlying insurance contract. By inducing self-selection, the purchase of the bonus-malus contract can be used as a screening device. This gives an even better pricing performance than both...... an experience rating scheme and a classical no-claims bonus system. An application to the Danish automobile insurance market is considered....

  15. Two-year Randomized Clinical Trial of Self-etching Adhesives and Selective Enamel Etching.

    Science.gov (United States)

    Pena, C E; Rodrigues, J A; Ely, C; Giannini, M; Reis, A F

    2016-01-01

    The aim of this randomized, controlled prospective clinical trial was to evaluate the clinical effectiveness of restoring noncarious cervical lesions with two self-etching adhesive systems applied with or without selective enamel etching. A one-step self-etching adhesive (Xeno V(+)) and a two-step self-etching system (Clearfil SE Bond) were used. The effectiveness of phosphoric acid selective etching of enamel margins was also evaluated. Fifty-six cavities were restored with each adhesive system and divided into two subgroups (n=28; etch and non-etch). All 112 cavities were restored with the nanohybrid composite Esthet.X HD. The clinical effectiveness of restorations was recorded in terms of retention, marginal integrity, marginal staining, caries recurrence, and postoperative sensitivity after 3, 6, 12, 18, and 24 months (modified United States Public Health Service). The Friedman test detected significant differences only after 18 months for marginal staining in the groups Clearfil SE non-etch (p=0.009) and Xeno V(+) etch (p=0.004). One restoration was lost during the trial (Xeno V(+) etch; p>0.05). Although an increase in marginal staining was recorded for groups Clearfil SE non-etch and Xeno V(+) etch, the clinical effectiveness of restorations was considered acceptable for the single-step and two-step self-etching systems with or without selective enamel etching in this 24-month clinical trial.

  16. Vocational Preferences and College Expectations: An Extension of Holland's Principle of Self-Selection

    Science.gov (United States)

    Pike, Gary R.

    2006-01-01

    Holland's theory of vocational preferences provides a powerful framework for studying students' college experiences. A basic proposition of Holland's theory is that individuals actively seek out and select environments that are congruent with their personality types. Although studies consistently support the self-selection proposition, they have…

  17. Measuring coating thicknesses on continuously moving material

    International Nuclear Information System (INIS)

    Holler, J.H.; Stanton, W.B.; Spongr, J.J.; Joffe, B.B.; Raffelsberger, P.W.; Tiebor, J.E.

    1982-01-01

    A method and apparatus using radiation techniques for measuring coating thicknesses on continuously moving strip material without altering a predetermined path along which it travels. A shuttle carrying a measuring probe having a radioactive isotope source and a detection device is provided for reciprocation along a preselected segment of the path of the strip. The shuttle and the probe are releasably engaged with the strip and carried thereby for synchronous movement therewith in the forward direction during a measurement cycle, and are disengaged from the strip when no measurement is being made, the movement of the shuttle then being controlled by an independent drive mechanism, shown as a belt drive, which reciprocates the shuttle along the rails. A belt drives it forward more slowly than the strip, which then engages the shuttle to pull it at strip speed, allowed by a pulley clutch. (author)

  18. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    International Nuclear Information System (INIS)

    Yu, Zhiyong

    2013-01-01

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right

  19. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyong, E-mail: yuzhiyong@sdu.edu.cn [Shandong University, School of Mathematics (China)

    2013-12-15

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right.

  20. Self-imposed self-assessment program at a DOE Nuclear Facility

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Loud, J.J.; Walter, E.C.

    1996-01-01

    The Nuclear Materials and Technology (NMT) Division at Los Alamos National Laboratory (LANL) has implemented a performance-based self-assessment program at the TA-55 plutonium facility. The program was conceptualized and developed by LANL's internal assessment group, AA-2. The management walkaround program fosters continuous improvement in NMT products and performance of its activities. The program, based on experience from the Institute of Nuclear Power Operations, is endorsed at the site by the U.S. Department of Energy (DOE) Environment, Safety, and Health (ES ampersand H) personnel and by the Defense Nuclear Facility Safety Board. The self-assessment program focuses on how work is actually performed rather than on paperwork or process compliance. Managers critically and continually assess ES ampersand H, conduct of operations, and other functional area requirements

  1. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  2. Omni-directional selective shielding material based on amorphous glass coated microwires.

    Science.gov (United States)

    Ababei, G; Chiriac, H; David, V; Dafinescu, V; Nica, I

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  3. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    Science.gov (United States)

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  4. Merit exponents and control area diagrams in materials selection

    International Nuclear Information System (INIS)

    Zander, Johan; Sandstroem, Rolf

    2011-01-01

    Highlights: → Merit exponents are introduced to generalise the merit indices commonly used in materials selection. → The merit exponents can rank materials in general design situations. → To allow identification of the active merit exponent(s), control area diagrams are used. → Principles for generating the control area diagrams are presented. -- Abstract: Merit indices play a fundamental role in materials selection, since they enable ranking of materials. However, the conventional formulation of merit indices is associated with severe limitations. They are dependent on the explicit solution of the variables in the equations for the constraints from the design criteria. Furthermore, it is not always easy to determine which the controlling merit index is. To enable the ranking of materials in more general design cases, merit exponents are introduced as generalisations of the merit indices. Procedures are presented for how to compute the merit exponents numerically without having to solve equations algebraically. Merit exponents (and indices) are only valid in a certain range of property values. To simplify the identification of the controlling merit exponent, it is suggested that so called control area diagrams are used. These diagrams consist of a number of domains, each showing the active constraints and the controlling merit exponent. It is shown that the merit exponents play a crucial role when the control area diagram (CAD) is set up. The principles in the paper are developed for mechanically loaded components and are illustrated for engineering beams with two or three geometric variables.

  5. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Directory of Open Access Journals (Sweden)

    Satu Strandman

    2016-04-01

    Full Text Available Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.

  6. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment

    NARCIS (Netherlands)

    Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T.

    2016-01-01

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous

  7. Effect of Music Tempo on Attentional Focus and Perceived Exertion during Self-selected Paced Walking

    OpenAIRE

    SILVA, ALDO COELHO; DOS SANTOS FERREIRA, SANDRO; ALVES, RAGAMI CHAVES; FOLLADOR, LUCIO; DA SILVA, SERGIO GREGORIO

    2016-01-01

    This study investigated the influence of music on the rating of perceived exertion (RPE) and attentional focus during walking at a self-selected pace. Fifteen overweight and obese women volunteered to participate in the study. They underwent four sessions: the first for incremental maximal test and anthropometric measurement followed by three experimental sessions. After the first session, they were exposed to three 30-minute walking sessions at a self-selected pace in a counterbalanced order...

  8. An analyst's self-analysis.

    Science.gov (United States)

    Calder, K T

    1980-01-01

    I have told you why I selected the topic of self-analysis, and I have described my method for it: of recording primary data such as dreams, daydreams, memories, and symptoms and of recording associations to this primary data, followed by an attempt at analyzing this written material. I have described a dream, a memory and a daydream which is also a symptom, each of which primary data I found useful in understanding myself. Finally, I reached some conclusions regarding the uses of self-analysis, including self-analysis as a research tool.

  9. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene.

    Science.gov (United States)

    Zhao, Yunlong; Feng, Jiangang; Liu, Xue; Wang, Fengchao; Wang, Lifen; Shi, Changwei; Huang, Lei; Feng, Xi; Chen, Xiyuan; Xu, Lin; Yan, Mengyu; Zhang, Qingjie; Bai, Xuedong; Wu, Hengan; Mai, Liqiang

    2014-08-01

    High-energy lithium battery materials based on conversion/alloying reactions have tremendous potential applications in new generation energy storage devices. However, these applications are limited by inherent large volume variations and sluggish kinetics. Here we report a self-adaptive strain-relaxed electrode through crumpling of graphene to serve as high-stretchy protective shells on metal framework, to overcome these limitations. The graphene sheets are self-assembled and deeply crumpled into pinecone-like structure through a contraction-strain-driven crumpling method. The as-prepared electrode exhibits high specific capacity (2,165 mAh g(-1)), fast charge-discharge rate (20 A g(-1)) with no capacity fading in 1,000 cycles. This kind of crumpled graphene has self-adaptive behaviour of spontaneous unfolding-folding synchronized with cyclic expansion-contraction volumetric variation of core materials, which can release strain and maintain good electric contact simultaneously. It is expected that such findings will facilitate the applications of crumpled graphene and the self-adaptive materials.

  10. Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials

    Science.gov (United States)

    Jones, Brad Howard

    Ternary blends of two homopolymers and a diblock copolymer can self-assemble into interpenetrating, three dimensionally-continuous networks with a characteristic length scale of ˜ 100 nm. In this thesis, it is shown that these liquid phases, known as polymeric bicontinuous microemulsions (BμE), can be designed as versatile precursors to nanoporous materials having pores with uniform sizes of ˜ 100 nm. The model blends from which the porous materials are derived are composed of polyethylene (PE) and a sacrificial polyolefin. The liquid BμE structure is captured by crystallization of the PE, and a three-dimensionally continuous pore network with a narrow pore size distribution is generated by selective extraction of the sacrificial component. The original BμE structure is retained in the resultant nanoporous PE. This monolithic material is then used as a template in the synthesis of other nanoporous materials for which structural control at the nm scale has traditionally been difficult to achieve. These materials, which include a high-temperature ceramic, polymeric thermosets, and a conducting polymer, are produced by a simple nanocasting process, providing an inverse replica of the PE template. On account of the BμE structure of the template, the product materials also possess three-dimensionally continuous pore networks with narrow size distributions centered at ˜ 100 nm. The PE template is further used as a template for the production of hierarchically structured inorganic and polymeric materials by infiltration of mesostructured compounds into its pore network. In the former case, a hierarchically porous SiO2 material is demonstrated, simultaneously possessing two discrete, bicontinuous pore networks with sizes differing by over an order of magnitude. Finally, the templating procedures are extended to thin films supported on substrates and novel conductive polymer films are synthesized. The work described herein represents an unprecedented suite of

  11. 25 CFR 1000.27 - How does the Director select which Tribes in the applicant pool become self-governance Tribes?

    Science.gov (United States)

    2010-04-01

    ... applicant pool become self-governance Tribes? 1000.27 Section 1000.27 Indians OFFICE OF THE ASSISTANT... for Participation in Tribal Self-Governance Admission into the Applicant Pool § 1000.27 How does the Director select which Tribes in the applicant pool become self-governance Tribes? The Director selects up...

  12. Physical Activity Patterns and Self-Efficacy of Selected College Students

    Science.gov (United States)

    Hutchins, Matt; Drolet, Judy C.; Ogletree, Roberta J.

    2010-01-01

    Much attention has been given to the fact that Americans are becoming less active. This study was designed to examine the levels of exercise-specific self-efficacy and physical activity rates in a selected group of college students. Students were recruited as they entered a fitness facility. Participation consisted of completing a survey that…

  13. Selected Bibliography of Egyptian Educational Materials, Vol. 3, No. 2, 1977.

    Science.gov (United States)

    Al-Ahram Center for Scientific Translations, Cairo (Egypt).

    The annotated bibliography identifies 134 selected educational materials from Egypt published during 1977. The materials are drawn from Egyptian newspapers, journals, government publications, and university research reports. The entries are organized into 54 categories, including Art Education, Arabic Language, Commercial Schools, Curricula,…

  14. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  15. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    Science.gov (United States)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  16. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  17. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  18. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  19. Selection of material balance areas and item control areas

    International Nuclear Information System (INIS)

    1975-04-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Material,'' requires certain licensees authorized to possess more than one effective kilogram of special nuclear material to establish Material Balance Areas (MBAs) or Item Control Areas (ICAs) for the physical and administrative control of nuclear materials. This section requires that: (1) each MBA be an identifiable physical area such that the quantity of nuclear material being moved into or out of the MBA is represented by a measured value; (2) the number of MBAs be sufficient to localize nuclear material losses or thefts and identify the mechanisms; (3) the custody of all nuclear material within an MBA or ICA be the responsibility of a single designated individual; and (4) ICAs be established according to the same criteria as MBAs except that control into and out of such areas would be by item identity and count for previously determined special nuclear material quantities, the validity of which must be ensured by tamper-safing unless the items are sealed sources. This guide describes bases acceptable to the NRC staff for the selection of material balance areas and item control areas. (U.S.)

  20. Evidence of discontinuous and continuous gas migration through undisturbed and self-sealed Cox clay-stone

    International Nuclear Information System (INIS)

    Davy, C. A.; M'Jahad, S.; Skoczylas, F.; Talandier, J.; Ghayaza, M.

    2012-01-01

    In order to assess performance and safety of nuclear waste long-term repository, varied damage and failure scenarios are investigated by the French Agency for Nuclear Waste Management (Andra), in partnership with academic experts. In particular, anaerobic corrosion of carbon steel canisters, coupled to radiolysis of water and organic waste, may induce hydrogen gas production. Gradually, gas pressure may increase first, inside disposal pits, for example, at the interface between waste metal canisters and host rock and, subsequently, inside the repository tunnel. Aside from diffusion phenomena, whenever the capillary threshold for gas passage is reached, hydrogen gas leakage may occur through the whole structure, including the geological clay layer. One main issue is to identify the threshold pressure when gas starts to migrate into clay-stone and what mechanisms are involved in this gas passage. Whereas gas entry is reached as soon as gas starts to enter the porous material, gas breakthrough pressure (GBP) is reached when gas passes from one side to the other of the porous network, and it is indeed, more appropriate to describe gas migration through a laboratory sample. In Hildenbrand et al., GBP is assessed after discontinuous gas passage, as the residual gas pressure difference between two ends of a porous clay-stone sample, whereas Horseman et al. identify a continuous fluid migration pressure, through downstream flow-rate measurements. The latter is attributed to hydraulic fracturing or capillary passage, while the former is interpreted as capillary snap off. Egermann et al. present a review of gas entry pressure measurement methods. They are mainly the so-called dynamic and racking methods. The dynamic method is conducted under imposed gas pressure on the upstream sample side, whereas the racking method is performed under imposed downstream flow-rate. The so-called step-by-step method consists in imposing progressively increasing upstream gas pressure. Although

  1. Selected Bibliography of Egyptian Educational Materials, Vol. 1, No. 3, 1975.

    Science.gov (United States)

    Al-Ahram Center for Scientific Translations, Cairo (Egypt).

    There are 101 selected entries in this annotated bibliography of Egyptian materials on education published in 1975. Materials include journal articles, books, and government documents. The bibliography covers the following topics: academic certificates and dissertations, art education, audiovisual aids, camps, civics curricula, conferences and…

  2. Selected Bibliography of Egyptian Educational Materials, Vol. 1, No. 2, 1975.

    Science.gov (United States)

    Al-Ahram Center for Scientific Translations, Cairo (Egypt).

    There are 108 selected entries in this annotated bibliography of Egyptian materials on education published in 1975. Materials include journal articles, books, and government documents. The bibliography covers the following topics: adolescence, art education, child upbringing, comprehensive schools, curricula, educational change, educational aids,…

  3. Controlling material birefringence in sapphire via self-assembled, sub-wavelength defects

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2018-02-01

    Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. Generally, this is an intrinsic optical property of a material and cannot be altered. Here, we report a novel technique—direct laser writing—that enables us to control the natural, material birefringence of sapphire over a broad range of wavelengths. The broadband form birefringence originating from self-assembled, periodic array of sub-wavelength (˜ 50-200 nm) defects created by laser writing, can enhance, suppress or maintain the material birefringence of sapphire without affecting its transparency range in visible or its surface quality.

  4. Correction for gamma-ray self-attenuation in regular heterogeneous materials

    International Nuclear Information System (INIS)

    Parker, J.L.

    1981-09-01

    A procedure for determining the total correction factor for gamma-ray self-attenuation in regular heterogeneous materials is derived and discussed. The result of a practical application of the procedure to the passive gamma-ray assay of the 235 U content of high-temperature gas reactor fuel is presented

  5. Self-organized spectrum chunk selection algorithm for Local Area LTE-Advanced

    DEFF Research Database (Denmark)

    Kumar, Sanjay; Wang, Yuanye; Marchetti, Nicola

    2010-01-01

    This paper presents a self organized spectrum chunk selection algorithm in order to minimize the mutual intercell interference among Home Node Bs (HeNBs), aiming to improve the system throughput performance compared to the existing frequency reuse one scheme. The proposed algorithm is useful...

  6. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  7. Monitoring the restoration of interfacial contact for self healing thermal interface materials for LED and microelectronic applications

    NARCIS (Netherlands)

    Lafont, U.L.; Van Zeijl, H.W.; Van der Zwaag, S.

    2013-01-01

    While conventional self healing materials focus on the restoration of mechanical properties, newer generations of self healing materials focus on the restoration of other functional (i.e. non-mechanical) properties. Thermal conductivity is an example of an important functional property of a Thermal

  8. Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates

    Science.gov (United States)

    Panchapakesan, Balaji; Cavicchi, Richard; Semancik, Steve; DeVoe, Don L.

    2006-01-01

    In this paper, the sensitivity, stability and selectivity of nanoparticle engineered tin oxide (SnO2) are reported, for microhotplate chemical sensing applications. 16 Å of metals such as nickel, cobalt, iron, copper and silver were selectively evaporated onto each column of the microhotplate array. Following evaporation, the microhotplates were heated to 500 °C and SnO2 was deposited on top of the microhotplates using a self-aligned chemical vapour deposition process. Scanning electron microscopy characterization revealed control of SnO2 nanostructures in the range of 20-121 nm. Gas sensing in seven different hydrocarbons revealed that metal nanoparticles that helped in producing faster nucleation of SnO2 resulted in smaller grain size and higher sensitivity. Sensitivity as a function of concentration and grain size is addressed for tin oxide nanostructures. Smaller grain sizes resulted in higher sensitivity of tin oxide nanostructures. Temperature programmed sensing of the devices yielded shape differences in the response between air and methanol, illustrating selectivity. Spiderweb plots were used to monitor the materials programmed selectivity. The shape differences between different gases in spiderweb plots illustrate materials selectivity as a powerful mapping approach for monitoring selectivity in various gases. Continuous monitoring in 80 ppm methanol yielded stable sensor response for more than 200 h. This comprehensive study illustrates the use of a nanoparticle engineering approach for sensitive, selective and stable gas sensing applications.

  9. Selected Bibliography of Egyptian Educational Materials, Vol. 3, No. 1, 1977.

    Science.gov (United States)

    Al-Ahram Center for Scientific Translations, Cairo (Egypt).

    This annotated bibliography lists 135 selected educational materials from Egypt covering the period 1976-1977. The materials are drawn from a variety of Egyptian newspapers, journals, government publications, and university research reports. The entries are organized into 55 categories, including Adolescence; Adult Education; Art Education; Basic…

  10. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  11. Quality indexes for selecting control materials of the nuclear reactors

    International Nuclear Information System (INIS)

    Martinez-Val, J.M.; Pena, J.; Esteban Naudin, A.

    1981-01-01

    Quality indexes are established and valued for selecting control materials, The requirements for accomplishing such purposes are explained with detailed analysis: absortion cross section must be as high as possible, adequate reactivity evolution versus depletion, good resistance to radiation, appropiate thermal stability, mechanical resistance and ductility, chemical compatibility with the environment, good heat transfer properties, abundant in the nature and low costs. At present Westinghouse desire to commercialize hafnium as control material shows the exciting task of looking for new materials controlling nuclear reactors. (auth.)

  12. 17 CFR 240.19h-1 - Notice by a self-regulatory organization of proposed admission to or continuance in membership or...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Notice by a self-regulatory... Notice by a self-regulatory organization of proposed admission to or continuance in membership or... statutory disqualification. (1) Any self-regulatory organization proposing, conditionally or unconditionally...

  13. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  14. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2014-01-01

    Full Text Available We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.

  15. Effects of musical tempo on physiological, affective, and perceptual variables and performance of self-selected walking pace.

    Science.gov (United States)

    Almeida, Flávia Angélica Martins; Nunes, Renan Felipe Hartmann; Ferreira, Sandro Dos Santos; Krinski, Kleverton; Elsangedy, Hassan Mohamed; Buzzachera, Cosme Franklin; Alves, Ragami Chaves; Gregorio da Silva, Sergio

    2015-06-01

    [Purpose] This study investigated the effects of musical tempo on physiological, affective, and perceptual responses as well as the performance of self-selected walking pace. [Subjects] The study included 28 adult women between 29 and 51 years old. [Methods] The subjects were divided into three groups: no musical stimulation group (control), and 90 and 140 beats per minute musical tempo groups. Each subject underwent three experimental sessions: involved familiarization with the equipment, an incremental test to exhaustion, and a 30-min walk on a treadmill at a self-selected pace, respectively. During the self-selected walking session, physiological, perceptual, and affective variables were evaluated, and walking performance was evaluated at the end. [Results] There were no significant differences in physiological variables or affective response among groups. However, there were significant differences in perceptual response and walking performance among groups. [Conclusion] Fast music (140 beats per minute) promotes a higher rating of perceived exertion and greater performance in self-selected walking pace without significantly altering physiological variables or affective response.

  16. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Iwan, A.; Cigl, Martin; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, Věra

    2016-01-01

    Roč. 6, č. 14 (2016), s. 11577-11590 ISSN 2046-2069 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : self-assembling materials * functional dopants * organic photovoltaic cells * azo group * liquid crystal Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  17. Self-construal priming selectively modulates the scope of visual attention

    Directory of Open Access Journals (Sweden)

    Zhuozhuo eLiu

    2015-09-01

    Full Text Available Self-concept is one of the major factors to explain the cultural differences between East Asians and Westerners. In the field of visual attention, most studies have focused on the modulation of visual spatial-based attention, whereas possible influences of culture or self-concept on other types of visual attention remain largely unexplored. The present study investigated the possible modulation of visual feature-based attention by self-concept, using a within-group self-construal priming design. The experiment paradigm employed visual stimuli consisted of two intermixing random dot clouds presented in the focal visual field with red and green colors. After primed with an interdependent, independent or neutral self-construal, the participants were instructed to attend to one of the focally presented dot cloud and respond to occasional luminance decrement events of the attended dot cloud. The detection of the focal events was found to be significantly faster when exogenously cued by a peripheral dot cloud of either the same or different colors as the attended focal dot cloud (congruent / incongruent, compared to the uncued condition. More importantly, the self-construal priming took effect only on the reaction time (RT differences between the congruent and incongruent cued conditions: the participants responded much slower to incongruent cued events than congruent cued events under interdependent self-construal priming, while the RT difference was significantly smaller under independent self-construal priming. A closer look on the results suggests that the attention scope is selectively modulated by self-construal priming, and the modulation is mainly reflected by varying the degree of suppression on the processing of the incongruent contextual stimuli that do not share visual features with the focal object. Our findings provide new evidences that could possibly extend the current understanding on the cultural influence on visual attention.

  18. A Self-Ethnographic Investigation of Continuing Education Program in Engineering Arising from Economic Structural Change

    Science.gov (United States)

    Kaihlavirta, Auri; Isomöttönen, Ville; Kärkkäinen, Tommi

    2015-01-01

    This paper provides a self-ethnographic investigation of a continuing education program in engineering in Central Finland. The program was initiated as a response to local economic structural change, in order to offer re-education possibilities for a higher educated workforce currently under unemployment threat. We encountered considerable…

  19. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    International Nuclear Information System (INIS)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris; Shimoni, Eyal; Kaplan-Ashiri, Ifat; Werle, Kai; Wohlleben, Wendel

    2017-01-01

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Genetic Counseling Supervisors' Self-Efficacy for Select Clinical Supervision Competencies.

    Science.gov (United States)

    Finley, Sabra Ledare; Veach, Pat McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S; Callanan, Nancy

    2016-04-01

    Supervision is a primary instructional vehicle for genetic counseling student clinical training. Approximately two-thirds of genetic counselors report teaching and education roles, which include supervisory roles. Recently, Eubanks Higgins and colleagues published the first comprehensive list of empirically-derived genetic counseling supervisor competencies. Studies have yet to evaluate whether supervisors possess these competencies and whether their competencies differ as a function of experience. This study investigated three research questions: (1) What are genetic counselor supervisors' perceptions of their capabilities (self-efficacy) for a select group of supervisor competencies?, (2) Are there differences in self-efficacy as a function of their supervision experience or their genetic counseling experience, and 3) What training methods do they use and prefer to develop supervision skills? One-hundred thirty-one genetic counselor supervisors completed an anonymous online survey assessing demographics, self-efficacy (self-perceived capability) for 12 goal setting and 16 feedback competencies (Scale: 0-100), competencies that are personally challenging, and supervision training experiences and preferences (open-ended). A MANOVA revealed significant positive effects of supervision experience but not genetic counseling experience on participants' self-efficacy. Although mean self-efficacy ratings were high (>83.7), participant comments revealed several challenging competencies (e.g., incorporating student's report of feedback from previous supervisors into goal setting, and providing feedback about student behavior rather than personal traits). Commonly preferred supervision training methods included consultation with colleagues, peer discussion, and workshops/seminars.

  1. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  2. Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions.

    Science.gov (United States)

    Frisch-Daiello, Jessica L; Williams, Mary R; Waddell, Erin E; Sigman, Michael E

    2014-03-01

    The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to their American Society for Testing and Materials (ASTM) class designations and to determine the ions associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples are projected onto the SOFM. The results indicate the similarities and differences between the variables of the newly projected data compared to those of the data used to train the SOFM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Self-Regulated Learning: The Continuous-Change Conceptual Framework and a Vision of New Paradigm, Technology System, and Pedagogical Support

    Science.gov (United States)

    Huh, Yeol; Reigeluth, Charles M.

    2017-01-01

    A modified conceptual framework called the Continuous-Change Framework for self-regulated learning (SRL) is presented. Common elements and limitations among the past frameworks are discussed in relation to the modified conceptual framework. The iterative nature of the goal setting process and overarching presence of self-efficacy and motivational…

  4. Self-selection contributes significantly to the lower adiposity offaster, longer-distanced, male and female walkers

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.

    2006-01-06

    Although cross-sectional studies show active individuals areleaner than their sedentary counterparts, it remains to be determined towhat extent this is due to initially leaner men and women choosing toexercise longer and more intensely (self-selection bias). In this reportwalking volume (weekly distance) and intensity (speed) were compared tocurrent BMI (BMIcurrent) and BMI at the start of walking (BMIstarting) in20,353 women and 5,174 men who had walked regularly for exercise for 7.2and 10.6 years,respectively. The relationships of BMIcurrent andBMIstarting with distance and intensity were nonlinear (convex). Onaverage, BMIstarting explained>70 percent of the association betweenBMIcurrent and intensity, and 40 percent and 17 percent of theassociation between BMIcurrent and distance in women and men,respectively. Although the declines in BMIcurrent with distance andintensity were greater among fatter than leaner individuals, the portionsattributable to BMIstarting remained relatively constant regardless offatness. Thus self-selection bias accounts for most of the decline in BMIwith walking intensity and smaller albeit significant proportions of thedecline with distance. This demonstration of self-selection is germane toother cross-sectional comparisons in epidemiological research, givenself-selection is unlikely to be limited to weight or peculiar tophysical activity.

  5. Application in continuing education for the health professions: chapter five of "Andragogy in Action".

    Science.gov (United States)

    Knowles, M S

    1985-04-01

    Although the threat of human obsolescence confronts all of humanity, given the accelerating pace of change in our society, it has a particularly strong impact on the professions--especially the health professions. The half-life of the knowledge, skills, attitudes, and values required by physicians, nurses, allied health professionals, and pharmacists is shrinking with increasing speed. Citizens worry about being treated by health practitioners who have not kept up to date and have reacted by passing laws mandating relicensing and continuing professional education. The health care professions and institutions have responded to the threat by mounting massive programs of continuing professional education; in fact, this is probably the fastest-growing aspect of all of education. And, since the clientele of continuing professional education consists exclusively of adults, these programs have tended increasingly to be based on principles of adult learning. This chapter opens with a description of a pilot project for physicians at the University of Southern California, in which the central theme is self-directed learning. The selection presents the need for and assumptions and goals of the project and the major program components, including needs assessment, individualized learning plans, information brokering, and the use of peer resource groups. Then follow three selections focused on the continuing education of nurses. Selection 2, by the American Nurses' Association, sets forth a policy statement and guidelines for self-directed continuing education in nursing. Its provisions could easily be adapted to other professions. The application of the andragogical model to highly technical training in cardiovascular nursing at Doctors Hospital in Little Rock is presented in selection 3, and selection 4 describes an innovative inservice education program in which primary responsibility is placed on the clinical nursing units at St. Mary's Hospital in Waterbury, Connecticut.

  6. Decision method for optimal selection of warehouse material handling strategies by production companies

    Science.gov (United States)

    Dobos, P.; Tamás, P.; Illés, B.

    2016-11-01

    Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.

  7. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  8. The Influence of Interactive Learning Materials on Self-Regulated Learning and Learning Satisfaction of Primary School Teachers in Mongolia

    Directory of Open Access Journals (Sweden)

    Shengru Li

    2018-04-01

    Full Text Available The purpose of this study was to investigate the effects of interactive learning materials on learners’ self-regulated learning processes and learning satisfaction. A two-group experimental design was employed for 285 primary school teachers involved in teacher training. Teachers in the experimental group utilised interactive learning materials along with training videos and guidelines for their self-development at the school level. Teachers in the control group conducted self-development only with training videos and guidelines. The result was analysed using self-regulated learning theory explaining how one’s self-regulation processes affect learning satisfaction. Five self-regulation processes were identified in this study: internal motivation, motivation for better assessment, planning and organizing skills, critical and positive thinking skills, and effort regulation. The analysis was conducted in two steps. First, t-test analysis was used to identify the significant differences between the experimental group and the control group. The analysis revealed: (1 teachers conducting self-development with interactive learning materials were highly motivated to achieve better teacher assessment, (2 teachers with interactive learning materials had higher learning satisfaction. Second, the study further investigated the effect of interactive materials on the relationship between self-regulation processes and learning satisfaction, using moderation analysis. The results showed that interactive materials significantly affect the relationship between motivation for better assessment and learning satisfaction, as well as the relationship between internal motivation and learning satisfaction. These results were complemented by qualitative analysis including interviews and focus group discussions with teachers.

  9. Procedural advice on self-assessment and task selection in learner-controlled education

    NARCIS (Netherlands)

    Taminiau, Bettine; Corbalan, Gemma; Kester, Liesbeth; Van Merriënboer, Jeroen; Kirschner, Paul A.

    2011-01-01

    Taminiau, E. M. C., Corbalan, G., Kester, L., Van Merriënboer, J. J. G., & Kirschner, P. A. (2010, March). Procedural advice on self-assessment and task selection in learner-controlled education. Presentation at the ICO Springschool, Niederalteich, Germany.

  10. Kemampuan Pemecahan Masalah pada Materi Trigonometri Dikaji dari Self Concept Siswa Kelas XI IPA

    OpenAIRE

    Sartika, Ita; Jamiah, Yulis; Bistari

    2014-01-01

    The research aims to describe the problem-solving ability on the materials about trigonometry of students' self concept in SMA Kemala Bhayangkari 1 Kubu Raya eleven grade. The method is used descriptive method with case study of research. The sample of research was 9 students. The sample determination is done by taking 3 students who have high self concept, 3 students who have average self concept, and 3 students who have low self concept. The results of data analysis showed tha the problem-s...

  11. Improving the sun drying of apricots (Prunus armeniaca) with photo-selective dryer cabinet materials

    Science.gov (United States)

    Photo-selective materials have been studied for their effects on the pre-harvest quality of horticultural crops, but little work has been done on potential post-harvest effects. The aim of this work was to characterize the effects of 5 different photo-selective acrylic materials (used as the lid to...

  12. Patient, resident, or person: Recognition and the continuity of self in long-term care for older people.

    Science.gov (United States)

    Pirhonen, Jari; Pietilä, Ilkka

    2015-12-01

    Becoming a resident in a long-term care facility challenges older people's continuity of self in two major ways. Firstly, as they leave behind their previous home, neighborhood, and often their social surroundings, older people have to change their life-long lifestyles, causing fears of the loss of one's self. Secondly, modern-day care facilities have some features of 'total' institutions that produce patient-like role expectations and thus challenge older people's selves. Our ethnographic study in a geriatric hospital and a sheltered home in Finland aims to find out what features of daily life either support or challenge older people's continuity of self. A philosophical reading of the concept of recognition is used to explore how various daily practices and interactions support recognizing people as persons in long-term care. Categories of institution-centered and person-centered features are described to illustrate multiple ways in which people are recognized and misrecognized. The discussion highlights some ways in which long-term care providers could use the results of the study. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Dual stimuli responsive self-reporting material for chemical reservoir coating

    Science.gov (United States)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  14. Material selection for elastic energy absorption in origami-inspired compliant corrugations

    International Nuclear Information System (INIS)

    Tolman, Sean S; Delimont, Isaac L; Howell, Larry L; Fullwood, David T

    2014-01-01

    Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. Recent attention to the potential for using origami in engineering may provide new methods for energy absorption and force distribution. A three-stage strategy is presented for selecting materials for such origami-inspired designs that can deform to achieve a desired motion without yielding, absorb elastic strain energy, and be lightweight or cost effective. Two material indices are derived to meet these requirements based on compliant mechanism theory. Finite element analysis is used to investigate the effects of the material stiffness in the Miura-ori tessellation on its energy absorption and force distribution characteristics compared with a triangular wave corrugation. An example is presented of how the method can be used to select a material for a general energy absorption application of the Miura-ori. Whereas the focus of this study is the Miura-ori tessellation, the methods developed can be applied to other tessellated patterns used in energy absorbing or force distribution applications. (paper)

  15. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    Hazelton, W.S.; Koo, W.H.

    1988-01-01

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  16. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  17. Learning by Exporting or Self Selection? Which Way for the Kenyan ...

    African Journals Online (AJOL)

    The results obtained show some significant differences between exporters and non exporters. The results also show some evidence for learning-by-doing hypothesis and evidence for self-selection of more efficient firms into exporting. On the policy front the paper calls for more focus on improving exports in order for Kenya ...

  18. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2017-01-01

    Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.

  19. Selected Audio-Visual Materials for Consumer Education. [New Version.

    Science.gov (United States)

    Johnston, William L.

    Ninety-two films, filmstrips, multi-media kits, slides, and audio cassettes, produced between 1964 and 1974, are listed in this selective annotated bibliography on consumer education. The major portion of the bibliography is devoted to films and filmstrips. The main topics of the audio-visual materials include purchasing, advertising, money…

  20. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  2. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  3. Continuous laser irradiation under ambient conditions: A simple way for the space-selective growth of gold nanoparticles inside a silica monolith

    International Nuclear Information System (INIS)

    El Hamzaoui, Hicham; Bernard, Remy; Chahadih, Abdallah; Chassagneux, Fernand; Bois, Laurence; Capoen, Bruno; Bouazaoui, Mohamed

    2011-01-01

    Highlights: → Visible continuous laser direct-write gold nanoparticles inside a silica monolith. → The presence of the additive (Na 2 CO 3 ) is not necessary to the growth of gold nanoparticles. → A simple heat treatment leads to precipitation of gold nanoparticles inside the silica matrices with, or without, the additive. → The local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism. -- Abstract: Thanks to the potential and various applications of metal-dielectric nanocomposites, their syntheses constitute an interesting subject in material research. In this work, we demonstrate the achievement of gold nanocrystals growth through a visible and continuous laser irradiation. The in situ and direct space-selective generation of metallic nanoparticles is localized under the surface within transparent silica monoliths. For that purpose, the porous silica monoliths are prepared using a sol-gel route and post-doped with gold precursors before the irradiation. The presence of Au nanoparticles inside the irradiated areas was evidenced using absorption spectroscopy, X-ray diffraction analysis and transmission electron microscopy. The comparison between the results obtained after a laser irradiation and by a simple heat-treatment reveals that the local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism.

  4. 25 CFR 518.8 - Does a tribe that holds a certificate of self-regulation have a continuing duty to advise the...

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Does a tribe that holds a certificate of self-regulation... NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS SELF REGULATION OF CLASS II GAMING § 518.8 Does a tribe that holds a certificate of self-regulation have a continuing duty to...

  5. BIM-Based Decision Support System for Material Selection Based on Supplier Rating

    Directory of Open Access Journals (Sweden)

    Abiola Akanmu

    2015-12-01

    Full Text Available Material selection is a delicate process, typically hinged on a number of factors which can be either cost or environmental related. This process becomes more complicated when designers are faced with several material options of building elements and each option can be supplied by different suppliers whose selection criteria may affect the budgetary and environmental requirements of the project. This paper presents the development of a decision support system based on the integration of building information models, a modified harmony search algorithm and supplier performance rating. The system is capable of producing the cost and environmental implications of different material combinations or building designs. A case study is presented to illustrate the functionality of the developed system.

  6. A clinical nurse specialist-led intervention to enhance medication adherence using the plan-do-check-act cycle for continuous self-improvement.

    Science.gov (United States)

    Russell, Cynthia L

    2010-01-01

    A clinical nurse specialist-led intervention to improve medication adherence in chronically ill adults using renal transplant recipients as an exemplar population is proposed. Meta-analyses and systematic reviews of chronically ill and transplant patients indicate that patient-specific characteristics not only are poor and inconsistent predictors for medication nonadherence but also are not amenable to intervention. Adherence has not meaningfully improved, despite meta-analyses and systematic narrative reviews of randomized controlled trials (RCTs) dealing with medication nonadherence in acutely and chronically ill persons and RCTs dealing with transplant patients. Interventions with a superior potential to enhance medication adherence must be developed. Use of a clinical nurse specialist-led continuous self-improvement intervention with adult renal transplant recipients is proposed. Continuous self-improvement focuses on improving personal systems thinking and behavior using the plan-do-check-act process. Electronic medication monitoring reports, one of several objective measures of medication adherence, are used by the clinician to provide patient feedback during the check process on medication-taking patterns. Continuous self-improvement as an intervention holds promise in supporting patient self-management and diminishing the blame that clinicians place on patients for medication nonadherence. Using an objective measure of medication adherence such as an electronic monitoring report fosters collaborative patient-clinician discussions of daily medication-taking patterns. Through collaboration, ideas for improving medication taking can be explored. Changes can be followed and evaluated for effectiveness through the continuous self-improvement process. Future studies should include RCTs comparing educational and/or behavioral interventions to improve medication adherence.

  7. Cermet materials, self-cleaning cermet filters, apparatus and systems employing same

    Science.gov (United States)

    Kong, Peter C.

    2005-07-19

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  8. Self-adaptive robot training of stroke survivors for continuous tracking movements

    Directory of Open Access Journals (Sweden)

    Morasso Pietro

    2010-03-01

    Full Text Available Abstract Background Although robot therapy is progressively becoming an accepted method of treatment for stroke survivors, few studies have investigated how to adapt the robot/subject interaction forces in an automatic way. The paper is a feasibility study of a novel self-adaptive robot controller to be applied with continuous tracking movements. Methods The haptic robot Braccio di Ferro is used, in relation with a tracking task. The proposed control architecture is based on three main modules: 1 a force field generator that combines a non linear attractive field and a viscous field; 2 a performance evaluation module; 3 an adaptive controller. The first module operates in a continuous time fashion; the other two modules operate in an intermittent way and are triggered at the end of the current block of trials. The controller progressively decreases the gain of the force field, within a session, but operates in a non monotonic way between sessions: it remembers the minimum gain achieved in a session and propagates it to the next one, which starts with a block whose gain is greater than the previous one. The initial assistance gains are chosen according to a minimal assistance strategy. The scheme can also be applied with closed eyes in order to enhance the role of proprioception in learning and control. Results The preliminary results with a small group of patients (10 chronic hemiplegic subjects show that the scheme is robust and promotes a statistically significant improvement in performance indicators as well as a recalibration of the visual and proprioceptive channels. The results confirm that the minimally assistive, self-adaptive strategy is well tolerated by severely impaired subjects and is beneficial also for less severe patients. Conclusions The experiments provide detailed information about the stability and robustness of the adaptive controller of robot assistance that could be quite relevant for the design of future large scale

  9. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  10. Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data

    Science.gov (United States)

    Gaspar-Cunha, A.; Recio, G.; Costa, L.; Estébanez, C.

    2014-01-01

    Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier. PMID:24707201

  11. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  12. Readability in reading materials selection and coursebook design for college English in China

    OpenAIRE

    Lu, Zhongshe

    2002-01-01

    This thesis studies the application of readability in reading materials selection and coursebook design for college English in an EFL context in China. Its aim is to develop rationales which coursebook writers can utilise in selecting materials as texts and as a basis for designing tasks. This study, through a combination of quantitative and qualitative research methods, argues that readability is applicable in the EFL Chinese context, and readability plays a important role in determining...

  13. Overview of recent work on self-healing in cementitious materials

    Directory of Open Access Journals (Sweden)

    Lv, Z.

    2014-12-01

    Full Text Available Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved by the self-healing phenomenon are reviewed from experimental investigation and practical experience. Several aspects of researches, such as autogenous healing capability of an innovative concrete incorporated geo-materials, self-healing of engineered cementitious composite and fire-damaged concrete, effect of mineral and admixtures on mechanism and efficiency of self-healing concrete are summarized to evaluate the presented progresses in the past several years and to outline the perspective for the further developments. Moreover, a special emphasis is given on the analytical models and computer simulation method of the researches of self-healing in cementitious materials.Las fisuras, y sobre todo las microfisuras, tienen una gran repercusión en la durabilidad y en la vida útil de los materiales cementantes. Ante este problema, la tecnología de la autorreparación, tanto autógena como autónoma, se presenta como una solución eficaz. El artículo se centra en la reparación autógena del hormigón, así como en algunos trabajos recientes sobre la reparación autónoma. Se describen las mejoras de las propiedades de durabilidad y de resistencia que proporciona la técnica del hormigón autorreparable, tanto desde el punto de vista de la investigación experimental como del de la experiencia práctica. A fin de evaluar los avances logrados en los últimos años y de trazar las grandes líneas de desarrollo futuro, se resumen varios de los aspectos

  14. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  15. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  16. Relationship of Employees’ Achievement Motivation and Quality of Working Life with Their Self-efficacy at Selected Hospitals with a Multi-group Analysis: Moderating Role of Organizational Ownership

    Science.gov (United States)

    Mahmoudi, Ghahraman; Rostami, Fahimeh Hoseinian; Mahmoudjanloo, Shaharbanoo; Jahani, Mohammad Ali

    2017-01-01

    Introduction: Motivational deficiencies and the low quality of working life significantly reduce employees’ work performance and consequently their efficacy (effectiveness and proper performance in doing a task or specific tasks). Aim: The aim of this study was to determine the relationship between achievement motivation and quality of working life with self-efficacy among staff working in Mazandaran hospitals, by taking organizational ownership as a mediator variable. Materials and Methods: This study was an applied descriptive-correlation. Research population consisted of all staff working in selected hospitals of Mazandaran Province, Iran. 341 employees were selected with randomly-stratified sampling as the statistical sample. Three valid questionnaires were used for data collection. Data were analysis based on structured equations and path analysis with SPSS19 and AMOS. Results: In private hospitals, there was a significant relationship between the quality of working life and self-efficacy (pmotivation and self-efficacy, there was no significant differences between university hospitals and social security hospitals, but relationship between the quality of working life and self-efficacy was significant (p motivation and self-efficacy in private hospitals and university hospitals, a significant differences was observed (pmotivation and quality of working life with self-efficacy. Staff’s empowerment courses for university hospitals and improvement in the overall space of job, increase in job security, reducing salary differences is suggested for private hospitals. PMID:29284991

  17. Procedural advice on self-assessment and task selection in learner-controlled education

    NARCIS (Netherlands)

    Taminiau, Bettine; Kester, Liesbeth; Corbalan, Gemma; Van Merriënboer, Jeroen; Kirschner, Paul A.

    2010-01-01

    Taminiau, E. M. C., Kester, L., Corbalan, G., Van Merriënboer, J. J. G., & Kirschner, P. A. (2010, July). Procedural advice on self-assessment and task selection in learner-controlled education. Paper presented at the Junior Researchers of EARLI Conference 2010, Frankfurt, Germany.

  18. Selective intercalation of six ligands molecules in a self-assembled triple helix

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Kerckhoffs, J.M.C.A.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    The addition of a ligand molecule to an artificial self-assembled triple helix leads to the selective intercalation of two hydrogen-bonded trimers in specific binding pockets. Furthermore, the triple helix suffers large conformational rearrangements in order to accommodate the ligand molecules in a

  19. Selection of materials using multi-criteria decision-making methods with minimum data

    Directory of Open Access Journals (Sweden)

    Shankar Chakraborty

    2013-07-01

    Full Text Available Selection of material for a specific engineering component, which plays a significant role in its design and proper functioning, is often treated as a multi-criteria decision-making (MCDM problem where the most suitable material is to be chosen based on a given set of conflicting criteria. For solving these MCDM problems, the designers do not generally know what should be the optimal number of criteria required for arriving at the best decisive action. Those criteria should be independent to each other and their number should usually limit to seven plus or minus two. In this paper, five material selection problems are solved using three common MCDM techniques to demonstrate the effect of number of criteria on the final rankings of the material alternatives. It is interesting to observe that the choices of the best suited materials solely depend on the criterion having the maximum priority value. It is also found that among the three MCDM methods, the ranking performance of VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje method is the best.

  20. Facile Selective and Diverse Fabrication of Superhydrophobic, Superoleophobic-Superhydrophilic and Superamphiphobic Materials from Kaolin.

    Science.gov (United States)

    Qu, Mengnan; Ma, Xuerui; He, Jinmei; Feng, Juan; Liu, Shanshan; Yao, Yali; Hou, Lingang; Liu, Xiangrong

    2017-01-11

    As the starting material, kaolin is selectively and diversely fabricated to the superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic materials, respectively. The wettability of the kaolin surface can be selectively controlled and regulated to different superwetting states by choosing the corresponding modification reagent. The procedure is facile to operate, and no special technique or equipment is required. In addition, the procedure is cost-effective and time-saving and the obtained super-repellent properties are very stable. The X-ray photoelectron spectroscopy analysis demonstrates different changes of kaolin particles surfaces which are responsible for the different super-repellency. The scanning electron microscopy displays geometric micro- and nanometer structures of the obtained three kinds of super-repellent materials. The results show that kaolin has good applications in many kinds of superwetting materials. The method demonstrated in this paper provides a new strategy for regulating and controlling the wettability of solid surfaces selectively, diversely, and comprehensively.

  1. Between-mode-differences in the value of travel time: Self-selection or strategic behaviour?

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Hjorth, Katrine; Lyk-Jensen, Stéphanie Vincent

    2010-01-01

    Using stated preference survey data, we measure the value of travel time for several transport modes. We find, like many before us, that the value of travel time varies across modes in the opposite direction of what would be the consequence of differences in comfort. We examine three candidate...... causes for the observed differences: Comfort effects, self-selection and strategic behaviour of respondents. Using experiments with both the current and an alternative mode we find that the differences in the value of travel time are consistent with self-selection and comfort effects. Moreover......, respondents having bus as the current or the alternative mode seem not to value comfort differently across modes. Strategic behaviour seems to play no role....

  2. A Negative Selection Algorithm Based on Hierarchical Clustering of Self Set and its Application in Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2011-08-01

    Full Text Available A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much less than the self set size, the detector generation efficiency is improved. Second, during the detector generation process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the article, the problem that the distances between antigens coverage to a constant value in the high dimensional space is analyzed, accordingly the Principle Component Analysis (PCA method is used to reduce the data dimension, and the fractional distance function is employed to enhance the distinctiveness between the self and non-self antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the traditional negative selection algorithms while the false alarm rate and time cost are reduced.

  3. The Effect of Vocabulary Self-Selection Strategy and Input Enhancement Strategy on the Vocabulary Knowledge of Iranian EFL Learners

    Science.gov (United States)

    Masoudi, Golfam

    2017-01-01

    The present study was designed to investigate empirically the effect of Vocabulary Self-Selection strategy and Input Enhancement strategy on the vocabulary knowledge of Iranian EFL Learners. After taking a diagnostic pretest, both experimental groups enrolled in two classes. Learners who practiced Vocabulary Self-Selection were allowed to…

  4. A Longitudinal Study of Relationships between Identity Continuity and Anxiety Following Brain Injury

    Directory of Open Access Journals (Sweden)

    R. S. Walsh

    2017-05-01

    Full Text Available Objective: Anxiety is of particular importance following acquired brain injury (ABI, because anxiety has been identified as a significant predictor of functional outcomes. Continuity of self has been linked to post ABI adjustment and research has linked self-discrepancy to anxiety. This longitudinal study investigates the impact of affiliative and ‘self as doer’ self-categorisations anxiety.Materials and Methods: Data was collected at two time points. Fifty-three adult ABI survivors participating in post-acute community neuro-rehabilitation participated at time one and 32 of these participated at time two. Participants completed a 28-item identity questionnaire based on Leach et al.’s (2008 multicomponent model of ingroup identification which measured the strength of affiliative and self as doer identities. Anxiety was measured using the Hospital Anxiety and Depression Scale.Results: Analysis indicates a significant mediated relationship between affiliative identification and anxiety via self as doer identification. Contrary to initial prediction, this relationship was significant for those with consistency in affiliative self-categorisation and inconsistency in ‘self as doer’ self-categorisation.Conclusion: These findings can be interpreted as evidencing the importance of identity continuity and multiplicity following ABI and contribute to the understanding of these through the use of a social identity approach.

  5. Material Selection for Dye Sensitized Solar Cells Using Multiple Attribute Decision Making Approach

    Directory of Open Access Journals (Sweden)

    Sarita Baghel

    2014-01-01

    Full Text Available Dye sensitized solar cells (DSCs provide a potential alternative to conventional p-n junction photovoltaic devices. The semiconductor thin film plays a crucial role in the working of DSC. This paper aims at formulating a process for the selection of optimum semiconductor material for nanostructured thin film using multiple attribute decision making (MADM approach. Various possible available semiconducting materials and their properties like band gap, cost, mobility, rate of electron injection, and static dielectric constant are considered and MADM technique is applied to select the best suited material. It was found that, out of all possible candidates, titanium dioxide (TiO2 is the best semiconductor material for application in DSC. It was observed that the proposed results are in good agreement with the experimental findings.

  6. The influence of self-relevant materials on working memory in dysphoric undergraduates.

    Science.gov (United States)

    Dai, Qin; Rahman, Shaoon; Lau, Becky; Sook Kim, Hyang; Deldin, Patricia

    2015-10-30

    Difficulties in updating working memory (WM) may underlie problems with regulating emotions that contribute to depression. To examine the ability of updating affective materials in WM, 33 dysphoric and 34 non-dysphoric participants were asked to evaluate the self-descriptiveness of emotional adjectives and provide answers to self-relevant questions. Within 3-7 days, they completed a two-back task with a series of self-irrelevant or self-relevant emotional words (they had generated previously) and four conditions (match-set, break-set, perseveration-set, and no-set). After the WM task, an unexpected recall task was administered; controls recalled more positive self-relevant words and intrusions while dysphoric participants recalled more negative self-relevant words and intrusions. In break-set trials of the two-back task, dysphoric individuals showed slower response to self-relevant words regardless of valence. In the match-set and perseveration-set trials, dysphoric participants showed delayed response to self-related negative words. Moreover, longer reaction times for self-relevant negative words were correlated with higher rumination and worse depression. The results suggest that dysphoric undergraduates are interfered more by and have a better memory of self-relevant negative stimuli in WM, which is closely correlated with rumination. This study is among the first to confirm the potential mechanism that could underwrite the involvement of self-schema in effectively regulating negative affect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. SMART: self-management of anticoagulation, a randomised trial [ISRCTN19313375].

    Science.gov (United States)

    McCahon, Deborah; Fitzmaurice, David A; Murray, Ellen T; Fuller, Christopher J; Hobbs, Richard F D; Allan, Teresa F; Raftery, James P

    2003-09-18

    Oral anticoagulation monitoring has traditionally taken place in secondary care because of the need for a laboratory blood test, the international normalised ratio (INR). The development of reliable near patient testing (NPT) systems for INR estimation has facilitated devolution of testing to primary care. Patient self-management is a logical progression from the primary care model. This study will be the first to randomise non-selected patients in primary care, to either self-management or standard care. The study was a multi-centred randomised controlled trial with patients from 49 general practices recruited. Those suitable for inclusion were aged 18 or over, with a long term indication for oral anticoagulation, who had taken warfarin for at least six months. Patients randomised to the intervention arm attended at least two training sessions which were practice-based, 1 week apart. Each patient was assessed on their capability to undertake self management. If considered capable, they were given a near patient INR testing monitor, test strips and quality control material for home testing. Patients managed their own anticoagulation for a period of 12 months and performed their INR test every 2 weeks. Control patients continued with their pre-study care either attending hospital or practice based anticoagulant clinics. The methodology used in this trial will overcome concerns from previous trials of selection bias and relevance to the UK health service. The study will give a clearer understanding of the benefits of self-management in terms of clinical and cost effectiveness and patient preference.

  8. SMART: Self-Management of Anticoagulation, a Randomised Trial [ISRCTN19313375

    Directory of Open Access Journals (Sweden)

    Murray Ellen T

    2003-09-01

    Full Text Available Abstract Background Oral anticoagulation monitoring has traditionally taken place in secondary care because of the need for a laboratory blood test, the international normalised ratio (INR. The development of reliable near patient testing (NPT systems for INR estimation has facilitated devolution of testing to primary care. Patient self-management is a logical progression from the primary care model. This study will be the first to randomise non-selected patients in primary care, to either self-management or standard care. Method The study was a multi-centred randomised controlled trial with patients from 49 general practices recruited. Those suitable for inclusion were aged 18 or over, with a long term indication for oral anticoagulation, who had taken warfarin for at least six months. Patients randomised to the intervention arm attended at least two training sessions which were practice-based, 1 week apart. Each patient was assessed on their capability to undertake self management. If considered capable, they were given a near patient INR testing monitor, test strips and quality control material for home testing. Patients managed their own anticoagulation for a period of 12 months and performed their INR test every 2 weeks. Control patients continued with their pre-study care either attending hospital or practice based anticoagulant clinics. Discussion The methodology used in this trial will overcome concerns from previous trials of selection bias and relevance to the UK health service. The study will give a clearer understanding of the benefits of self-management in terms of clinical and cost effectiveness and patient preference.

  9. Selection of materials with potential in sensible thermal energy storage

    International Nuclear Information System (INIS)

    Fernandez, A.I.; Martinez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F.

    2010-01-01

    Thermal energy storage is a technology under investigation since the early 1970s. Since then, numerous new applications have been found and much work has been done to bring this technology to the market. Nevertheless, the materials used either for latent or for sensible storage were mostly investigated 30 years ago, and the research has lead to improvement in their performance under different conditions of applications. In those years a significant number of new materials were developed in many fields other than storage and energy, but a great effort to characterize and classify these materials was done. Taking into account the fact that thousands of materials are known and a large number of new materials are developed every year, the authors use the methodology for materials selection developed by Prof. Ashby to give an overview of other materials suitable to be used in thermal energy storage. Sensible heat storage at temperatures between 150 and 200 C is defined as a case study and two different scenarios were considered: long term sensible heat storage and short term sensible heat storage. (author)

  10. Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials

    NARCIS (Netherlands)

    Lv, Leyang; Schlangen, H.E.J.G.; Yang, Z.; Xing, Feng

    2016-01-01

    Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a

  11. Selection of conformational states in surface self-assembly for a molecule with eight possible pairs of surface enantiomers

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Schultz-Falk, Vickie; Lind Cramer, Jacob

    2016-01-01

    Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self-assembly of lamel......Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self......-assembly of lamellae structures. From statistical analysis of Scanning Tunnelling Microscopy (STM) data we observe a clear selection of specific conformational states after self-assembly. Using Density Functional Theory (DFT) calculations we rationalise how this selection is correlated to the orientation of the alkyl...

  12. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Science.gov (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  13. Selective Adsorption of Nano-bio materials and nanostructure fabrication on Molecular Resists Modified by proton beam irradiation

    International Nuclear Information System (INIS)

    Lee, H. W.; Kim, H. S.; Kim, S. M.

    2008-04-01

    The purpose of this research is the fabrication of nanostructures on silicon substrate using proton beam and selectively adsorption of bio-nano materials on the patterned substrate. Recently, the miniaturization of the integrated devices with fine functional structures was intensively investigated, based on combination of nanotechnology (NT), biotechnology (BT) and information technology (IT). Because of the inherent limitation in optical lithography, large variety of novel patterning technologies were evolved to construct nano-structures onto a substrate. Atomic force microscope-based nanolithography has readily formed sub-50 nm patterns by the local modification of a substrate using a probe with a curvature of 10 nm. The surface property was regarded as one of the most important factors for AFM-based nanolithography as well as for other novel nanolithographies. The molecular thin films such as a self-assembled monolayer or a polymer resist layer have been used as an alternative to modifying the surface property. Although proton or ion beam irradiation has been used as an efficient tool to modify the physical, chemical and electrical properties of a surface, the nano-patterning on the substrate or the molecular film modified with the beam irradiation has hardly been studied at both home and abroad. The selective adsorption of nano-bio materials such as carbon nanotubes and proteins on the patterns would contribute to developing the integrated devices. The polystyrene nanoparticles (400 nm) were arrayed on al silicon surface using nanosphere lithography and the various nanopatterns were fabricated by proton beam irradiation on the polystyrene nanoparticles arrayed silicon surface. We obtained the two different nanopatterns such as polymer nanoring patterns and silicon oxide patterns on the same silicon substrate. The polymer nanoring patterns formed by the crosslinkage of polystyrene when proton beam was irradiated at the triangular void spaces that are enclosed by

  14. Selection of construction materials for equipment in an experimental reprocessing plant

    International Nuclear Information System (INIS)

    Mizrahi, R.; Cragnolino, G.A.

    1994-01-01

    A review is made of the most significant corrosion problems that may be present in different stages of the process in a spent fuel reprocessing plant. The influence of different variables is analyzed: concentration of nitric acid and other oxidizing species, temperature, etc., in corrosion of materials of most frequent use in pipings and equipment. The materials are austenitic stainless steels and refractory metals, especially zirconium and its alloys. Both general and localized corrosion phenomena are analyzed for these materials. Selection criteria for the use of adequate material in different components of the plant are also discussed. (author). 32 refs., 20 figs., 3 tabs

  15. Uncovering Design Principles of Intermediate Filaments, a Self-Assembling Biomaterial: Lessons in Nanoscale Materials Design

    National Research Council Canada - National Science Library

    Lee, David H

    2007-01-01

    .... Such proteins may be harnessed for military purposes (eg. protective self-healing materials or nanoscale scaffolds) if one had a better understanding of how molecular structure determines material properties. In this final progress report, we summarize our studies on these systems.

  16. Multiple criteria decision making with life cycle assessment for material selection of composites

    Directory of Open Access Journals (Sweden)

    A. S. Milani

    2011-12-01

    Full Text Available With the advancement of interdisciplinary approaches in today’s modern engineering, current efforts in optimal design of composites include seeking material selection protocols that can (1 simultaneously consider a series of mechanical/electrical/chemical cost criteria over a set of alternative material options, and (2 closely take into account environmental aspects of final products including recycling and end-of-life disposal options. In this paper, in addition to a review of some recent experimental and methodological advances in the above areas, a new application of multiple criteria decision making (MCDM is presented to deal with decision conflicts often seen among design criteria in composite material selection with the help of life cycle assessment (LCA. To show the application, an illustrative case study on a plastic gear material selection is conducted where the cost, mechanical and thermal properties along with environmental impact criteria are to be satisfied simultaneously. A pure plastic gear is compared to a Polyethylene terephthalate (PET/aluminum-powder composite alternative. Results suggest that simple MCDM models, including a signal-to-noise measure adapted to MCDM in the same case study, can be used to explore both trade-offs and design break-even points in large decision spaces as the decision maker’s perspective over environmental, material performance and cost attributes change during the design process. More advanced topics including the account of material data uncertainties are addressed.

  17. The Choice Method of Selected Material has influence single evaporation flash method

    International Nuclear Information System (INIS)

    Sunaryo, Geni Rina; Sumijanto; Nurul L, Siti

    2000-01-01

    The final objective of this research is to design the mini scale of desalination installation. It has been started from 1997/1998 and has been doing for this 3 years. Where the study on the assessment of various desalination system has been done in the first year and thermodynamic in the second year. In this third year, literatully study on material resistance from outside pressure has been done. The number of pressure for single evaporator flashing method is mainly depend on the temperature that applied in that system. In this paper, the configuration stage, the choice method of selecting material for main evaporator vessel, tube, tube plates, water boxes, pipework, and valves for multistage flash distillation will be described. The choice of selecting material for MSF is base on economical consideration, cheap, high resistance and easy to be maintained

  18. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    Science.gov (United States)

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  19. Selection of emitter material for application on a radioisotope thermophotovoltaic (RTPV) power system

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.P.; Frohlich, N.D.; Koehler, F.A.; Ruhkamp, J.D.; Miller, R.G.; McDougal, J.R.; Pugh, B.K.; Barklay, C.D.; Howell, E.I. [EGG Mound Applied Technologies Building 88, P.O. Box 3000 Miamisburg, Ohio45343 (United States)

    1997-01-01

    Radioisotope Thermophotovoltaic (RTPV) power systems are being considered for long duration space missions due to their predicted high thermal to electrical conversion efficiencies. One critical aspect of these power systems is the selection of an appropriate emitter material which will efficiently radiate the thermal energy generated by the heat source to the photovoltaics. The photovoltaics are {open_quotes}tuned{close_quotes} to convert the infrared wavelengths radiated by the emitter into electrical energy. The emphasis of this paper is on the selection and optimization of an appropriate emitter material which would meet all of the mission requirements. A Kepner Tregoe analysis was performed in order to rank the various candidate refractory materials in relationship to their physical and chemical properties. The results of the analysis and material recommendations are discussed. {copyright} {ital 1997 American Institute of Physics.}

  20. Unraveling atomic-level self-organization at the plasma-material interface

    Science.gov (United States)

    Allain, J. P.; Shetty, A.

    2017-07-01

    The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion

  1. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  2. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    International Nuclear Information System (INIS)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described

  3. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    Energy Technology Data Exchange (ETDEWEB)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described. (MOW)

  4. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Holder, Larry; Chin, George; Agarwal, Khushbu; Feo, John T.

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.

  5. Self-Efficacy and Short-Term Adherence to Continuous Positive Airway Pressure Treatment in Children.

    Science.gov (United States)

    Xanthopoulos, Melissa S; Kim, Ji Young; Blechner, Michael; Chang, Ming-Yu; Menello, Mary Kate; Brown, Christina; Matthews, Edward; Weaver, Terri E; Shults, Justine; Marcus, Carole L

    2017-07-01

    Infants, children, and adolescents are increasingly being prescribed continuous positive airway pressure (CPAP) for treatment of obstructive sleep apnea syndrome (OSAS), yet adherence is often poor. The purpose of this study was to examine the relationship between caregiver and patient-reported health cognitions about CPAP prior to starting CPAP and CPAP adherence at 1 month. We hypothesized that greater caregiver-reported self-efficacy would be positively associated with CPAP adherence in children. We also evaluated patient-reported self-efficacy and caregiver- and patient-reported risk perception and outcome expectations as they related to adherence, as well as how demographic factors influenced these relationships. A pediatric modification of the Self-Efficacy Measure for Sleep Apnea Questionnaire was administered to children and adolescents with OSAS-prescribed CPAP and their caregivers during the clinical CPAP-initiation visit. The primary outcome variable for adherence was the average total minutes of CPAP usage across all days from the date that CPAP was initiated to 31 days later. Unadjusted ordinary least-square regression showed a significant association between caregiver-reported self-efficacy and adherence (p = .007), indicating that mean daily CPAP usage increased by 48.4 minutes when caregiver-reported self-efficacy increased by one point (95% confidence interval 13.4-83.4 minutes). No other caregiver- or patient-reported cognitive health variables were related to CPAP use. This study indicates that caregiver CPAP-specific self-efficacy is an important factor to consider when starting youth on CPAP therapy for OSAS. Employing strategies to improve caregiver self-efficacy, beginning at CPAP initiation, may promote CPAP adherence. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. On Self Selection of the Corrupt into the Public Sector

    DEFF Research Database (Denmark)

    Banerjee, Ritwik; Baul, Tushi; Rosenblat, Tanya

    Do corrupt people self select themselves in professions where the scope of corruption is high? We conduct a corruption experiment with private sector job aspirants and aspirants of Indian bureaucracy. The game models embezzlement of resources in which “supervisors” evaluate the performance of “wo...... of “workers” and then pay them. We find that aspirant bureaucrats indulge in more corruption than private sector aspirants but the likelihood of being corrupt is same across two sectors....

  7. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  8. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  9. SELECTION OF MICROORGANISMS FOR FERMENTATION OF MEAT MATERIALS

    Directory of Open Access Journals (Sweden)

    Danylenko S. G.

    2014-08-01

    Full Text Available Principal criteria for the selection of microorganisms with a wide range of biological and technological properties for fermentation of raw meats are considered. Attention is paid to the main groups of microorganisms such as Micrococсus, Staphylococcus, Lactobacillus, Bifidobacterium and Propionibacterium which are promising for creation of bacterial preparations. To create bacterial preparations, the basic criteria of selection for microorganisms were determined as follows: the ability of microorganisms to be developed within the specific ecological niche (raw meat materials and their influence on flavor characteristics of the final product under the conditions of intensification of production technologies of meat products. Methods used for search and retrieval of technologically promising strains from different natural sources (fresh meats, minced meats, meat, dairy and sour-milk products, vegetables, fruit, brines and mixtures for salting are considered.

  10. Chapter 5. Technological aspects of obtaining of ethynyl-piperidol polymers. 5.1. Elaboration of method of continuous production of bandaging material

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The elaboration of method of continuous production of styptic and antibacterial material was the purpose of present scientific research. The flowsheet of continuous production of styptic and antibacterial material was elaborated and described. The process of iodine sorption by modified materials was studied. The iodine sorption by modified materials in moment of its formation from the potassium iodide was studied as well. The influence of nature of grafted polymer on sorption of iodide ions was studied as well.

  11. Effects of 8Ps of Services Marketing on Student Selection of Self-Financing Sub-Degree Programmes in Hong Kong

    Science.gov (United States)

    Lau, Melissa May Yee

    2016-01-01

    Purpose: The purpose of this paper is to investigate how the effects of 8Ps of services marketing affect students' selection of self-financing sub-degree programmes in Hong Kong. The factors that affect students' selection of self-financing sub-degree programmes have not been studied in higher education market of Hong Kong. This research is to…

  12. Gas generation by self-radiolysis of tritiated waste materials

    International Nuclear Information System (INIS)

    Tadlock, W.E.; Abell, G.C.; Steinmeyer, R.H.

    1980-01-01

    Studies simulating the effect of self-radiolysis in disposal packages containing tritiated waste materials show hydrogen to be the dominant gas-phase product. Pressure buildup and gas composition over various tritiated octane and tritiated water samples are designed to give worst case results. One effect of tritium fixation agents is to reduce pressure buildup. The results show that development of explosive gas mixtures is unlikely and that maximum pressure buildup in typical Mound Facility waste packages can be expected to be <0.25 MPa

  13. Process of preparing ethanol by continuous fermentation of polysaccharide-containing materials

    Energy Technology Data Exchange (ETDEWEB)

    Ehnstroem, L.K.J.

    1981-04-16

    The invention concerns a process of preparing ethanol by continuous fermentation of polysaccharide - containing raw materials. Fermentation, hereby, occurs in one or several fermentors while dividing one stream of the fermentation liquid into a yeast-concentrate stream and a yeast-free stream and, if neccessary, a sludge stream. The yeast-concentrate stream is re-fed into the fermentor and at least part of the yeast-free stream is directed into a simple evaporator corresponding to one or several distilling stages where it is separated partially in an ethanol-enriched initial vapour stream supplying a facility to produce the desired ethanol quality, and partially in a liquid initial bottom stream re-fed at least in part into the fermentor. The characteristic feature of this new process is that a raw-material stream is fed into a closed circuit containing the fermentor and the evaporator, and that, in the evaporator, the raw-material stream is hydrolysed to a fermentable state. This hydrolysis is carried out most favourably by enzymes - preferably a gluco-amylase - at a temperature ranging from 35/sup 0/C to 75/sup 0/C.

  14. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Composite materials pipings: selection of basic materials and manufacturing process, quality control during manufacture

    International Nuclear Information System (INIS)

    Pays, M.F.

    1997-01-01

    The purpose of the paper is to present a summary of the knowledge acquired at the R and D on resins used as composite matrix, the resistance to hydrolysis and mechanical strength of pipings made from these materials, and on quality control during manufacture. The initial targets concerning the material selection, industrial manufacturing and quality control procedures are presented. The paper describes the results obtained concerning the investigation of the damage produced by hydrolysis in polyesters, vinyl esters and epoxides, the influence of temperature, reinforcement and the mechanical characterization of the tubing manufacturing. The performances of the nondestructive testings (radiography, ultrasonic controls, differential interferometry and infrared thermography) used are also reported. The paper ends with a further research and testings programme. (author)

  16. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R. [Department of Engineering Science and Mechanics, Penn State, University Park, PA 16803 (United States)

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  17. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres

    Directory of Open Access Journals (Sweden)

    Chang R

    2015-05-01

    Full Text Available Run Chang,1 Linlin Sun,1 Thomas J Webster1,2 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs with diameters of 10–20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective

  18. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Directory of Open Access Journals (Sweden)

    Tatjana Ladnorg

    2013-10-01

    Full Text Available Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE. The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.

  19. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Science.gov (United States)

    Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof

    2013-01-01

    Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458

  20. Self-referenced continuous-variable measurement-device-independent quantum key distribution

    Science.gov (United States)

    Wang, Yijun; Wang, Xudong; Li, Jiawei; Huang, Duan; Zhang, Ling; Guo, Ying

    2018-05-01

    We propose a scheme to remove the demand of transmitting a high-brightness local oscillator (LO) in continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, which we call as the self-referenced (SR) CV-MDI QKD. We show that our scheme is immune to the side-channel attacks, such as the calibration attacks, the wavelength attacks and the LO fluctuation attacks, which are all exploiting the security loopholes introduced by transmitting the LO. Besides, the proposed scheme waives the necessity of complex multiplexer and demultiplexer, which can greatly simplify the QKD processes and improve the transmission efficiency. The numerical simulations under collective attacks show that all the improvements brought about by our scheme are only at the expense of slight transmission distance shortening. This scheme shows an available method to mend the security loopholes incurred by transmitting LO in CV-MDI QKD.

  1. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    Science.gov (United States)

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. "Poverty and Choice of Marital Status: A Self-Selection Model"

    OpenAIRE

    Joan R. Rodgers

    1990-01-01

    Over the last few decades in the United States, the poverty rate for female-headed families has been about five times the poverty rate for other family types. This paper addresses the question of why, in general, female-headed families are so much poorer than other families. Recognizing that individuals choose their own marital status, a self-selection model is used to identify the factors which determine the poverty rates for married- couple families, families headed by females with no husba...

  3. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  4. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    International Nuclear Information System (INIS)

    Petti, D.A.; Piet, S.J.; Seki, Y.

    1996-01-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the international thermonuclear experimental reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention. (orig.)

  5. Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.

    Science.gov (United States)

    Wang, Yuru; Damen, Tom G E; Aarts, Henk

    2017-10-01

    The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Development of self-inflicted injury: Comorbidities and continuities with borderline and antisocial personality traits.

    Science.gov (United States)

    Crowell, Sheila E; Kaufman, Erin A

    2016-11-01

    Self-inflicted injury (SII) is a continuum of intentionally self-destructive behaviors, including nonsuicidal self-injuries, suicide attempts, and death by suicide. These behaviors are among the most pressing yet perplexing clinical problems, affecting males and females of every race, ethnicity, culture, socioeconomic status, and nearly every age. The complexity of these behaviors has spurred an immense literature documenting risk and vulnerability factors ranging from individual to societal levels of analysis. However, there have been relatively few attempts to articulate a life span developmental model that integrates ontogenenic processes across these diverse systems. The objective of this review is to outline such a model with a focus on how observed patterns of comorbidity and continuity can inform developmental theories, early prevention efforts, and intervention across traditional diagnostic boundaries. Specifically, when SII is viewed through the developmental psychopathology lens, it becomes apparent that early temperamental risk factors are associated with risk for SII and a range of highly comorbid conditions, such as borderline and antisocial personality disorders. Prevention efforts focused on early-emerging biological and temperamental contributors to psychopathology have great potential to reduce risk for many presumably distinct clinical problems. Such work requires identification of early biological vulnerabilities, behaviorally conditioned social mechanisms, as well as societal inequities that contribute to self-injury and underlie intergenerational transmission of risk.

  7. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  8. Self-Selection Patterns of College Roommates as Identified by the Myers-Briggs Type Indicator.

    Science.gov (United States)

    Anchors, W. Scott; Hale, John, Jr.

    1985-01-01

    Investigated patterns and processes by which students (N=422) made unassisted roommate pairings within residence halls using the Myers-Briggs Type Indicator. Results indicated introverts, intuitives, feelers, and perceivers each tended to self-select. (BL)

  9. The effect of relational continuity of care in maternity and child health clinics on parenting self-efficacy of mothers and fathers with loneliness and depressive symptoms.

    Science.gov (United States)

    Tuominen, Miia; Junttila, Niina; Ahonen, Pia; Rautava, Päivi

    2016-06-01

    This study explored the parenting self-efficacy of the parents of 18-month-old children in the context of Finnish maternity and child health clinics. This parenting self-efficacy was observed in relation with the relational continuity of care and parents' experienced loneliness and depressive symptoms. The relational continuity of care was provided by a public health nurse in maternity and child health clinics. The participating parents were drawn from the STEPS study that is being carried out by the Institute for Child and Youth Research at the University of Turku. The results showed that relational continuity of care provided by the same public health nurse in the maternity and child health clinics was associated with mothers' higher emotional loneliness and with lower scores on three dimensions of parents' parenting self-efficacy. Loneliness and depressive symptoms negatively influenced parents' parenting self-efficacy - however, in the case where the family had experienced relational continuity of care, the parents' higher levels of depressive symptoms had not weakened their parenting self-efficacy beliefs. These results are discussed in terms of organizing maternity and child health clinic services. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  10. First-Year University Students Who Self-Select into Health Studies Have More Desirable Health Measures and Behaviors at Baseline but Experience Similar Changes Compared to Non-Self-Selected Students

    Directory of Open Access Journals (Sweden)

    Mary-Jon Ludy

    2018-03-01

    Full Text Available Studies demonstrate that first-year university students are at high risk for weight gain. These reports typically rely on self-selected participants. The purpose of this study was to explore if students who chose to participate in a health-based research study had more desirable health measures and behaviors than students who completed health assessments as part of a first-year seminar course. Health measures included blood pressure (BP, body mass index (BMI, and percent body fat. Health behaviors included dietary patterns (Starting the Conversation questionnaire and alcohol use (Alcohol Use Disorders Identification Test-Consumption. A total of 191 (77% female participants completed testing in the self-selected “Health Study” group, whereas 73 of the 91 students (80%, 55% female enrolled in the “Seminar” allowed their data to be used for research purposes. Baseline measures favored Health Study participants, including but not limited to fewer participants with undesirable BMI (≥25.0 kg/m2; males and females and a smaller percentage of participants with undesirable BP (systolic ≥120 mmHg and/or diastolic ≥80 mmHg; females only. Differences in dietary behaviors at baseline were inconsistent, but Seminar students engaged in more problematic alcohol-use behaviors. While both groups experienced undesirable changes in health measures over time, the degree of change did not differ between groups. Changes in health behaviors over time typically resulted in undesirable changes in the Seminar group, but the magnitude of change over time did not differ between groups. Thus, results from first-year university students who self-select into health studies likely underestimate the seriousness of undesirable health measures and behaviors but may accurately reflect the degree of change over time.

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    International Nuclear Information System (INIS)

    Smith, B.R.

    1995-01-01

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document

  12. The Role of Self-Determination Theory in Explaining Teachers' Motivation to Continue to Use E-Learning Technology

    Science.gov (United States)

    Sorebo, Oystein; Halvari, Hallgier; Gulli, Vebjorn Flaata; Kristiansen, Roar

    2009-01-01

    Based on self-determination theory, this study proposes an extended information systems continuance theory in the context of teachers' utilization of e-learning technology in connection with on-site courses. In the proposed model teachers' extrinsic motivation (i.e. perceived usefulness), confirmation of pre-acceptance expectations and intrinsic…

  13. Generation IV and transmutation materials (GETMAT) project: First assessment of selected results

    International Nuclear Information System (INIS)

    Fazio, Concetta; Serrano, Marta; Gessi, Alessandro; Henry, Jean; Malerba, Lorenzo

    2015-01-01

    The Generation IV and Transmutation Material (GETMAT) project has been initiated within the 7. EURATOM framework programme with the objective to support the development of innovative reactor designs. Emphasis has been put on the investigation, both in the theoretical and experimental domains, of selected material properties that are cross-cutting among the various Generation IV and Transmutation systems. The selection of the properties to be investigated has been performed by identifying relevant conditions of key components as cores and primary systems. Moreover, taking into account the envisaged conditions of these components it turned out that innovative materials might be a better choice with respect to conventional nuclear grade steels. Therefore, ODS alloys and 9-12 Cr Ferritic/Martensitic (F/M) steels have been selected as reference for the GETMAT project. The R and D activities have been focused on basic characterisation of ODS alloys produced ad hoc for the project and on an extensive PIE programme of F/M steels irradiated in previous programmes. Finally, first principle modelling studies to explain irradiation hardening and embrittlement of F/M alloys were an additional important task. The objective of this manuscript is to make a first assessment of the results obtained within GETMAT. (authors)

  14. The use of selective electrodes for the control of nuclear materials

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Abrao, A.

    1984-01-01

    The use of ion selective electrodes is discussed for the determination of nitrate, chloride and fluoride in several materials used in the fuel cycle. The determination of nitrate and chloride in thorium compounds, the analysis of fluoride and chloride in uranium compounds and the determination of fluoride in crude phosphoric acid are described. The control of fluoride in urine of individuals that handle materials containing fluor and its compounds is also described. (C.L.B.) [pt

  15. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real

  16. An overview of self-switching diode rectifiers using green materials

    Science.gov (United States)

    Kasjoo, Shahrir Rizal; Zailan, Zarimawaty; Zakaria, Nor Farhani; Isa, Muammar Mohamad; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2017-09-01

    A unipolar two-terminal nanodevice, known as the self-switching diode (SSD), has recently been demonstrated as a room-temperature rectifier at microwave and terahertz frequencies due to its nonlinear current-voltage characteristic. The planar architecture of SSD not only makes the fabrication process of the device faster, simpler and at a lower cost when compared with other rectifying diodes, but also allows the use of various materials to realize and fabricate SSDs. This includes the utilization of `green' materials such as organic and graphene thin films for environmental sustainability. This paper reviews the properties of current `green' SSD rectifiers with respect to their operating frequencies and rectifying performances, including responsivity and noise-equivalent power of the devices, along with the applications.

  17. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  18. Carbon nanotube based gecko inspired self-cleaning adhesives

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  19. Logic-Gate Functions in Chemomechanical Materials.

    Science.gov (United States)

    Schneider, Hans-Jörg

    2017-09-06

    Chemomechanical polymers that change their shape or volume on stimulation by multiple external chemical signals, particularly on the basis of selective molecular recognition, are discussed. Several examples illustrate how such materials, usually in the form of hydrogels, can be used for the design of chemically triggered valves or artificial muscles and applied, for example, in self-healing materials or drug delivery. The most attractive feature of such materials is that they can combine sensor and actuator within single units, from nano- to macrosize. Simultaneous action of a cofactor allows selective response in the sense of AND logic gates by, for example, amino acids and peptides, which without the presence of a second effector do not induce any changes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  1. Selection and evaluation of materials for thermoelectric applications II

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J W

    1997-07-01

    In good thermoelectrics phonons have short mean free paths, and charge carriers have long ones. The other requirements are a multivalley band structure and a band gap greater than 0.1 eV for the 200 to 300 K temperature range. The author discusses the use of solid state physics and chemistry concepts, along with atomic and crystal structure data, to select the new materials most likely to meet these criteria.

  2. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  3. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    International Nuclear Information System (INIS)

    Dolphin, Barbara H.; Richins, William D.; Novascone, Stephen R.

    2010-01-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  4. Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods

    DEFF Research Database (Denmark)

    Nesterova, Tatyana; Dam-Johansen, Kim; Kiil, Søren

    2011-01-01

    -based anticorrosive coatings, based on incorporation of microcapsules, filled with reactive agents, into the coating matrix, is investigated. Upon small damages to the coating, the reagents are released from the capsules and react, thereby forming a cross-linked network, which heals the crack. However......Self-healing materials have the ability to ‘repair’ themselves upon exposure to an external stimulus. In the field of coatings, extensive laboratory research has been conducted on these so-called smart materials in the last decade. In the present work, a self-healing concept for epoxy......, for the concept to work, microcapsules have to be strong enough to remain intact during storage and coating formulation and application. Furthermore, the capsules must remain stable for many years in the dry coating. Laboratory experiments, using four out of several encapsulation methods available...

  5. Selective Leaching of Gray Cast Iron: Electrochemical Aspects

    International Nuclear Information System (INIS)

    Na, Kyung Hwan; Yun, Eun Sub; Park, Young Sheop

    2010-01-01

    Currently, to keep step with increases in energy consumption, much attention has been paid to the construction of new nuclear power plants (NPPs) and to the continued operation of NPPs. For continued operation, the selective leaching of materials should be evaluated by visual inspections and hardness measurements as a part of One-Time Inspection Program according to the requirements of the guidelines for continued operation of pressured water reactors (PWRs) in Korea and license renewals in the United States, entitled the 'Generic Aging Lessons Learned (GALL) report.' However, the acceptance criteria for hardness have yet to be provided. Recently, USNRC released a new draft of the GALL report for comment and plans to publish its formal version by the end of 2010. In the new draft, the quantitative acceptance criteria for hardness are given at last: no more than a 20 percent decrease in hardness for gray cast iron and brass containing more than 15 percent zinc. Selective leaching is the preferential removal of one of the alloying elements from a solid alloy by corrosion processes, leaving behind a weakened spongy or porous residual structure. The materials susceptible to selective leaching include gray cast iron and brass, which are mainly used as pump casings and valve bodies in the fire protection systems of NPPs. Since selective leaching proceeds slowly during a long period of time and causes a decrease in strength without changing the overall dimensions of original material, it is difficult to identify. In the present work, the selective leaching of gray cast iron is investigated in terms of its electrochemical aspects as part of an ongoing research project to study the changes in metal properties by selective leaching

  6. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    Science.gov (United States)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  7. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...

  8. Continuous-measurement-enhanced self-trapping of degenerate ultracold atoms in a double well: Nonlinear quantum Zeno effect

    International Nuclear Information System (INIS)

    Li Weidong; Liu Jie

    2006-01-01

    In the present paper we investigate the influence of measurements on the quantum dynamics of degenerate Bose atoms gases in a symmetric double well. We show that continuous measurements enhance asymmetry on the density distribution of the atoms and broaden the parameter regime for self-trapping. We term this phenomenon as nonlinear quantum Zeno effect in analog to the celebrated Zeno effect in a linear quantum system. Under discontinuous measurements, the self-trapping due to the atomic interaction in the degenerate bosons is shown to be destroyed completely. Underlying physics is revealed and possible experimental realization is discussed

  9. Overview about bias in Customer Satisfaction Surveys and focus on self-selection error

    OpenAIRE

    Giovanna Nicolini; Luciana Dalla Valle

    2009-01-01

    The present paper provides an overview of the main types of surveys carried out for customer satisfaction analyses. In order to carry out these surveys it is possible to plan a census or select a sample. The higher the accuracy of the survey, the more reliable the results of the analysis. For this very reason, researchers pay special attention to surveys with bias due to non sampling errors, in particular to self-selection errors. These phenomena are very frequent especially in web surveys. S...

  10. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    Science.gov (United States)

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  11. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  12. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel

    Science.gov (United States)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Gohar, Y.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Lousteau, D.; Onozuka, M.; Parker, R.; Sannazzaro, G.; Tivey, R.

    1998-10-01

    Design and R&D have progressed on the ITER vacuum vessel, shielding and breeding blankets, and the divertor. The principal materials have been selected and the fabrication methods selected for most of the components based on design and R&D results. The resulting design changes are discussed for each system.

  13. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  14. Selective Recovery of Critical Materials from Geothermal Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Halstenberg, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karamalidis, Athanasios [Anactisis, LLC, Pittsburgh, PA (United States); Noack, Clint [Anactisis, LLC, Pittsburgh, PA (United States)

    2018-03-08

    This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electron Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.

  15. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    Science.gov (United States)

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  16. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  17. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    Science.gov (United States)

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  18. Selection of sorption material for tests of pesticide permeation through protective clothing fabrics.

    Science.gov (United States)

    Krzemińska, Sylwia; Nazimek, Teresa

    2004-01-01

    The paper presents the results of studies on selecting a solid sorption material for absorbing liquid crop protection agents which permeate samples of protective clothing fabrics. The sorption materials were investigated and selected with an assumption that they should have a high recovery coefficient for biologically active substances, used as active ingredients in crop protection agents, at a presumed, acceptably high level. The selected substances were determined with a gas chromatograph equipped with an electron capture detector (dichlorvos, cypermethrin and 2,4-D) and a nitrogen-phosphorus detector (carbofuran). The tests demonstrated that polypropylene melt-blown type unwoven cloth had high recovery coefficients for all 4 active ingredients proposed for the study. The highest recovery coefficient, -.97, was obtained for carbofuran. The recovery coefficients obtained for the 3 remaining substances were lower: .89 for cypermethrin and 2,4-D, and .84 for dichlorvos.

  19. The Moderating Role of Self-Regulated Learning in Job Characteristics and Attitudes towards Web-Based Continuing Learning in the Airlines Workplace

    Science.gov (United States)

    Lin, Xiao-fan; Liang, Jyh-Chong; Tsai, Chin-Chung; Hu, Qintai

    2018-01-01

    With the increasing importance of adult and continuing education, the present study aimed to examine the factors that influence continuing web-based learning at work. Three questionnaires were utilised to investigate the association of the job characteristics from Karasek et al.'s (1998) job demand-control-support model and the self-regulated…

  20. Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation

    Science.gov (United States)

    Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.

    2018-04-01

    Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.

  1. Future perspectives of resin-based dental materials.

    Science.gov (United States)

    Jandt, Klaus D; Sigusch, Bernd W

    2009-08-01

    This concise review and outlook paper gives a view of selected potential future developments in the area of resin-based biomaterials with an emphasis on dental composites. A selection of key publications (1 book, 35 scientific original publications and 1 website source) covering the areas nanotechnology, antimicrobial materials, stimuli responsive materials, self-repairing materials and materials for tissue engineering with direct or indirect relations and/or implications to resin-based dental materials is critically reviewed and discussed. Connections between these fields and their potential for resin-based dental materials are highlighted and put in perspective. The need to improve shrinkage properties and wear resistance is obvious for dental composites, and a vast number of attempts have been made to accomplish these aims. Future resin-based materials may be further improved in this respect if, for example nanotechnology is applied. Dental composites may, however, reach a completely new quality by utilizing new trends from materials science, such as introducing nanostructures, antimicrobial properties, stimuli responsive capabilities, the ability to promote tissue regeneration or repair of dental tissues if the composites were able to repair themselves. This paper shows selected potential future developments in the area of resin-based dental materials, gives basic and industrial researchers in dental materials science, and dental practitioners a glance into the potential future of these materials, and should stimulate discussion about needs and future developments in the area.

  2. A continuously self regenerating high-flux neutron-generator facility

    Science.gov (United States)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  3. LEARNING MATERIALS SELECTION FOR DIFFERENTIATED INSTRUCTION OF ENGLISH FOR SPECIFIC PURPOSES OF FUTURE PROFESSIONALS IN THE FIELD OF INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Oksana Synekop

    2017-09-01

    Full Text Available In conditions of differentiation the learning materials selection will optimize the training English for Specific Purposes of the future professionals in the field of information technology at university level. The purpose of the article is to define the basic unit of learning material, the factors of influence on the learning material selection, principles, criteria and the procedure of learning material selection in this paper. Reviewing the scientific achievements in the learning material selection in teaching English has become a basis for defining the factors of influence, principles and criteria in the research. The basic unit of learning material (learning English text for professional purposes is outlined. The factors of influence and principles (correspondence of learning materials to professional interests and needs of information technology students; necessary ability and accessibility; regarding the linguistic and stylistic necessity and sufficiency; availability of Internet sources information of the learning material selection are defined. Also, the qualitative criteria (authenticity; professional significance, relevance and informativeness; conformity of foreign language level and intellectual development of students; variety of genres and forms of speech, their sufficient filling by linguistic material; coherence, integrity, consistency, semantic completeness; topic conformity; situation conformity; unlimited access, reliability and exemplarity of Internet sources and the quantitative criteria (the amount of material of the learning material selection are highlighted. The process of English for Specific Purposes material selection (defining the disciplines of different cycles; defining spheres and related topics; outlining situations, communicative roles and intentions of professional communication; specifying the sources of selection; evaluating the texts; analysis of the knowledge, skills and sub-skills required for the

  4. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Gohar, Y.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Lousteau, D.; Onozuka, M.; Parker, R.; Sannazzaro, G.; Tivey, R. [ITER JCT, Garching (Germany)

    1998-10-01

    Design and R and D have progressed on the ITER vacuum vessel, shielding and breeding blankets, and the divertor. The principal materials have been selected and the fabrication methods selected for most of the components based on design and R and D results. The resulting design changes are discussed for each system. (orig.) 11 refs.

  5. Self-selection of two diet components by Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and its impact on fitness.

    Science.gov (United States)

    Morales-Ramos, J A; Rojas, M G; Shapiro-Ilan, D I; Tedders, W L

    2011-10-01

    We studied the ability of Tenebrio molitor L. (Coleoptera: Tenebrionidae) to self-select optimal ratios of two dietary components to approach nutritional balance and maximum fitness. Relative consumption of wheat bran and dry potato flakes was determined among larvae feeding on four different ratios of these components (10, 20, 30, and 40% potato). Groups of early instars were provided with a measured amount of food and the consumption of each diet component was measured at the end of 4 wk and again 3 wk later. Consumption of diet components by T. molitor larvae deviated significantly from expected ratios indicating nonrandom self-selection. Mean percentages of dry potato consumed were 11.98, 19.16, 19.02, and 19.27% and 11.89, 20.48, 24.67, and 25.97% during the first and second experimental periods for diets with 10, 20, 30, and 40% potato, respectively. Life table analysis was used to determine the fitness of T. molitor developing in the four diet mixtures in a no-choice experiment. The diets were compared among each other and a control diet of wheat bran only. Doubling time was significantly shorter in groups consuming 10 and 20% potato than the control and longer in groups feeding on 30 and 40% potato. The self-selected ratios of the two diet components approached 20% potato, which was the best ratio for development and second best for population growth. Our findings show dietary self-selection behavior in T. molitor larvae, and these findings may lead to new methods for optimizing dietary supplements for T. molitor.

  6. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth

    2014-01-01

    over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical......-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect...... quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline...

  7. Self-assembled block copolymer photonic crystal for selective fructose detection.

    Science.gov (United States)

    Ayyub, Omar B; Ibrahim, Michael B; Briber, Robert M; Kofinas, Peter

    2013-08-15

    The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can reversibly bind to sugars such as fructose, imparting the photonic properties of the PS-b-P2VP film. The films exhibit a detection limit of 500 μM in water and 1mM in phosphate buffered saline. Exposure to a 50 mM solution of fructose invokes a highly visible color change from blue to orange. The films are also able to selectively recognize and respond to fructose in competitive studies in the presence of glucose, mannose and sucrose. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Selection of replacement material for the failed surface level gauge wire in Hanford waste tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Pitman, S.G.; Lund, A.L.

    1995-10-01

    Surface level gauges fabricated from AISI Type 316 stainless steel (316) wire failed after only a few weeks of operation in underground storage tanks at the Hanford Site. The wire failure was determined to be due to chloride ion assisted corrosion of the 316 wire. Radiation-induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the primary source of the chloride ions. An extensive literature search followed by expert concurrence was undertaken to select a replacement material for the wire. Platinum (Pt)-20 % Iridium (Ir) alloy was selected as the replacement material from tile candidate materials, P-20% Ir, Pt-1O% Rhodium (Rh), Pt-20%Rh and Hastelloy C-22. The selection was made on the basis of the alloy's immunity towards acidic and basic environments as well as its adequate tensile properties in the fully annealed state

  9. Continued treatment and utilization of separable material

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, W.; Englmann, E.; Goettle, A.; Hruschka, H.; Resch, H.; Schramm, W.; Wiedmann, U.; Flohrschuetz, R.

    1980-04-01

    The separable material (material retained on trash rack, material collected in the sand, floating substances, fresh sludge) occurring in a biological mechanical sewage treatment plant are described with respect to quantity, provenance, and composition. The most common methods for subsequent treatment of this material are at first aimed at the reduction of volume (dehydration), then at processing it to obtain reusable products (fertilizer, compost, feeding stuff, raw material) or at converting it into a mass that can be deposited. The individual steps of the process and their specific requirement, with respect to temperature, oxygen, and conditioning agents are described in detail.

  10. Improved selectivity towards NO₂ of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material.

    Science.gov (United States)

    Brunet, J; Pauly, A; Dubois, M; Rodriguez-Mendez, M L; Ndiaye, A L; Varenne, C; Guérin, K

    2014-09-01

    A new and original gas sensor-system dedicated to the selective monitoring of nitrogen dioxide in air and in the presence of ozone, has been successfully achieved. Because of its high sensitivity and its partial selectivity towards oxidizing pollutants (nitrogen dioxide and ozone), copper phthalocyanine-based chemoresistors are relevant. The selectivity towards nitrogen dioxide results from the implementation of a high efficient and selective ozone filter upstream the sensing device. Thus, a powdered indigo/nanocarbons hybrid material has been developed and investigated for such an application. If nanocarbonaceous material acts as a highly permeable matrix with a high specific surface area, immobilized indigo nanoparticles are involved into an ozonolysis reaction with ozone leading to the selective removal of this analytes from air sample. The filtering yields towards each gas have been experimentally quantified and establish the complete removal of ozone while having the concentration of nitrogen dioxide unchanged. Long-term gas exposures reveal the higher durability of hybrid material as compared to nanocarbons and indigo separately. Synthesis, characterizations by many complementary techniques and tests of hybrid filters are detailed. Results on sensor-system including CuPc-based chemoresistors and indigo/carbon nanotubes hybrid material as in-line filter are illustrated. Sensing performances will be especially discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  12. Self-assembly of silver nanoparticles and bacteriophage

    Directory of Open Access Journals (Sweden)

    Santi Scibilia

    2016-03-01

    Full Text Available Biohybrid nanostructured materials, composed of both inorganic nanoparticles and biomolecules, offer prospects for many new applications in extremely diverse fields such as chemistry, physics, engineering, medicine and nanobiotechnology. In the recent years, Phage display technique has been extensively used to generate phage clones displaying surface peptides with functionality towards organic materials. Screening and selection of phage displayed material binding peptides has attracted great interest because of their use for development of hybrid materials with multiple functionalities. Here, we present a self-assembly approach for the construction of hybrid nanostructured networks consisting of M13 P9b phage clone, specific for Pseudomonas aeruginosa, selected by Phage display technology, directly assembled with silver nanoparticles (AgNPs, previously prepared by pulsed laser ablation. These networks are characterized by UV–vis optical spectroscopy, scanning/transmission electron microscopies and Raman spectroscopy. We investigated the influence of different ions and medium pH on self-assembly by evaluating different phage suspension buffers. The assembly of these networks is controlled by electrostatic interactions between the phage pVIII major capsid proteins and the AgNPs. The formation of the AgNPs-phage networks was obtained only in two types of tested buffers at a pH value near the isoelectric point of each pVIII proteins displayed on the surface of the clone. This systematic study allowed to optimize the synthesis procedure to assembly AgNPs and bacteriophage. Such networks find application in the biomedical field of advanced biosensing and targeted gene and drug delivery. Keywords: Phage display, Silver nanoparticles, Self-assembly, Hybrid architecture, Raman spectroscopy

  13. Concept selection of car bumper beam with developed hybrid bio-composite material

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Aidy, A.; Khalina, A.; Jonoobi, Mehdi

    2011-01-01

    Highlights: → We simulate the low impact test by Abaqus Ver16R9 using the same material model. → Six different weighted criteria were discussed to nominate the best concept. → Double Hat Profile showed the best concept to fulfil the defined PDS. → Geometric parameters may overcome the weak inherent properties of bio composite. → Toughened bio-composite material may employ in structural automotive components. -- Abstract: Application of natural fibre composites is going to increase in different areas caused by environmental, technical and economic advantages. However, their low mechanical properties have limited their particular application in automotive structural components. Hybridizations with other reinforcements or matrices can improve mechanical properties of natural fibre composite. Moreover, geometric optimizations have a significant role in structural strength improvement. This study focused on selecting the best geometrical bumper beam concept to fulfill the safety parameters of the defined product design specification (PDS). The mechanical properties of developed hybrid composite material were considered in different bumper beam concepts with the same frontal curvature, thickness, and overall dimensions. The low-speed impact test was simulated under the same conditions in Abaqus V16R9 software. Six weighted criteria, which were deflection, strain energy, mass, cost, easy manufacturing, and the rib possibility were analyzed to form an evaluation matrix. Topsis method was employed to select the best concept. It is concluded that double hat profile (DHP) with defined material model can be used for bumper beam of a small car. In addition, selected concept can be strengthened by adding reinforced ribs or increasing the thickness of the bumper beam to comply with the defined PDS.

  14. The Design of Dual-Emissive Composite Material [Zn2(HL)3]+@MOF-5 as Self-Calibrating Luminescent Sensors of Al3+ Ions and Monoethanolamine.

    Science.gov (United States)

    Wu, Meng-Meng; Wang, Jiao-Yang; Sun, Rui; Zhao, Cui; Zhao, Jiong-Peng; Che, Guang-Bo; Liu, Fu-Chen

    2017-08-21

    Introducing another chromophore into a luminescent MOF is a potential way to assembling novel dual-emissive luminescent materials. Putting the chromophore, for which luminescence can be enhanced by Zn 2+ ion, into MOF-5 by the "bottle around ship" strategy is a simple but efficient synthesis method to realize such dual-emissive materials. According to this strategy, a novel dual-emissive luminescent composite material [Zn 2 (HL) 3 ] + @MOF-5 was constructed by loading the [La 3 (HL) 2 L 2 (NO 3 ) 3 H 2 O] (1) (H 2 L = 7,7'-(ethane-1,1'-diyl)8-hydro-quinoline) into MOF-5, in which the [Zn 2 (HL) 3 ] + anions were transformed from 1 with the existence of Zn 2+ . The dual-emissive composite materials show excellent luminescence with two emissions of MOF-5 at 410 nm and [Zn 2 (HL) 3 ] + at 524 nm. Furthermore, by combining characteristics of MOF-5 and the guest chromophore, the composite material is highly selectively sensitive toward Al 3+ and monoethanolamine, which makes [Zn 2 (HL) 3 ] + @MOF-5 a potential self-calibrated fluorescence sensor.

  15. [A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].

    Science.gov (United States)

    Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe

    2015-04-01

    The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.

  16. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    OpenAIRE

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zaj?c, Ma?gorzata; Czajczy?ska-Waszkiewicz, Agnieszka; Piesiak-Pa?czyszyn, Dagmara; Kosior, Piotr; Dobrzy?ski, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved fo...

  17. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  19. The Role of Perceived User-Interface Design in Continued Usage Intention of Self-Paced E-Learning Tools

    Science.gov (United States)

    Cho, Vincent; Cheng, T. C. Edwin; Lai, W. M. Jennifer

    2009-01-01

    While past studies on user-interface design focused on a particular system or application using the experimental approach, we propose a theoretical model to assess the impact of perceived user-interface design (PUID) on continued usage intention (CUI) of self-paced e-learning tools in general. We argue that the impact of PUID is mediated by two…

  20. Self injection of foreign materials into the penis.

    Science.gov (United States)

    Ahmed, U; Freeman, A; Kirkham, A; Ralph, D J; Minhas, S; Muneer, A

    2017-02-01

    Injection of the subcutaneous tissues of the penis for enlargement of penile girth has been practised for many years by laypeople and medical practitioners alike. However, with recognition of the complications, the practice has died out. We report a series of five patients who presented having injected foreign materials into the subcutaneous tissues of their penises, including paraffin and mineral oils. Our patients had a variable time course of presentation ranging from 1 day following injection to over 26 years. Self-injection of the subcutaneous tissues of the penis is an unusual presentation for a penile mass but should be considered as a differential diagnosis in patients with a long latent period to presentation or with characteristic magnetic resonance imaging and histological appearances.