WorldWideScience

Sample records for self-renewal multipotent differentiation

  1. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy.

    Directory of Open Access Journals (Sweden)

    Rahul Sarugaser

    Full Text Available BACKGROUND: Mesenchymal progenitor cells (MPCs have been isolated from a variety of connective tissues, and are commonly called "mesenchymal stem cells" (MSCs. A stem cell is defined as having robust clonal self-renewal and multilineage differentiation potential. Accordingly, the term "MSC" has been criticised, as there is little data demonstrating self-renewal of definitive single-cell-derived (SCD clonal populations from a mesenchymal cell source. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a tractable MPC population, human umbilical cord perivascular cells (HUCPVCs, was capable of multilineage differentiation in vitro and, more importantly, contributed to rapid connective tissue healing in vivo by producing bone, cartilage and fibrous stroma. Furthermore, HUCPVCs exhibit a high clonogenic frequency, allowing us to isolate definitive SCD parent and daughter clones from mixed gender suspensions as determined by Y-chromosome fluorescent in situ hybridization. CONCLUSIONS/SIGNIFICANCE: Analysis of the multilineage differentiation capacity of SCD parent clones and daughter clones enabled us to formulate a new hierarchical schema for MSC self-renewal and differentiation in which a self-renewing multipotent MSC gives rise to more restricted self-renewing progenitors that gradually lose differentiation potential until a state of complete restriction to the fibroblast is reached.

  2. Roles of Retinoids and Retinoic Acid Receptors in the Regulation of Hematopoietic Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Louise E. Purton

    2007-01-01

    Full Text Available Multipotent hematopoietic stem cells (HSCs sustain blood cell production throughout an individual's lifespan through complex processes ultimately leading to fates of self-renewal, differentiation or cell death decisions. A fine balance between these decisions in vivo allows for the size of the HSC pool to be maintained. While many key factors involved in regulating HSC/progenitor cell differentiation and cell death are known, the critical regulators of HSC self-renewal are largely unknown. In recent years, however, a number of studies describing methods of increasing or decreasing the numbers of HSCs in a given population have emerged. Of major interest here are the emerging roles of retinoids in the regulation of HSCs.

  3. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation

    OpenAIRE

    Mei, Xing-Xing; Wang, Jian; Wu, Ji

    2015-01-01

    Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identi...

  4. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation

    Directory of Open Access Journals (Sweden)

    Xing-Xing Mei

    2015-06-01

    Full Text Available Spermatogonial stem cells (SSCs, the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.

  5. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation.

    Science.gov (United States)

    Mei, Xing-Xing; Wang, Jian; Wu, Ji

    2015-01-01

    Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s) remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.

  6. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells

    Science.gov (United States)

    Rios, Carmen; D'Ippolito, Gianluca; Curtis, Kevin M.; Delcroix, Gaëtan J.-R.; Gomez, Lourdes A.; El Hokayem, Jimmy; Rieger, Megan; Parrondo, Ricardo; de las Pozas, Alicia; Perez-Stable, Carlos; Howard, Guy A.

    2016-01-01

    Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells. PMID:27059084

  7. Differential Connexin Function Enhances Self-Renewal in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro Hitomi

    2015-05-01

    Full Text Available The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43, but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.

  8. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms.

    Science.gov (United States)

    Ma, Xing; Zhu, Xiujuan; Han, Yingying; Story, Benjamin; Do, Trieu; Song, Xiaoqing; Wang, Su; Zhang, Ying; Blanchette, Marco; Gogol, Madelaine; Hall, Kate; Peak, Allison; Anoja, Perera; Xie, Ting

    2017-04-24

    Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation

    DEFF Research Database (Denmark)

    Klauke, Karin; Radulović, Višnja; Broekhuis, Mathilde

    2013-01-01

    The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its...... overexpression enhances self-renewal and induces leukaemia. This effect is dependent on integration into polycomb repressive complex-1 (PRC1) and requires H3K27me3 binding. In contrast, overexpression of Cbx2, Cbx4 or Cbx8 results in differentiation and exhaustion of HSCs. ChIP-sequencing analysis shows that Cbx......7 and Cbx8 share most of their targets; we identified approximately 200 differential targets. Whereas genes targeted by Cbx8 are highly expressed in HSCs and become repressed in progenitors, Cbx7 targets show the opposite expression pattern. Thus, Cbx7 preserves HSC self-renewal by repressing...

  10. New insights into redox regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    Science.gov (United States)

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  12. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    Science.gov (United States)

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  13. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    Science.gov (United States)

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  14. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells

    NARCIS (Netherlands)

    Fernandes, H.; Mentink, A.; Bank, R.; Stoop, R.; Blitterswijk, C. van; Boer, J. de

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  15. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  16. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Mentink-Leusink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  17. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    International Nuclear Information System (INIS)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-01-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  18. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  19. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  20. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  1. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation

    Directory of Open Access Journals (Sweden)

    Antonela Bonafina

    2018-03-01

    Full Text Available Summary: The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2, promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. : In this article, Ledda and colleagues show that GDNF acting through its receptor GFRα1 plays a critical role in the maturation of cortical progenitors by counteracting FGF2 self-renewal activity on neural stem cells and promoting neuronal differentiation. Keywords: GDNF, GFRα1, cortical precursors, proliferation, postmitotic neurons, neuronal differentiation

  2. Autophagy in Stem Cell Biology: A Perspective on Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Xihang Chen

    2018-01-01

    Full Text Available Autophagy is a highly conserved cellular process that degrades modified, surplus, or harmful cytoplasmic components by sequestering them in autophagosomes which then fuses with the lysosome for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis, as well as for remodeling during normal development. Impairment of this process has been implicated in various diseases, in the pathogenic response to bacterial and viral infections, and in aging. Pluripotent stem cells, with their ability to self-replicate and to give rise to any specialized cell type, are very valuable resources for cell-based medical therapies and open a number of promising avenues for studying human development and disease. It has been suggested that autophagy is vital for the maintenance of cellular homeostasis in stem cells, and subsequently more in-depth knowledge about the regulation of autophagy in stem cell biology has been acquired recently. In this review, we describe the most significant advances in the understanding of autophagy regulation in hematopoietic and mesenchymal stem cells, as well as in induced pluripotent stem cells. In particular, we highlight the roles of various autophagy activities in the regulation of self-renewal and differentiation of these stem cells.

  3. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    Science.gov (United States)

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  4. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-05-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix mainly composed of collagen type I. Here we assessed the potential role of endogenous collagen synthesis in hMSC differentiation and stem cell maintenance. We observed a sharp reduction in proliferation rate of hMSCs in the absence of ascorbic acid, concomitant with a reduction in osteogenesis in vitro and bone formation in vivo. In line with a positive role for collagen type I in osteogenesis, gene expression profiling of hMSCs cultured in the absence of ascorbic acid demonstrated increased expression of genes involved in adipogenesis and chondrogenesis and a reduction in expression of osteogenic genes. We also observed that matrix remodeling and anti-osteoclastogenic signals were high in the presence of ascorbic acid. The presence of collagen type I during the expansion phase of hMSCs did not affect their osteogenic and adipogenic differentiation potential. In conclusion, the collagenous matrix supports both proliferation and differentiation of osteogenic hMSCs but, on the other hand, presents signals stimulating matrix remodeling and inhibiting osteoclastogenesis.

  5. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells.

    Science.gov (United States)

    Chung, HaeWon; Lee, Bum-Kyu; Uprety, Nadima; Shen, Wenwen; Lee, Jiwoon; Kim, Jonghwan

    2016-04-01

    Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal. © 2016 The Authors.

  6. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors.

    Science.gov (United States)

    Xie, Ting

    2013-01-01

    In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors. Copyright © 2012 Wiley Periodicals, Inc.

  7. Fine-tuning Hematopoiesis: Microenvironmental factors regulating self-renewal and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    T.C. Luis (Tiago)

    2010-01-01

    markdownabstract__Abstract__ Hematopoietic stem cells (HSCs) have the ability to self renew and generate all lineages of blood cells. Although it is currently well established that hematopoietic stem cells (HSCs) regenerate the blood compartment, it was only in the 1960s that was introduced the

  8. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Directory of Open Access Journals (Sweden)

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  9. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    Science.gov (United States)

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  10. Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Strong, Amy L.; Shi, Zhenzhen; Strong, Michael J.; Miller, David F.B.; Rusch, Douglas B.; Buechlein, Aaron M.; Flemington, Erik K.; McLachlan, John A.; Nephew, Kenneth P.

    2014-01-01

    Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs. Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK

  11. Therapeutic application of multipotent stem cells

    DEFF Research Database (Denmark)

    Mirzaei, Hamed; Sahebkar, Amirhossein; Sichani, Laleh Shiri

    2018-01-01

    Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through...... been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells...... before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications....

  12. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus

    Science.gov (United States)

    Suh, Hoonkyo; Consiglio, Antonella; Ray, Jasodhara; Sawai, Toru; D'Amour, Kevin A.; Gage, Fred H.

    2007-01-01

    Summary To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as a single cell level. More interestingly, a subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. PMID:18371391

  13. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    Science.gov (United States)

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  14. DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

    Science.gov (United States)

    Fütterer, Agnes; de Celis, Jésus; Navajas, Rosana; Almonacid, Luis; Gutiérrez, Julio; Talavera-Gutiérrez, Amaia; Pacios-Bras, Cristina; Bernascone, Ilenia; Martin-Belmonte, Fernando; Martinéz-A, Carlos

    2017-04-11

    Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    Science.gov (United States)

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

    DEFF Research Database (Denmark)

    Hasemann, Marie S; Lauridsen, Felicia K B; Waage, Johannes

    2014-01-01

    Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C...... as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options......./EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC...

  17. Distinct roles of the receptor tyrosine kinases c-ErbB and c-Kit in regulating the balance between erythroid cell proliferation and differentiation

    NARCIS (Netherlands)

    Wessely, O.; Mellitzer, G.; von Lindern, M.; Levitzki, A.; Gazit, A.; Ischenko, I.; Hayman, M. J.; Beug, H.

    1997-01-01

    In the bone marrow, multipotent and committed hematopoietic progenitors have to closely regulate their balance between sustained proliferation without differentiation (self renewal) and entering a terminal differentiation pathway. A useful model to analyze this regulation at the molecular level is

  18. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation.

    Science.gov (United States)

    Di Tullio, Alessandro; Passaro, Diana; Rouault-Pierre, Kevin; Purewal, Sukhveer; Bonnet, Dominique

    2017-07-11

    Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG) mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated) and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation

    Directory of Open Access Journals (Sweden)

    Alessandro Di Tullio

    2017-07-01

    Full Text Available Nuclear factor erythroid-derived 2 (NF-E2 has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation.

  20. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

    Science.gov (United States)

    Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin

    2010-01-01

    Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423

  1. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells.

    Science.gov (United States)

    Thomas, Kelsey A; Gibbons, Michael C; Lane, John G; Singh, Anshuman; Ward, Samuel R; Engler, Adam J

    2017-08-01

    Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. HPV16-E2 protein modifies self-renewal and differentiation rate in progenitor cells of human immortalized keratinocytes.

    Science.gov (United States)

    Domínguez-Catzín, Victoria; Reveles-Espinoza, Alicia-María; Sánchez-Ramos, Janet; Cruz-Cadena, Raúl; Lemus-Hernández, Diana; Garrido, Efraín

    2017-04-03

    Cervical cancer is the fourth cause of death worldwide by cancer in women and is a disease associated to persistent infection with human papillomavirus (HPV), particularly from two high-risk types HPV16 and 18. The virus initiates its replicative cycle infecting cells located in the basal layer of the epithelium, where a small population of epithelial stem cells is located performing important functions of renewal and maintenance of the tissue. Viral E2 gene is one of the first expressed after infection and plays relevant roles in the replicative cycle of the virus, modifying fundamental processes in the infected cells. Thus, the aim of the present study was to demonstrate the presence of hierarchic subpopulations in HaCaT cell line and evaluate the effect of HPV16-E2 expression, on their biological processes. HaCaT-HPV16-E2 cells were generated by transduction of HaCaT cell line with a lentiviral vector. The α6-integrin-CD71 expression profile was established by immunostaining and flow cytometric analysis. After sorting, cell subpopulations were analyzed in biological assays for self-renewal, clonogenicity and expression of stemness factors (RT-qPCR). We identified in HaCaT cell line three different subpopulations that correspond to early differentiated cells (α6-integrin dim ), transitory amplifying cells (α6-integrin bri /CD71 bri ) and progenitor cells (α6-integrin bri /CD71 dim ). The last subpopulation showed stem cell characteristics, such as self-renewal ability, clonogenicity and expression of the well-known stem cell factors SOX2, OCT4 and NANOG, suggesting they are stem-like cells. Interestingly, the expression of HPV16-E2 in HaCaT cells changed its α6-integrin-CD71 immunophenotype modifying the relative abundance of the cell subpopulations, reducing significantly the percentage of α6-integrin bri /CD71 dim cells. Moreover, the expression of the stem cell markers was also modified, increasing the expression of SOX2 and NANOG, but decreasing notably

  5. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing.

    Science.gov (United States)

    Zhou, Yiqing; Jiang, Rong; An, Liqin; Wang, Hong; Cheng, Sicheng; Qiong, Shi; Weng, Yaguang

    2017-06-01

    Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression. In vitro studies, we employed C3H10T1/2 and bone marrow mesenchymal stem cells (BM-MSCs) with BaP and discovered that BaP impaired innate properties of MSCs. Further investigation into MSCs showed that exposure to BaP activated Ahr signaling and inhibited TGF-β1/SMAD4 and TGF-β1/ERK/AKT signaling pathways. Corresponding with the outcomes, tibial fracture calluses produced by BaP-administered rats appeared to delay healing. This effect of BaP was abrogated by resveratrol, a natural Ahr antagonist, in vitro and in vivo. These data demonstrated that Ahr may play a key role in BaP-impaired innate properties by inhibiting SMAD-dependent signaling pathways TGF-β1/SMAD4 and SMAD-independent TGF-β1/ERK/AKT signaling pathways. Furthermore, resveratrol inhibited MSCs from adverse effects caused by BaP. Copyright © 2017. Published by Elsevier B.V.

  6. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, Christoffer, E-mail: christoffer.tamm@imbim.uu.se; Galito, Sara Pijuan, E-mail: sara.pijuan@imbim.uu.se; Anneren, Cecilia, E-mail: cecilia.anneren@imbim.uu.se

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  7. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    International Nuclear Information System (INIS)

    Tamm, Christoffer; Galitó, Sara Pijuan; Annerén, Cecilia

    2012-01-01

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: ► SFK inhibitor SU6656 induces senescence in mouse ES cells. ► SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. ► SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. ► Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. ► SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  8. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish.

    Science.gov (United States)

    Lin, Qiaohong; Mei, Jie; Li, Zhi; Zhang, Xuemei; Zhou, Li; Gui, Jian-Fang

    2017-11-01

    Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh -mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1 -mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1 -mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish. Copyright © 2017 by the Genetics Society of America.

  9. Non-multipotent stroma inhibit the proliferation and differentiation of mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Rosu-Myles, Michael; Fair, Joel; Pearce, Nelson; Mehic, Jelica

    2010-10-01

    The ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood. C57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU. At a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10-20% increase in the frequency of proliferating CD105(-) cells. Removal of CD105(-) stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105(-) cells. This work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.

  10. Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines I3, I6 and BG01V

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2009-06-01

    Full Text Available Abstract Background A unique and essential property of embryonic stem cells is the ability to self-renew and differentiate into multiple cell lineages. However, the possible differences in proliferation and differentiation capabilities among independently-derived human embryonic stem cells (hESCs are not well known because of insufficient characterization. To address this question, a side-by-side comparison of 1 the ability to maintain an undifferentiated state and to self-renew under standard conditions; 2 the ability to spontaneously differentiate into three primary embryonic germ lineages in differentiating embryoid bodies; and 3 the responses to directed neural differentiation was made between three NIH registered hES cell lines I3 (TE03, I6 (TE06 and BG01V. Lines I3 and I6 possess normal XX and a normal XY karyotype while BG01V is a variant cell line with an abnormal karyotype derived from the karyotypically normal cell line BG01. Results Using immunocytochemistry, flow cytometry, qRT-PCR and MPSS, we found that all three cell lines actively proliferated and expressed similar "stemness" markers including transcription factors POU5F1/Oct3/4 and NANOG, glycolipids SSEA4 and TRA-1-81, and alkaline phosphatase activity. All cell lines differentiated into three embryonic germ lineages in embryoid bodies and into neural cell lineages when cultured in neural differentiation medium. However, a profound variation in colony morphology, growth rate, BrdU incorporation, and relative abundance of gene expression in undifferentiated and differentiated states of the cell lines was observed. Undifferentiated I3 cells grew significantly slower but their differentiation potential was greater than I6 and BG01V. Under the same neural differentiation-promoting conditions, the ability of each cell line to differentiate into neural progenitors varied. Conclusion Our comparative analysis provides further evidence for similarities and differences between three h

  11. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling.

    Directory of Open Access Journals (Sweden)

    Qingfa Chen

    Full Text Available In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs or from their immediate progeny, intermediate neuronal precursors (INPs. The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.

  12. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro.

    Science.gov (United States)

    Yu, Min; Bojic, Sanja; Figueiredo, Gustavo S; Rooney, Paul; de Havilland, Julian; Dickinson, Anne; Figueiredo, Francisco C; Lako, Majlinda

    2016-11-01

    The cornea is a self-renewing tissue located at the front of the eye. Its transparency is essential for allowing light to focus onto the retina for visual perception. The continuous renewal of corneal epithelium is supported by limbal stem cells (LSCs) which are located in the border region between conjunctiva and cornea known as the limbus. Ex vivo expansion of LSCs has been successfully applied in the last two decades to treat patients with limbal stem cell deficiency (LSCD). Various methods have been used for their expansion, yet the most widely used culture media contains a number of ingredients derived from animal sources which may compromise the safety profile of human LSC transplantation. In this study we sought to understand the role of these components namely adenine, cholera toxin, hydrocortisone and triiodothyronine with the aim of re-defining a safe and GMP compatible minimal media for the ex vivo expansion of LSCs on human amniotic membrane. Our data suggest that all four components play a critical role in maintaining LSC proliferation and promoting LSC self-renewal. However removal of adenine and triiodothyronine had a more profound impact and led to LSC differentiation and loss of viability respectively, suggesting their essential role for ex vivo expansion of LSCs. Replacement of each of the components with GMP-grade reagents resulted in equal growth to non-GMP grade media, however an enhanced differentiation of LSCs was observed, suggesting that additional combinations of GMP grade reagents need to be tested to achieve similar or better level of LSC maintenance in the same manner as the traditional LSC media. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus with multipotent differential potential.

    Directory of Open Access Journals (Sweden)

    Phelipe Oliveira Favaron

    Full Text Available Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13% and large, round epithelial-like cells with centrally located nuclei (6.5%. Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73 and pluripotency (Oct3/4, Nanog as well as precursors of hematopoietic stem cells (CD117. In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine.

  14. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  15. Self-renewal molecular mechanisms of colorectal cancer stem cells

    OpenAIRE

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2016-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth facto...

  16. Identification of a Dynamic Core Transcriptional Network in t(8;21 AML that Regulates Differentiation Block and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Anetta Ptasinska

    2014-09-01

    Full Text Available Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21, subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21 cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21 cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21 is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.

  17. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling.

    Science.gov (United States)

    Huang, Tyng-Shyan; Li, Li; Moalim-Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A L; Figeys, Daniel; Wang, Lisheng

    2015-05-01

    The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self-renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self-renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two-layer regulatory circuit involving β-catenin, E-cadherin, PI3K/Akt, and Slug in a time-dependent manner. Short-term upregulation of β-catenin does not lead to the activation of T-cell factor (TCF)-eGFP Wnt reporter in hESCs. Instead, it enhances E-cadherin expression on the cell membrane, thereby enhancing hESC self-renewal through E-cadherin-associated PI3K/Akt signaling. Conversely, long-term Wnt activation or loss of E-cadherin intracellular β-catenin binding domain induces TCF-eGFP activity and promotes hESC differentiation through β-catenin-induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E-cadherin that serves as a β-catenin "sink" sequestering free cytoplasmic β-catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self-renewal associated with short-term Wnt/β-catenin activation to definitive differentiation. Stem Cells 2015;33:1419-1433. © 2015 AlphaMed Press.

  18. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    Science.gov (United States)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  19. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia

    DEFF Research Database (Denmark)

    Garbe, James C; Pepin, Francois; Pelissier, Fanny A

    2012-01-01

    of the cellular and molecular mechanisms that underlies these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women ages 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells....... We found that in finite lifespan cultured and uncultured epithelial cells, aging is associated with a reduction of myoepithelial cells and an increase in luminal cells that express keratin 14 and integrin-a6, a phenotype that is usually expressed exclusively in myoepithelial cells in women younger...... than 30 years. Changes to the luminal lineage resulted from age-dependent expansion of defective multipotent progenitors that gave rise to incompletely differentiated luminal or myoepithelial cells. The aging process therefore results in both a shift in the balance of luminal/myoepithelial lineages...

  20. Satellite Cell Self-Renewal.

    Science.gov (United States)

    Giordani, Lorenzo; Parisi, Alice; Le Grand, Fabien

    2018-01-01

    Adult skeletal muscle is endowed with regenerative potential through partially recapitulating the embryonic developmental program. Upon acute injury or in pathological conditions, quiescent muscle-resident stem cells, called satellite cells, become activated and give rise to myogenic progenitors that massively proliferate, differentiate, and fuse to form new myofibers and restore tissue functionality. In addition, a proportion of activated cells returns back to quiescence and replenish the pool of satellite cells in order to maintain the ability of skeletal muscle tissue to repair. Self-renewal is the process by which stem cells divide to make more stem cells to maintain the stem cell population throughout life. This process is controlled by cell-intrinsic transcription factors regulated by cell-extrinsic signals from the niche and the microenvironment. This chapter provides an overview about the general aspects of satellite cell biology and focuses on the cellular and molecular aspects of satellite cell self-renewal. To date, we are still far from understanding how a very small proportion of the satellite cell progeny maintain their stem cell identity when most of their siblings progress through the myogenic program to construct myofibers. © 2018 Elsevier Inc. All rights reserved.

  1. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Science.gov (United States)

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  2. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  3. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin

    2007-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications

  4. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    Science.gov (United States)

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  5. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  6. Modulation of differentiation and self-renewal of tissue specific stem cells for effective mitigation of radiation injury

    International Nuclear Information System (INIS)

    Bandekar, Mayuri; Patwardhan, R.S.; Maurya, Dharmendra K.; Bhilwade, Hari N.; Sharma, Deepak; Sandur, Santosh Kumar

    2017-01-01

    The use of stem cells in regenerative medicine for the treatment of various human diseases is one of the active research areas. The aim of regenerative medicine is to restore normal tissue functions by replenishing injured tissues using either cell-based therapy or by inducing certain factors that can aid endogenous repair and regeneration. The approach for inducing endogenous repair and regeneration requires in vivo modulation of tissue-specific stem cells by therapeutic agents and enhance their abundance through activation, proliferation, differentiation, or reprogramming. Here we describe three different approaches to enhance the abundance of hematopoietic stem cells in vivo for mitigation of radiation induced toxicity. Baicalein, a flavonoid derived from Chinese and Indian medicinal plants like Scutellaria baicalensis and Terminalia ariuna enhanced the abundance of hematopoietic stem cells through activation of Nrf-2 in the lineage negative cells. Another anti-oxidant, chlorophyllin derived from green plant pigment, chlorophyll also enhanced the abundance of hematopoietic stem cells through modulation of cell cycle in cells of the bone marrow. Treatment of mice with Cobaltus chloride (CoCl_2), a well-known activator of hypoxia inducible factor-1α (HIP-1α), also led to increase in the number of hematopoietic stem cells in the bone marrow. Whereas chlorophyllin offered up to 100 % protection against whole body irradiation (WBI, 8 Gy) induced mortality in mice, baicalein offered up to70%protection. Cobaltus chloride treatment offered 40% protection against 8 Gy of WBI. These studies indicate potential use of stem cell modulating agents as effective mitigators of radiation induced toxicity in vivo. (author)

  7. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    Science.gov (United States)

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  8. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice

    NARCIS (Netherlands)

    Bruggeman, SWM; Valk-Lingbeek, ME; van der Stoop, PPM; Jacobs, JJL; Kieboom, K; Tanger, E; Hulsman, D; Leung, C; Arsenijevic, Y; Marino, S; van Lohuizen, M

    2005-01-01

    The Polycomb group (PcG) gene Bmi1 promotes cell proliferation and stem cell self-renewal by repressing the Ink4a/Arf locus. We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells. We

  9. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  10. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  11. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells

    Directory of Open Access Journals (Sweden)

    Vishnubalaji Radhakrishnan

    2012-01-01

    Full Text Available Abstract Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs and adult dermal skin (hADSSCs using explants cultures and were compared with bone marrow (hMSC-TERT and adipose tissue-derived mesenchymal stem cells (hADMSCs for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC, with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs

  12. Bmi-1 Regulates Extensive Erythroid Self-Renewal

    Directory of Open Access Journals (Sweden)

    Ah Ram Kim

    2015-06-01

    Full Text Available Red blood cells (RBCs, responsible for oxygen delivery and carbon dioxide exchange, are essential for our well-being. Alternative RBC sources are needed to meet the increased demand for RBC transfusions projected to occur as our population ages. We previously have discovered that erythroblasts derived from the early mouse embryo can self-renew extensively ex vivo for many months. To better understand the mechanisms regulating extensive erythroid self-renewal, global gene expression data sets from self-renewing and differentiating erythroblasts were analyzed and revealed the differential expression of Bmi-1. Bmi-1 overexpression conferred extensive self-renewal capacity upon adult bone-marrow-derived self-renewing erythroblasts, which normally have limited proliferative potential. Importantly, Bmi-1 transduction did not interfere with the ability of extensively self-renewing erythroblasts (ESREs to terminally mature either in vitro or in vivo. Bmi-1-induced ESREs can serve to generate in vitro models of erythroid-intrinsic disorders and ultimately may serve as a source of cultured RBCs for transfusion therapy.

  13. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    OpenAIRE

    Soucie, E.L.; Weng, Z.; Geirsdottir, L.; Molawi, K.; Maurizio, J.; Fenouil, R.; Mossadegh-Keller, N.; Gimenez, G.; VanHille, L.; Beniazza, M.; Favret, J.; Berruyer, C.; Perrin, P.; Hacohen, N.; Andrau, J.C.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down...

  14. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells

    NARCIS (Netherlands)

    Schepers, Hein; Wierenga, Albertus T. J.; Vellenga, Edo; Schuringa, Jan Jacob

    2012-01-01

    The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might

  15. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  16. Tailless-like (TLX) protein promotes neuronal differentiation of dermal multipotent stem cells and benefits spinal cord injury in rats.

    Science.gov (United States)

    Wang, Tao; Ren, Xiaobao; Xiong, Jianqiong; Zhang, Lei; Qu, Jifu; Xu, Wenyue

    2011-04-01

    Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.

  17. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  18. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  19. Self-renewal and cancer of the gut: two sides of a coin.

    NARCIS (Netherlands)

    Radtke, F.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium follows the paradigms of stem cell biology established for other self-renewing tissues. With a unique topology, it constitutes a two-dimensional structure folded into valleys and hills: the proliferative crypts and the differentiated villi. Its unprecedented self-renewal

  20. Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Li, Na; Du, Zhaoyu; Shen, Qiaoyan; Lei, Qijing; Zhang, Ying; Zhang, Mengfei; Hua, Jinlian

    2017-07-01

    Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    Science.gov (United States)

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  2. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2017-06-01

    Full Text Available Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ β-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes.

  3. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    Science.gov (United States)

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  4. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  5. Intrinsic Sex-Linked Variations in Osteogenic and Adipogenic Differentiation Potential of Bone Marrow Multipotent Stromal Cells.

    Science.gov (United States)

    Bragdon, Beth; Burns, Robert; Baker, Amelia H; Belkina, Anna C; Morgan, Elise F; Denis, Gerald V; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-02-01

    Bone formation and aging are sexually dimorphic. Yet, definition of the intrinsic molecular differences between male and female multipotent mesenchymal stromal cells (MSCs) in bone is lacking. This study assessed sex-linked differences in MSC differentiation in 3-, 6-, and 9-month-old C57BL/6J mice. Analysis of tibiae showed that female mice had lower bone volume fraction and higher adipocyte content in the bone marrow compared to age-matched males. While both males and females lost bone mass in early aging, the rate of loss was higher in males. Similar expression of bone- and adipocyte-related genes was seen in males and females at 3 and 9 months, while at 6 months, females exhibited a twofold greater expression of these genes. Under osteogenic culture conditions, bone marrow MSCs from female 3- and 6-month-old mice expressed similar levels of bone-related genes, but significantly greater levels of adipocyte-related genes, than male MSCs. Female MSCs also responded to rosiglitazone-induced suppression of osteogenesis at a 5-fold lower (10 nM) concentration than male MSCs. Female MSCs grown in estrogen-stripped medium showed similar responses to rosiglitazone as MSCs grown in serum containing estrogen. MSCs from female mice that had undergone ovariectomy before sexual maturity also were sensitive to rosiglitazone-induced effects on osteogenesis. These results suggest that female MSCs are more sensitive to modulation of differentiation by PPARγ and that these differences are intrinsic to the sex of the animal from which the MSCs came. These results also may explain the sensitivity of women to the deleterious effects of rosiglitazone on bone. © 2014 Wiley Periodicals, Inc.

  6. The tyrosine kinase inhibitor dasatinib induces a marked adipogenic differentiation of human multipotent mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    Full Text Available BACKGROUND: The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs, the knowledge of their effects on normal cells is of pivotal importance. DESIGN AND METHODS: We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs. RESULTS: Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase. CONCLUSIONS: Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences.

  7. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T

    2009-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research...... embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers......: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell...

  8. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    International Nuclear Information System (INIS)

    Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita; Zhu Hua; Rameshwar, Pranela; Kotenko, Sergei V.

    2007-01-01

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases

  9. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  10. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    International Nuclear Information System (INIS)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji; Gong, Yaoqin; Shao, Changshun

    2009-01-01

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of β-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of β-catenin, the ability to activate transcription of β-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of β-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced β-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3β (GSK-3β), which phosphorylates and destabilizes β-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3β requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  11. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture.

    Science.gov (United States)

    Ghourichaee, Sasan Sharee; Powell, Elizabeth M; Leach, Jennie B

    2017-05-01

    The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O 2 ) versus hypoxic (3% O 2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    International Nuclear Information System (INIS)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.; Sobel, Burton E.

    2006-01-01

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state

  13. On the self-renewal of teachers.

    Science.gov (United States)

    Waters, David J; Waters, Lane S

    2011-01-01

    In previous issues of the Journal of Veterinary Medical Education, wide-ranging insights on how to achieve excellence in the classroom have been framed by award-winning teachers. These recipes for educational success, however, invariably lack a key ingredient-the teacher's process of self-renewal. What skills and attitudes prime the teacher for continued high performance? To stay out of the ruts of expertise, where does the teacher turn? Teachers and administrators alike recognize its great importance, yet few opportunities for the renewal of teachers are built into the educational system. In this article, we challenge teachers to see their own self-renewal as an underutilized approach to innovate education. We propose a schema for sustained self-renewal: each educator developing her own personalized, hand-picked gallery of intellectual heroes who in turn serve as the educator's life-long teachers. To illustrate the value of this activity, we introduce our own collection of 10 gifted thinkers, providing a brief encounter with each sage as a way of stimulating new thinking on the skills and attitudes that promote personal growth and transformative teaching. We conclude that the veterinary profession should work to create better opportunities for the self-renewal of teachers. By envisioning even our best teachers as unfinished and under construction, we open up a new dialogue situating the self-renewal of teachers at the very core of educational excellence.

  14. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  15. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  16. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  17. Human Serum is as Efficient as Fetal Bovine Serum in Supporting Proliferation and Differentiation of Human Multipotent Stromal (Mesenchymal) Stem Cells In Vitro and In Vivo

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Haack-Sørensen, Mandana; Al-Nbaheen, May

    2011-01-01

    BACKGROUND: Human multipotent stromal (skeletal, mesenchymal) stem cells (hMSC) are employed in an increasing number of clinical trials for tissue regeneration of age-related degenerative diseases. However, routine use of fetal bovine sera (FBS) for their in vitro expansion is not optimal and may......) or adipocytic markers (PPAR-gamma2, lipoprotein lipase (LPL), aP2), respectively. In order to test for the functional capacity of hMSC-TERT that have been maintained in long-term cultures in the presence of HuS vs. FBS, the cells were mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and implanted...... subcutaneously in immune deficient mice. hMSC maintained in HuS vs. FBS formed comparable heterotopic bone. DISCUSSION: Human serum can support proliferation and differentiation of hMSC in vitro and can maintain their bone forming capacity in vivo. The use of human serum in cell cultures of hMSC intended...

  18. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

    Science.gov (United States)

    Fiorelli, Roberto; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose-Manuel; Raineteau, Olivier

    2013-12-01

    Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP(+) cells that share the morphology and the antigenic properties of SVZ-NSCs mostly reside in the dorsal aspect of the central canal (CC) throughout the spinal cord. These cells are non-proliferative in the intact spinal cord, but incorporate the S-phase marker EdU following spinal cord injury. Multipotent, clonal YFP-expressing neurospheres (i.e., deriving from recombined GFAP-expressing cells) were successfully obtained from both the intact and injured spinal cord. These spheres however showed limited self-renewal properties when compared with SVZ-neurospheres, even after spinal cord injury. Altogether, these results demonstrate that significant differences exist in NSCs lineages between neurogenic and non-neurogenic regions of the adult CNS. Thus, although we confirm that a population of multipotent GFAP(+) cells co-exists alongside with multipotent ependymal cells within the adult SC, we identify these cells as multipotent progenitors showing limited self-renewal properties. Copyright © 2013 Wiley Periodicals, Inc.

  19. Assessment of Effects of Si-Ca-P Biphasic Ceramic on the Osteogenic Differentiation of a Population of Multipotent Adult Human Stem Cells

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-11-01

    Full Text Available A new type of bioceramic with osteogenic properties, suitable for hard tissue regeneration, was synthesised. The ceramic was designed and obtained in the Nurse’s A-phase-silicocarnotite subsystem. The selected composition was that corresponding to the eutectoid 28.39 wt % Nurse’s A-phase-71.61 wt % silicocarnotite invariant point. We report the effect of Nurse’s A-phase-silicocarnotite ceramic on the capacity of multipotent adult human mesenchymal stem cells (ahMSCs cultured under experimental conditions, known to adhere, proliferate and differentiate into osteoblast lineage cells. The results at long-term culture (28 days on the material confirmed that the undifferentiated ahMSCs cultured and in contact with the material surface adhered, spread, proliferated, and produced a mineralised extracellular matrix on the studied ceramic, and finally acquired an osteoblastic phenotype. These findings indicate that it underwent an osteoblast differentiation process. All these findings were more significant than when cells were grown on plastic, in the presence and absence of this osteogenic supplement, and were more evident when this supplement was present in the growth medium (GM. The ceramic evaluated herein was bioactive, cytocompatible and capable of promoting the proliferation and differentiation of undifferentiated ahMSCs into osteoblasts, which may be important for bone integration into the clinical setting.

  20. p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs).

    Science.gov (United States)

    Niu, Zhiwei; Mu, Hailong; Zhu, Haijing; Wu, Jiang; Hua, Jinlian

    2017-02-01

    Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal. © 2016 John Wiley & Sons Ltd.

  1. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  2. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm

    DEFF Research Database (Denmark)

    Hamilton, William B; Brickman, Joshua M

    2014-01-01

    Fgf signaling via Erk activation has been associated with both neural induction and the generation of a primed state for the differentiation of embryonic stem cells (ESCs) to all somatic lineages. To dissect the role of Erk in both ESC self-renewal and lineage specification, we explored...

  3. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    Science.gov (United States)

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  4. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis.

    Science.gov (United States)

    Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J

    2014-08-01

    The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.

  5. Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele

    Directory of Open Access Journals (Sweden)

    Mario Marotta

    2017-07-01

    Full Text Available Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs in cerebrospinal fluid (CSF. To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26 weeks of gestation. In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2 were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1. In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses.

  6. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  7. Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal.

    Science.gov (United States)

    Georges, Pauline; Boissart, Claire; Poulet, Aurélie; Peschanski, Marc; Benchoua, Alexandra

    2015-12-01

    Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. © 2015 AlphaMed Press.

  8. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    Science.gov (United States)

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

  9. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes

    International Nuclear Information System (INIS)

    Suzuki, Hidenori; Taguchi, Toshihiko; Tanaka, Hiroshi; Kataoka, Hideo; Li Zhenglin; Muramatsu, Keiichi; Gondo, Toshikazu; Kawai, Shinya

    2004-01-01

    Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed β-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system

  10. FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal

    Directory of Open Access Journals (Sweden)

    Suchitra D. Gopinath

    2014-04-01

    Full Text Available Skeletal muscle stem cells, or “satellite cells” (SCs, are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs. Conditional deletion of Foxo3 in QSCs impairs self-renewal and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregulation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD rescued the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.

  11. Hmga2 regulates self-renewal of retinal progenitors.

    Science.gov (United States)

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  12. A novel way to induce erythroid progenitor self renewal: cooperation of c-Kit with the erythropoietin receptor

    NARCIS (Netherlands)

    Wessely, O.; Bauer, A.; Quang, C. T.; Deiner, E. M.; von Lindern, M.; Mellitzer, G.; Steinlein, P.; Ghysdael, J.; Beug, H.

    1999-01-01

    Red blood cells are of vital importance for oxygen transport in vertebrates. Thus, their formation during development and homeostasis requires tight control of both progenitor proliferation and terminal red cell differentiation. Self renewal (i.e. long-term proliferation without differentiation) of

  13. LncMAPK6 drives MAPK6 expression and liver TIC self-renewal.

    Science.gov (United States)

    Huang, Guanqun; Jiang, Hui; He, Yueming; Lin, Ye; Xia, Wuzheng; Luo, Yuanwei; Liang, Min; Shi, Boyun; Zhou, Xinke; Jian, Zhixiang

    2018-05-15

    Liver tumor initiating cells (TICs) have self-renewal and differentiate capacities, and largely contribute to tumor initiation, metastasis and drug resistance. MAPK signaling is a critical pathway in many biological processes, while its role in liver TICs hasn't been explored. Online-available dataset was used for unbiased screening. Liver TICs were examined CD133 FACS or oncosphere formation. TIC self-renewal was detected by oncosphere formation and tumor initiation assay. LncRNA function was detected by loss of function or gain of function assays. The molecular mechanism of lncRNA was explored by RNA pulldown, RNA immunoprecipitation, ChIP, western blot and double FISH. Here, we examined the expression profiles of MAPK components (MAPKs, MAP2Ks, MAP3Ks, MAP4Ks), and found MAPK6 is most highly expressed in liver cancer samples. Moreover, a divergent lncRNA (long noncoding RNA) of MAPK6, termed lncMAPK6 here, is also overexpressed along with liver tumorigenesis. LncMAPK6 promotes liver tumor propagation and TIC self-renewal through MAPK6. LncMAPK6 interacts with and recruits RNA polymerase II to MAPK6 promoter, and finally activates the transcription of MAPK6. Through MAPK6 transcriptional regulation, lncMAPK6 drives MARK signaling activation. LncMAPK6-MAPK6 pathway can be used for liver TIC targeting. Altogether, lncMAPK6 promotes MARK signaling and the self-renewal of liver TICs through MAPK6 expression. MAPK6 was the most highly expressed MAPK component in liver cancer and liver TICs and lncMAPK6 participated in the transcriptional regulation of MAPK6in cis. This work revealed the importance role of MAPK signaling in liver TIC self-renewal and added a new layer for liver TIC and MAPK6 expression regulation.

  14. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  15. ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment.

    Directory of Open Access Journals (Sweden)

    William B Hamilton

    Full Text Available Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification.

  16. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal.

    Science.gov (United States)

    Dillard, Caroline; Narbonne-Reveau, Karine; Foppolo, Sophie; Lanet, Elodie; Maurange, Cédric

    2018-01-25

    Whether common principles regulate the self-renewing potential of neural stem cells (NSCs) throughout the developing central nervous system is still unclear. In the Drosophila ventral nerve cord and central brain, asymmetrically dividing NSCs, called neuroblasts (NBs), progress through a series of sequentially expressed transcription factors that limits self-renewal by silencing a genetic module involving the transcription factor Chinmo. Here, we find that Chinmo also promotes neuroepithelium growth in the optic lobe during early larval stages by boosting symmetric self-renewing divisions while preventing differentiation. Neuroepithelium differentiation in late larvae requires the transcriptional silencing of chinmo by ecdysone, the main steroid hormone, therefore allowing coordination of neural stem cell self-renewal with organismal growth. In contrast, chinmo silencing in NBs is post-transcriptional and does not require ecdysone. Thus, during Drosophila development, humoral cues or tissue-intrinsic temporal specification programs respectively limit self-renewal in different types of neural progenitors through the transcriptional and post-transcriptional regulation of the same transcription factor. © 2018. Published by The Company of Biologists Ltd.

  17. DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue

    OpenAIRE

    Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.

    2010-01-01

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintena...

  18. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    Science.gov (United States)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles

  19. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hock Chuan Yeo

    Full Text Available Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs. We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.

  20. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression.

    Science.gov (United States)

    Liu, Rui; Wang, Jun-Hua; Xu, Chengxiong; Sun, Bo; Kang, Sa-Ouk

    2016-10-28

    Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...... compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential.......Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias....... Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, acute deletion of Jarid1b from bone marrow increased peripheral blood T cells and, following secondary transplantation, resulted in loss of bone marrow reconstitution. Our results reveal that deletion of Jarid1b...

  2. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5.

    Directory of Open Access Journals (Sweden)

    Geqiang Li

    2010-02-01

    Full Text Available Grb2-associated binding (Gab adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol-3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs. Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5, a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner.To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit(+Lin(-Sca-1(+ (KLS cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150(+CD48(-, reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation.These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.

  3. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis.

    Science.gov (United States)

    Song, W; Zhu, H; Li, M; Li, N; Wu, J; Mu, H; Yao, X; Han, W; Liu, W; Hua, J

    2013-08-01

    Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.

  4. Identification of Pro-Differentiation P53 Target Genes and Evaluation of Expression in Normal and Malignant Mammary Gland

    National Research Council Canada - National Science Library

    Li, Hua; Cherukuri, Pratima; Pho, Alissa; Cowling, Victoria; Cole, Michael; Godwin, Andrew K; Wells, Wendy; Direnzo, James

    2006-01-01

    ... molecular targets such as ER alpha, PR and Her2- overexpression. These tumors display a high degree of cellular heterogeneity suggesting that they may arise as the result of unregulated self-renewal in a multipotent cell...

  5. Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal.

    Science.gov (United States)

    Tian, Aiguo; Jiang, Jin

    2017-10-02

    Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.

  6. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    Science.gov (United States)

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251

  7. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.

    Science.gov (United States)

    Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H

    2016-12-20

    Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

  8. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl.

    Science.gov (United States)

    Rojas-Ríos, Patricia; Chartier, Aymeric; Pierson, Stéphanie; Simonelig, Martine

    2017-11-02

    PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila , Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self-renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self-renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self-renewal and acts through direct mRNA regulation. We identify the Cbl proto-oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self-renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4-NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post-transcriptional regulators in key developmental decisions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation

    Directory of Open Access Journals (Sweden)

    Pavan Rajanahalli

    2015-01-01

    Full Text Available Silver nanoparticles (AgNPs are gaining rapid popularity in many commonly used medical and commercial products for their unique anti-bacterial properties. The molecular mechanisms of effects of AgNPs on stem cell self-renewal and proliferation have not yet been well understood. The aim of the work is to use mouse embryonic stem cells (mESCs as a cellular model to evaluate the toxicity of AgNPs. mESC is a very special cell type which has self-renewal and differentiation properties. The objective of this project is to determine the effects of AgNPs with different surface chemical compositions on the self-renewal and cell cycle of mESCs. Two different surface chemical compositions of AgNPs, polysaccharide-coated and hydrocarbon-coated, were used to test their toxic effects on self-renewal and proliferation of mESCs. The results indicated that both polysaccharide-coated and hydrocarbon-coated AgNPs changed the cell morphology of mESCs. Cell cycle analysis indicated that AgNPs induced mESCs cell cycle arrest at G1 and S phases through inhibition of the hyperphosphorylation of Retinoblastoma (Rb protein. Furthermore, AgNPs exposure reduced Oct4A isoform expression which is responsible for the pluripotency of mESCs, and induced the expression of several isoforms OCT4B-265, OCT4B-190, OCT4B-164 which were suggested involved in stem cell stresses responses. In addition, the evidence of reactive oxygen species (ROS production with two different surface chemical compositions of AgNPs supported our hypothesis that the toxic effect AgNPs exposure is due to overproduction of ROS which altered the gene expression and protein modifications. Polysaccharide coating reduced ROS production, and thus reduced the AgNPs toxicity.

  10. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    Science.gov (United States)

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  11. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

    Science.gov (United States)

    Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong

    2009-09-15

    Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

  12. Puerarin Suppresses the Self-Renewal of Murine Embryonic Stem Cells by Inhibition of REST-MiR-21 Regulatory Pathway.

    Science.gov (United States)

    Yin, Mengmeng; Yuan, Yin; Cui, Yurong; Hong, Xian; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jurgen; Xi, Jiaoya

    2015-01-01

    Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect of puerarin on the self-renewal and pluripotency of mES cells and its underlying mechanisms. RT-PCR and real-time PCR were used to detect the transcripts of core transcription factors, specific markers for multiple lineages, REST and microRNA-21 (miR-21). Colony-forming assay was performed to estimate the self-renewal capacity of mES cells. Western blotting and wortmannin were employed to explore the role of PI3K/Akt signaling pathway in the inhibitory action of puerarin on REST transcript. Transfected mES cells with antagomir21 were used to confirm the role of miR-21 in the action of puerarin on cell self-renewal. Puerarin significantly decreased the percentage of the self-renewal colonies, and suppressed the transcripts of Oct4, Nanog, Sox2, c-Myc and REST. Besides, PECAM, NCAM and miR-21 were up-regulated both under the self-renewal conditions and at day 4 of differentiation. The PI3K inhibitor wortmannin successfully reversed the mRNA expression changes of REST, Nanog and Sox2. Transfection of antagomir21 efficiently reversed the effects of puerarin on mES cells self-renewal. Inhibition of REST-miR-21 regulatory pathway may be the key mechanism of puerarin-induced suppression of mES cells self-renewal.

  13. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  14. miR-544 Regulates Dairy Goat Male Germline Stem Cell Self-Renewal via Targeting PLZF.

    Science.gov (United States)

    Song, Wencong; Mu, Hailong; Wu, Jiang; Liao, Mingzhi; Zhu, Haijing; Zheng, Liming; He, Xin; Niu, Bowen; Zhai, Yuanxin; Bai, Chunling; Lei, Anmin; Li, Guangpeng; Hua, Jinlian

    2015-10-01

    The balance between the self-renewal and differentiation of male germline stem cells (mGSCs) is critical for the initiation and maintenance of mammalian spermatogenesis. The promyelocytic leukemia zinc finger (PLZF), a zinc finger protein, is a critical factor for maintaining the self-renewal of mGSCs, so, evaluation of the PLZF pathway in mGSCs may provide a deeper insight into mammalian spermatogenesis. miRNA was also an important regulating factor for the self-renewal and differentiation of mGSCs; however, there is currently no data indicating that which miRNA regulate the self-renewal and differentiation of mGSCs via PLZF. Here, we predicted the prospective miRNA targeting to PLZF using the online Bioinformatics database-Targetscan, and performed an analysis of the dual-luciferase recombinant vector, psiCHCEKTM-2-PLZF-3'UTR. miR-544 mimics (miR-544m), miR-544 inhibitors (miR-544i), Control (NC, scrambled oligonucleotides transfection), pPLZF-IRES2-EGFP or PLZF siRNA were transfected into mGSCs; the cells proliferation was evaluated by BRDU incorporation assay and flow cytometry, and the mGSC marker, GFRa1, PLZF, KIT, DAZL, and VASA expression were analyzed by RT-qPCR, immunofluorescence and Western blot. The results showed that miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF. Our study identifies a new regulatory pathway for PLZF and expands upon the PLZF regulatory network in mGSCs. © 2015 Wiley Periodicals, Inc.

  15. Self-Renewal, Personal Development and Change: An Inexorable Link.

    Science.gov (United States)

    Krupp, Judy-Arin

    1995-01-01

    Self-renewal, personal development, and change create an inexorable link. Change management processes include the following: (1) internal locus of control; (2) freedom from institutional crutches; (3) flexible teaching; (4) recognition of emotional reactions to change; and (5) identification of the causes of indecisiveness and insecurities. (JOW)

  16. Hematopoietic stem cells : Self-renewing or aging?

    NARCIS (Netherlands)

    de Haan, G

    2002-01-01

    Stem cells are defined by their extensive self-renewal properties, and yet there is abundant evidence of erosion of stem cell functioning during aging. Whereas intracellular repair and protection mechanisms determine the lifespan of an individual cell, here an argument is made that somatic stem

  17. Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.

    Science.gov (United States)

    Kapranov, N M; Davydova, Yu O; Gal'tseva, I V; Petinati, N A; Bakshinskaitė, M V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2018-03-01

    We studied the effect of autologous and allogeneic lymphocytes on multipotent mesenchymal stromal cells in co-culture. It is shown that changes in multipotent mesenchymal stromal cells and in lymphocytes did not depend on the source of lymphocytes. Contact with lymphocytes triggers expression of HLA-DR molecules on multipotent mesenchymal stromal cells and these cells lose their immune privilege. In multipotent mesenchymal stromal cells, the relative level of expression of factors involved in immunomodulation (IDO1, PTGES, and IL-6) and expression of adhesion molecule ICAM1 increased, while expression of genes involved in the differentiation of multipotent mesenchymal stromal cells remained unchanged. Priming of multipotent mesenchymal stromal cells with IFN did not affect these changes. In turn, lymphocytes underwent activation, expression of HLA-DR increased, subpopulation composition of lymphocytes changed towards the increase in the content of naïve T cells. These findings are important for cell therapy.

  18. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells.

    Science.gov (United States)

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal.

    Science.gov (United States)

    Khalaj, Mona; Woolthuis, Carolien M; Hu, Wenhuo; Durham, Benjamin H; Chu, S Haihua; Qamar, Sarah; Armstrong, Scott A; Park, Christopher Y

    2017-07-21

    The microRNA-99 ( miR-99 ) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry. Moreover, miR-99 inhibition induced LSC differentiation and depletion in an MLL-AF9-driven mouse model of AML, leading to reduction in leukemia-initiating activity and improved survival in secondary transplants. Confirming miR-99 's role in established AML, miR-99 inhibition induced primary AML patient blasts to undergo differentiation. A forward genetic shRNA library screen revealed Hoxa1 as a critical mediator of miR-99 function in HSC maintenance, and this observation was independently confirmed in both HSCs and LSCs. Together, these studies demonstrate the importance of noncoding RNAs in the regulation of HSC and LSC function and identify miR-99 as a critical regulator of stem cell self-renewal. © 2017 Khalaj et al.

  20. Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901

    Directory of Open Access Journals (Sweden)

    Zhiying Ai

    2016-01-01

    Full Text Available Embryonic stem cells (ESCs have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD, a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA- induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation.

  1. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells.

    Science.gov (United States)

    Reyes, M; Verfaillie, C M

    2001-06-01

    Mesenchymal stem cells were isolated and a subpopulation of cells--multipotent adult progenitor cells--were identified that have the potential for multilineage differentiation. Their ability to engraft and differentiate in vivo is under investigation.

  2. SVM classifier to predict genes important for self-renewal and pluripotency of mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Xu Huilei

    2010-12-01

    Full Text Available Abstract Background Mouse embryonic stem cells (mESCs are derived from the inner cell mass of a developing blastocyst and can be cultured indefinitely in-vitro. Their distinct features are their ability to self-renew and to differentiate to all adult cell types. Genes that maintain mESCs self-renewal and pluripotency identity are of interest to stem cell biologists. Although significant steps have been made toward the identification and characterization of such genes, the list is still incomplete and controversial. For example, the overlap among candidate self-renewal and pluripotency genes across different RNAi screens is surprisingly small. Meanwhile, machine learning approaches have been used to analyze multi-dimensional experimental data and integrate results from many studies, yet they have not been applied to specifically tackle the task of predicting and classifying self-renewal and pluripotency gene membership. Results For this study we developed a classifier, a supervised machine learning framework for predicting self-renewal and pluripotency mESCs stemness membership genes (MSMG using support vector machines (SVM. The data used to train the classifier was derived from mESCs-related studies using mRNA microarrays, measuring gene expression in various stages of early differentiation, as well as ChIP-seq studies applied to mESCs profiling genome-wide binding of key transcription factors, such as Nanog, Oct4, and Sox2, to the regulatory regions of other genes. Comparison to other classification methods using the leave-one-out cross-validation method was employed to evaluate the accuracy and generality of the classification. Finally, two sets of candidate genes from genome-wide RNA interference screens are used to test the generality and potential application of the classifier. Conclusions Our results reveal that an SVM approach can be useful for prioritizing genes for functional validation experiments and complement the analyses of high

  3. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis.

    Directory of Open Access Journals (Sweden)

    Stephen N Sansom

    2009-06-01

    Full Text Available Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells

  4. SirT1—A Sensor for Monitoring Self-Renewal and Aging Process in Retinal Stem Cells

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Peng

    2010-06-01

    Full Text Available Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1, a member of the sirtuin family, is a NAD-dependent histone deacetylase and an essential mediator for longevity in normal cells by calorie restriction. We firstly investigate the SirT1 mRNA expression in retinal stem cells from rats and 19 human eyes of different ages. Results revealed that SirT1 expression was significantly decreased in in vivo aged eyes, associated with poor self-renewal abilities. Additionally, SirT1 mRNA levels were dose-dependently increased in resveratrol- treated retinal stem cells. The expression of SirT1 on oxidative stress-induced damage was significantly decreased, negatively correlated with the level of intracellular reactive oxygen species production. Treatment with resveratrol could effectively further reduce oxidative stress induced by H2O2 treatment in retinal stem cells. Importantly, the anti-oxidant effects of resveratrol in H2O2-treated retinal stem cells were significantly abolished by knockdown of SirT1 expression (sh-SirT1. SirT1 expression provides a feasible sensor in assessing self-renewal and aging process in retinal stem cells. Resveratrol can prevent reactive oxygen species-induced damages via increased retinal SirT1 expression.

  5. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    Science.gov (United States)

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  6. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  7. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Wang, Ruoxing; Guo, Yan-Lin

    2012-01-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: ► Inhibition of Cdks slows down mESCs proliferation. ► mESCs display remarkable recovery capacity from short-term cell cycle interruption. ► Short-term cell cycle interruption does not compromise mESC self-renewal. ► Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.

  8. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency

    Directory of Open Access Journals (Sweden)

    Diwash Acharya

    2017-04-01

    Full Text Available Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5 lysine acetyltransferase (KAT, which is essential for embryonic stem cell (ESC self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.

  9. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    Science.gov (United States)

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  10. Protein kinase C regulates human pluripotent stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Masaki Kinehara

    Full Text Available The self-renewal of human pluripotent stem (hPS cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2 appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC, GF109203X (GFX, increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β, suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2 synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells.Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK, PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though h

  11. Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal

    Science.gov (United States)

    Kinehara, Masaki; Kawamura, Suguru; Tateyama, Daiki; Suga, Mika; Matsumura, Hiroko; Mimura, Sumiyo; Hirayama, Noriko; Hirata, Mitsuhi; Uchio-Yamada, Kozue; Kohara, Arihiro; Yanagihara, Kana; Furue, Miho K.

    2013-01-01

    Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long

  12. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  13. Somatic ACE regulates self-renewal of mouse spermatogonial stem cells via the MAPK signaling pathway.

    Science.gov (United States)

    Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan

    2018-05-24

    Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.

  14. The CCR4 Deadenylase Acts with Nanos and Pumilio in the Fine-Tuning of Mei-P26 Expression to Promote Germline Stem Cell Self-Renewal

    Science.gov (United States)

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Summary Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029

  15. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    Science.gov (United States)

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  16. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells.

    Science.gov (United States)

    Sastry, K S R; Al-Muftah, M A; Li, Pu; Al-Kowari, M K; Wang, E; Ismail Chouchane, A; Kizhakayil, D; Kulik, G; Marincola, F M; Haoudi, A; Chouchane, L

    2014-12-01

    Emerging evidence suggests that the resistance of cancer stem cells (CSC) to many conventional therapies is one of the major limiting factors of cancer therapy efficacy. Identification of mechanisms responsible for survival and self-renewal of CSC will help design new therapeutic strategies that target and eliminate both differentiated cancer cells and CSC. Here we demonstrated the potential role of proapoptotic protein BAD in the biology of CSC in melanoma, prostate and breast cancers. We enriched CD44(+)/CD24(-) cells (CSC) by tumorosphere formation and purified this population by FACS. Both spheres and CSC exhibited increased potential for proliferation, migration, invasion, sphere formation, anchorage-independent growth, as well as upregulation of several stem cell-associated markers. We showed that the phosphorylation of BAD is essential for the survival of CSC. Conversely, ectopic expression of a phosphorylation-deficient mutant BAD induced apoptosis in CSC. This effect was enhanced by treatment with a BH3-mimetic, ABT-737. Both pharmacological agents that inhibit survival kinases and growth factors that are involved in drug resistance delivered their respective cytotoxic and protective effects by modulating the BAD phosphorylation in CSC. Furthermore, the frequency and self-renewal capacity of CSC was significantly reduced by knocking down the BAD expression. Consistent with our in vitro results, significant phosphorylation of BAD was found in CD44(+) CSC of 83% breast tumor specimens. In addition, we also identified a positive correlation between BAD expression and disease stage in prostate cancer, suggesting a role of BAD in tumor advancement. Our studies unveil the role of BAD in the survival and self-renewal of CSC and propose BAD not only as an attractive target for cancer therapy but also as a marker of tumor progression.

  17. Albumin-associated lipids regulate human embryonic stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Francesc R Garcia-Gonzalo

    Full Text Available BACKGROUND: Although human embryonic stem cells (hESCs hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.

  18. Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    K. S. Lee

    2013-04-01

    Full Text Available Mesenchymal stem cells (MSCs are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs were isolated from umbilical cord matrix (n = 3 and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1, molecule (HMGA2 and pluripotent markers (sox2, nanog associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105 and pluripotent marker (Oct3/4 decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

  19. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    Science.gov (United States)

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  20. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    Directory of Open Access Journals (Sweden)

    Amanda Cinquin

    2016-04-01

    Full Text Available Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  2. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    Science.gov (United States)

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  3. Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells

    Science.gov (United States)

    Lu, Yu; Loh, Yuin-Han; Li, Hu; Cesana, Marcella; Ficarro, Scott B.; Parikh, Jignesh R.; Salomonis, Nathan; Toh, Cheng-Xu Delon; Andreadis, Stelios T.; Luckey, C. John; Collins, James J.; Daley, George Q.; Marto, Jarrod A.

    2014-01-01

    Summary Alternative RNA splicing (AS) regulates proteome diversity, including isoform-specific expression of several pluripotency genes. Here, we integrated global gene expression and proteomic analyses and identified a molecular signature suggesting a central role for AS in maintaining human pluripotent stem cell (hPSC) self-renewal. We demonstrate the splicing factor SFRS2 is an OCT4 target gene required for pluripotency. SFRS2 regulates AS of the methyl-CpG-binding protein MBD2, whose isoforms play opposing roles in maintenance of, and reprogramming to, pluripotency. While both MDB2a and MBD2c are enriched at the OCT4 and NANOG promoters, MBD2a preferentially interacts with repressive NuRD chromatin remodeling factors and promotes hPSC differentiation, whereas overexpression of MBD2c enhances reprogramming of fibroblasts to pluripotency. The miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and MDB2a. These data suggest that OCT4, SFRS2, and MBD2 participate in a positive feedback loop, regulating proteome diversity complexity in support of hPSC self-renewal and reprogramming. PMID:24813856

  4. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis.

    Science.gov (United States)

    Sakai, Mizuki; Masaki, Kaito; Aiba, Shota; Tone, Masaaki; Takashima, Seiji

    2018-04-16

    Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.

  5. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

    Science.gov (United States)

    Ebert, Allison D; Shelley, Brandon C; Hurley, Amanda M; Onorati, Marco; Castiglioni, Valentina; Patitucci, Teresa N; Svendsen, Soshana P; Mattis, Virginia B; McGivern, Jered V; Schwab, Andrew J; Sareen, Dhruv; Kim, Ho Won; Cattaneo, Elena; Svendsen, Clive N

    2013-05-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth.

    Science.gov (United States)

    Yan, Huaming; Konstorum, Anna; Lowengrub, John S

    2018-05-01

    We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.

  8. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal.

    Science.gov (United States)

    Macgregor, Melanie; Williams, Rachel; Downes, Joni; Bachhuka, Akash; Vasilev, Krasimir

    2017-09-14

    The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.

  9. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    Science.gov (United States)

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  11. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-02-01

    Full Text Available The two marine inorganic polymers, biosilica (BS, enzymatically synthesized from ortho-silicate, and polyphosphate (polyP, a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC, mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation. Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2 and alkaline phosphatase (ALP in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that

  12. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  13. Involvement of extracellular factors in maintaining self-renewal of neural stem cell by nestin.

    Science.gov (United States)

    Di, Chun Guang; Xiang, Andy Peng; Jia, Lei; Liu, Jun Feng; Lahn, Bruce T; Ma, Bao Feng

    2014-07-09

    Nestin knockout leads to embryonic lethality and self-renewal deficiency in neural stem cells (NSCs). However, how nestin maintains self-renewal remains uncertain. Here, we used the dosage effect of nestin in heterozygous mice (Nes+/-) to study self-renewal of NSCs. With existing extracellular signaling in vivo or in vitro, nestin levels do not affect proliferation ability or apoptosis when compared between Nes+/- and Nes+/+ NSCs. However, self-renewal ability of Nes+/- NSCs is impaired when plated at a low cell density and completely lost at a clonal density. This deficiency in self-renewal at a clonal density is rescued using a medium conditioned by Nes+/+ NSCs. In addition, the Akt signaling pathway is altered at low density and reversed by conditioned medium. Our data show that secreted factors contribute toward maintaining self-renewal of NSCs by nestin, potentially through Akt signaling.

  14. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2.

    Science.gov (United States)

    Ting, Stephen B; Deneault, Eric; Hope, Kristin; Cellot, Sonia; Chagraoui, Jalila; Mayotte, Nadine; Dorn, Jonas F; Laverdure, Jean-Philippe; Harvey, Michael; Hawkins, Edwin D; Russell, Sarah M; Maddox, Paul S; Iscove, Norman N; Sauvageau, Guy

    2012-03-15

    The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.

  15. BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors.

    Science.gov (United States)

    Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Kawasaki, Natsumi; Holmborn, Katarina; Sundqvist, Anders; Tsutsumi, Shuichi; Watabe, Tetsuro; Aburatani, Hiroyuki; Heldin, Carl-Henrik; Miyazono, Kohei

    2016-01-12

    Bone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs. KLF4 physically interacts with SMAD1 and suppresses its activity. Consistently, a subpopulation of cells with active BMP-SMAD can be ablated without disturbing the naive state of the culture. Moreover, Smad1/5 double-knockout mESCs stay in the naive state, indicating that the BMP-SMAD pathway is dispensable for it. In contrast, the MEK5-ERK5 pathway mediates BMP-4-induced self-renewal of mESCs by inducing Klf2, a critical factor for the ground state pluripotency. Our study illustrates that BMP exerts its self-renewing effect through distinct functions of different Krüppel-like factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal

    OpenAIRE

    Morimoto, Hiroko; Iwata, Kazumi; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo; Kanatsu-Shinohara, Mito; Morimoto, Takeshi; Yabe-Nishimura, Chihiro; Shinohara, Takashi

    2013-01-01

    Reactive oxygen species (ROS) generation is implicated in stem cell self-renewal in several tissues but is thought to be detrimental for spermatogenesis as well as spermatogonial stem cells (SSCs). Using cultured SSCs, we show that ROS are generated via the AKT and MEK signaling pathways under conditions where the growth factors glial cell line-derived neurotrophic factor and fibroblast growth factor 2 drive SSC self-renewal and, instead, stimulate self-renewal at physiological levels. SSCs d...

  17. Discovery of a stem-like multipotent cell fate.

    Science.gov (United States)

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  18. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  19. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro

    DEFF Research Database (Denmark)

    Alviano, Francesco; Fossati, Valentina; Marchionni, Cosetta

    2007-01-01

    of CD34 and von Willebrand Factor positive cells. CONCLUSION: The current study suggests that AM-hMSCs may emerge as a remarkable tool for the cell therapy of multiple diseased tissues. AM-hMSCs may potentially assist both bone and cartilage repair, nevertheless, due to their angiogenic potential......BACKGROUND: Term Amniotic membrane (AM) is a very attractive source of Mesenchymal Stem Cells (MSCs) due to the fact that this fetal tissue is usually discarded without ethical conflicts, leading to high efficiency in MSC recovery with no intrusive procedures. Here we confirmed that term AM......, as previously reported in the literature, is an abundant source of hMSCs; in particular we further investigated the AM differentiation potential by assessing whether these cells may also be committed to the angiogenic fate. In agreement with the recommendation of the International Society for Cellular Therapy...

  20. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells

  1. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi

    2016-12-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    Science.gov (United States)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  3. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity

    International Nuclear Information System (INIS)

    Gatti, Monica; Pattarozzi, Alessandra; Bajetto, Adriana; Würth, Roberto; Daga, Antonio; Fiaschi, Pietro; Zona, Gianluigi; Florio, Tullio; Barbieri, Federica

    2013-01-01

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor

  4. The cell cycle inhibitor p27Kip¹ controls self-renewal and pluripotency of human embryonic stem cells by regulating the cell cycle, Brachyury and Twist.

    Science.gov (United States)

    Menchón, Cristina; Edel, Michael J; Izpisua Belmonte, Juan Carlos

    2011-05-01

    The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27(Kip)¹ cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27(Kip)¹ in hESC lead to a G₁phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27(Kip)¹ caused an elongated/scatter cell-like phenotype involving up-regulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27(Kip)¹ protein occupies the Twist1 gene promoter and manipulation of p27(Kip)¹ by gain and loss of function is associated with Twist gene expression changes. These results define p27(Kip)¹ expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27(Kip)¹ in controlling an epithelial to mesenchymal transition (EMT) in hESC.

  5. Inhibition of Wnt/β-catenin signaling by IWR1 induces expression of Foxd3 to promote mouse epiblast stem cell self-renewal.

    Science.gov (United States)

    Liu, Kuisheng; Sun, Yuanyuan; Liu, Dahai; Ye, Shoudong

    2017-08-26

    Inhibition of Wnt/β-catenin signaling facilitates the derivation of mouse epiblast stem cells (EpiSCs), as well as dramatically promotes EpiSC self-renewal. The specific mechanism, however, is still unclear. Here, we showed that IWR1, a Wnt/β-catenin signaling inhibitor, allowed long-term self-renewal of EpiSCs in serum medium in combination with ROCK inhibitor Y27632. Through transcriptome data analysis, we arrived at a set of candidate transcription factors induced by IWR1. Among these, Forkhead box D3 (Foxd3) was most abundant. Forced expression of Foxd3 could recapitulate the self-renewal-promoting effect of IWR1 in EpiSCs. Conversely, knockdown of Foxd3 profoundly compromised responsiveness to IWR1, causing extinction of pluripotency markers and emergence of differentiation phenotype. Foxd3 thus is necessary and sufficient to mediate self-renewal downstream of Wnt/β-catenin signaling inhibitor. These findings highlight an important role for Foxd3 in regulating EpiSCs and will expand current understanding of the primed pluripotency. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. α6β1- and αV-integrins are required for long-term self-renewal of murine embryonic stem cells in the absence of LIF.

    Science.gov (United States)

    Cattavarayane, Sandhanakrishnan; Palovuori, Riitta; Tanjore Ramanathan, Jayendrakishore; Manninen, Aki

    2015-02-27

    The growth properties and self-renewal capacity of embryonic stem (ES) cells are regulated by their immediate microenvironment such as the extracellular matrix (ECM). Integrins, a central family of cellular ECM receptors, have been implicated in these processes but their specific role in ES cell self-renewal remains unclear. Here we have studied the effects of different ECM substrates and integrins in mouse ES cells in the absence of Leukemia Inhibitory Factor (LIF) using short-term assays as well as long-term cultures. Removal of LIF from ES cell culture medium induced morphological differentiation of ES cells into polarized epistem cell-like cells. These cells maintained epithelial morphology and expression of key stemness markers for at least 10 passages in the absence of LIF when cultured on laminin, fibronectin or collagen IV substrates. The specific functional roles of α6-, αV- and β1-integrin subunits were dissected using stable lentivirus-mediated RNAi methodology. β1-integrins were required for ES cell survival in long-term cultures and for the maintenance of stem cell marker expression. Inhibition of α6-integrin expression compromised self-renewal on collagen while αV-integrins were required for robust ES cell adhesion on laminin. Analysis of the stemness marker expression revealed subtle differences between α6- and αV-depleted ES cells but the expression of both was required for optimal self-renewal in long-term ES cell cultures. In the absence of LIF, long-term ES cell cultures adapt an epistem cell-like epithelial phenotype and retain the expression of multiple stem cell markers. Long-term maintenance of such self-renewing cultures depends on the expression of β1-, α6- and αV-integrins.

  7. Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal

    OpenAIRE

    Ye, Shoudong; Zhang, Tao; Tong, Chang; Zhou, Xingliang; He, Kan; Ban, Qian; Liu, Dahai; Ying, Qi-Long

    2017-01-01

    ABSTRACT Mouse and rat embryonic stem cell (ESC) self-renewal can be maintained by dual inhibition of glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase kinase (MEK). Inhibition of GSK3 promotes ESC self-renewal by abrogating T-cell factor 3 (TCF3)-mediated repression of the pluripotency network. How inhibition of MEK mediates ESC self-renewal, however, remains largely unknown. Here, we show that inhibition of MEK can significantly suppress lymphoid enhancer factor 1 (LEF1...

  8. The self-renewal signaling pathways utilized by gastric cancer stem cells.

    Science.gov (United States)

    Fu, Ying; Li, Hui; Hao, Xishan

    2017-04-01

    Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.

  9. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Stefan Wohrer

    2014-06-01

    Full Text Available Hematopoietic stem cells (HSCs are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion.

  10. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    Science.gov (United States)

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  11. The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal.

    Science.gov (United States)

    Liu, Yinyin; Kim, Hyeung; Liang, Jiancong; Lu, Weisi; Ouyang, Bin; Liu, Dan; Songyang, Zhou

    2014-02-21

    The regulatory network of factors that center on master transcription factors such as Oct4, Nanog, and Sox2 help maintain embryonic stem (ES) cells and ensure their pluripotency. The target genes of these master transcription factors define the ES cell transcriptional landscape. In this study, we report our findings that Dido1, a target of canonical transcription factors such as Oct4, Sox2, and Nanog, plays an important role in regulating ES cell maintenance. We found that depletion of Dido1 in mouse ES cells led to differentiation, and ectopic expression of Dido1 inhibited differentiation induced by leukemia inhibitory factor withdrawal. We further demonstrated that whereas Nanog and Oct4 could occupy the Dido1 locus and promote its transcription, Dido1 could also target to the loci of pluripotency factors such as Nanog and Oct4 and positively regulate their expression. Through this feedback and feedforward loop, Dido1 is able to regulate self-renewal of mouse ES cells.

  12. Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.

    Science.gov (United States)

    Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M

    2018-02-01

    Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.

  13. Argonaute-2-null embryonic stem cells are retarded in self-renewal ...

    Indian Academy of Sciences (India)

    Present address: Institute of Stem Cells and Regenerative Medicine, Bangalore, India ... [Chandra Shekar P, Naim A, Partha Sarathi D and Kumar S 2011 Argonaute-2-null embryonic stem cells are retarded in self-renewal ..... Research, India.

  14. Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells.

    Science.gov (United States)

    Hunt, Geoffrey C; Singh, Purva; Schwarzbauer, Jean E

    2012-09-10

    Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yihuan Tsai

    2015-07-01

    Full Text Available Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC-derived neural progenitor cells (hNPCs, a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS, could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i defined, xeno-free conditions for their expansion and neuronal differentiation and (ii scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol (P4VP, that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery.

  16. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1

    Science.gov (United States)

    Ye, Shoudong; Li, Ping; Tong, Chang; Ying, Qi-Long

    2013-01-01

    Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency. PMID:23942238

  17. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Science.gov (United States)

    Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R

    2012-01-01

    Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  18. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma.

    Science.gov (United States)

    Shan, Juanjuan; Shen, Junjie; Liu, Limei; Xia, Feng; Xu, Chuan; Duan, Guangjie; Xu, Yanmin; Ma, Qinghua; Yang, Zhi; Zhang, Qianzhen; Ma, Leina; Liu, Jia; Xu, Senlin; Yan, Xiaochu; Bie, Ping; Cui, Youhong; Bian, Xiu-wu; Qian, Cheng

    2012-09-01

    Hepatocellular carcinoma (HCC) exhibits cellular heterogeneity and embryonic stem-cell-related genes are preferentially overexpressed in a fraction of cancer cells of poorly differentiated tumors. However, it is not known whether or how these cancer cells contribute to tumor initiation and progression. Here, our data showed that increased expression of pluripotency transcription factor Nanog in cancer cells correlates with a worse clinical outcome in HCC. Using the Nanog promoter as a reporter system, we could successfully isolate a small subpopulation of Nanog-positive cells. We demonstrate that Nanog-positive cells exhibited enhanced ability of self-renewal, clonogenicity, and initiation of tumors, which are consistent with crucial hallmarks in the definition of cancer stem cells (CSCs). Nanog(Pos) CSCs could differentiate into mature cancer cells in in vitro and in vivo conditions. In addition, we found that Nanog(Pos) CSCs exhibited resistance to therapeutic agents (e.g., sorafenib and cisplatin) and have a high capacity for tumor invasion and metastasis. Knock-down expression of Nanog in Nanog(Pos) CSCs could decrease self-renewal accompanied with decreased expression of stem-cell-related genes and increased expression of mature hepatocyte-related genes. Overexpression of Nanog in Nanog(Neg) cells could restore self-renewal. Furthermore, we found that insulin-like growth factor (IGF)2 and IGF receptor (IGF1R) were up-regulated in Nanog(Pos) CSCs. Knock-down expression of Nanog in Nanog(Pos) CSCs inhibited the expression of IGF1R, and overexpression of Nanog in Nanog(Neg) cells increased the expression of IGF1R. A specific inhibitor of IGF1R signaling could significantly inhibit self-renewal and Nanog expression, indicating that IGF1R signaling participated in Nanog-mediated self-renewal. These data indicate that Nanog could be a novel biomarker for CSCs in HCC, and that Nanog could play a crucial role in maintaining the self-renewal of CSCs through the IGF1R

  19. Evaluating the immortal strand hypothesis in cancer stem cells: symmetric/self-renewal as the relevant surrogate marker of tumorigenicity.

    Science.gov (United States)

    Winquist, Raymond J; Hall, Amy B; Eustace, Brenda K; Furey, Brinley F

    2014-09-15

    Stem cells subserve repair functions for the lifetime of the organism but, as a consequence of this responsibility, are candidate cells for accumulating numerous genetic and/or epigenetic aberrations leading to malignant transformation. However, given the importance of this guardian role, stem cells likely harbor some process for maintaining their precious genetic code such as non-random segregation of chromatid strands as predicted by the Immortal Strand Hypothesis (ISH). Discerning such non-random chromosomal segregation and asymmetric cell division in normal or cancer stem cells has been complicated by methodological shortcomings but also by differing division kinetics amongst tissues and the likelihood that both asymmetric and symmetric cell divisions, dictated by local extrinsic factors, are operant in these cells. Recent data suggest that cancer stem cells demonstrate a higher incidence of symmetric versus asymmetric cell division with both daughter cells retaining self-renewal characteristics, a profile which may underlie poorly differentiated morphology and marked clonal diversity in tumors. Pathways and targets are beginning to emerge which may provide opportunities for preventing such a predilection in cancer stem cells and that will hopefully translate into new classes of chemotherapeutics in oncology. Thus, although the existence of the ISH remains controversial, the shift of cell division dynamics to symmetric random chromosome segregation/self-renewal, which would negate any likelihood of template strand retention, appears to be a surrogate marker for the presence of highly malignant tumorigenic cell populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells.

    Directory of Open Access Journals (Sweden)

    Ilaria Burba

    Full Text Available BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs, have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+ cells with enhanced self renewal and cardioprotection.

  1. Multilineage Potential and Self-Renewal Define an Epithelial Progenitor Cell Population in the Adult Thymus

    Directory of Open Access Journals (Sweden)

    Kahlia Wong

    2014-08-01

    Full Text Available Thymic epithelial cells (TECs are critical for T cell development and self-tolerance but are gradually lost with age. The existence of thymic epithelial progenitors (TEPCs in the postnatal thymus has been inferred, but their identity has remained enigmatic. Here, we assessed the entire adult TEC compartment in order to reveal progenitor capacity is retained exclusively within a subset of immature thymic epithelium displaying several hallmark features of stem/progenitor function. These adult TEPCs generate mature cortical and medullary lineages in a stepwise fashion, including Aire+ TEC, within fetal thymus reaggregate grafts. Although relatively quiescent in vivo, adult TEPCs demonstrate significant in vitro colony formation and self-renewal. Importantly, 3D-cultured TEPCs retain their capacity to differentiate into cortical and medullary TEC lineages when returned to an in vivo thymic microenvironment. No other postnatal TEC subset exhibits this combination of properties. The characterization of adult TEPC will enable progress in understanding TEC biology in aging and regeneration.

  2. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys.

    Science.gov (United States)

    Sagrinati, Costanza; Netti, Giuseppe Stefano; Mazzinghi, Benedetta; Lazzeri, Elena; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Meini, Claudia; Gacci, Mauro; Squecco, Roberta; Carini, Marco; Gesualdo, Loreto; Francini, Fabio; Maggi, Enrico; Annunziato, Francesco; Lasagni, Laura; Serio, Mario; Romagnani, Sergio; Romagnani, Paola

    2006-09-01

    Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowman's capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell-specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24+CD133+ PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24+CD133+ PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24+CD133+ PEC but not of CD24-CD133- renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24+CD133+ PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.

  3. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs

    OpenAIRE

    Ebert, A.; Shelley, B.; Hurley, A.; Onorati, M.; Castiglioni, V.; Patitucci, T.; Svendsen, S.; Mattis, V.; Mcgivern, J.; Schwab, A.; Sareen, D.; Kim, H.; Cattaneo, E.; Svendsen, C.

    2013-01-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be...

  4. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast.

    Science.gov (United States)

    Yu, Yang; Wang, Xiaoxiao; Zhang, Xiaoxin; Zhai, Yanhua; Lu, Xukun; Ma, Haixia; Zhu, Kai; Zhao, Tongbiao; Jiao, Jianwei; Zhao, Zhen-Ao; Li, Lei

    2018-01-05

    Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by β-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation.

  5. RNA-Binding Protein L1TD1 Interacts with LIN28 via RNA and is Required for Human Embryonic Stem Cell Self-Renewal and Cancer Cell Proliferation

    OpenAIRE

    Närvä, Elisa; Rahkonen, Nelly; Emani, Maheswara Reddy; Lund, Riikka; Pursiheimo, Huha-Pekka; Nästi, Juuso; Autio, Reija; Rasool, Omid; Denessiouk, Konstantin; Lähdesmäki, Harri; Rao, Anjana; Lahesmaa, Ritta

    2012-01-01

    Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. F...

  6. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    2005-09-01

    Full Text Available Pluripotent mouse embryonic stem (ES cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2 and epidermal growth factor (EGF is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying

  7. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  8. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    Science.gov (United States)

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Self-renewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas

    International Nuclear Information System (INIS)

    Huang, Sheng-Dong; Yuan, Yang; Liu, Xiao-Hong; Gong, De-Jun; Bai, Chen-Guang; Wang, Feng; Luo, Jun-Hui; Xu, Zhi-Yun

    2009-01-01

    p75 NTR has been used to isolate esophageal and corneal epithelial stem cells. In the present study, we investigated the expression of p75 NTR in esophageal squamous cell carcinoma (ESCC) and explored the biological properties of p75 NTR+ cells. p75 NTR expression in ESCC was assessed by immunohistochemistry. p75 NTR+ and p75 NTR- cells of 4 ESCC cell lines were separated by fluorescence-activated cell sorting. Differentially expressed genes between p75 NTR+ and p75 NTR- cells were determined by real-time quantitative reverse transcription-PCR. Sphere formation assay, DDP sensitivity assay, 64 copper accumulation assay and tumorigenicity analysis were performed to determine the capacity of self-renewal, chemotherapy resistance and tumorigenicity of p75 NTR+ cells. In ESCC specimens, p75 NTR was found mainly confined to immature cells and absent in cells undergoing terminal differentiation. The percentage of p75 NTR+ cells was 1.6%–3.7% in Eca109 and 3 newly established ESCC cell lines. The expression of Bmi-1, which is associated with self-renewal of stem cells, was significantly higher in p75 NTR+ cells. p63, a marker identified in keratinocyte stem cells, was confined mainly to p75 NTR+ cells. The expression of CTR1, which is associated with cisplatin (DDP)-resistance, was significantly decreased in p75 NTR+ cells. Expression levels of differentiation markers, such as involucrin, cytokeratin 13, β1-integrin and β4-integrin, were lower in p75 NTR+ cells. In addition, p75 NTR+ cells generated both p75 NTR+ and p75 NTR- cells, and formed nonadherent spherical clusters in serum-free medium supplemented with growth factors. Furthermore, p75 NTR+ cells were found to be more resistant to DDP and exhibited lower 64 copper accumulation than p75 NTR- cells. Our results demonstrated that p75 NTR+ cells possess some characteristics of CSCs, namely, self-renewal and chemotherapy resistance. Chemotherapy resistance of p75 NTR+ cells may probably be attributable to

  10. Lim Mineralization Protein 3 Induces the Osteogenic Differentiation of Human Amniotic Fluid Stromal Cells through Kruppel-Like Factor-4 Downregulation and Further Bone-Specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2012-01-01

    Full Text Available Multipotent mesenchymal stem cells with extensive self-renewal properties can be easily isolated and rapidly expanded in culture from small volumes of amniotic fluid. These cells, namely, amniotic fluid-stromal cells (AFSCs, can be regarded as an attractive source for tissue engineering purposes, being phenotypically and genetically stable, plus overcoming all the safety and ethical issues related to the use of embryonic/fetal cells. LMP3 is a novel osteoinductive molecule acting upstream to the main osteogenic pathways. This study is aimed at delineating the basic molecular events underlying LMP3-induced osteogenesis, using AFSCs as a cellular model to focus on the molecular features underlying the multipotency/differentiation switch. For this purpose, AFSCs were isolated and characterized in vitro and transfected with a defective adenoviral vector expressing the human LMP3. LMP3 induced the successful osteogenic differentiation of AFSC by inducing the expression of osteogenic markers and osteospecific transcription factors. Moreover, LMP3 induced an early repression of the kruppel-like factor-4, implicated in MSC stemness maintenance. KLF4 repression was released upon LMP3 silencing, indicating that this event could be reasonably considered among the basic molecular events that govern the proliferation/differentiation switch during LMP3-induced osteogenic differentiation of AFSC.

  11. Fostering the Self-Renewal of Teachers: An Underutilized Approach to Innovating Interdisciplinary Education

    Directory of Open Access Journals (Sweden)

    David J. Waters

    2013-06-01

    Full Text Available Our goal is to call teachers’ attention to the need for selfrenewal, challenging them to consider it a necessary approach to innovating interdisciplinary education. Our prescription for sustained self-renewal: Each teacher assembles a gallery of intellectual heroes — gifted and articulate thinkers — to serve as their own life-long teachers. In this paper, we share our experience teaching a "skills course" to interdisciplinary graduate students in Purdue University’s Center on Aging and the Life Course. The course, titled "To See and To Seize Opportunities", exposes scholars-in-training to an array of skills and attitudes that foster self-renewal and peak performance. Leading educators must work hard to create better opportunities for self-renewal. By envisioning even our best teachers as unfinished and under construction, we open up a new dialogue situating the self-renewal of teachers at the very core of educational excellence across a broad range of disciplines. To innovate interdisciplinary education, we believe it is time for a curricular re-think, emphasizing the importance of a transdisciplinary skills course in which teachers and their students can explore transformative ideas on personal development and self-renewal — in the classroom together.

  12. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal.

    Science.gov (United States)

    Tang, Ling; Wang, Manman; Liu, Dahai; Gong, Mengting; Ying, Qi-Long; Ye, Shoudong

    2017-01-01

    Activation of signal transducer and activator of transcription 3 (STAT3) by leukemia inhibitory factor (LIF) maintains mouse embryonic stem cell (mESC) self-renewal. Our previous study showed that trans-acting transcription factor 5 (Sp5), an LIF/STAT3 downstream target, supports mESC self-renewal. However, the mechanism by which Sp5 exerts these effects remains elusive. Here, we found that Nanog is a direct target of Sp5 and mediates the self-renewal-promoting effect of Sp5 in mESCs. Overexpression of Sp5 induced Nanog expression, while knockdown or knockout of Sp5 decreased the Nanog level. Moreover, chromatin immunoprecipitation (ChIP) assays showed that Sp5 directly bound to the Nanog promoter. Functional studies revealed that knockdown of Nanog eliminated the mESC self-renewal-promoting ability of Sp5. Finally, we demonstrated that the self-renewal-promoting function of Sp5 was largely dependent on its zinc finger domains. Taken together, our study provides unrecognized functions of Sp5 in mESCs and will expand our current understanding of the regulation of mESC pluripotency.

  13. Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment.

    Science.gov (United States)

    Park, Ji Eun; Park, Min Hee; Kim, Min Seong; Park, Yeo Reum; Yun, Jung Im; Cheong, Hee Tae; Kim, Minseok; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae

    2017-12-01

    Generally, self-renewal of spermatogonial stem cells (SSCs) is maintained in vivo in a three-dimensional (3D) microenvironment consisting of the seminiferous tubule basement membrane, indicating the importance of the 3D microenvironment for in vitro culture of SSCs. Here, we report a 3D culture microenvironment that effectively maintains porcine SSC self-renewal during culture. Porcine SSCs were cultured in an agarose-based 3D hydrogel and in 2D culture plates either with or without feeder cells. Subsequently, the effects of 3D culture on the maintenance of undifferentiated SSCs were identified by analyzing cell colony formation and morphology, AP activity, and transcriptional and translational regulation of self-renewal-related genes and the effects on proliferation by analyzing cell viability and single cell-derived colony number. The 3D culture microenvironment constructed using a 0.2% (w/v) agarose-based 3D hydrogel showed the strongest maintenance of porcine SSC self-renewal and induced significant improvements in proliferation compared with 2D culture microenvironments. These results demonstrate that self-renewal of porcine SSCs can be maintained more effectively in a 3D than in a 2D culture microenvironment. Moreover, this will play a significant role in developing novel culture systems for SSCs derived from diverse species in the future, which will contribute to SSC-related research. © 2017 International Federation for Cell Biology.

  14. Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-06-01

    Full Text Available De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs compared with wild-type littermates. Asxl1−/− BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1−/− BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.

  15. Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice.

    Science.gov (United States)

    Zhang, Peng; Xing, Caihong; Rhodes, Steven D; He, Yongzheng; Deng, Kai; Li, Zhaomin; He, Fuhong; Zhu, Caiying; Nguyen, Lihn; Zhou, Yuan; Chen, Shi; Mohammad, Khalid S; Guise, Theresa A; Abdel-Wahab, Omar; Xu, Mingjiang; Wang, Qian-Fei; Yang, Feng-Chun

    2016-06-14

    De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Icaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ER?

    OpenAIRE

    Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao

    2017-01-01

    Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of m...

  17. Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche

    Directory of Open Access Journals (Sweden)

    Heather A. Himburg

    2012-10-01

    Full Text Available The mechanisms through which the bone marrow (BM microenvironment regulates hematopoietic stem cell (HSC fate remain incompletely understood. We examined the role of the heparin-binding growth factor pleiotrophin (PTN in regulating HSC function in the niche. PTN−/− mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking protein tyrosine phosphatase receptor zeta, which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC autonomous, but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche that regulates HSC self-renewal and retention in vivo.

  18. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Zhu, Jianhong; Wang, Handong; Sun, Qing; Ji, Xiangjun; Zhu, Lin; Cong, Zixiang; Zhou, Yuan; Liu, Huandong; Zhou, Mengliang

    2013-01-01

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  19. Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Kynan T. Lawlor

    2015-11-01

    Full Text Available The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes.

  20. GROα regulates human embryonic stem cell self-renewal or adoption of a neuronal fate

    Science.gov (United States)

    Krtolica, Ana; Larocque, Nick; Genbacev, Olga; Ilic, Dusko; Coppe, Jean-Philippe; Patil, Christopher K.; Zdravkovic, Tamara; McMaster, Michael; Campisi, Judith; Fisher, Susan J.

    2012-01-01

    Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ~6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical–basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical–basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation—βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell–cell contacts can trigger adoption of a neuronal fate. PMID:21396766

  1. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  2. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  3. Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells

    NARCIS (Netherlands)

    van Gosliga, Djoke; Schepers, Hein; Rizo, Aleksandra; van der Kolk, Dorina; Vellenga, Edo; Schuringa, Jan Jacob

    2007-01-01

    Objective. With the emergence of the concept of the leukemia stem cell, assays to study them remain pivotal in understanding (leukemic) stem cell biology. Methods. We have cultured acute myeloid leukemia CD34(+) cells on bone marrow stroma. Long-term expansion was monitored and self-renewal was

  4. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  5. CrxOS maintains the self-renewal capacity of murine embryonic stem cells

    International Nuclear Information System (INIS)

    Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko; Wu, Jinzhan; Kajiho, Hiroaki; Yokoi, Tadashi; Noda, Eiichiro; Nishina, Sachiko; Niwa, Hitoshi; Azuma, Noriyuki; Katada, Toshiaki; Nishina, Hiroshi

    2009-01-01

    Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.

  6. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression.

    Science.gov (United States)

    Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong

    2014-11-01

    Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.

  7. [Tricostantin A inhibits self-renewal of breast cancer stem cells in vitro].

    Science.gov (United States)

    Peng, Li; Li, Fu-Xi; Shao, Wen-Feng; Xiong, Jing-Bo

    2013-10-01

    To investigate the effect of tricostantin A (TSA) on self-renewal of breast cancer stem cells and explore the mechanisms. Breast cancer cell lines MDA-MB-468, MDA-MB-231, MCF-7 and SKBR3 were cultured in suspension and treated with different concentrations of TSA for 7 days, using 0.1% DMSO as the control. Secondary mammosphere formation efficiency and percentage of CD44(+)/CD24(-) sub-population in the primary mammospheres were used to evaluate the effects of TSA on self-renewal of breast cancer stem cells. The breast cancer stem cell surface marker CD44(+)/CD24(-) and the percentage of apoptosis in the primary mammospheres were assayed using flow cytometry. The mRNA expressions of Nanog, Sox2 and Oct4 in the primary mammospheres were assayed with quantitative PCR. TSA at both 100 and 500 nmol/L, but not at 10 nmol/L, partially inhibited the self-renewal of breast cancer stem cells from the 4 cell lines. TSA at 500 nmol/L induced cell apoptosis in the primary mammospheres. TSA down-regulated the mRNA expression of Nanog and Sox2 in the primary mammospheres. TSA can partially inhibit the self-renewal of breast cancer stem cells through a mechanism involving the down-regulation of Nanog and Sox2 expression, indicating the value of combined treatments with low-dose TSA and other anticancer drugs to achieve maximum inhibition of breast cancer stem cell self-renewal. The core transcriptional factor of embryonic stem cells Nanog and Sox2 can be potential targets of anticancer therapy.

  8. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  9. SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells

    Science.gov (United States)

    Rojas-Sutterlin, Shanti; Herblot, Sabine; Hébert, Josée; Sauvageau, Guy; Lemieux, Sébastien; Lécuyer, Eric; Veiga, Diogo F. T.; Hoang, Trang

    2014-01-01

    The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network

  10. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  11. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  12. Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells

    OpenAIRE

    Hunt, Geoffrey C.; Singh, Purva; Schwarzbauer, Jean E.

    2012-01-01

    Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomita...

  13. JMJD1C Ensures Mouse Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming through Controlling MicroRNA Expression.

    Science.gov (United States)

    Xiao, Feng; Liao, Bing; Hu, Jing; Li, Shuang; Zhao, Haixin; Sun, Ming; Gu, Junjie; Jin, Ying

    2017-09-12

    The roles of histone demethylases (HDMs) for the establishment and maintenance of pluripotency are incompletely characterized. Here, we show that JmjC-domain-containing protein 1c (JMJD1C), an H3K9 demethylase, is required for mouse embryonic stem cell (ESC) self-renewal. Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and epithelial-to-mesenchymal transition (EMT) to induce differentiation of ESCs. Inhibition of ERK/MAPK signaling rescues the differentiation phenotype caused by Jmjd1c depletion. Mechanistically, JMJD1C, with the help of pluripotency factor KLF4, maintains ESC identity at least in part by regulating the expression of the miR-200 family and miR-290/295 cluster to suppress the ERK/MAPK signaling and EMT. Additionally, we uncover that JMJD1C ensures efficient generation and maintenance of induced pluripotent stem cells, at least partially through controlling the expression of microRNAs. Collectively, we propose an integrated model of epigenetic and transcriptional control mediated by the H3K9 demethylase for ESC self-renewal and somatic cell reprogramming. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  15. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    Science.gov (United States)

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  16. File list: ALL.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Multipotent_otic_progenitor mm9 All antigens Others Multipotent otic progeni...ncedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  17. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells.

    Science.gov (United States)

    Gawlitta, Debby; van Rijen, Mattie H P; Schrijver, Edmée J M; Alblas, Jacqueline; Dhert, Wouter J A

    2012-10-01

    Within the field of bone tissue engineering, the endochondral approach to forming bone substitutes represents a novel concept, where cartilage will undergo hypertrophic differentiation before its conversion into bone. For this purpose, clinically relevant multipotent stromal cells (MSCs), MSCs, can be differentiated into the chondrogenic lineage before stimulating hypertrophy. Controversy exists in literature on the oxygen tensions naturally present during this transition in, for example, the growth plate. Therefore, the present study focused on the effects of different oxygen tensions on the progression of the hypertrophic differentiation of MSCs. Bone marrow-derived MSCs of four human donors were expanded, and differentiation was induced in aggregate cultures. Normoxic (20% oxygen) and hypoxic (5%) conditions were imposed on the cultures in chondrogenic or hypertrophic differentiation media. After 4 weeks, the cultures were histologically examined and by real-time polymerase chain reaction. Morphological assessment showed the chondrogenic differentiation of cultures from all donors under normoxic chondrogenic conditions. In addition, hypertrophic differentiation was observed in cultures derived from all but one donor. The deposition of collagen type X was evidenced in both chondrogenically and hypertrophically stimulated cultures. However, mineralization was exclusively observed in hypertrophically stimulated, normoxic cultures. Overall, the progression of hypertrophy was delayed in hypoxic compared with normoxic groups. The observed delay was supported by the gene expression patterns, especially showing the up-regulation of the late hypertrophic markers osteopontin and osteocalcin under normoxic hypertrophic conditions. Concluding, normoxic conditions are more beneficial for hypertrophic differentiation of MSCs than are hypoxic conditions, as long as the MSCs possess hypertrophic potential. This finding has implications for cartilage tissue engineering as well

  18. Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain.

    Science.gov (United States)

    Taouki, Ioanna; Tasiudi, Eve; Lalioti, Maria-Eleni; Kyrousi, Christina; Skavatsou, Eleni; Kaplani, Konstantina; Lygerou, Zoi; Kouvelas, Elias D; Mitsacos, Adamantia; Giompres, Panagiotis; Taraviras, Stavros

    2017-08-15

    Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.

  19. Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research

    NARCIS (Netherlands)

    de Rooij, Dirk G.; Mizrak, S. Canan

    2008-01-01

    In recent years, embryonic stem (ES) cell-like cells have been obtained from cultured mouse spermatogonial stem cells (SSCs). These advances have shown that SSCs can transition from being the stem cell-producing cells of spermatogenesis to being multipotent cells that can differentiate into

  20. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    Science.gov (United States)

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enhanced Hematopoietic Stem Cell Self-Renewal-Promoting Ability of Clonal Primary Mesenchymal Stromal/Stem cells Versus Their Osteogenic Progeny.

    Science.gov (United States)

    He, Qiling; Scott Swindle, Claude; Wan, Chao; Flynn, Robert J; Oster, Robert A; Chen, Dongquan; Zhang, Fengjie; Shu, Yinglan; Klug, Christopher A

    2017-02-01

    Long-term self-renewing hematopoietic stem cell (LT-HSC) homeostasis within the bone marrow (BM) of adult mammals is regulated by complex interactions between LT-HSC and a number of niche-associated cell types including mesenchymal stromal/stem cells (MSC), osteoblasts (OB), macrophage, and neuronal cells in close proximity with the vasculature. Here, we cloned and functionally characterized a murine BM MSC subpopulation that was uniformly Nestin + Lepr + Sca-1 + CD146 + and could be stably propagated with high colony-forming unit fibroblast re-cloning efficiency. MSC synergized with SCF and IL-11 to support a 20-fold expansion in true LT-HSC after 10-days of in vitro coculture. Optimal stimulation of LT-HSC expansion was minimally dependent on Notch signaling but was significantly enhanced by global inhibition of Wnt signaling. The self-renewal-promoting activity of MSC was progressively lost when MSC clones were differentiated into mature OB. This suggests that the stage of osteoblast development may significantly impact the ability of osteolineage cells to support LT-HSC homeostasis in vivo. Stem Cells 2017;35:473-484. © 2016 AlphaMed Press.

  2. SC1 Promotes MiR124-3p Expression to Maintain the Self-Renewal of Mouse Embryonic Stem Cells by Inhibiting the MEK/ERK Pathway.

    Science.gov (United States)

    Wei, Qing; Liu, Hongliang; Ai, Zhiying; Wu, Yongyan; Liu, Yingxiang; Shi, Zhaopeng; Ren, Xuexue; Guo, Zekun

    2017-01-01

    Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang

    2014-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation

  4. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  5. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    Science.gov (United States)

    Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A

    2015-07-01

    Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.

  6. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    Science.gov (United States)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  8. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  9. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, Massimo, E-mail: M.Muratore@ed.ac.uk [Institute of Integrated Micro and Nano System, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Mitchell, Steve [Institute of Molecular Plant Science, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Waterfall, Martin [Institute of Immunology and Infection Research, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JT (United Kingdom)

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  10. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    International Nuclear Information System (INIS)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-01-01

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy

  11. Adhesion-mediated self-renewal abilities of Ph+ blastoma cells

    International Nuclear Information System (INIS)

    Funayama, Keiji; Saito-Kurimoto, Yumi; Ebihara, Yasuhiro; Shimane, Miyuki; Nomura, Hitoshi; Tsuji, Ko-ichiro; Asano, Shigetaka

    2010-01-01

    The Philadelphia chromosome-positive blastoma, maintained by serial subcutaneous transplantation in nude mice, is a highly proliferating biological mass consisting of homogenous CD34 + CD38 - myeloblastoid cells. These cells newly evolved from pluripotent leukemia stem cells of chronic myeloid leukemia in the chronic phase. Therefore, this mass may provide a unique tool for better understanding cellular and molecular mechanisms of self-renewal of leukemia stem cells. In this paper, we demonstrated that intravenously injected blastoma cells can cause Ph+ blastic leukemia with multiple invasive foci in NOD/SCID mice but not in nude mice. In addition, using an in vitro culture system, we clearly showed that blastoma cell adhesion to OP9 stromal cells accelerates blastoma cell proliferation that is associated with up-regulation of BMI1 gene expression; increased levels of β-catenin and the Notch1 intra-cellular domain; and changed the expression pattern of variant CD44 forms, which are constitutively expressed in these blastoma cells. These findings strongly suggest that adhesion of leukemic stem cells to stromal cells via CD44 might be indispensable for their cellular defense against attack by immune cells and for maintenance of their self-renewal ability.

  12. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522 (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  13. The p53 inhibitor, pifithrin-α, suppresses self-renewal of embryonic stem cells

    International Nuclear Information System (INIS)

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2012-01-01

    Highlights: ► We determine the role of p53 in ES cells under unstressful conditions. ► PFT-α suppresses ES cell proliferation. ► PFT-α induces ES cell cycle arrest. ► PFT-α downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-α, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-α resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-α caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  14. Adult hematopoietic stem cells lacking Hif-1α self-renew normally

    Science.gov (United States)

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V.; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I.; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L.; Ratcliffe, Peter J.

    2016-01-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α–deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α–deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  15. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling.

    Science.gov (United States)

    Stoyanova, Tanya; Goldstein, Andrew S; Cai, Houjian; Drake, Justin M; Huang, Jiaoti; Witte, Owen N

    2012-10-15

    The cell surface protein Trop2 is expressed on immature stem/progenitor-like cells and is overexpressed in many epithelial cancers. However the biological function of Trop2 in tissue maintenance and tumorigenesis remains unclear. In this study, we demonstrate that Trop2 is a regulator of self-renewal, proliferation, and transformation. Trop2 controls these processes through a mechanism of regulated intramembrane proteolysis that leads to cleavage of Trop2, creating two products: the extracellular domain and the intracellular domain. The intracellular domain of Trop2 is released from the membrane and accumulates in the nucleus. Heightened expression of the Trop2 intracellular domain promotes stem/progenitor self-renewal through signaling via β-catenin and is sufficient to initiate precursor lesions to prostate cancer in vivo. Importantly, we demonstrate that loss of β-catenin or Trop2 loss-of-function cleavage mutants abrogates Trop2-driven self-renewal and hyperplasia in the prostate. These findings suggest that heightened expression of Trop2 is selected for in epithelial cancers to enhance the stem-like properties of self-renewal and proliferation. Defining the mechanism of Trop2 function in self-renewal and transformation is essential to identify new therapeutic strategies to block Trop2 activation in cancer.

  16. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  17. Icaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα.

    Science.gov (United States)

    Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao

    2017-01-16

    Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα.

  18. Characterizing the radioresponse of pluripotent and multipotent human stem cells.

    Directory of Open Access Journals (Sweden)

    Mary L Lan

    Full Text Available The potential capability of stem cells to restore functionality to diseased or aged tissues has prompted a surge of research, but much work remains to elucidate the response of these cells to genotoxic agents. To more fully understand the impact of irradiation on different stem cell types, the present study has analyzed the radioresponse of human pluripotent and multipotent stem cells. Human embryonic stem (ES cells, human induced pluripotent (iPS cells, and iPS-derived human neural stem cells (iPS-hNSCs cells were irradiated and analyzed for cell survival parameters, differentiation, DNA damage and repair and oxidative stress at various times after exposure. While irradiation led to dose-dependent reductions in survival, the fraction of surviving cells exhibited dose-dependent increases in metabolic activity. Irradiation did not preclude germ layer commitment of ES cells, but did promote neuronal differentiation. ES cells subjected to irradiation exhibited early apoptosis and inhibition of cell cycle progression, but otherwise showed normal repair of DNA double-strand breaks. Cells surviving irradiation also showed acute and persistent increases in reactive oxygen and nitrogen species that were significant at nearly all post-irradiation times analyzed. We suggest that stem cells alter their redox homeostasis to adapt to adverse conditions and that radiation-induced oxidative stress plays a role in regulating the function and fate of stem cells within tissues compromised by radiation injury.

  19. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Science.gov (United States)

    Rosu-Myles, Michael; She, Yi-Min; Fair, Joel; Muradia, Gauri; Mehic, Jelica; Menendez, Pablo; Prasad, Shiv S; Cyr, Terry D

    2012-01-01

    Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  20. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  1. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion.

    Science.gov (United States)

    Kent, David G; Li, Juan; Tanna, Hinal; Fink, Juergen; Kirschner, Kristina; Pask, Dean C; Silber, Yvonne; Hamilton, Tina L; Sneade, Rachel; Simons, Benjamin D; Green, Anthony R

    2013-01-01

    Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F

  2. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells.

    Science.gov (United States)

    Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L

    2005-04-15

    Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.

  3. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  4. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    Science.gov (United States)

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  5. Seeding of single hemopoietic stem cells and self renewal of committed stem cells

    International Nuclear Information System (INIS)

    Brecher, G.

    1986-01-01

    Single cells and two to five proliferating cells were transfused into mice whose own stem cells had been killed by irradiation. When a small inoculum of 50,000 AB marrow cells was given only 4 of 20 recipients survived, but all 4 had only PGK A enzyme in their peripheral blood cells. The results indicate that the survivors received a single pluripotential stem cell capable of proliferating. Survivors showed no deterioration in their blood picture after many months. It was concluded that there is no clonal succession in the marrow cells. Further studies with transfusions of 100,000 and 10,000,000 marrow cells after lethal irradiation suggest that there is production of committed stem cells with significant self-renewal

  6. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    Science.gov (United States)

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  7. mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo

    Directory of Open Access Journals (Sweden)

    Nathaniel W. Hartman

    2013-10-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 integrates signals important for cell growth, and its dysregulation in neural stem cells (NSCs is implicated in several neurological disorders associated with abnormal neurogenesis and brain size. However, the function of mTORC1 on NSC self-renewal and the downstream regulatory mechanisms are ill defined. Here, we found that genetically decreasing mTORC1 activity in neonatal NSCs prevented their differentiation, resulting in reduced lineage expansion and aborted neuron production. Constitutive activation of the translational repressor 4E-BP1, which blocked cap-dependent translation, had similar effects and prevented hyperactive mTORC1 induction of NSC differentiation and promoted self-renewal. Although 4E-BP2 knockdown promoted NSC differentiation, p70 S6 kinase 1 and 2 (S6K1/S6K2 knockdown did not affect NSC differentiation but reduced NSC soma size and prevented hyperactive mTORC1-induced increase in soma size. These data demonstrate a crucial role of mTORC1 and 4E-BP for switching on and off cap-dependent translation in NSC differentiation.

  8. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence

    Directory of Open Access Journals (Sweden)

    Lydia Li

    2017-10-01

    Full Text Available Summary: Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs. SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function. : Satellite cells are quiescent muscle stem cells that have the ability to regenerate muscles after injury. Li and Fan reveal an MPP7-AMOT-YAP1 regulatory axis that acts downstream of CREB to instill satellite cell competence. They also show how this regulatory axis prepares satellite cells for robust muscle regeneration after injury.

  9. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells.

    Science.gov (United States)

    Hayashi, Yohei; Caboni, Laura; Das, Debanu; Yumoto, Fumiaki; Clayton, Thomas; Deller, Marc C; Nguyen, Phuong; Farr, Carol L; Chiu, Hsiu-Ju; Miller, Mitchell D; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Tomoda, Kiichiro; Conklin, Bruce R; Wilson, Ian A; Yamanaka, Shinya; Fletterick, Robert J

    2015-04-14

    NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.

  10. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongyan [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Ai, Zhiying [Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); College of Life Sciences, Northwest A and F University, Yangling 712100, Shaanxi (China); Yao, Kezhen [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Cao, Lixia; Du, Juan; Shi, Xiaoyan [Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); College of Life Sciences, Northwest A and F University, Yangling 712100, Shaanxi (China); Guo, Zekun, E-mail: gzk@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhylab@hotmail.com [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China)

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  11. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    International Nuclear Information System (INIS)

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-01-01

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR

  12. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation

    Directory of Open Access Journals (Sweden)

    S Dimitrova-Nakov

    2012-05-01

    Full Text Available Upon in vitro induction or in vivo implantation, the stem cells of the dental pulp display hallmarks of odontoblastic, osteogenic, adipogenic or neuronal cells. However, whether these phenotypes result from genuine multipotent cells or from coexistence of distinct progenitors is still an open question. Furthermore, determining whether a single cell-derived progenitor is capable of undergoing a differentiation cascade leading to tissue repair in situ is important for the development of cell therapy strategies. Three clonal pulp precursor cell lines (A4, C5, H8, established from embryonic ED18 first molars of mouse transgenic for a recombinant plasmid adeno-SV40, were induced to differentiate towards the odonto/osteogenic, chondrogenic or adipogenic programme. Expression of phenotypic markers of each lineage was evaluated by RT-PCR, histochemistry or immunocytochemistry. The clones were implanted into mandibular incisors or calvaria of adult mice. The A4 clone was capable of being recruited towards at least 3 mesodermal lineages in vitro and of contributing to dentin-like or bone formation, in vivo, thus behaving as a multipotent cell. In contrast, the C5 and H8 clones displayed a more restricted potential. Flow cytometric analysis revealed that isolated monopotent and multipotent clones could be distinguished by a differential expression of CD90. Altogether, isolation of these clonal lines allowed demonstrating the coexistence of multipotential and restricted-lineage progenitors in the mouse pulp. These cells may further permit unravelling specificities of the different types of pulp progenitors, hence facilitating the development of cell-based therapies of the dental pulp or other cranio-facial tissues.

  13. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate.

    Directory of Open Access Journals (Sweden)

    Karen G Dowell

    Full Text Available Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.

  14. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  15. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  16. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially...... overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological...

  17. Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells Upon Exposure to Fas Ligand

    OpenAIRE

    Rodrigues, Melanie; Turner, Omari; Stolz, Donna; Griffith, Linda G.; Wells, Alan

    2011-01-01

    Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cyt...

  18. The effect of irradiation on function in self-renewing normal tissues with differing proliferative organisation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Michalowski, A.S.

    1982-01-01

    The primary effect of irradiation on self-renewing normal tissues is sterilisation of their proliferative cells, but how this translates into failure of tissue function depends on the mode of organisation of the tissue concerned. It has recently been suggested (Michalowski, 1981) that proliferative normal tissues may be classed as ''hierarchical'' (like haemopoietic tissues) or as ''flexible'' (like liver parenchyma) and that radiation injury to tissue function develops by different pathways in these tissues. Mathematical model studies confirm the different radiation responses of differently organized tissues. Tissues of the ''flexible'' or ''F-type'' category display a variety of novel radiobiological properties, different from those of the more familiar ''hierarchical'' or ''H-type'' tissues. The ''F-type'' responses are strongly influenced by radiation-sterilised (''doomed'') cells, and is is suggested that the role of ''doomed'' cells has been undervalued relative to that of clonogenic survivors. Since ''F-type'' tissues have characteristically low rates of cell renewal, it is possible that these tissues are preferentially responsible for late effects of irradiation in clinical radiotherapy. (author)

  19. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal.

    Science.gov (United States)

    McNeill, Brian; Mazerolle, Chantal; Bassett, Erin A; Mears, Alan J; Ringuette, Randy; Lagali, Pamela; Picketts, David J; Paes, Kim; Rice, Dennis; Wallace, Valerie A

    2013-03-01

    Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.

  20. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    Science.gov (United States)

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  1. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation.

    Directory of Open Access Journals (Sweden)

    Orla M Casey

    Full Text Available Genomic rearrangements commonly occur in many types of cancers and often initiate or alter the progression of disease. Here we describe an in vivo mouse model that recapitulates the most frequent rearrangement in prostate cancer, the fusion of the promoter region of TMPRSS2 with the coding region of the transcription factor, ERG. A recombinant bacterial artificial chromosome including an extended TMPRSS2 promoter driving genomic ERG was constructed and used for transgenesis in mice. TMPRSS2-ERG expression was evaluated in tissue sections and FACS-fractionated prostate cell populations. In addition to the anticipated expression in luminal cells, TMPRSS2-ERG was similarly expressed in the Sca-1(hi/EpCAM(+ basal/progenitor fraction, where expanded numbers of clonogenic self-renewing progenitors were found, as assayed by in vitro sphere formation. These clonogenic cells increased intrinsic self renewal in subsequent generations. In addition, ERG dependent self-renewal and invasion in vitro was demonstrated in prostate cell lines derived from the model. Clinical studies have suggested that the TMPRSS2-ERG translocation occurs early in prostate cancer development. In the model described here, the presence of the TMPRSS2-ERG fusion alone was not transforming but synergized with heterozygous Pten deletion to promote PIN. Taken together, these data suggest that one function of TMPRSS2-ERG is the expansion of self-renewing cells, which may serve as targets for subsequent mutations. Primary prostate epithelial cells demonstrated increased post transcriptional turnover of ERG compared to the TMPRSS2-ERG positive VCaP cell line, originally isolated from a prostate cancer metastasis. Finally, we determined that TMPRSS2-ERG expression occurred in both castration-sensitive and resistant prostate epithelial subpopulations, suggesting the existence of androgen-independent mechanisms of TMPRSS2 expression in prostate epithelium.

  2. File list: Oth.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  3. File list: DNS.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Multipotent_otic_progenitor mm9 DNase-seq Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  4. File list: His.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  5. File list: His.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  6. File list: His.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  7. File list: Pol.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736457,SRX736456 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  8. File list: Oth.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  9. File list: Unc.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  10. File list: Unc.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  11. File list: Pol.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736456,SRX736457 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  12. Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency.

    Science.gov (United States)

    Gong, Jiaqi; Gu, Haifeng; Zhao, Lin; Wang, Liang; Liu, Pinglei; Wang, Fuping; Xu, Haoyu; Zhao, Tongbiao

    2018-01-18

    Autophagy is a catabolic process to degrade both damaged organelles and aggregated proteins in somatic cells. We have recently identified that autophagy is an executor for mitochondrial homeostasis in embryonic stem cell (ESC), and thus contribute to stemness regulation. However, the regulatory and functional mechanisms of autophagy in ESC are still largely unknown. Here we have shown that activation of ULK1 by AMPK is essential for ESC self-renewal and pluripotency. Dysfunction of Ulk1 decreases the autophagic flux in ESC, leading to compromised self-renewal and pluripotency. These defects can be rescued by reacquisition of wild-type ULK1 and ULK1(S757A) mutant, but not ULK1(S317A, S555A and S777A) and kinase dead ULK1(K46I) mutant. These data indicate that phosphorylation of ULK1 by AMPK, but not mTOR, is essential for stemness regulation in ESC. The findings highlight a critical role for AMPK-dependent phosphorylation of ULK1 pathway to maintain ESC self-renewal and pluripotency.

  13. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells

    Science.gov (United States)

    Butler, Jason M.; Nolan, Daniel J.; L.Vertes, Eva; Varnum-Finney, Barbara; Kobayashi, Hideki; Hooper, Andrea T.; Seandel, Marco; Shido, Koji; White, Ian A.; Kobayashi, Mariko; Witte, Larry; May, Chad; Shawber, Carrie; Kimura, Yuki; Kitajewski, Jan; Rosenwaks, Zev; Bernstein, Irwin D.; Rafii, Shahin

    2010-01-01

    Bone marrow endothelial cells (ECs) are essential for reconstitution of hematopoiesis, but their role in self-renewal of long term-hematopoietic stem cells (LT-HSCs) is unknown. We have developed angiogenic models to demonstrate that EC-derived angiocrine growth factors support in vitro self-renewal and in vivo repopulation of authentic LT-HSCs. In serum/cytokine-free co-cultures, ECs through direct cellular contact, stimulated incremental expansion of repopulating CD34−Flt3−cKit+Lineage−Sca1+ LT-HSCs, which retained their self-renewal ability, as determined by single cell and serial transplantation assays. Angiocrine expression of Notch-ligands by ECs promoted proliferation and prevented exhaustion of LT-HSCs derived from wild-type, but not Notch1/Notch2 deficient mice. In transgenic notch-reporter (TNR.Gfp) mice, regenerating TNR.Gfp+ LT-HSCs were detected in cellular contact with sinusoidal ECs and interfering with angiocrine, but not perfusion function, of SECs impaired repopulation of TNR.Gfp+ LT-HSCs. ECs establish an instructive vascular niche for clinical scale expansion of LT-HSCs and a cellular platform to identify stem cell-active trophogens. PMID:20207228

  14. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  15. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    International Nuclear Information System (INIS)

    Reis, Amilcar; Hermanson, Ola

    2012-01-01

    Highlights: ► DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. ► No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. ► OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. ► Increased HP1γ immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1γ immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  16. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Amilcar [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  17. Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells.

    Science.gov (United States)

    Forristal, Catherine E; Christensen, David R; Chinnery, Fay E; Petruzzelli, Raffaella; Parry, Kate L; Sanchez-Elsner, Tilman; Houghton, Franchesca D

    2013-01-01

    Energy metabolism is intrinsic to cell viability but surprisingly has been little studied in human embryonic stem cells (hESCs). The current study aims to investigate the effect of environmental O2 tension on carbohydrate utilisation of hESCs. Highly pluripotent hESCs cultured at 5% O2 consumed significantly more glucose, less pyruvate and produced more lactate compared to those maintained at 20% O2. Moreover, hESCs cultured at atmospheric O2 levels expressed significantly less OCT4, SOX2 and NANOG than those maintained at 5% O2. To determine whether this difference in metabolism was a reflection of the pluripotent state, hESCs were cultured at 5% O2 in the absence of FGF2 for 16 hours leading to a significant reduction in the expression of SOX2. In addition, these cells consumed less glucose and produced significantly less lactate compared to those cultured in the presence of FGF2. hESCs maintained at 5% O2 were found to consume significantly less O2 than those cultured in the absence of FGF2, or at 20% O2. GLUT1 expression correlated with glucose consumption and using siRNA and chromatin immunoprecipitation was found to be directly regulated by hypoxia inducible factor (HIF)-2α at 5% O2. In conclusion, highly pluripotent cells associated with hypoxic culture consume low levels of O2, high levels of glucose and produce large amounts of lactate, while at atmospheric conditions glucose consumption and lactate production are reduced and there is an increase in oxidative metabolism. These data suggest that environmental O2 regulates energy metabolism and is intrinsic to the self-renewal of hESCs.

  18. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Bone marrow stromal cells (BMSCs), a type of multipotent stem cell, can differentiate into various types ... induced to differentiate into neuron-like cells when they are ... axonal regeneration and functional reconstruction do not.

  19. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    Science.gov (United States)

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  20. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    Science.gov (United States)

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  1. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Rehn, Matilda Carolina; Hasemann, Marie Sigurd

    2015-01-01

    The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors...... and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc...... expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs....

  2. Test of the hypothesis; a lymphoma stem cells exist which is capable of self-renewal

    DEFF Research Database (Denmark)

    Kjeldsen, Malene Krag

      Test of the hypothesis; a lymphoma stem cell exist which is capable of self-renewal   Malene Krag Pedersen, Karen Dybkaer, Hans E. Johnsen   The Research Laboratory, Department of Haematology, Aalborg Hospital, Århus University   Failure of current therapeutics in the treatment of diffuse large B...... and sustaining cells(1-3). My project is based on studies of stem and early progenitor cells in lymphoid cell lines from patients with advanced DLBCL. The cell lines are world wide recognised and generously provided by Dr. Hans Messner and colleagues.   Hypothesis and aims: A lymphoma stem and progenitor cell...

  3. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  4. A Complex Role for FGF-2 in Self-Renewal, Survival, and Adhesion of Human Embryonic Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Eiselleová, L.; Matulka, K.; Kříž, V.; Kunová, M.; Schmidtová, Z.; Neradil, J.; Tichý, B.; Dvořáková, D.; Pospíšilová, Š.; Hampl, Aleš; Dvořák, Petr

    2009-01-01

    Roč. 27, č. 8 (2009), s. 1847-1857 ISSN 1066-5099 Grant - others:GA MŠk(CZ) 1M0538; GA MŠk(CZ) LC06077; EC FP6(XE) LSHG-CT-2006-018739 Program:1M; LC Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : fibroblast growth factor-2 * human ESCs * self-renewal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.747, year: 2009

  5. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche.

    Science.gov (United States)

    Vanegas, Natalia-Del Pilar; Vernot, Jean-Paul

    2017-01-01

    Leukemic and mesenchymal stem cells interact in the leukemic microenvironment and affect each other differently. This interplay has also important implications for the hematopoietic stem cell (HSC) biology and function. This study evaluated human HSC self-renewal potential and quiescence in an in vitro leukemic niche without leukemic cells. A leukemic niche was established by co-culturing mesenchymal stem cells with a fresh conditioned medium obtained from a leukemic (REH) cell line. After 3 days, the REH-conditioned medium was removed and freshly isolated CD34+ at a density of up to 100,000 cells/ml were added to the leukemic niche. CD34+ cell evaluations (cell cycle, self-renewal gene expression and migration capacity) were performed after 3 further days of co-culture. Additionally, we preliminary investigated the soluble factors present in the leukemic niche and their effect on the mesenchymal stem cells. Statistical significance was assessed by Student's t test or the nonparametric test Kolmogorov-Smirnov. By co-culturing normal mesenchymal stem cells with the REH-conditioned medium we showed that hematopoietic stem cells, normally in a quiescent state, enter cell cycle and proliferate. This loss of quiescence was accompanied by an increased expression of Ki-67 and c-Myc, two well-known cell proliferation-associated markers. Two central regulators of quiescence GATA2 and p53 were also down regulated. Importantly, two genes involved in HSC self-renewal, Klf4 and the histone-lysine N -methyltransferase enzyme Ezh2, were severely affected. On the contrary, c-Kit expression, the stem cell factor receptor, was upregulated in hematopoietic stem cells when compared to the normal niche. Interestingly, mesenchymal stem cells incubated with the REH-conditioned medium stopped growing, showed a flattened morphology with the appearance of small vacuoles, and importantly, became positive for the senescence-associated beta-galactosidase activity. Evaluation of the leukemic

  6. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration.

    Science.gov (United States)

    Cherrett, Claire; Furutani-Seiki, Makoto; Bagby, Stefan

    2012-01-01

    The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.

  7. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    Science.gov (United States)

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Multipotent stem cells of mother's milk

    Directory of Open Access Journals (Sweden)

    Alessandra Reali

    2016-03-01

    Full Text Available In recent years the presence of stem cells (hBSCs: human breastmilk-derived stem cells and epithelial progenitors has been demonstrated in mother’s milk (MM. Stem cells present in samples of fresh MM exhibit a high degree of vitality and this makes possible the performance of cell cultures and to evaluate the differentiation capacity of the hBSCs. The most important datum that expresses the enormous potential of the use of MM stem cells is the presence of a cell population capable of differentiating into the three mesoderm, endoderm and ectoderm lines. The small number of studies and MM samples analyzed and the different sampling methods applied suggest standardization in the collection, analysis and culture of MM in future studies, in consideration of the well-known extreme variability of MM composition, also from the standpoint of cells.The analysis of literature data confirms the uniqueness of MM and its enormous potential.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  9. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival.

    Science.gov (United States)

    Chavali, P L; Saini, R K R; Zhai, Q; Vizlin-Hodzic, D; Venkatabalasubramanian, S; Hayashi, A; Johansson, E; Zeng, Z-j; Mohlin, S; Påhlman, S; Hansford, L; Kaplan, D R; Funa, K

    2014-10-30

    Nuclear orphan receptor TLX (Drosophila tailless homolog) is essential for the maintenance of neural stem/progenitor cell self-renewal, but its role in neuroblastoma (NB) is not well understood. Here, we show that TLX is essential for the formation of tumor spheres in three different NB cell lines, when grown in neural stem cell media. We demonstrate that the knock down of TLX in IMR-32 cells diminishes its tumor sphere-forming capacity. In tumor spheres, TLX is coexpressed with the neural progenitor markers Nestin, CD133 and Oct-4. In addition, TLX is coexpressed with the migratory neural progenitor markers CD15 and matrix metalloproteinase-2 (MMP-2) in xenografts of primary NB cells from patients. Subsequently, we show the effect of TLX on the proliferative, invasive and migratory properties of IMR-32 cells. We attribute this to the recruitment of TLX to both MMP-2 and Oct-4 gene promoters, which resulted in the respective gene activation. In support of our findings, we found that TLX expression was high in NB patient tissues when compared with normal peripheral nervous system tissues. Further, the Kaplan-Meier estimator indicated a negative correlation between TLX expression and survival in 88 NB patients. Therefore, our results point at TLX being a crucial player in progression of NB, by promoting self-renewal of NB tumor-initiating cells and altering their migratory and invasive properties.

  10. Aldo Leopold's land health from a resilience point of view: self-renewal capacity of social-ecological systems.

    Science.gov (United States)

    Berkes, Fikret; Doubleday, Nancy C; Cumming, Graeme S

    2012-09-01

    Health approaches to ecology have a strong basis in Aldo Leopold's thinking, and contemporary ecohealth in turn has a strong philosophical basis in Leopold. To commemorate the 125th anniversary of Leopold's birth (1887-1948), we revisit his ideas, specifically the notions of stewardship (land ethic), productive use of ecosystems (land), and ecosystem renewal. We focus on Leopold's perspective on the self-renewal capacity of the land, as understood in terms of integrity and land health, from the contemporary perspective of resilience theory and ecological theory more generally. Using a broad range of literature, we explore insights and implications of Leopold's work for today's human-environment relationships (integrated social-ecological systems), concerns for biodiversity, the development of agency with respect to stewardship, and key challenges of his time and of ours. Leopold's seminal concept of land health can be seen as a triangulation of productive use, self-renewal, and stewardship, and it can be reinterpreted through the resilience lens as the health of social-ecological systems. In contemporary language, this involves the maintenance of biodiversity and ecosystem services, and the ability to exercise agency both for conservation and for environmental justice.

  11. Hhex Regulates Hematopoietic Stem Cell Self-Renewal and Stress Hematopoiesis via Repression of Cdkn2a.

    Science.gov (United States)

    Jackson, Jacob T; Shields, Benjamin J; Shi, Wei; Di Rago, Ladina; Metcalf, Donald; Nicola, Nicos A; McCormack, Matthew P

    2017-08-01

    The hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation, due to a failure of progenitor expansion. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature progenitors. Transcriptome analysis of Hhex-null Lin - Sca + Kit + cells showed that Hhex deletion leads to derepression of polycomb repressive complex 2 (PRC2) and PRC1 target genes, including the Cdkn2a locus encoding the tumor suppressors p16 Ink 4 a and p19 Arf . Indeed, loss of Cdkn2a restored the capacity of Hhex-null blast colonies to generate myeloid progenitors in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to promote PRC2-mediated Cdkn2a repression to enable continued self-renewal and response to hematopoietic stress. Stem Cells 2017;35:1948-1957. © 2017 AlphaMed Press.

  12. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO

    Science.gov (United States)

    Chou, Fu-Sheng; Griesinger, Andrea; Wunderlich, Mark; Lin, Shan; Link, Kevin A.; Shrestha, Mahesh; Goyama, Susumu; Mizukawa, Benjamin; Shen, Shuhong; Marcucci, Guido

    2012-01-01

    AML1-ETO (AE) is a fusion product of translocation (8;21) that accounts for 40% of M2 type acute myeloid leukemia (AML). In addition to its role in promoting preleukemic hematopoietic cell self-renewal, AE represses DNA repair genes, which leads to DNA damage and increased mutation frequency. Although this latter function may promote leukemogenesis, concurrent p53 activation also leads to an increased baseline apoptotic rate. It is unclear how AE expression is able to counterbalance this intrinsic apoptotic conditioning by p53 to promote survival and self-renewal. In this report, we show that Bcl-xL is up-regulated in AE cells and plays an essential role in their survival and self-renewal. Further investigation revealed that Bcl-xL expression is regulated by thrombopoietin (THPO)/MPL-signaling induced by AE expression. THPO/MPL-signaling also controls cell cycle reentry and mediates AE-induced self-renewal. Analysis of primary AML patient samples revealed a correlation between MPL and Bcl-xL expression specifically in t(8;21) blasts. Taken together, we propose that survival signaling through Bcl-xL is a critical and intrinsic component of a broader self-renewal signaling pathway downstream of AML1-ETO–induced MPL. PMID:22337712

  13. Sevoflurane represses the self-renewal ability by regulating miR-7a,7b/Klf4 signalling pathway in mouse embryonic stem cells.

    Science.gov (United States)

    Wang, Qimin; Li, Guifeng; Li, Baolin; Chen, Qiu; Lv, Dongdong; Liu, Jiaying; Ma, Jieyu; Sun, Nai; Yang, Longqiu; Fei, Xuejie; Song, Qiong

    2016-10-01

    Sevoflurane is a frequently-used clinical inhalational anaesthetic and can cause toxicity to embryos during foetal development. Embryonic stem cells (ESCs) are derived from the inner cell mass of blastospheres and can be used as a useful model of early development. Here, we found that sevoflurane significantly influenced self-renewal ability of mESCs on stemness maintenance and cell proliferation. The cell cycle was arrested via G1 phase delay. We further found that sevoflurane upregulated expression of miR-7a,7b to repress self-renewal. Next we performed rescue experiments and found that after adding miR-7a,7b inhibitor into mESCs treated with sevoflurane, its influence on self-renewal could be blocked. Further we identified stemness factor Klf4 as the direct target of miR-7a,7b. Overexpression of Klf4 restored self-renewal ability repressed by miR-7a,7b or sevoflurane. In this work, we determined that sevoflurane repressed self-renewal ability by regulating the miR-7a,7b/Klf4 signalling pathway in mESCs. Our study demonstrated molecular mechanism underlying the side effects of sevoflurane during early development, laying the foundation for studies on safe usage of inhalational anaesthetic during non-obstetric surgery. © 2016 John Wiley & Sons Ltd.

  14. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  15. Synergistic Effects of a Mixture of Glycosaminoglycans to Inhibit Adipogenesis and Enhance Chondrocyte Features in Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Petar D. Petrov

    2015-11-01

    Full Text Available Background/Aims: Multipotent mesenchymal stem cells affect homeostasis of adipose and joint tissues. Factors influencing their differentiation fate are of interest for both obesity and joint problems. We studied the impact of a mixture of glycosaminoglycans (GAGs (hyaluronic acid: dermatan sulfate 1:0.25, w/w used in an oral supplement for joint discomfort (Oralvisc™ on the differentiation fate of multipotent cells. Methods: Primary mouse embryo fibroblasts (MEFs were used as a model system. Post-confluent monolayer MEF cultures non-stimulated or hormonally stimulated to adipogenesis were chronically exposed to the GAGs mixture, its individual components or vehicle. The appearance of lipid laden cells, lipid accumulation and expression of selected genes at the mRNA and protein level was assessed. Results: Exposure to the GAGs mixture synergistically suppressed spontaneous adipogenesis and induced the expression of cartilage extracellular matrix proteins, aggrecan core protein, decorin and cartilage oligomeric matrix protein. Hormonally-induced adipogenesis in the presence of the GAGs mixture resulted in decreased adipogenic differentiation, down-regulation of adipogenic/lipogenic factors and genes for insulin resistance-related adipokines (resistin and retinol binding protein 4, and up-regulation of oxidative metabolism-related genes. Adipogenesis in the presence of dermatan sulfate, the minor component of the mixture, was not impaired but resulted in smaller lipid droplets and the induction of a more complete brown adipocyte-related transcriptional program in the cells in the adipose state. Conclusions: The Oralvisc™ GAGs mixture can tip the adipogenic/chondrogenic fate balance of multipotent cells away from adipogenesis while favoring chondrocyte related gene expression. The mixture and its dermatan sulfate component also have modulatory effects of interest on hormonally-induced adipogenesis and on metabolic and secretory capabilities of

  16. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    Science.gov (United States)

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  17. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

    Science.gov (United States)

    Mundell, Nathan A; Plank, Jennifer L; LeGrone, Alison W; Frist, Audrey Y; Zhu, Lei; Shin, Myung K; Southard-Smith, E Michelle; Labosky, Patricia A

    2012-03-15

    The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial

  18. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    International Nuclear Information System (INIS)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.; Wang, Xuexia; Laiosa, Michael D.

    2014-01-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life

  19. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A. [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States); Wang, Xuexia [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Biostatistics, Milwaukee, WI 53211 (United States); Laiosa, Michael D., E-mail: laiosa@uwm.edu [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States)

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  20. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    James Wang

    Full Text Available Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs, and very-small embryonic-like stem cells (VSELs have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5. Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6-25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.

  1. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline

    Directory of Open Access Journals (Sweden)

    Roseanne Rosario

    2017-05-01

    Full Text Available Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool.

  2. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

    NARCIS (Netherlands)

    T.C. Luis (Tiago); F. Weerkamp (Floor); B.A. Naber (Brigitta); M.R.M. Baert (Miranda); E.F. de Haas (Edwin); T. Nikolic (Tatjana); S. Heuvelmans (Sjanneke); R.R. de Krijger (Ronald); J.J.M. van Dongen (Jacques); F.J.T. Staal (Frank)

    2009-01-01

    textabstractCanonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for

  3. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    Energy Technology Data Exchange (ETDEWEB)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín [Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México (Mexico); Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Ocadiz-Delgado, Rodolfo; García-Villa, Enrique [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Bonilla-Delgado, José [Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México (Mexico); Lagunas-Martínez, Alfredo [División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); and others

    2016-12-15

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E{sub 2}) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E{sub 2} on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E{sub 2} in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  4. Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    Science.gov (United States)

    Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping

    2012-01-01

    Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008

  5. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    International Nuclear Information System (INIS)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Bonilla-Delgado, José; Lagunas-Martínez, Alfredo

    2016-01-01

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E 2 ) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E 2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E 2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  6. A regulatory network of Drosophila germline stem cell self-renewal

    OpenAIRE

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting

    2014-01-01

    Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or ...

  7. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer.

    Science.gov (United States)

    Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P

    2012-09-25

    Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the

  8. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  9. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    Science.gov (United States)

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Sotoca, Ana M., E-mail: a.sotoca@science.ru.nl [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Roelofs-Hendriks, Jose [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Boeren, Sjef [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Kraan, Peter M. van der [Department of Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Vervoort, Jacques [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Zoelen, Everardus J.J. van; Piek, Ester [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  11. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    Science.gov (United States)

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  12. Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells.

    Science.gov (United States)

    Peng, Hui; Kasada, Atsuo; Ueno, Masaya; Hoshii, Takayuki; Tadokoro, Yuko; Nomura, Naho; Ito, Chiaki; Takase, Yusuke; Vu, Ha Thi; Kobayashi, Masahiko; Xiao, Bo; Worley, Paul F; Hirao, Atsushi

    2018-01-01

    The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) senses a cell's energy status and environmental levels of nutrients and growth factors. In response, mTORC1 mediates signaling that controls protein translation and cellular metabolism. Although mTORC1 plays a critical role in hematopoiesis, it remains unclear which upstream stimuli regulate mTORC1 activity in the context of hematopoietic stem cells (HSC) maintenance in vivo. In this study, we investigated the function of Rheb, a critical regulator of mTORC1 activity controlled by the PI3K-AKT-TSC axis, both in HSC maintenance in mice at steady-state and in HSC-derived hematopoiesis post-transplantation. In contrast to the severe hematopoietic dysfunction caused by Raptor deletion, which completely inactivates mTORC1, Rheb deficiency in adult mice did not show remarkable hematopoietic failure. Lack of Rheb caused abnormalities in myeloid cells but did not have impact on hematopoietic regeneration in mice subjected to injury by irradiation. As previously reported, Rheb deficiency resulted in defective HSC-derived hematopoiesis post-transplantation. However, while Raptor is essential for HSC competitiveness in vivo, Rheb is dispensable for HSC maintenance under physiological conditions, indicating that the PI3K-AKT-TSC pathway does not contribute to mTORC1 activity for sustaining HSC self-renewal activity at steady-state. Thus, the various regulatory elements that impinge upstream of mTORC1 activation pathways are differentially required for HSC homeostasis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  14. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  15. New cancer diagnostics and therapeutics from a ninth 'hallmark of cancer': symmetric self-renewal by mutated distributed stem cells.

    Science.gov (United States)

    Sherley, James L

    2013-11-01

    A total of eight cellular alterations associated with human carcinogenesis have been framed as the 'hallmarks of cancer'. This representation overlooks a ninth hallmark of cancer: the requirement for tumor-originating distributed stem cells to shift sufficiently from asymmetric to symmetric self-renewal kinetics for attainment of the high cell production rate necessary to form clinically significant tumors within a human lifespan. Overlooking this ninth hallmark costs opportunities for discovery of more selective molecular targets for development of improved cancer therapeutics and missing cancer stem cell biomarkers of greater specificity. Here, the biological basis for the ninth hallmark of cancer is considered toward highlighting its importance in human carcinogenesis and, as such, its potential for revealing unique molecules for targeting cancer diagnostics and therapeutics.

  16. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells.

    Science.gov (United States)

    Ye, Jun; Liu, Shanxi; Shang, Yangyang; Chen, Haoyuan; Wang, Rongquan

    2018-06-25

    The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133 + CD44 + CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133 + CD44 + CRC population, but not in the CD133 - CD44 - CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133 + CD44 + or CRC CD133 - CD44 - populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133 + CD44 + CRC population, thus conferring their self-renewal.

  17. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  18. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  19. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hedi ePeterson

    2013-10-01

    Full Text Available Pluripotency in human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs is regulated by three transcription factors - OCT3/4, SOX2 and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behaviour of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11 and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

  20. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  1. Strategies for homeostatic stem cell self-renewal in adult tissues

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    In adult tissues, an exquisite balance exists between stem cell proliferation and the generation of differentiated offspring. Classically, it has been argued that this balance is obtained at the level of a single stem cell, which divides strictly into a new stem cell and a progenitor. However,

  2. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Armando de M. Carvalho

    2013-09-01

    Full Text Available The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs. Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.

  4. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  5. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  6. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2015-01-01

    Full Text Available The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs and bone marrow multipotent stromal cells (BMSCs cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP, osteopontin (OPN, and osteocalcin (OCL. Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX. Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.

  7. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium

    International Nuclear Information System (INIS)

    Feng, Zhong-Ming; Qiu, Jun; Chen, Xie-Wan; Liao, Rong-Xia; Liao, Xing-Yun; Zhang, Lu-Ping; Chen, Xu; Li, Yan; Chen, Zheng-Tang; Sun, Jian-Guo

    2015-01-01

    Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy. Specifically, the distinct miRNome data of BCSCs and MaSCs need to be analyzed to find out the key miRNAs and reveal their roles in regulating the stemness of BCSCs. MUC1 − ESA + cells were isolated from normal mammary epithelial cell line MCF-10A by fluorescence-activated cell sorting (FACS) and tested for stemness by clonogenic assay and multi-potential differentiation experiments. The miRNA profiles of MaSCs, BCSCs and breast cancer MCF-7 cells were compared to obtain the candidate miRNAs that may regulate breast tumorigenesis. An miRNA consecutively upregulated from MaSCs to BCSCs to MCF-7 cells, miR-200c, was chosen to determine its role in regulating the stemness of BCSCs and MaSCs in vitro and in vivo. Based on bioinformatics, the targets of miR-200c were validated by dual-luciferase report system, western blot and rescue experiments. In a 2-D clonogenic assay, MUC1 − ESA + cells gave rise to multiple morphological colonies, including luminal colonies, myoepithelial colonies and mixed colonies. The clonogenic potential of MUC1 − ESA + (61.5 ± 3.87 %) was significantly higher than that of non-stem MCF-10A cells (53.5 ± 3.42 %) (P < 0.05). In a 3-D matrigel culture, MUC1 − ESA + cells grew into mammospheres with duct-like structures. A total of 12 miRNAs of interest were identified, 8 of which were upregulated and 4 downregulated in BCSCs compared with MaSCs. In gain- and lost-of-function assays, miR-200c was sufficient to inhibit the self-renewal of BCSCs and MaSCs in vitro and the growth of BCSCs in vivo. Furthermore, miR-200c negatively regulated

  8. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    Science.gov (United States)

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-02-09

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.

  9. Sparse feature selection identifies H2A.Z as a novel, pattern-specific biomarker for asymmetrically self-renewing distributed stem cells

    Directory of Open Access Journals (Sweden)

    Yang Hoon Huh

    2015-03-01

    Full Text Available There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow. Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify such useful and specific DSC biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells, with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ.

  10. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    Science.gov (United States)

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal.

    Science.gov (United States)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Bonilla-Delgado, José; Lagunas-Martínez, Alfredo; Tapia, Jesús Santa-Olalla; Lambert, Paul F; García-Carrancá, Alejandro; Gariglio, Patricio

    2016-12-01

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E 2 ) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E 2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E 2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo

    International Nuclear Information System (INIS)

    Yasuda, Takako; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi; Kimori, Yoshitaka

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. (author)

  13. File list: NoD.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Multipotent_otic_progenitor mm9 No description Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  14. Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming.

    Directory of Open Access Journals (Sweden)

    Hyojung Jeon

    Full Text Available Pluripotency is maintained in mouse embryonic stem (ES cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.

  15. Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming.

    Science.gov (United States)

    Jeon, Hyojung; Waku, Tsuyoshi; Azami, Takuya; Khoa, Le Tran Phuc; Yanagisawa, Jun; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.

  16. Molecular integration of HoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness.

    Science.gov (United States)

    Hong, Sung-Hyun; Yang, Seung-Jip; Kim, Tae-Min; Shim, Jae-Seung; Lee, Ho-Sun; Lee, Ga-Young; Park, Bo-Bae; Nam, Suk Woo; Ryoo, Zae Young; Oh, Il-Hoan

    2014-05-01

    The upregulation of HoxB4 promotes self-renewal of hematopoietic stem cells (HSCs) without overriding the normal stem cell pool size. A similar enhancement of HSC self-renewal occurs when signal transducer and activator of transcription 3 (STAT3) is activated in HSCs. In this study, to gain insight into the functional organization of individual transcription factors (TFs) that have similar effects on HSCs, we investigated the molecular interplay between HoxB4 and STAT3 in the regulation of HSC self-renewal. We found that while STAT3-C or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both TFs did not have additive effects, indicating their functional redundancy in HSCs. In addition, activation of STAT3 did not cause changes in the expression levels of HoxB4. In contrast, the inhibition of STAT3 activity in HoxB4-overexpressing hematopoietic cells significantly abrogated the enhancing effects of HoxB4, and the upregulation of HoxB4 caused a ligand-independent Tyr-phosphorylation of STAT3. Microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis showed significant overlap in the candidate TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3. Interestingly, among these common TFs were the pluripotency-related genes Oct-4 and Nanog. These results indicate that tissue-specific TFs regulating HSC self-renewal are functionally organized to play an equivalent role in transcription and provide insights into the functional convergence of multiple entries of TFs toward a conserved transcription program for the stem cell state. © 2014 AlphaMed Press.

  17. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells.

    Science.gov (United States)

    Artaza, Jorge N; Bhasin, Shalender; Magee, Thomas R; Reisz-Porszasz, Suzanne; Shen, Ruoquin; Groome, Nigel P; Meerasahib, Mohamed Fareez; Fareez, Meerasaluh M; Gonzalez-Cadavid, Nestor F

    2005-08-01

    Inactivating mutations of the mammalian myostatin gene are associated with increased muscle mass and decreased fat mass; conversely, myostatin transgenic mice that overexpress myostatin in the skeletal muscle have decreased muscle mass and increased fat mass. We investigated the effects of recombinant myostatin protein and antimyostatin antibody on myogenic and adipogenic differentiation of mesenchymal multipotent cells. Accordingly, 10T(1/2) cells were incubated with 5'-azacytidine for 3 d to induce differentiation and then treated with a recombinant protein for myostatin (Mst) carboxy terminal 113 amino acids or a polyclonal anti-Mst antibody for 3, 7, and 14 d. Cells were also cotransfected with a Mst cDNA plasmid expressing the full-length 375-amino acid protein (pcDNA-Mst375) and the silencer RNAs for either Mst (pSil-Mst) or a random sequence (pSil-RS) for 3 or 7 d, and Mst expression was determined. Adipogenesis was evaluated by quantitative image analysis of fat cells before and after oil-red-O staining, immunocytochemistry of adiponectin, and Western blot for CCAAT/enhancer binding protein-alpha. Myogenesis was estimated by quantitative image analysis-immunocytochemistry for MyoD (Myo differentiation protein), myogenin, and myosin heavy chain type II, or by Western blot for myogenin. 5'-Azacytidine-mediated differentiation induced endogenous full-length Mst expression. Recombinant Mst carboxy terminal 113 amino acids inhibited both early and late markers of myogenesis and stimulated both early and late markers of adipogenesis, whereas the antibody against Mst exerted the reverse effects. Myogenin levels at 7 d after transfection of pcDNA-Mst375 were reduced as expected and elevated by pSil-Mst, which blocked efficiently Mst375 expression. In conclusion, myostatin promotes the differentiation of multipotent mesenchymal cells into the adipogenic lineage and inhibits myogenesis.

  18. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging.

    Science.gov (United States)

    Young, Kira; Borikar, Sneha; Bell, Rebecca; Kuffler, Lauren; Philip, Vivek; Trowbridge, Jennifer J

    2016-10-17

    Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging. © 2016 Young et al.

  19. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  20. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.

    Science.gov (United States)

    Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V

    2013-10-01

    Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Science.gov (United States)

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  2. Giant Panda (Ailuropoda melanoleuca Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Hilary M A Prescott

    Full Text Available Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca; red panda (Ailurus fulgens; and Asiatic lion (Panthera leo persica. m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of

  3. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  4. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  5. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.

    Science.gov (United States)

    He, Xi C; Zhang, Jiwang; Tong, Wei-Gang; Tawfik, Ossama; Ross, Jason; Scoville, David H; Tian, Qiang; Zeng, Xin; He, Xi; Wiedemann, Leanne M; Mishina, Yuji; Li, Linheng

    2004-10-01

    In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.

  6. Identification of CHD1L as an Important Regulator for Spermatogonial Stem Cell Survival and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2016-01-01

    Full Text Available Chromodomain helicase/ATPase DNA binding protein 1-like gene (Chd1l participates in chromatin-dependent processes, including transcriptional activation and DNA repair. In this study, we have found for the first time that Chd1l is mainly expressed in the testicular tissues of prepubertal and adult mice and colocalized with PLZF, OCT4, and GFRα1 in the neonatal mouse testis and THY1+ undifferentiated spermatogonia or spermatogonial stem cells (SSCs. Knockdown of endogenous Chd1l in cultured mouse undifferentiated SSCs inhibited the expression levels of Oct4, Plzf, Gfrα1, and Pcna genes, suppressed SSC colony formation, and reduced BrdU incorporation, while increasing SSC apoptosis. Moreover, the Chd1l gene expression is activated by GDNF in the cultured mouse SSCs, and the GDNF signaling pathway was modulated by endogenous levels of Chd1l; as demonstrated by the gene expression levels of GDNF, inducible transcripts Etv5, Bcl6b, Pou3f, and Lhx1, but not that of GDNF-independent gene, Taf4b, were significantly downregulated by Chd1l knockdown in mouse SSCs. Taken together, this study provides the first evidence to support the notion that Chd1l is an intrinsic and novel regulator for SSC survival and self-renewal, and it exerts such regulation at least partially through a GDNF signaling pathway.

  7. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells.

    Science.gov (United States)

    Liu, Shuo; Zhang, Cun; Zhang, Kuo; Gao, Yuan; Wang, Zhaowei; Li, Xiaoju; Cheng, Guang; Wang, Shuning; Xue, Xiaochang; Li, Weina; Zhang, Wei; Zhang, Yingqi; Xing, Xianghui; Li, Meng; Hao, Qiang

    2017-07-04

    Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.

  8. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

    Science.gov (United States)

    Hindi, Sajedah M.; Kumar, Ashok

    2015-01-01

    Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function. PMID:26619121

  9. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo.

    Science.gov (United States)

    Havens, Aaron M; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W; Krebsbach, Paul H; Rodgerson, Denis O; Taichman, Russell S

    2014-04-01

    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.

  10. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal.

    Science.gov (United States)

    Ye, Shoudong; Zhang, Dongming; Cheng, Fei; Wilson, Daniel; Mackay, Jeffrey; He, Kan; Ban, Qian; Lv, Feng; Huang, Saifei; Liu, Dahai; Ying, Qi-Long

    2016-01-15

    Activation of leukemia inhibitor factor (LIF)-Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF-Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. Forced Sp5 expression can reproduce partial effects of Wnt/β-catenin signaling but mimics most features of LIF-Stat3 signaling to maintain undifferentiated mESCs. Moreover, Sp5 is able to convert mouse epiblast stem cells into a naïve pluripotent state. Thus, Sp5 is an important component of the regulatory network governing mESC naïve pluripotency. © 2016. Published by The Company of Biologists Ltd.

  11. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  12. Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia.

    Science.gov (United States)

    Schröck, Carmen; Eydt, Carina; Geburek, Florian; Kaiser, Lena; Päbst, Felicitas; Burk, Janina; Pfarrer, Christiane; Staszyk, Carsten

    2017-11-01

    Allogeneic equine multipotent mesenchymal stromal cells (eMSCs) have been proposed for use in regenerative therapies in veterinary medicine. A source of allogeneic eMSCs might be the bone marrow from euthanized horses. The purpose of this study was to compare in vitro characteristics of equine bone marrow derived eMSC (eBM-MSCs) from euthanized horses (eut-MSCs) and from narcotized horses (nar-MSCs). Eut-MSCs and nar-MSCs showed typical eMSC marker profiles (positive: CD44, CD90; negative: CD11a/CD18 and MHCII) and possessed tri-lineage differentiation characteristics. Although CD105 and MHCI expression varied, no differences were detected between eut-MSCs and nar-MSCs. Proliferation characteristics did not differ between eut-MSCs and nar-MSCs, but age dependent decrease in proliferation and increase in MHCI expression was detected. These results suggest the possible use of eut-MSCs for therapeutic applications and production of commercial available eBM-MSC products.

  13. Concise review: adult multipotent stromal cells and cancer: risk or benefit?

    Science.gov (United States)

    Lazennec, Gwendal; Jorgensen, Christian

    2008-06-01

    This review focuses on the interaction between multipotent stromal cells (MSCs) and carcinoma and the possible use of MSCs in cell-based anticancer therapies. MSCs are present in multiple tissues and are defined as cells displaying the ability to differentiate in multiple lineages, including chondrocytes, osteoblasts, and adipocytes. Recent evidence also suggests that they could play a role in the progression of carcinogenesis and that MSCs could migrate toward primary tumors and metastatic sites. It is possible that MSCs could also be involved in the early stages of carcinogenesis through spontaneous transformation. In addition, it is thought that MSCs can modulate tumor growth and metastasis, although this issue remains controversial and not well understood. The immunosuppressive properties and proangiogenic properties of MSCs account, at least in part, for their effects on cancer development. On the other hand, cancer cells also have the ability to enhance MSC migration. This complex dialog between MSCs and cancer cells is certainly critical for the outcome of tumor development. Interestingly, several studies have shown that MSCs engineered to express antitumor factors could be an innovative choice as a cell-mediated gene therapy to counteract tumor growth. More evidence will be needed to understand how MSCs positively or negatively modulate carcinogenesis and to evaluate the safety of MSC use in cell-mediated gene strategies. Disclosure of potential conflicts of interest is found at the end of this article.

  14. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

    Directory of Open Access Journals (Sweden)

    Vidane AS

    2014-08-01

    Full Text Available Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil Abstract: Amnion-derived mesenchymal stem cells (AMSCs are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases. Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

  15. Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Lina Dahl

    Full Text Available The molecular mechanisms regulating the expansion of the hematopoietic system including hematopoietic stem cells (HSCs in the fetal liver during embryonic development are largely unknown. The LIM-homeobox gene Lhx2 is a candidate regulator of fetal hematopoiesis since it is expressed in the fetal liver and Lhx2(-/- mice die in utero due to severe anemia. Moreover, expression of Lhx2 in embryonic stem (ES cell-derived embryoid bodies (EBs can lead to the generation of HSC-like cell lines. To further define the role of this transcription factor in hematopoietic regulation, we generated ES cell lines that enabled tet-inducible expression of Lhx2. Using this approach we observed that Lhx2 expression synergises with specific signalling pathways, resulting in increased frequency of colony forming cells in developing EB cells. The increase in growth factor-responsive progenitor cells directly correlates to the efficiency in generating HSC-like cell lines, suggesting that Lhx2 expression induce self-renewal of a distinct multipotential hematopoietic progenitor cell in EBs. Signalling via the c-kit tyrosine kinase receptor and the gp130 signal transducer by IL-6 is necessary and sufficient for the Lhx2 induced self-renewal. While inducing self-renewal of multipotential progenitor cells, expression of Lhx2 inhibited proliferation of primitive erythroid precursor cells and interfered with early ES cell commitment, indicating striking lineage specificity of this effect.

  16. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during

  17. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew

  18. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  19. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Directory of Open Access Journals (Sweden)

    Mohammad Moad

    2017-08-01

    Full Text Available Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1 enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.

  20. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  1. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  2. Organizational Self-Renewal

    DEFF Research Database (Denmark)

    Hedman, Jonas; Henningsson, Stefan; Selander, Lisen

    2012-01-01

    Recent research has acknowledged the key role of information systems (IS) in helping build sustainable organizations. Although many organizations have implemented strategies for increased sustainability, empirical evidence for the effects of such strategies is sparse, and the understanding...... from other sustainable initiatives, since they are re-enforcing each other. Third, Green IS initiatives can act as ‘motors’ towards eco-effectiveness, in bridging competing models of organizational effectiveness....

  3. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways.

    Science.gov (United States)

    Ogura, Yuji; Mishra, Vivek; Hindi, Sajedah M; Kuang, Shihuan; Kumar, Ashok

    2013-12-06

    Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7(+)/MyoD(-) cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7(+) cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7(+) cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling.

  4. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200.

    Science.gov (United States)

    Fu, Junsheng; Rodova, Mariana; Nanta, Rajesh; Meeker, Daniel; Van Veldhuizen, Peter J; Srivastava, Rakesh K; Shankar, Sharmila

    2013-06-01

    Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by

  5. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  6. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    Science.gov (United States)

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  7. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway.

    Science.gov (United States)

    Barnawi, Rayanah; Al-Khaldi, Samiyah; Majed Sleiman, Ghida; Sarkar, Abdullah; Al-Dhfyan, Abdullah; Al-Mohanna, Falah; Ghebeh, Hazem; Al-Alwan, Monther

    2016-12-01

    An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44 hi /CD24 lo and ALDH + ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o. © 2016 AlphaMed Press.

  8. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  9. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Hoshi, Akio; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Akatsuka, Akira; Usui, Yukio; Terachi, Toshiro

    2008-06-15

    Postoperative damage of the urethral rhabdosphincter (URS) and neurovascular bundle (NVB) is a major operative complication of radical prostatectomy. It is generally recognized to be caused by unavoidable surgical damage to the muscle-nerve-blood vessel units around the urethra. We attempted to treat this damage using skeletal muscle-derived stem cells, which are able to reconstitute muscle-nerve-blood vessel units. Cells were enzymatically extracted and sorted by flow cytometry as CD34/45 (Sk-34) and CD34/45 (Sk-DN) cells from green fluorescent protein transgenic mice and rats. URS-NVB damage was induced by manually removing one-third of the total URS and unilateral invasion of NVB in wild-type Sprague-Dawley and node rats. Freshly isolated Sk-34, Sk-34+Sk-DN cells, and cultured Sk-DN cells were directly transplanted into the damaged portion. At 4 and 12 weeks after transplantation, urethral pressure profile by electrical stimulation through the sacral surface (L6-S1) was evaluated as functional recovery. The recovery ratio in the control and transplanted groups was 37.6% and 72.9%, at 4 weeks, and 41.6% and 78.4% at 12 weeks, respectively (Pcells differentiated into numerous skeletal muscle fibers having neuromuscular junctions (innervation) and nerve bundle-related Schwann cells and perineurium, and blood vessel-related endothelial cells and pericyte around the urethra. Thus, we conclude that transplantation of skeletal muscle-derived multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of postoperative damage of URS and NVB after radical prostatectomy.

  10. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    Science.gov (United States)

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  11. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    Science.gov (United States)

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  12. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    Science.gov (United States)

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  13. Endogenous anticancer mechanism: differentiation.

    Science.gov (United States)

    Werneck, Miriam Bianchi de Frontin

    2012-06-01

    It has been recently shown that within heterogeneous tumor masses a small population of less differentiated transformed cells has the ability to self-renew and regenerate the bulk of the tumor. Their similarities with normal stem cells in terms of gene expression patterns, proliferative capacity and surface markers rendered them the name of cancer stem-like cells (CSC), and these are thought to be the tumor initiating cells (TIC). Their limited susceptibility to classical anti-tumor therapy help explain the high incidence of cancer-treatment relapses observed in selected malignancies. Much effort is being directed towards the understanding of factors that maintain CSC survival and their self-renewal capacity, with the goal that these same signaling pathways can be harnessed for treatments that aim at inducing CSC differentiation. This review will discuss the CSC theory, its implications, potential signaling pathways responsible for maintaining their undifferentiated and pluripotent states, and new venues being explored to target these cells in modern cancer therapy.

  14. Stem Cell: Past, Present and Future- A Review Article | Avasthi ...

    African Journals Online (AJOL)

    Stem cells are basic cells of all multicellular organisms having the potency to differentiate into wide range of adult cells. Self renewal and totipotency are characteristic of stem cells. Though totipotency is shown by very early embryonic stem cells, the adult stem cells possess multipotency and differential plasticity which can ...

  15. Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration.

    Science.gov (United States)

    Petinati, N A; Kapranov, N M; Bigil'deev, A E; Popova, M D; Davydova, Yu O; Gal'tseva, I V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2017-06-01

    We studied changes in the population of human multipotent mesenchymal stromal cells activated by IFNγ. The cells were cultured under standard conditions; IFNγ was added in various concentrations for 4 h or over 2 passages. It was shown that the total cell production significantly decreased after long-term culturing with IFNγ, but 4-h exposure did not affect this parameter. After 4-h culturing, the expression levels of IDO1, CSF1, and IL-6 increased by 300, 7, and 2.4 times, respectively, and this increase persisted 1 and 2 days after removal of IFNγ from the culture medium. The expression of class I and II MHC (HLA) on cell surface practically did not change immediately after exposure to IFNγ, but during further culturing, HLA-ABC (MHC I) and HLA-DR (MHC II) expression significantly increased, which abolished the immune privilege in these cells, the property allowing clinical use of allogenic multipotent mesenchymal stromal cells. Multipotent mesenchymal stromal cells can suppress proliferation of lymphocytes. The degree of this suppression depends on individual properties of multipotent mesenchymal stromal cell donor. Treatment with IFNγ did not significantly affect the intensity of inhibition of lymphocyte proliferation by these cells.

  16. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  17. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  18. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria-Martinez, Albert [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat de Barcelona, Barcelona (Spain); Barquinero, Jordi [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Banc de Sang i Teixits, Barcelona (Spain); Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Seoane, Joan [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Medical Oncology program, Vall d' Hebron Institute of Oncology, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Poupon, Marie-France [Institut Curie, Paris (France); Morote, Joan [Universitat Autonoma de Barcelona, Barcelona (Spain); Servei d' Urologia. Hospital Vall d' Hebron, Barcelona (Spain); Reventos, Jaume [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Munell, Francina, E-mail: fmunell@ir.vhebron.net [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  19. Evaluation of Peripheral Blood and Cord Blood Platelet Lysates in Isolation and Expansion of Multipotent Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Ioanna Christou

    2018-02-01

    Full Text Available Background: Multipotent Mesenchymal Stromal Cells (MSCs are used in tissue engineering and regenerative medicine. The in vitro isolation and expansion of MSCs involve the use of foetal bovine serum (FBS. However, many concerns have been raised regarding the safety of this product. In this study, alternative additives derived either from peripheral or cord blood were tested as an FBS replacement. Methods: Platelet lysates (PL from peripheral and cord blood were used for the expansion of MSCs. The levels of growth factors in peripheral blood (PB and cord blood (CB PLs were determined using the Multiple Reaction Monitoring (MRM. Finally, the cell doubling time (CDT, tri-lineage differentiation and phenotypic characterization of the MSCs expanded with FBS and PLs were determined. Results: MSCs treated with culture media containing FBS and PB-PL, were successfully isolated and expanded, whereas MSCs treated with CB-PL could not be maintained in culture. Furthermore, the MRM analysis yielded differences in growth factor levels between PB-PL and CB-PL. In addition, the MSCs were successfully expanded with FBS and PB-PL and exhibited tri-lineage differentiation and stable phenotypic characteristics. Conclusion: PB-PL could be used as an alternative additive for the production of MSCs culture medium applied to xenogeneic-free expansion and maintenance of MSCs in large scale clinical studies.

  20. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan

    2017-01-01

    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Denis Kole

    2017-05-01

    Full Text Available Basic fibroblast growth factor (FGF2 is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006, and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011. A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight (LMW isoform and four larger high molecular weight (HMW isoforms (Arese et al., 1999; Arnaud et al., 1999. As they are not generally secreted, high molecular weight (HMW FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18 kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.

  2. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad.

    Science.gov (United States)

    Carroll, S F; Buckley, C T; Kelly, D J

    2014-06-27

    The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pharmaceutical induction of ApoE secretion by multipotent mesenchymal stromal cells (MSCs

    Directory of Open Access Journals (Sweden)

    Whitney Mandolin J

    2008-09-01

    Full Text Available Abstract Background Apolipoprotein E (ApoE is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs are a promising vector for the administration of ApoE ε3 in humans. Results Unlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days. Conclusion The data

  4. Evaluation of the radiosensitivity of acute myeloblastic leukaemia progenitor cells by culture methods exploring self-renewal. Evaluation de la radiosensibilite des progeniteurs de leucemie aigue myeloblastique par des methodes de culture explorant ou non l'autorenouvellement

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, D; Richaud, P; Landriau, S; Lagarde, P; Gualde, N [Fondation Bergonie, 33 - Bordeaux (France); Boiron, J M [Hopital du Haut-Leveque, 33 - Pessac (France); Mahon, F X; Belloc, F [Hopital Regional, 33 - Bordeaux (France); Reiffers, J [Hopital du Haut-Leveque, 33 - Pessac (France) Hopital Regional, 33 - Bordeaux (France)

    1993-01-01

    The progenitor cells of acute myeloblastic leukaemia (AML) are usually cultured in methylcellulose which selects for terminal dividing cells. Suspension cultures have been developed because they reflect self-renewal: the exponential growth of the progenitors of AML cultured in suspension is due to self-renewal. We have compared the radiosensitivity of the progenitors of AML grown either in methylcellulose alone or first in suspension for 7 days before being plated in methylcellulose. Cells were harvested from leukaemic bone marrows at the moment of diagnosis. The myeloblastic lineage of the colonies was assessed by morphological, cytochemical and immunophenotypic analysis and by the use of growth factors which do not stimulate T-lymphocytes. The cell-cycle distribution of leukaemic blasts was comparable for all the samples. This method enabled aggressive leukaemias to be selected. The radiosensitivity showed wide variations from one patient to another (Do ranging from 0.35 to 2.6 Gy) whichever culture method used. The progenitor cells capable of self-renewal were more radiosensitive (Mean Do 0.9[+-]0.4 Gy) than terminal dividing cells (Mean Do = 1.35[+-]0.5 Gy). In two cases, a shoulder was found in the initial part of the cell-survival curves of cells capable of self-renewal. The shape of the curves was better fitted by the linear quadratic model with very low values of [alpha]/[beta], suggesting a reduced antileukaemic effect in case of fractionation.

  5. Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years

    Science.gov (United States)

    2014-01-01

    Introduction Regenerative medicine challenges researchers to find noncontroversial, safe and abundant stem cell sources. In this context, harvesting from asystolic donors could represent an innovative and unlimited reservoir of different stem cells. In this study, cadaveric vascular tissues were established as an alternative source of human cadaver mesenchymal stromal/stem cells (hC-MSCs). We reported the successful cell isolation from postmortem arterial segments stored in a tissue-banking facility for at least 5 years. Methods After thawing, hC-MSCs were isolated with a high efficiency (12 × 106) and characterized with flow cytometry, immunofluorescence, molecular and ultrastructural approaches. Results In early passages, hC-MSCs were clonogenic, highly proliferative and expressed mesenchymal (CD44, CD73, CD90, CD105, HLA-G), stemness (Stro-1, Oct-4, Notch-1), pericyte (CD146, PDGFR-β, NG2) and neuronal (Nestin) markers; hematopoietic and vascular markers were negative. These cells had colony and spheroid-forming abilities, multipotency for their potential to differentiate in multiple mesengenic lineages and immunosuppressive activity to counteract proliferation of phytohemagglutinin-stimulated blood mononuclear cells. Conclusions The efficient procurement of stem cells from cadaveric sources, as postmortem vascular tissues, demonstrates that such cells can survive to prolonged ischemic insult, anoxia, freezing and dehydration injuries, thus paving the way for a scientific revolution where cadaver stromal/stem cells could effectively treat patients demanding cell therapies. PMID:24429026

  6. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia

    Directory of Open Access Journals (Sweden)

    Yung-Che Kuo

    2018-02-01

    Full Text Available Summary: Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs. However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R, and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. : In this article, Huang and colleagues demonstrate that niche hypoxia promotes symmetric self-renewal proliferation and migration of PGC-like CD49f+AP+GSCs through IGF-IR regulation. Using a serum-free culture system, the crosstalk between IGF-1R and CXCR4 signaling was discovered. This work demonstrated that embryonic hypoxia synergistically cooperated with IGF-1R signaling to regulate the symmetric self-renewal and migration of PGC-like GSCs through a HIF-2α–OCT4/CXCR4 loop. Keywords: hypoxia, niche, germline stem cells, self-renewal, migration, IGF-1R, HIF-2α, OCT4, SDF-1, CXCR4

  7. Mechanisms of Self-renewal and Differentiation of Adult Stem Cells Isolated from Bone Marrow, Brain and Epidermis of the Miniature Pigs

    Czech Academy of Sciences Publication Activity Database

    Motlík, Jan; Klíma, Jiří; Hlučilová, Jana; Usvald, Dušan; Procházka, Radek; Dvořánková, B.; Smetana, K. Jr.

    2007-01-01

    Roč. 42, Supplement 2 (2007), s. 68 [Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR) /11./. 21.09.2007-22.09.2007, Celle] R&D Projects: GA MŠk 2B06130 Institutional research plan: CEZ:AV0Z50450515 Keywords : miniature pigs Subject RIV: ED - Physiology

  8. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2009-12-01

    Full Text Available Abstract Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI isolated by laser capture micro-dissection (LCM from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. Conclusions Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.

  9. MicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways

    Directory of Open Access Journals (Sweden)

    Zhonghui Zhang

    2015-04-01

    Full Text Available miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs.

  10. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance

    Science.gov (United States)

    Mohammed, Maryam K.; Shao, Connie; Wang, Jing; Wei, Qiang; Wang, Xin; Collier, Zachary; Tang, Shengli; Liu, Hao; Zhang, Fugui; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Ma, Chao; Shi, Lewis L.; Athiviraham, Aravind; He, Tong-Chuan; Lee, Michael J.

    2016-01-01

    Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in control of cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best characterized among the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of many cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance. PMID:27077077

  11. Mammary Stem Cell Self-Renewal Is Regulated by Slit2/Robo1 Signaling through SNAI1 and mINSC

    Directory of Open Access Journals (Sweden)

    Mimmi S. Ballard

    2015-10-01

    Full Text Available Tissue homeostasis requires somatic stem cell maintenance; however, mechanisms regulating this process during organogenesis are not well understood. Here, we identify asymmetrically renewing basal and luminal stem cells in the mammary end bud. We demonstrate that SLIT2/ROBO1 signaling regulates the choice between self-renewing asymmetric cell divisions (ACDs and expansive symmetric cell divisions (SCDs by governing Inscuteable (mInsc, a key member of the spindle orientation machinery, through the transcription factor Snail (SNAI1. Loss of SLIT2/ROBO1 signaling increases SNAI1 in the nucleus. Overexpression of SNAI1 increases mInsc expression, an effect that is inhibited by SLIT2 treatment. Increased mInsc does not change cell proliferation in the mammary gland (MG but instead causes more basal cap cells to divide via SCD, at the expense of ACD, leading to more stem cells and larger outgrowths. Together, our studies provide insight into how the number of mammary stem cells is regulated by the extracellular cue SLIT2.

  12. HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

    Directory of Open Access Journals (Sweden)

    Maja Weber

    2013-01-01

    Full Text Available Introduction. JEG3 is a choriocarcinoma—and HTR8/SVneo a transformed extravillous trophoblast—cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT- is distinct from JEG3 (CDX2+ and NOTCH1+ as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo’s self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of “stemness-” associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  13. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact.

    Science.gov (United States)

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-05-27

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency.

  14. HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of "stemness-" associated transcription factors.

    Science.gov (United States)

    Weber, Maja; Knoefler, Ilka; Schleussner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2013-01-01

    JEG3 is a choriocarcinoma--and HTR8/SVneo a transformed extravillous trophoblast--cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor) cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT-) is distinct from JEG3 (CDX2+ and NOTCH1+) as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo's self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of "stemness-" associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  15. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway.

    Science.gov (United States)

    Ho, Lena; Tan, Shawn Y X; Wee, Sheena; Wu, Yixuan; Tan, Sam J C; Ramakrishna, Navin B; Chng, Serene C; Nama, Srikanth; Szczerbinska, Iwona; Sczerbinska, Iwona; Chan, Yun-Shen; Avery, Stuart; Tsuneyoshi, Norihiro; Ng, Huck Hui; Gunaratne, Jayantha; Dunn, N Ray; Reversade, Bruno

    2015-10-01

    ELABELA (ELA) is a peptide hormone required for heart development that signals via the Apelin Receptor (APLNR, APJ). ELA is also abundantly secreted by human embryonic stem cells (hESCs), which do not express APLNR. Here we show that ELA signals in a paracrine fashion in hESCs to maintain self-renewal. ELA inhibition by CRISPR/Cas9-mediated deletion, shRNA, or neutralizing antibodies causes reduced hESC growth, cell death, and loss of pluripotency. Global phosphoproteomic and transcriptomic analyses of ELA-pulsed hESCs show that it activates PI3K/AKT/mTORC1 signaling required for cell survival. ELA promotes hESC cell-cycle progression and protein translation and blocks stress-induced apoptosis. INSULIN and ELA have partially overlapping functions in hESC medium, but only ELA can potentiate the TGFβ pathway to prime hESCs toward the endoderm lineage. We propose that ELA, acting through an alternate cell-surface receptor, is an endogenous secreted growth factor in human embryos and hESCs that promotes growth and pluripotency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  18. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  19. Stem Cell Education for Medical Students at Tongji University: Primary Cell Culture and Directional Differentiation of Rat Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Jin, Caixia; Tian, Haibin; Li, Jiao; Jia, Song; Li, Siguang; Xu, Guo-Tong; Xu, Lei; Lu, Lixia

    2018-01-01

    Stem cells are cells that can self-renew and differentiate into a variety of cell types under certain conditions. Stem cells have great potential in regenerative medicine and cell therapy for the treatment of certain diseases. To deliver knowledge about this frontier in science and technology to medical undergraduate students, we designed an…

  20. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids

    Czech Academy of Sciences Publication Activity Database

    Petrenko, Yuriy; Syková, Eva; Kubinová, Šárka

    2017-01-01

    Roč. 8, apr 26 (2017), s. 94 ISSN 1757-6512 R&D Projects: GA MŠk(CZ) LO1309; GA ČR(CZ) GA15-01396S; GA ČR(CZ) GA17-03765S; GA MŠk(CZ) LM2015064 Institutional support: RVO:68378041 Keywords : multipotent mesenchymal stromal cells * three-dimensional spheroids * clinical-grade manufacturing Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 4.211, year: 2016

  1. Cancer stem cells and differentiation therapy.

    Science.gov (United States)

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  2. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB.

    Science.gov (United States)

    Rolando, Chiara; Erni, Andrea; Grison, Alice; Beattie, Robert; Engler, Anna; Gokhale, Paul J; Milo, Marta; Wegleiter, Thomas; Jessberger, Sebastian; Taylor, Verdon

    2016-11-03

    Adult neural stem cells (NSCs) are defined by their inherent capacity to self-renew and give rise to neurons, astrocytes, and oligodendrocytes. In vivo, however, hippocampal NSCs do not generate oligodendrocytes for reasons that have remained enigmatic. Here, we report that deletion of Drosha in adult dentate gyrus NSCs activates oligodendrogenesis and reduces neurogenesis at the expense of gliogenesis. We further find that Drosha directly targets NFIB to repress its expression independently of Dicer and microRNAs. Knockdown of NFIB in Drosha-deficient hippocampal NSCs restores neurogenesis, suggesting that the Drosha/NFIB mechanism robustly prevents oligodendrocyte fate acquisition in vivo. Taken together, our findings establish that adult hippocampal NSCs inherently possess multilineage potential but that Drosha functions as a molecular barrier preventing oligodendrogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  4. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Science.gov (United States)

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  5. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Directory of Open Access Journals (Sweden)

    Kosuke Saito

    Full Text Available Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL. We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs, which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST. Culture medium was transplanted as a control (NT. In the mouse experiment, facial-nerve-palsy (FNP scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  6. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.

    Science.gov (United States)

    Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen

    2018-04-01

    The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

  7. Protective effects of a preparation(hemoHIM) of herb mixture on self-renewal tissues and immune system in whole body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ran; Oh, Heon; Jo, Sung-Kee [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Kim, Sung-Ho [Chonnam National Univ., Kwangju (Korea, Republic of); Yee, Sung-Tae [Sunchon National Univ., Sunchon (Korea, Republic of)

    2002-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs (Angelica gagantis Radix, etc.) was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol- insoluble fraction yielded from one half of the total water extract to the other half of the total water extract. In vitro, lymphocytes were protected by HemoHIM, its polysaccharide and ethanol fractions against radiation. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma- irradiation, the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  8. Radioprotective effects of a preparation (HemoHIM) of herb mixture on self-renewal tissues and immune system in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Park, Hae Ran; Jung, Uhee; Oh, Heon [KAERI, Taejon (Korea, Republic of); Kim, Sung Ho [Chonnam National Univ. Seoul (Korea, Republic of); Yee, Sung Tae [Sunchon National Univ., Seoul (Korea, Republic of)

    2004-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol-insoluble fraction to the total water extract. In vitro, HemoHIM, its polysaccharide and ethanol fractions protected lymphocytes against radiation and scavenged hydroxyl radicals. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma-irradiation the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. Finally, oral or intraperitoneal administration of HemoHIM augmented the 30 day survival rate after irradiation. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage, thus increasing the survival following lethal irradiation. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  9. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    Science.gov (United States)

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.

  10. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses.

    Science.gov (United States)

    Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular

  11. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  12. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    International Nuclear Information System (INIS)

    Wodewotzky, T.I.; Lima-Neto, J.F.; Pereira-Júnior, O.C.M.; Sudano, M.J.; Lima, S.A.F.; Bersano, P.R.O.; Yoshioka, S.A.; Landim-Alvarenga, F.C.

    2012-01-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium

  13. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  14. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Science.gov (United States)

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  15. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  16. In vitro studies on the radiosensitivity of multipotent hemopoietic progenitors in canine bone marrow

    International Nuclear Information System (INIS)

    Kreja, L.; Weinsheimer, W.; Nothdurft, W.

    1991-01-01

    The in vitro radiation response to 280-kV x-rays (does rate 72 cGy/min) of multipotent hemopoietic progenitor cells, mixed colony-forming units (CFU-mix), from canine bone marrow was assayed and compared to the radiation response characteristics of early erythroid progenitors, erythroid burst-forming units (BFU-E). To improve the colony-forming efficiency, the effect of various bone marrow cell separation techniques on colony formation of both progenitors was examined. The separation of bone marrow aspirates by discontinuous buoyant gradient centrifugation using the lymphocyte separation medium Lymphoprep with a density of 1.070 g/ml allowed the establishment of reproducible survival curves. The survival curves for both progenitors were strictly exponential, and CFU-mix were found to be more radiosensitive (D0 = 12 ± 2 cGy) than BFU-E (D0 = 16 ± 2 cGy)

  17. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    Science.gov (United States)

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  18. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Science.gov (United States)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  19. The reprogramming factor nuclear receptor subfamily 5, group A, member 2 cannot replace octamer-binding transcription factor 4 function in the self-renewal of embryonic stem cells.

    Science.gov (United States)

    Choi, Kyeng-Won; Oh, Hye-Rim; Lee, Jaeyoung; Lim, Bobae; Han, Yong-Mahn; Oh, Junseo; Kim, Jungho

    2014-02-01

    Although octamer-binding transcription factor 4 (Oct-4) is one of the most intensively studied factors in mammalian development, no cellular genes capable of replacing Oct-4 function in embryonic stem (ES) cells have been found. Recent data show that nuclear receptor subfamily 5, group A, member 2 (Nr5a2) is able to replace Oct-4 function in the reprogramming process; however, it is unclear whether Nr5a2 can replace Oct-4 function in ES cells. In this study, the ability of Nr5a2 to maintain self-renewal and pluripotency in ES cells was investigated. Nr5a2 localized to the nucleus in ES cells, similarly to Oct-4. However, expression of Nr5a2 failed to rescue the stem cell phenotype or to maintain the self-renewal ability of ES cells. Furthermore, as compared with Oct-4-expressing ES cells, Nr5a2-expressing ES cells showed a reduced number of cells in S-phase, did not expand normally, and did not remain in an undifferentiated state. Ectopic expression of Nr5a2 in ES cells was not able to activate transcription of ES cell-specific genes, and gene expression profiling demonstrated differences between Nr5a2-expressing and Oct-4-expressing ES cells. In addition, Nr5a2-expressing ES cells were not able to form teratomas in nude mice. Taken together, these results strongly suggest that the gene regulation properties of Nr5a2 and Oct-4 and their abilities to confer self-renewal and pluripotency of ES cells differ. The present study provides strong evidence that Nr5a2 cannot replace Oct-4 function in ES cells. © 2013 FEBS.

  20. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH.

    Science.gov (United States)

    Fliefel, Riham; Popov, Cvetan; Tröltzsch, Matthias; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2016-06-01

    Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia.

    Science.gov (United States)

    Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua

    2018-02-13

    Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts

    Science.gov (United States)

    Wang, Qi; Clarkson, Christina; Graham, Melanie; Donahue, Robert; Hering, Bernhard J.; Verfaillie, Catherine M.; Bansal-Pakala, Pratima; O'Brien, Timothy D.

    2015-01-01

    Background Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4+ and CD8+ lymphocyte populations have not been reported. Methods We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. Results and Conclusions Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable. PMID:24825538

  3. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Steens

    2017-04-01

    Full Text Available Summary: The vascular wall (VW serves as a niche for mesenchymal stem cells (MSCs. In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs, based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. : In this article, Klein and colleagues show that iPSCs generated from skin fibroblasts of transgenic mice carrying a GFP gene under the control of the endogenous Nestin promoter to facilitate lineage tracing (NEST-iPSCs can be directly programmed toward mouse vascular wall-typical multipotent mesenchymal stem cells (VW-MSC by ectopic lentiviral expression of a previously defined VW-MSC-specific HOX code. Keywords: vascular wall-derived mesenchymal stem cells, HOX gene, induced pluripotent stem cells, direct programming, nestin

  4. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  5. Clonal analysis of stem cells in differentiation and disease.

    Science.gov (United States)

    Colom, Bartomeu; Jones, Philip H

    2016-12-01

    Tracking the fate of individual cells and their progeny by clonal analysis has redefined the concept of stem cells and their role in health and disease. The maintenance of cell turnover in adult tissues is achieved by the collective action of populations of stem cells with an equal likelihood of self-renewal or differentiation. Following injury stem cells exhibit striking plasticity, switching from homeostatic behavior in order to repair damaged tissues. The effects of disease states on stem cells are also being uncovered, with new insights into how somatic mutations trigger clonal expansion in early neoplasia. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  7. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    International Nuclear Information System (INIS)

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki

    2006-01-01

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = ±7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 ± 4.18 vs. 4.5 ± 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands

  8. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    Science.gov (United States)

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  9. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  10. Effect of neurturin on multipotent cells isolated from the adult skeletal muscle

    International Nuclear Information System (INIS)

    Vourc'h, Patrick; Lacar, Benjamin; Mignon, Laurence; Lucas, Paul A.; Young, Henry E.; Chesselet, Marie-Francoise

    2005-01-01

    Ligands of the glial cell line-derived neurotrophic factors (GDNF)-family are trophic factors for the development and survival of multiple cell types, however their effects on non-neuronal stem cells are unknown. We examined the action of neurturin on a candidate stem cell population isolated from adult skeletal muscles. When grown as spheres, these cells expressed mRNAs for GDNF, persephin, GFR-α2, GFR-α4 (neurturin receptor), and Ret. Exposure of these cells to neurturin significantly augmented cell numbers via increased cell proliferation. After addition of retinoic acid, the cells exited the cell cycle, developed thin processes, and became immunoreactive for βIII-tubulin, while Ret mRNA expression decreased, without changes in the level of GFR-α2 mRNA. Neurturin induced an outgrowth of processes on these βIII-tubulin positive cells. Neurturin may therefore be beneficial in the use of these multipotent cells isolated from adult muscles for autologous transplants in neurological applications

  11. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  12. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  13. Let7a involves in neural stem cell differentiation relating with TLX level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Juhyun [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Kyoung Joo; Oh, Yumi [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Jong Eun, E-mail: jelee@yuhs.ac [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-07-10

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. - Highlights: • Let7a influences on NSC differentiation and proliferation. • Let7a involves in mainly NSC differentiation rather than proliferation. • Let7a positively regulates the TLX expression.

  14. Let7a involves in neural stem cell differentiation relating with TLX level

    International Nuclear Information System (INIS)

    Song, Juhyun; Cho, Kyoung Joo; Oh, Yumi; Lee, Jong Eun

    2015-01-01

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. - Highlights: • Let7a influences on NSC differentiation and proliferation. • Let7a involves in mainly NSC differentiation rather than proliferation. • Let7a positively regulates the TLX expression

  15. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    Science.gov (United States)

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  16. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    Science.gov (United States)

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  17. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Tichy, Elisia D.; Stambrook, Peter J.

    2008-01-01

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  18. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar

    2015-07-01

    Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  20. ARTEMIS stabilizes the genome and modulates proliferative responses in multipotent mesenchymal cells

    Directory of Open Access Journals (Sweden)

    Tompkins Kathleen

    2010-10-01

    Full Text Available Abstract Background Unrepaired DNA double-stranded breaks (DSBs cause chromosomal rearrangements, loss of genetic information, neoplastic transformation or cell death. The nonhomologous end joining (NHEJ pathway, catalyzing sequence-independent direct rejoining of DSBs, is a crucial mechanism for repairing both stochastically occurring and developmentally programmed DSBs. In lymphocytes, NHEJ is critical for both development and genome stability. NHEJ defects lead to severe combined immunodeficiency (SCID and lymphoid cancer predisposition in both mice and humans. While NHEJ has been thoroughly investigated in lymphocytes, the importance of NHEJ in other cell types, especially with regard to tumor suppression, is less well documented. We previously reported evidence that the NHEJ pathway functions to suppress a range of nonlymphoid tumor types, including various classes of sarcomas, by unknown mechanisms. Results Here we investigate roles for the NHEJ factor ARTEMIS in multipotent mesenchymal stem/progenitor cells (MSCs, as putative sarcomagenic cells of origin. We demonstrate a key role for ARTEMIS in sarcoma suppression in a sensitized mouse tumor model. In this context, we found that ARTEMIS deficiency led to chromosomal damage but, paradoxically, enhanced resistance and proliferative potential in primary MSCs subjected to various stresses. Gene expression analysis revealed abnormally regulated stress response, cell proliferation, and signal transduction pathways in ARTEMIS-defective MSCs. Finally, we identified candidate regulatory genes that may, in part, mediate a stress-resistant, hyperproliferative phenotype in preneoplastic ARTEMIS-deficient MSCs. Conclusions Our discoveries suggest that Art prevents genome damage and restrains proliferation in MSCs exposed to various stress stimuli. We propose that deficiency leads to a preneoplastic state in primary MSCs and is associated with aberrant proliferative control and cellular stress

  1. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  2. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  3. Effects of let-7b and TLX on the