WorldWideScience

Sample records for self-referential neural activity

  1. Decreased medial prefrontal cortex activation during self-referential processing in bipolar mania.

    Science.gov (United States)

    Herold, Dorrit; Usnich, Tatiana; Spengler, Stephanie; Sajonz, Bastian; Bauer, Michael; Bermpohl, Felix

    2017-09-01

    Patients with bipolar disorder in mania exhibit symptoms pointing towards altered self-referential processing, such as decreased self-focus, flight of ideas and high distractibility. In depression, the opposite pattern of symptoms has been connected to increased activation of medial prefrontal cortex (mPFC) during self-referential processing. In this study, we hypothesized that (1) patients with mania will exhibit decreased activation in the mPFC during self-referential processing and (2) will be more alexithymic and that levels of alexithymia will correlate negatively with mPFC activation. The neural response to standardized pictures was compared in 14 patients with bipolar I disorder in mania to 14 healthy controls using blood oxygen level dependent contrast magnetic resonance imaging. Participants were asked to indicate with button press during the scanning session for each picture whether the pictures personally related to them or not. Toronto alexithymia scale (TAS) scores were recorded from all participants. In the group analysis, patients with mania exhibited decreased activation in a predefined region of interest in the mPFC during self-referential processing compared to healthy controls. Patients with mania showed significantly higher levels of alexithymia, attributable to difficulties in identifying and describing emotions. Activation in the mPFC correlated negatively with levels of alexithymia. Results presented here should be replicated in a larger group, potentially including unmedicated patients. The finding of decreased mPFC activation during self-referential processing in mania may reflect decreased self-focus and high distractibility. Support for this view comes from the negative correlation between higher alexithymia scores and decreased mPFC activation. These findings represent an opposite clinical and neuroimaging pattern to findings in depression. Copyright © 2017. Published by Elsevier B.V.

  2. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  3. Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

    Science.gov (United States)

    Nejad, Ayna Baladi; Fossati, Philippe; Lemogne, Cédric

    2013-01-01

    Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment. PMID:24124416

  4. Self-referential processing, rumination, and cortical midline structures in major depression

    Directory of Open Access Journals (Sweden)

    Ayna Baladi Nejad

    2013-10-01

    Full Text Available Major depression is associated with a bias towards negative emotional processing and increased self-focus, i.e. the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature and is conceptualised as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasised in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. The literature suggests that self-referential processing in major depression is associated with increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralised task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment.

  5. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  6. Self-referential emotions.

    Science.gov (United States)

    Zinck, Alexandra

    2008-06-01

    The aim of this paper is to examine a special subgroup of emotion: self-referential emotions such as shame, pride and guilt. Self-referential emotions are usually conceptualized as (i) essentially involving the subject herself and as (ii) having complex conditions such as the capacity to represent others' thoughts. I will show that rather than depending on a fully fledged 'theory of mind' and an explicit language-based self-representation, (i) pre-forms of self-referential emotions appear at early developmental stages already exhibiting their characteristic structure of the intentional object of the emotion being identical with or intricately related to the subject experiencing the emotional state and that (ii) they precede and substantially contribute to the development of more complex representations and to the development of a self-concept, to social interaction and to ways of understanding of other minds.

  7. Randomized controlled trial of Mindfulness-Based Stress Reduction versus aerobic exercise: effects on the self-referential brain network in social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Philippe eGoldin

    2012-11-01

    Full Text Available Background: Social Anxiety Disorder (SAD is characterized by distorted self-views. The goal of this study was to examine whether Mindfulness-Based Stress Reduction (MBSR alters behavioral and brain measures of negative and positive self-views. Methods: 56 adult patients with generalized SAD were randomly assigned to MBSR or a comparison aerobic exercise (AE program. A self-referential encoding task was administered at baseline and post-intervention to examine changes in behavioral and neural responses in the self-referential brain network during functional magnetic resonance imaging. Patients were cued to decide whether positive and negative social trait adjectives were self-descriptive or in upper case font. Results: Behaviorally, compared to AE, MBSR produced greater decreases in negative self-views, and equivalent increases in positive self-views. Neurally, during negative self vs. case, compared to AE, MBSR led to increased brain responses in the posterior cingulate cortex (PCC. There were no differential changes for positive self vs. case. Secondary analyses showed that changes in endorsement of negative and positive self-views were associated with decreased social anxiety symptom severity for MBSR, but not AE. Additionally, MBSR-related increases in DMPFC activity during negative self-view vs. case were associated with decreased social anxiety-related disability and increased mindfulness. Analysis of neural temporal dynamics revealed MBSR-related changes in the timing of neural responses in the DMPFC and PCC for negative self-view vs. case.Conclusions: These findings suggest that MBSR attenuates maladaptive habitual self-views by facilitating automatic (i.e., uninstructed recruitment of cognitive and attention regulation neural networks. This highlights potentially important links between self-referential and cognitive-attention regulation systems and suggests that MBSR may enhance more adaptive social self-referential processes in

  8. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects—An ERP Evidence of Source Memory

    Directory of Open Access Journals (Sweden)

    Xinrui Mao

    2017-10-01

    Full Text Available Directed forgetting (DF assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms is a frontal potential at 300–500 ms related to familiarity and the late positive complex (LPC is a later parietal potential at 500–800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects.

  10. Sociocultural patterning of neural activity during self-reflection.

    Science.gov (United States)

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network.

  11. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  12. Psychopathic traits linked to alterations in neural activity during personality judgments of self and others

    Directory of Open Access Journals (Sweden)

    Philip Deming

    Full Text Available Psychopathic individuals are notorious for their grandiose sense of self-worth and disregard for the welfare of others. One potential psychological mechanism underlying these traits is the relative consideration of “self” versus “others”. Here we used task-based functional magnetic resonance imaging (fMRI to identify neural responses during personality trait judgments about oneself and a familiar other in a sample of adult male incarcerated offenders (n = 57. Neural activity was regressed on two clusters of psychopathic traits: Factor 1 (e.g., egocentricity and lack of empathy and Factor 2 (e.g., impulsivity and irresponsibility. Contrary to our hypotheses, Factor 1 scores were not significantly related to neural activity during self- or other-judgments. However, Factor 2 traits were associated with diminished activation to self-judgments, in relation to other-judgments, in bilateral posterior cingulate cortex and right temporoparietal junction. These findings highlight cortical regions associated with a dimension of social-affective cognition that may underlie psychopathic individuals' impulsive traits. Keywords: Psychopathy, fMRI, Social cognition, Self-referential processing, Emotion, Psychopathology

  13. Source memory that encoding was self-referential: the influence of stimulus characteristics.

    Science.gov (United States)

    Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K

    2017-10-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.

  14. Self-referential cognition and empathy in autism.

    Directory of Open Access Journals (Sweden)

    Michael V Lombardo

    2007-09-01

    Full Text Available Individuals with autism spectrum conditions (ASC have profound impairments in the interpersonal social domain, but it is unclear if individuals with ASC also have impairments in the intrapersonal self-referential domain. We aimed to evaluate across several well validated measures in both domains, whether both self-referential cognition and empathy are impaired in ASC and whether these two domains are related to each other.Thirty adults aged 19-45, with Asperger Syndrome or high-functioning autism and 30 age, sex, and IQ matched controls participated in the self-reference effect (SRE paradigm. In the SRE paradigm, participants judged adjectives in relation to the self, a similar close other, a dissimilar non-close other, or for linguistic content. Recognition memory was later tested. After the SRE paradigm, several other complimentary self-referential cognitive measures were taken. Alexithymia and private self-consciousness were measured via self-report. Self-focused attention was measured on the Self-Focus Sentence Completion task. Empathy was measured with 3 self-report instruments and 1 performance measure of mentalizing (Eyes test. Self-reported autistic traits were also measured with the Autism Spectrum Quotient (AQ. Although individuals with ASC showed a significant SRE in memory, this bias was decreased compared to controls. Individuals with ASC also showed reduced memory for the self and a similar close other and also had concurrent impairments on measures of alexithymia, self-focused attention, and on all 4 empathy measures. Individual differences in self-referential cognition predicted mentalizing ability and self-reported autistic traits. More alexithymia and less self memory was predictive of larger mentalizing impairments and AQ scores regardless of diagnosis. In ASC, more self-focused attention is associated with better mentalizing ability and lower AQ scores, while in controls, more self-focused attention is associated with

  15. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  16. Negative evaluation bias for positive self-referential information in borderline personality disorder.

    Directory of Open Access Journals (Sweden)

    Dorina Winter

    Full Text Available Previous research has suggested that patients meeting criteria for borderline personality disorder (BPD display altered self-related information processing. However, experimental studies on dysfunctional self-referential information processing in BPD are rare. In this study, BPD patients (N = 30 and healthy control participants (N = 30 judged positive, neutral, and negative words in terms of emotional valence. Referential processing was manipulated by a preceding self-referential pronoun, an other-referential pronoun, or no referential context. Subsequently, patients and participants completed a free recall and recognition task. BPD patients judged positive and neutral words as more negative than healthy control participants when the words had self-reference or no reference. In BPD patients, these biases were significantly correlated with self-reported attributional style, particularly for negative events, but unrelated to measures of depressive mood. However, BPD patients did not differ from healthy control participants in a subsequent free recall task and a recognition task. Our findings point to a negative evaluation bias for positive, self-referential information in BPD. This bias did not affect the storage of information in memory, but may be related to self-attributions of negative events in everyday life in BPD.

  17. Self-reflection and the inner voice: activation of the left inferior frontal gyrus during perceptual and conceptual self-referential thinking.

    Science.gov (United States)

    Morin, Alain; Hamper, Breanne

    2012-01-01

    Inner speech involvement in self-reflection was examined by reviewing 130 studies assessing brain activation during self-referential processing in key self-domains: agency, self-recognition, emotions, personality traits, autobiographical memory, and miscellaneous (e.g., prospection, judgments). The left inferior frontal gyrus (LIFG) has been shown to be reliably recruited during inner speech production. The percentage of studies reporting LIFG activity for each self-dimension was calculated. Fifty five percent of all studies reviewed indicated LIFG (and presumably inner speech) activity during self-reflection tasks; on average LIFG activation is observed 16% of the time during completion of non-self tasks (e.g., attention, perception). The highest LIFG activation rate was observed during retrieval of autobiographical information. The LIFG was significantly more recruited during conceptual tasks (e.g., prospection, traits) than during perceptual tasks (agency and self-recognition). This constitutes additional evidence supporting the idea of a participation of inner speech in self-related thinking.

  18. Self-referential and anxiety-relevant information processing in subclinical social anxiety: an fMRI study.

    Science.gov (United States)

    Abraham, Anna; Kaufmann, Carolin; Redlich, Ronny; Hermann, Andrea; Stark, Rudolf; Stevens, Stephan; Hermann, Christiane

    2013-03-01

    The fear of negative evaluation is one of the hallmark features of social anxiety. Behavioral evidence thus far largely supports cognitive models which postulate that information processing biases in the face of socially relevant information are a key factor underlying this widespread phobia. So far only one neuroimaging study has explicitly focused on the fear of negative evaluation in social anxiety where the brain responses of social phobics were compared to healthy participants during the processing of self-referential relative to other-referential criticism, praise or neutral information. Only self-referential criticism led to stronger activations in emotion-relevant regions of the brain, such as the amygdala and medial prefrontal cortices (mPFC), in the social phobics. The objective of the current study was to determine whether these findings could be extended to subclinical social anxiety. In doing so, the specificity of this self-referential bias was also examined by including both social and non-social (physical illness-related) threat information as well as a highly health anxious control group in the experimental paradigm. The fMRI findings indicated that the processing of emotional stimuli was accompanied by activations in the amygdala and the ventral mPFC, while self-referential processing was associated with activity in regions such as the mPFC, posterior cingulate and temporal poles. Despite the validation of the paradigm, the results revealed that the previously reported behavioral and brain biases associated with social phobia could not be unequivocally extended to subclinical social anxiety. The divergence between the findings is explored in detail with reference to paradigm differences and conceptual issues.

  19. Genuine eye contact elicits self-referential processing.

    Science.gov (United States)

    Hietanen, Jonne O; Hietanen, Jari K

    2017-05-01

    The effect of eye contact on self-awareness was investigated with implicit measures based on the use of first-person singular pronouns in sentences. The measures were proposed to tap into self-referential processing, that is, information processing associated with self-awareness. In addition, participants filled in a questionnaire measuring explicit self-awareness. In Experiment 1, the stimulus was a video clip showing another person and, in Experiment 2, the stimulus was a live person. In both experiments, participants were divided into two groups and presented with the stimulus person either making eye contact or gazing downward, depending on the group assignment. During the task, the gaze stimulus was presented before each trial of the pronoun-selection task. Eye contact was found to increase the use of first-person pronouns, but only when participants were facing a real person, not when they were looking at a video of a person. No difference in self-reported self-awareness was found between the two gaze direction groups in either experiment. The results indicate that eye contact elicits self-referential processing, but the effect may be stronger, or possibly limited to, live interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. In search of the Chinese self: An fMRI study

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Li; ZHOU; Tiangang; ZHANG; Jian; LIU; Zuxiang; FAN; Jin

    2006-01-01

    Cultural influences on the concept of self is a very important topic for social cognitive neuroscientific exploration, as yet, little if anything is known about this topic at the neural level. The present study investigates this problem by looking at the Chinese culture's influence on the concept of self, in which the self includes mother. In Western cultures, self-referential processing leads to a memory performance advantage over other forms of semantic processing including mother-referential, other-referential and general semantic processing, and an advantage that is potentially localizable to the medial prefrontal cortex (MPFC). In Chinese culture, however, the behavioral study showed that mother-referential processing was comparable with self-referential processing in both memory performance and autonoetic awareness. The present study attempts to address whether similar neural correlates (e.g. MPFC) are acting to facilitate both types of referencing. Participants judged trait adjectives under three reference conditions of self, other and semantic processing in Experiment I, and a mother-reference condition replaced the other-reference condition in Experiment II. The results showed that when compared to other, self-referential processing yielded activations of MPFC and cingulate areas. However, when compared to mother, the activation of MPFC disappeared in self-referential processing, which suggests that mother and self may have a common brain region in the MPFC and that the Chinese idea of self includes mother.

  1. The Spatiotemporal Features of Self- Referential Processing: Evidence of ERPs%音乐情境中自我参照加工的时间特征:来自ERPs的证据

    Institute of Scientific and Technical Information of China (English)

    钟毅平; 范伟; 周路平; 肖丽辉; 王小艳; 张笑仪; 龙腾; 颜志雄

    2012-01-01

    采用事件相关电位技术,考察在有情境条件下不同层面的自我参照加工的特性及其神经机制。实验发现,在两种音乐情境条件下个体自我参展刺激所激发的P300波幅比集体自我参照刺激和非自我刺激更大,而集体自我参照刺激所激发的P300波幅比非自我刺激更大;两种音乐情境条件下个体自我参照刺激所激发的P300波幅差异显著,而集体自我参照刺激所激发的P300波幅差异不显著。研究结果表明了在不同的情境中,个体自我参照加工的差异较大,表现出不稳定的特征;个体自我参照加工与集体自我参照加工的神经机制是不同的。这些结果还可能表明了相对于集体自我来讲,个体自我是自我的核心层面。%Based on previous studies, this study used event-related potential to investigate the self-referential processing in the case of context, the characteristics at different levels of self-reference processing and its neural mechanisms under situational conditions. To extend the results of the previous studies and to further the discussion, we designed the experiment, in which we added the indi- vidual self-referential and collective self-referential stimuli, and compared the processing course with each other. In the experiment, we used the lexical decision task, and took the characteristic adjectives as individual self-referential and collective self-referential stimuli. To investigate the characteristics of the two self-referential processing, we also took the situation into consideration, and placed the indi- vidual self-referential processing and collective self-referential processing in different situations. In the experiment, we used the decision task, combined with unrelated individualistic music and group- oriented music as background, three characteristic adjectives as target stimulus, in total, six types of stimuli. In the experiment, we found that under the two musical

  2. Self-Referential Processing in Adolescents: Stability of Behavioral and Event-Related Potential Markers

    Science.gov (United States)

    Auerbach, Randy P.; Bondy, Erin; Stanton, Colin H.; Webb, Christian A.; Shankman, Stewart A.; Pizzagalli, Diego A.

    2016-01-01

    The self-referential encoding task (SRET)—an implicit measure of self-schema—has been used widely to probe cognitive biases associated with depression, including among adolescents. However, research testing the stability of behavioral and electrocortical effects is sparse. Therefore, the current study sought to evaluate the stability of behavioral markers and event-related potentials (ERP) elicited from the SRET over time in healthy, female adolescents (n = 31). At baseline, participants were administered a diagnostic interview and a self-report measure of depression severity. In addition, they completed the SRET while 128-channel event-related potential (ERP) data were recorded to examine early (P1) and late (late positive potential [LPP]) ERPs. Three months later, participants were re-administered the depression self-report measure and the SRET in conjunction with ERPs. Results revealed that healthy adolescents endorsed, recalled, and recognized more positive and fewer negative words at each assessment, and these effects were stable over time (rs = 0.44–0.83). Similarly, they reported a faster reaction time when endorsing self-relevant positive words, as opposed to negative words, at both the initial and follow-up assessment (r = 0.82). Second, ERP responses, specifically potentiated P1 and late LPP positivity to positive versus negative words, were consistent over time (rs = 0.56–0.83), and the internal reliability of ERPs were robust at each time point (rs = 0.52–0.80). As a whole, these medium-to-large effects suggest that the SRET is a reliable behavioral and neural probe of self-referential processing. PMID:27302282

  3. SELF-REFERENTIALITY AND INTER-REFERENTIALITY IN ROMANIAN CULTURAL ANTHROPOLOGY (1964–2012

    Directory of Open Access Journals (Sweden)

    MARIN CONSTANTIN

    2014-05-01

    Full Text Available The bibliographic retrospective of the practice of cultural anthropology in Romania is significant for the actuality of a process of changing and renewing the scientific interest and the inquest “field” of Romanian researchers. More precisely, the self-referential or “intra-cultural” knowledge about Romanian communities or groups of population currently appears to be turned into a inter-referential knowledge, with a cross-cultural content. It is through such theoretical and methodological metamorphosis that the study of minority ethno-linguistic communities in Romania takes part to a contextualized understanding of Romanian cultural identities in relation to the groups of Magyars, Germans, Roma, Russian-speaking Lipovans, Turks, Croatians etc. As a result, my text attempts to evaluate the inner dynamics of Romanian cultural anthropology in terms of a critical synthesis of the local specialized literature, in the context of anthropological disciplinary evolution in Central and Southeastern Europe

  4. Social inference and social anxiety: evidence of a fear-congruent self-referential learning bias.

    Science.gov (United States)

    Button, Katherine S; Browning, Michael; Munafò, Marcus R; Lewis, Glyn

    2012-12-01

    Fears of negative evaluation characterise social anxiety, and preferential processing of fear-relevant information is implicated in maintaining symptoms. Little is known, however, about the relationship between social anxiety and the process of inferring negative evaluation. The ability to use social information to learn what others think about one, referred to here as self-referential learning, is fundamental for effective social interaction. The aim of this research was to examine whether social anxiety is associated with self-referential learning. 102 Females with either high (n = 52) or low (n = 50) self-reported social anxiety completed a novel probabilistic social learning task. Using trial and error, the task required participants to learn two self-referential rules, 'I am liked' and 'I am disliked'. Participants across the sample were better at learning the positive rule 'I am liked' than the negative rule 'I am disliked', β = -6.4, 95% CI [-8.0, -4.7], p learning positive self-referential information was strongest in the lowest socially anxious and was abolished in the most symptomatic participants. Relative to the low group, the high anxiety group were better at learning they were disliked and worse at learning they were liked, social anxiety by rule interaction β = 3.6; 95% CI [+0.3, +7.0], p = 0.03. The specificity of the results to self-referential processing requires further research. Healthy individuals show a robust preference for learning that they are liked relative to disliked. This positive self-referential bias is reduced in social anxiety in a way that would be expected to exacerbate anxiety symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. When compliments don't hit but critiques do: an fMRI study into self-esteem and self-knowledge in processing social feedback.

    Science.gov (United States)

    van Schie, C C; Chiu, C D; Rombouts, S A R B; Heiser, W J; Elzinga, B M

    2018-02-27

    The way we view ourselves may play an important role in our responses to interpersonal interactions. In this study, we investigate how feedback valence, consistency of feedback with self-knowledge and global self-esteem influence affective and neural responses to social feedback. Participants (N = 46) with a high range of self-esteem levels performed the social feedback task in an MRI scanner. Negative, intermediate and positive feedback was provided, supposedly by another person based on a personal interview. Participants rated their mood and applicability of feedback to the self. Analyses on trial basis on neural and affective responses are used to incorporate applicability of individual feedback words. Lower self-esteem related to low mood especially after receiving non-applicable negative feedback. Higher self-esteem related to increased PCC and precuneus activation (i.e., self-referential processing) for applicable negative feedback. Lower self-esteem related to decreased mPFC, insula, ACC and PCC activation (i.e, self-referential processing) during positive feedback and decreased TPJ activation (i.e., other referential processing) for applicable positive feedback. Self-esteem and consistency of feedback with self-knowledge appear to guide our affective and neural responses to social feedback. This may be highly relevant for the interpersonal problems that individuals face with low self-esteem and negative self-views.

  6. When compliments do not hit but critiques do: an fMRI study into self-esteem and self-knowledge in processing social feedback

    Science.gov (United States)

    van Schie, Charlotte C; Chiu, Chui-De; Rombouts, Serge A R B; Heiser, Willem J; Elzinga, Bernet M

    2018-01-01

    Abstract The way we view ourselves may play an important role in our responses to interpersonal interactions. In this study, we investigate how feedback valence, consistency of feedback with self-knowledge and global self-esteem influence affective and neural responses to social feedback. Participants (N = 46) with a high range of self-esteem levels performed the social feedback task in an MRI scanner. Negative, intermediate and positive feedback was provided, supposedly by another person based on a personal interview. Participants rated their mood and applicability of feedback to the self. Analyses on trial basis on neural and affective responses are used to incorporate applicability of individual feedback words. Lower self-esteem related to low mood especially after receiving non-applicable negative feedback. Higher self-esteem related to increased posterior cingulate cortex and precuneus activation (i.e. self-referential processing) for applicable negative feedback. Lower self-esteem related to decreased medial prefrontal cortex, insula, anterior cingulate cortex and posterior cingulate cortex activation (i.e. self-referential processing) during positive feedback and decreased temporoparietal junction activation (i.e. other referential processing) for applicable positive feedback. Self-esteem and consistency of feedback with self-knowledge appear to guide our affective and neural responses to social feedback. This may be highly relevant for the interpersonal problems that individuals face with low self-esteem and negative self-views. PMID:29490088

  7. Brain activation associated with pride and shame.

    Science.gov (United States)

    Roth, Lilian; Kaffenberger, Tina; Herwig, Uwe; Brühl, Annette B

    2014-01-01

    Self-referential emotions such as shame/guilt and pride provide evaluative information about persons themselves. In addition to emotional aspects, social and self-referential processes play a role in self-referential emotions. Prior studies have rather focused on comparing self-referential and other-referential processes of one valence, triggered mostly by external stimuli. In the current study, we aimed at investigating the valence-specific neural correlates of shame/guilt and pride, evoked by the remembrance of a corresponding autobiographical event during functional magnetic resonance imaging. A total of 25 healthy volunteers were studied. The task comprised a negative (shame/guilt), a positive (pride) and a neutral condition (expecting the distractor). Each condition was initiated by a simple cue, followed by the remembrance and finished by a distracting picture. Pride and shame/guilt conditions both activated typical emotion-processing circuits including the amygdala, insula and ventral striatum, as well as self-referential brain regions such as the bilateral dorsomedial prefrontal cortex. Comparing the two emotional conditions, emotion-processing circuits were more activated by pride than by shame, possibly due to either hedonic experiences or stronger involvement of the participants in positive self-referential emotions due to a self-positivity bias. However, the ventral striatum was similarly activated by pride and shame/guilt. In the whole-brain analysis, both self-referential emotion conditions activated medial prefrontal and posterior cingulate regions, corresponding to the self-referential aspect and the autobiographical evocation of the respective emotions. Autobiographically evoked self-referential emotions activated basic emotional as well as self-referential circuits. Except for the ventral striatum, emotional circuits were more active with pride than with shame.

  8. Self-referential and social cognition in a case of autism and agenesis of the corpus callosum

    Directory of Open Access Journals (Sweden)

    Lombardo Michael V

    2012-11-01

    Full Text Available Abstract Background While models of autism spectrum conditions (ASC are emerging at the genetic level of analysis, clear models at higher levels of analysis, such as neuroanatomy, are lacking. Here we examine agenesis of the corpus callosum (AgCC as a model at the level of neuroanatomy that may be relevant for understanding self-referential and social-cognitive difficulties in ASC. Methods We examined performance on a wide array of tests in self-referential and social-cognitive domains in a patient with both AgCC and a diagnosis of ASC. Tests included a depth-of-processing memory paradigm with self-referential and social-cognitive manipulations, self-report measures of self-consciousness, alexithymia, and empathy, as well as performance measures of first-person pronoun usage and mentalizing ability. The performance of the AgCC patient was compared to a group of individuals with ASC but without AgCC and with neurotypical controls. These comparison groups come from a prior study where group differences were apparent across many measures. We used bootstrapping to assess whether the AgCC patient exhibited scores that were within or outside the 95% bias-corrected and accelerated bootstrap confidence intervals observed in both comparison groups. Results Within the depth-of-processing memory paradigm, the AgCC patient showed decreased memory sensitivity that was more extreme than both comparison groups across all conditions. The patient’s most pronounced difficulty on this task emerged in the social-cognitive domain related to information-processing about other people. The patient was similar to the ASC group in benefiting less from self-referential processing compared to the control group. Across a variety of other self-referential (i.e. alexithymia, private self-consciousness and social-cognitive measures (i.e. self-reported imaginative and perspective-taking subscales of empathy, mentalizing, the AgCC patient also showed more extreme scores than

  9. [Neural basis of self-face recognition: social aspects].

    Science.gov (United States)

    Sugiura, Motoaki

    2012-07-01

    Considering the importance of the face in social survival and evidence from evolutionary psychology of visual self-recognition, it is reasonable that we expect neural mechanisms for higher social-cognitive processes to underlie self-face recognition. A decade of neuroimaging studies so far has, however, not provided an encouraging finding in this respect. Self-face specific activation has typically been reported in the areas for sensory-motor integration in the right lateral cortices. This observation appears to reflect the physical nature of the self-face which representation is developed via the detection of contingency between one's own action and sensory feedback. We have recently revealed that the medial prefrontal cortex, implicated in socially nuanced self-referential process, is activated during self-face recognition under a rich social context where multiple other faces are available for reference. The posterior cingulate cortex has also exhibited this activation modulation, and in the separate experiment showed a response to attractively manipulated self-face suggesting its relevance to positive self-value. Furthermore, the regions in the right lateral cortices typically showing self-face-specific activation have responded also to the face of one's close friend under the rich social context. This observation is potentially explained by the fact that the contingency detection for physical self-recognition also plays a role in physical social interaction, which characterizes the representation of personally familiar people. These findings demonstrate that neuroscientific exploration reveals multiple facets of the relationship between self-face recognition and social-cognitive process, and that technically the manipulation of social context is key to its success.

  10. Brain activation associated with pride and shame

    OpenAIRE

    Roth, Lilian; Kaffenberger, Tina; Herwig, Uwe; Brühl, Annette Beatrix

    2014-01-01

    BACKGROUND: Self-referential emotions such as shame/guilt and pride provide evaluative information about persons themselves. In addition to emotional aspects, social and self-referential processes play a role in self-referential emotions. Prior studies have rather focused on comparing self-referential and other-referential processes of one valence, triggered mostly by external stimuli. In the current study, we aimed at investigating the valence-specific neural correlates of shame/guilt and pr...

  11. Brain activity and functional coupling changes associated with self-reference effect during both encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Nastassja Morel

    Full Text Available Information that is processed with reference to oneself, i.e. Self-Referential Processing (SRP, is generally associated with better remembering compared to information processed in a condition not related to oneself. This positive effect of the self on subsequent memory performance is called as Self-Reference Effect (SRE. The neural basis of SRE is still poorly understood. The main goal of the present work was thus to highlight brain changes associated with SRE in terms of activity and functional coupling and during both encoding and retrieval so as to assess the relative contribution of both processes to SRE. For this purpose, we used an fMRI event-related self-referential paradigm in 30 healthy young subjects and measured brain activity during both encoding and retrieval of self-relevant information compared to a semantic control condition. We found that SRE was associated with brain changes during the encoding phase only, including both greater activity in the medial prefrontal cortex and hippocampus, and greater functional coupling between these brain regions and the posterior cingulate cortex. These findings highlight the contribution of brain regions involved in both SRP and episodic memory and the relevance of the communication between these regions during the encoding process as the neural substrates of SRE. This is consistent with the idea that SRE reflects a positive effect of the reactivation of self-related memories on the encoding of new information in episodic memory.

  12. Self-reference modulates the processing of emotional stimuli in the absence of explicit self-referential appraisal instructions

    Science.gov (United States)

    Pauli, Paul; Herbert, Beate M.

    2011-01-01

    Self-referential evaluation of emotional stimuli has been shown to modify the way emotional stimuli are processed. This study aimed at a new approach by investigating whether self-reference alters emotion processing in the absence of explicit self-referential appraisal instructions. Event-related potentials were measured while subjects spontaneously viewed a series of emotional and neutral nouns. Nouns were preceded either by personal pronouns (‘my’) indicating self-reference or a definite article (‘the’) without self-reference. The early posterior negativity, a brain potential reflecting rapid attention capture by emotional stimuli was enhanced for unpleasant and pleasant nouns relative to neutral nouns irrespective of whether nouns were preceded by personal pronouns or articles. Later brain potentials such as the late positive potential were enhanced for unpleasant nouns only when preceded by personal pronouns. Unpleasant nouns were better remembered than pleasant or neutral nouns when paired with a personal pronoun. Correlation analysis showed that this bias in favor of self-related unpleasant concepts can be explained by participants’ depression scores. Our results demonstrate that self-reference acts as a first processing filter for emotional material to receive higher order processing after an initial rapid attention capture by emotional content has been completed. Mood-congruent processing may contribute to this effect. PMID:20855295

  13. The self and its resting state in consciousness: an investigation of the vegetative state.

    Science.gov (United States)

    Huang, Zirui; Dai, Rui; Wu, Xuehai; Yang, Zhi; Liu, Dongqiang; Hu, Jin; Gao, Liang; Tang, Weijun; Mao, Ying; Jin, Yi; Wu, Xing; Liu, Bin; Zhang, Yao; Lu, Lu; Laureys, Steven; Weng, Xuchu; Northoff, Georg

    2014-05-01

    Recent studies have demonstrated resting-state abnormalities in midline regions in vegetative state/unresponsive wakefulness syndrome and minimally conscious state patients. However, the functional implications of these resting-state abnormalities remain unclear. Recent findings in healthy subjects have revealed a close overlap between the neural substrate of self-referential processing and the resting-state activity in cortical midline regions. As such, we investigated task-related neural activity during active self-referential processing and various measures of resting-state activity in 11 patients with disorders of consciousness (DOC) and 12 healthy control subjects. Overall, the results revealed that DOC patients exhibited task-specific signal changes in anterior and posterior midline regions, including the perigenual anterior cingulate cortex (PACC) and posterior cingulate cortex (PCC). However, the degree of signal change was significantly lower in DOC patients compared with that in healthy subjects. Moreover, reduced signal differentiation in the PACC predicted the degree of consciousness in DOC patients. Importantly, the same midline regions (PACC and PCC) in DOC patients also exhibited severe abnormalities in the measures of resting-state activity, that is functional connectivity and the amplitude of low-frequency fluctuations. Taken together, our results provide the first evidence of neural abnormalities in both the self-referential processing and the resting state in midline regions in DOC patients. This novel finding has important implications for clinical utility and general understanding of the relationship between the self, the resting state, and consciousness. Copyright © 2013 Wiley Periodicals, Inc.

  14. Self-reported empathy and neural activity during action imitation and observation in schizophrenia.

    Science.gov (United States)

    Horan, William P; Iacoboni, Marco; Cross, Katy A; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K; Green, Michael F

    2014-01-01

    Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  15. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    Directory of Open Access Journals (Sweden)

    William P. Horan

    2014-01-01

    Conclusions: Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  16. Symptom-specific self-referential cognitive processes in bipolar disorder: a longitudinal analysis.

    Science.gov (United States)

    Pavlickova, H; Varese, F; Turnbull, O; Scott, J; Morriss, R; Kinderman, P; Paykel, E; Bentall, R P

    2013-09-01

    Although depression and mania are often assumed to be polar opposites, studies have shown that, in patients with bipolar disorder, they are weakly positively correlated and vary somewhat independently over time. Thus, when investigating relationships between specific psychological processes and specific symptoms (mania and depression), co-morbidity between the symptoms and changes over time must be taken into account. Method A total of 253 bipolar disorder patients were assessed every 24 weeks for 18 months using the Hamilton Rating Scale for Depression (HAMD), the Bech-Rafaelsen Mania Assessment Scale (MAS), the Rosenberg Self-Esteem Questionnaire (RSEQ), the Dysfunctional Attitudes Scale (DAS), the Internal, Personal and Situational Attributions Questionnaire (IPSAQ) and the Personal Qualities Questionnaire (PQQ). We calculated multilevel models using the xtreg module of Stata 9.1, with psychological and clinical measures nested within each participant. Mania and depression were weakly, yet significantly, associated; each was related to distinct psychological processes. Cross-sectionally, self-esteem showed the most robust associations with depression and mania: depression was associated with low positive and high negative self-esteem, and mania with high positive self-esteem. Depression was significantly associated with most of the other self-referential measures, whereas mania was weakly associated only with the externalizing bias of the IPSAQ and the achievement scale of the DAS. Prospectively, low self-esteem predicted future depression. The associations between different self-referential thinking processes and different phases of bipolar disorder, and the presence of the negative self-concept in both depression and mania, have implications for therapeutic management, and also for future directions of research.

  17. Trait self-esteem and neural activities related to self-evaluation and social feedback

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975

  18. Trait self-esteem and neural activities related to self-evaluation and social feedback.

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-02-04

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one's own personality traits and of others' opinion about one's own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one's own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback.

  19. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Belinda J. Liddell

    2016-06-01

    Full Text Available A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD. However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1 fear dysregulation; (2 attentional biases to threat; (3 emotion and autobiographical memory; (4 self-referential processing; and (5 attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article:

  20. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    Science.gov (United States)

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  1. Negative self-referential processing is associated with genetic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR): Evidence from two independent studies.

    Science.gov (United States)

    Dainer-Best, Justin; Disner, Seth G; McGeary, John E; Hamilton, Bethany J; Beevers, Christopher G

    2018-01-01

    The current research examined whether carriers of the short 5-HTTLPR allele (in SLC6A4), who have been shown to selectively attend to negative information, exhibit a bias towards negative self-referent processing. The self-referent encoding task (SRET) was used to measure self-referential processing of positive and negative adjectives. Ratcliff's diffusion model isolated and extracted decision-making components from SRET responses and reaction times. Across the initial (N = 183) and replication (N = 137) studies, results indicated that short 5-HTTLPR allele carriers more easily categorized negative adjectives as self-referential (i.e., higher drift rate). Further, drift rate was associated with recall of negative self-referential stimuli. Findings across both studies provide further evidence that genetic variation may contribute to the etiology of negatively biased processing of self-referent information. Large scale studies examining the genetic contributions to negative self-referent processing may be warranted.

  2. Self-referential processing is distinct from semantic elaboration: evidence from long-term memory effects in a patient with amnesia and semantic impairments.

    Science.gov (United States)

    Sui, Jie; Humphreys, Glyn W

    2013-11-01

    We report data demonstrating that self-referential encoding facilitates memory performance in the absence of effects of semantic elaboration in a severely amnesic patient also suffering semantic problems. In Part 1, the patient, GA, was trained to associate items with the self or a familiar other during the encoding phase of a memory task (self-ownership decisions in Experiment 1 and self-evaluation decisions in Experiment 2). Tests of memory showed a consistent self-reference advantage, relative to a condition where the reference was another person in both experiments. The pattern of the self-reference advantage was similar to that in healthy controls. In Part 2 we demonstrate that GA showed minimal effects of semantic elaboration on memory for items he semantically classified, compared with items subject to physical size decisions; in contrast, healthy controls demonstrated enhanced memory performance after semantic relative to physical encoding. The results indicate that self-referential encoding, not semantic elaboration, improves memory in amnesia. Self-referential processing may provide a unique scaffold to help improve learning in amnesic cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Information content of neural networks with self-control and variable activity

    International Nuclear Information System (INIS)

    Bolle, D.; Amari, S.I.; Dominguez Carreta, D.R.C.; Massolo, G.

    2001-01-01

    A self-control mechanism for the dynamics of neural networks with variable activity is discussed using a recursive scheme for the time evolution of the local field. It is based upon the introduction of a self-adapting time-dependent threshold as a function of both the neural and pattern activity in the network. This mechanism leads to an improvement of the information content of the network as well as an increase of the storage capacity and the basins of attraction. Different architectures are considered and the results are compared with numerical simulations

  4. Self-construal differences in neural responses to negative social cues.

    Science.gov (United States)

    Liddell, Belinda J; Felmingham, Kim L; Das, Pritha; Whitford, Thomas J; Malhi, Gin S; Battaglini, Eva; Bryant, Richard A

    2017-10-01

    Cultures differ substantially in representations of the self. Whereas individualistic cultural groups emphasize an independent self, reflected in processing biases towards centralized salient objects, collectivistic cultures are oriented towards an interdependent self, attending to contextual associations between visual cues. It is unknown how these perceptual biases may affect brain activity in response to negative social cues. Moreover, while some studies have shown that individual differences in self-construal moderate cultural group comparisons, few have examined self-construal differences separate to culture. To investigate these issues, a final sample of a group of healthy participants high in trait levels of collectivistic self-construal (n=16) and individualistic self-construal (n=19), regardless of cultural background, completed a negative social cue evaluation task designed to engage face/object vs context-specific neural processes whilst undergoing fMRI scanning. Between-group analyses revealed that the collectivistic group exclusively engaged the parahippocampal gyrus (parahippocampal place area) - a region critical to contextual integration - during negative face processing - suggesting compensatory activations when contextual information was missing. The collectivist group also displayed enhanced negative context dependent brain activity involving the left superior occipital gyrus/cuneus and right anterior insula. By contrast, the individualistic group did not engage object or localized face processing regions as predicted, but rather demonstrated heightened appraisal and self-referential activations in medial prefrontal and temporoparietal regions to negative contexts - again suggesting compensatory processes when focal cues were absent. While individualists also appeared more sensitive to negative faces in the scenes, activating the right middle cingulate gyrus, dorsal prefrontal and parietal activations, this activity was observed relative to the

  5. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    Science.gov (United States)

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Self-distancing improves interpersonal perceptions and behavior by decreasing medial prefrontal cortex activity during the provision of criticism.

    Science.gov (United States)

    Leitner, Jordan B; Ayduk, Ozlem; Mendoza-Denton, Rodolfo; Magerman, Adam; Amey, Rachel; Kross, Ethan; Forbes, Chad E

    2017-04-01

    Previous research suggests that people show increased self-referential processing when they provide criticism to others, and that this self-referential processing can have negative effects on interpersonal perceptions and behavior. The current research hypothesized that adopting a self-distanced perspective (i.e. thinking about a situation from a non-first person point of view), as compared with a typical self-immersed perspective (i.e. thinking about a situation from a first-person point of view), would reduce self-referential processing during the provision of criticism, and in turn improve interpersonal perceptions and behavior. We tested this hypothesis in an interracial context since research suggests that self-referential processing plays a role in damaging interracial relations. White participants prepared for mentorship from a self-immersed or self-distanced perspective. They then conveyed negative and positive evaluations to a Black mentee while electroencephalogram (EEG) was recorded. Source analysis revealed that priming a self-distanced (vs self-immersed) perspective predicted decreased activity in regions linked to self-referential processing (medial prefrontal cortex; MPFC) when providing negative evaluations. This decreased MPFC activity during negative evaluations, in turn, predicted verbal feedback that was perceived to be more positive, warm and helpful. Results suggest that self-distancing can improve interpersonal perceptions and behavior by decreasing self-referential processing during the provision of criticism. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Electrocortical Reactivity During Self-referential Processing in Female Youth With Borderline Personality Disorder.

    Science.gov (United States)

    Auerbach, Randy P; Tarlow, Naomi; Bondy, Erin; Stewart, Jeremy G; Aguirre, Blaise; Kaplan, Cynthia; Yang, Wenhui; Pizzagalli, Diego A

    2016-07-01

    Borderline personality disorder (BPD) is debilitating, and theoretical models have postulated that cognitive-affective biases contribute to the onset and maintenance of BPD symptoms. Despite advances, our understanding of BPD pathophysiology in youth is limited. The present study used event-related potentials (ERPs) to identify cognitive-affective processes that underlie negative self-referential processing in BPD youth. Healthy females ( n = 33) and females with BPD ( n = 26) 13 to 22 years of age completed a self-referential encoding task while 128-channel electroencephalography data were recorded to examine early (i.e., P1 and P2) and late (late positive potential [LPP]) ERP components. Whole-brain standardized low-resolution electromagnetic tomography explored intracortical sources underlying significant scalp ERP effects. Compared to healthy females, participants with BPD endorsed, recalled, and recognized fewer positive and more negative words. Moreover, unlike the healthy group, females with BPD had faster reaction times to endorse negative versus positive words. In the scalp ERP analyses, the BPD group had greater P2 and late LPP positivity to negative as opposed to positive words. For P2 and late LPP, whole-brain standardized low-resolution electromagnetic tomography analyses suggested that females with BPD overrecruit frontolimbic circuitry in response to negative stimuli. Collectively, these findings show that females with BPD process negative self-relevant information differently than healthy females. Clinical implications and future directions are discussed.

  8. Self-referential forces are sufficient to explain different dendritic morphologies

    Directory of Open Access Journals (Sweden)

    Heraldo eMemelli

    2013-01-01

    Full Text Available Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton-Watson process, while the geometry is determined by "homotypic forces" exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry.

  9. Self-referential forces are sufficient to explain different dendritic morphologies

    Science.gov (United States)

    Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James

    2013-01-01

    Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828

  10. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  11. Toward Self-Referential Autonomous Learning of Object and Situation Models.

    Science.gov (United States)

    Damerow, Florian; Knoblauch, Andreas; Körner, Ursula; Eggert, Julian; Körner, Edgar

    2016-01-01

    Most current approaches to scene understanding lack the capability to adapt object and situation models to behavioral needs not anticipated by the human system designer. Here, we give a detailed description of a system architecture for self-referential autonomous learning which enables the refinement of object and situation models during operation in order to optimize behavior. This includes structural learning of hierarchical models for situations and behaviors that is triggered by a mismatch between expected and actual action outcome. Besides proposing architectural concepts, we also describe a first implementation of our system within a simulated traffic scenario to demonstrate the feasibility of our approach.

  12. Neuroimaging studies of self-reflection

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying

    2004-01-01

    This paper reviews some basic findings and methodological issues in neuroimaging studies of self-referential processing.As a general rule,making judgments about one's self,inclusive of personality trait adjectives or current mental states(person's prefer ences,norms,aesthetic values and feeling)uniformly generates medial prefrontal activations,regardless of stimulus materials(words or pictures)and modality(visual or auditory).Cingulate activations are also observed in association with most self-referential processing.Methodological issues include treating self-referential processing as either representing one's own personality traits or representing one's own current mental states.Finally,self-referential processing could Be considered as implement of "I think therefore I am" approach to neuroimaging the self.

  13. Neural correlates of recognition memory of social information in people with schizophrenia.

    Science.gov (United States)

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-03-01

    Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d'. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation.

  14. Impact of self-esteem and sex on stress reactions.

    Science.gov (United States)

    Kogler, Lydia; Seidel, Eva-Maria; Metzler, Hannah; Thaler, Hanna; Boubela, Roland N; Pruessner, Jens C; Kryspin-Exner, Ilse; Gur, Ruben C; Windischberger, Christian; Moser, Ewald; Habel, Ute; Derntl, Birgit

    2017-12-08

    Positive self-evaluation is a major psychological resource modulating stress coping behavior. Sex differences have been reported in self-esteem as well as stress reactions, but so far their interactions have not been investigated. Therefore, we investigated sex-specific associations of self-esteem and stress reaction on behavioral, hormonal and neural levels. We applied a commonly used fMRI-stress task in 80 healthy participants. Men compared to women showed higher activation during stress in hippocampus, precuneus, superior temporal gyrus (STG) and insula. Furthermore, men outperformed women in the stress task and had higher cortisol and testosterone levels than women after stress. Self-esteem had an impact on precuneus, insula and STG activation during stress across the whole group. During stress, men recruit regions associated with emotion and stress regulation, self-referential processing and cognitive control more strongly than women. Self-esteem affects stress processing, however in a sex-independent fashion: participants with lower self-esteem show higher activation of regions involved in emotion and stress regulation, self-referential processing and cognitive control. Taken together, our data suggest that men are more engaged during the applied stress task. Across women and men, lower self-esteem increases the effort in emotion and stress processing and cognitive control, possibly leading to self-related thoughts in stressful situations.

  15. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  16. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  17. Psychopathic traits linked to alterations in neural activity during personality judgments of self and others.

    Science.gov (United States)

    Deming, Philip; Philippi, Carissa L; Wolf, Richard C; Dargis, Monika; Kiehl, Kent A; Koenigs, Michael

    2018-01-01

    Psychopathic individuals are notorious for their grandiose sense of self-worth and disregard for the welfare of others. One potential psychological mechanism underlying these traits is the relative consideration of "self" versus "others". Here we used task-based functional magnetic resonance imaging (fMRI) to identify neural responses during personality trait judgments about oneself and a familiar other in a sample of adult male incarcerated offenders ( n  = 57). Neural activity was regressed on two clusters of psychopathic traits: Factor 1 (e.g., egocentricity and lack of empathy) and Factor 2 (e.g., impulsivity and irresponsibility). Contrary to our hypotheses, Factor 1 scores were not significantly related to neural activity during self- or other-judgments. However, Factor 2 traits were associated with diminished activation to self-judgments, in relation to other-judgments, in bilateral posterior cingulate cortex and right temporoparietal junction. These findings highlight cortical regions associated with a dimension of social-affective cognition that may underlie psychopathic individuals' impulsive traits.

  18. Referential Choices in a Collaborative Storytelling Task: Discourse Stages and Referential Complexity Matter.

    Science.gov (United States)

    Fossard, Marion; Achim, Amélie M; Rousier-Vercruyssen, Lucie; Gonzalez, Sylvia; Bureau, Alexandre; Champagne-Lavau, Maud

    2018-01-01

    During a narrative discourse, accessibility of the referents is rarely fixed once and for all. Rather, each referent varies in accessibility as the discourse unfolds, depending on the presence and prominence of the other referents. This leads the speaker to use various referential expressions to refer to the main protagonists of the story at different moments in the narrative. This study relies on a new, collaborative storytelling in sequence task designed to assess how speakers adjust their referential choices when they refer to different characters at specific discourse stages corresponding to the introduction, maintaining, or shift of the character in focus, in increasingly complex referential contexts. Referential complexity of the stories was manipulated through variations in the number of characters (1 vs. 2) and, for stories in which there were two characters, in their ambiguity in gender (different vs. same gender). Data were coded for the type of reference markers as well as the type of reference content (i.e., the extent of the information provided in the referential expression). Results showed that, beyond the expected effects of discourse stages on reference markers (more indefinite markers at the introduction stage, more pronouns at the maintaining stage, and more definite markers at the shift stage), the number of characters and their ambiguity in gender also modulated speakers' referential choices at specific discourse stages, For the maintaining stage, an effect of the number of characters was observed for the use of pronouns and of definite markers, with more pronouns when there was a single character, sometimes replaced by definite expressions when two characters were present in the story. For the shift stage, an effect of gender ambiguity was specifically noted for the reference content with more specific information provided in the referential expression when there was referential ambiguity. Reference content is an aspect of referential marking

  19. Referential Choices in a Collaborative Storytelling Task: Discourse Stages and Referential Complexity Matter

    Directory of Open Access Journals (Sweden)

    Marion Fossard

    2018-02-01

    Full Text Available During a narrative discourse, accessibility of the referents is rarely fixed once and for all. Rather, each referent varies in accessibility as the discourse unfolds, depending on the presence and prominence of the other referents. This leads the speaker to use various referential expressions to refer to the main protagonists of the story at different moments in the narrative. This study relies on a new, collaborative storytelling in sequence task designed to assess how speakers adjust their referential choices when they refer to different characters at specific discourse stages corresponding to the introduction, maintaining, or shift of the character in focus, in increasingly complex referential contexts. Referential complexity of the stories was manipulated through variations in the number of characters (1 vs. 2 and, for stories in which there were two characters, in their ambiguity in gender (different vs. same gender. Data were coded for the type of reference markers as well as the type of reference content (i.e., the extent of the information provided in the referential expression. Results showed that, beyond the expected effects of discourse stages on reference markers (more indefinite markers at the introduction stage, more pronouns at the maintaining stage, and more definite markers at the shift stage, the number of characters and their ambiguity in gender also modulated speakers' referential choices at specific discourse stages, For the maintaining stage, an effect of the number of characters was observed for the use of pronouns and of definite markers, with more pronouns when there was a single character, sometimes replaced by definite expressions when two characters were present in the story. For the shift stage, an effect of gender ambiguity was specifically noted for the reference content with more specific information provided in the referential expression when there was referential ambiguity. Reference content is an aspect of

  20. The spiritual brain: selective cortical lesions modulate human self-transcendence.

    Science.gov (United States)

    Urgesi, Cosimo; Aglioti, Salvatore M; Skrap, Miran; Fabbro, Franco

    2010-02-11

    The predisposition of human beings toward spiritual feeling, thinking, and behaviors is measured by a supposedly stable personality trait called self-transcendence. Although a few neuroimaging studies suggest that neural activation of a large fronto-parieto-temporal network may underpin a variety of spiritual experiences, information on the causative link between such a network and spirituality is lacking. Combining pre- and post-neurosurgery personality assessment with advanced brain-lesion mapping techniques, we found that selective damage to left and right inferior posterior parietal regions induced a specific increase of self-transcendence. Therefore, modifications of neural activity in temporoparietal areas may induce unusually fast modulations of a stable personality trait related to transcendental self-referential awareness. These results hint at the active, crucial role of left and right parietal systems in determining self-transcendence and cast new light on the neurobiological bases of altered spiritual and religious attitudes and behaviors in neurological and mental disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  1. The Peace System - As a self-referential communication system

    Directory of Open Access Journals (Sweden)

    Gorm Harste

    2013-11-01

    Full Text Available Peace communication as diplomatic communication is an often neglected phenomenon in social and political theory that concerns problems of international order, justice and peace. Political philosophy seldom embarks on the theme with more than a few comments. Yet, throughout history, diplomacy has a strong record not only for negotiations but also for social learning processes about communication codes. Many codes of respect, trust, expression and listening have a top-down history from aristocratic circles to broader social layers. However, the article argues that communication codes of peace developed in opposition to violence and war exactly when they transgress dividing lines allowing for cross-cultural and even cross-stratified communication. The article’s main point is to describe how such communication codes about peace and diplomacy can be described in recent social theory of communication, and to get some added value in this respect, Niklas Luhmann’s theory of self-referential communication systems has been applied.

  2. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    OpenAIRE

    Horan, William P.; Iacoboni, Marco; Cross, Katy A.; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K.; Green, Michael F.

    2014-01-01

    Introduction: Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. Methods: 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, o...

  3. A preliminary study of the neural correlates of the intensities of self-reported gambling urges and emotions in men with pathological gambling.

    Science.gov (United States)

    Balodis, Iris M; Lacadie, Cheryl M; Potenza, Marc N

    2012-09-01

    Although self-reported gambling urge intensities have clinical utility in the treatment of pathological gambling (PG), prior studies have not investigated their neural correlates. Functional magnetic resonance imaging (fMRI) was conducted while 10 men with PG and 11 control comparison (CON) men viewed videotaped scenarios of gambling, happy or sad content. Participants rated the intensity of their emotions and motivations and reported the qualities of their responses. Relative to the CON group, the PG group reported similar responses to sad and happy scenarios, but stronger emotional responses and gambling urges when viewing the gambling scenarios. Correlations between self-reported responses and brain activations were typically strongest during the period of reported onset of emotional/motivational response and more robust in PG than in CON subjects for all conditions. During this epoch, corresponding with conscious awareness of an emotional/motivational response, subjective ratings of gambling urges in the PG group were negatively correlated with medial prefrontal cortex activation and positively correlated with middle temporal gyrus and temporal pole activations. Sadness ratings in the PG group correlated positively with activation of the medial orbitofrontal cortex, middle temporal gyrus, and retrosplenial cortex, while self-reported happiness during the happy videos demonstrated largely inverse correlations with activations in the temporal poles. Brain areas identified in the PG subjects have been implicated in explicit, self-referential processing and episodic memory. The findings demonstrate different patterns of correlations between subjective measures of emotions and motivations in PG and CON subjects when viewing material of corresponding content, suggesting in PG alterations in the neural correlates underlying experiential aspects of affective processing.

  4. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  5. Neural basis of individualistic and collectivistic views of self.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2009-09-01

    Individualism and collectivism refer to cultural values that influence how people construe themselves and their relation to the world. Individualists perceive themselves as stable entities, autonomous from other people and their environment, while collectivists view themselves as dynamic entities, continually defined by their social context and relationships. Despite rich understanding of how individualism and collectivism influence social cognition at a behavioral level, little is known about how these cultural values modulate neural representations underlying social cognition. Using cross-cultural functional magnetic resonance imaging (fMRI), we examined whether the cultural values of individualism and collectivism modulate neural activity within medial prefrontal cortex (MPFC) during processing of general and contextual self judgments. Here, we show that neural activity within the anterior rostral portion of the MPFC during processing of general and contextual self judgments positively predicts how individualistic or collectivistic a person is across cultures. These results reveal two kinds of neural representations of self (eg, a general self and a contextual self) within MPFC and demonstrate how cultural values of individualism and collectivism shape these neural representations. 2008 Wiley-Liss, Inc.

  6. Religious beliefs influence neural substrates of self-reflection in Tibetans.

    Science.gov (United States)

    Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li

    2010-06-01

    Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.

  7. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An initial fMRI study on neural correlates of prayer in members of Alcoholics Anonymous.

    Science.gov (United States)

    Galanter, Marc; Josipovic, Zoran; Dermatis, Helen; Weber, Jochen; Millard, Mary Alice

    2017-01-01

    Many individuals with alcohol-use disorders who had experienced alcohol craving before joining Alcoholics Anonymous (AA) report little or no craving after becoming long-term members. Their use of AA prayers may contribute to this. Neural mechanisms underlying this process have not been delineated. To define experiential and neural correlates of diminished alcohol craving following AA prayers among members with long-term abstinence. Twenty AA members with long-term abstinence participated. Self-report measures and functional magnetic resonance imaging of differential neural response to alcohol-craving-inducing images were obtained in three conditions: after reading of AA prayers, after reading irrelevant news, and with passive viewing. Random-effects robust regressions were computed for the main effect (prayer > passive + news) and for estimating the correlations between the main effect and the self-report measures. Compared to the other two conditions, the prayer condition was characterized by: less self-reported craving; increased activation in left-anterior middle frontal gyrus, left superior parietal lobule, bilateral precuneus, and bilateral posterior middle temporal gyrus. Craving following prayer was inversely correlated with activation in brain areas associated with self-referential processing and the default mode network, and with characteristics reflecting AA program involvement. AA members' prayer was associated with a relative reduction in self-reported craving and with concomitant engagement of neural mechanisms that reflect control of attention and emotion. These findings suggest neural processes underlying the apparent effectiveness of AA prayer.

  9. Episodic memory and self-reference via semantic autobiographical memory: Insights from an fMRI study in younger and older adults

    Directory of Open Access Journals (Sweden)

    Sandrine eKalenzaga

    2015-01-01

    Full Text Available Self-referential processing relies mainly on the medial prefrontal cortex (MPFC and enhances memory encoding (i.e., Self-Reference Effect, SRE as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness and the objective (i.e., source memory qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task and a non self-related (general semantic memory task encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age and visual areas (mediated by age. Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging.

  10. Episodic memory and self-reference via semantic autobiographical memory: insights from an fMRI study in younger and older adults.

    Science.gov (United States)

    Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale

    2014-01-01

    Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging.

  11. Using Self-Referential Pronouns in Writing: The Effect of Explicit Instruction on L2 Writers at Two Levels of Proficiency

    Science.gov (United States)

    Abbuhl, Rebekha

    2012-01-01

    Skilled writers have at their disposal a range of rhetorical strategies for positioning themselves as competent members of a particular discourse community, including the judicious use of self-referential pronouns (e.g. "I," "she," "he") to overtly signal authorial presence. However, while researchers routinely recommend that second language (L2)…

  12. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Referential Zero Point

    Directory of Open Access Journals (Sweden)

    Matjaž Potrč

    2016-04-01

    Full Text Available Perhaps the most important controversy in which ordinary language philosophy was involved is that of definite descriptions, presenting referential act as a community-involving communication-intention endeavor, thereby opposing the direct acquaintance-based and logical proper names inspired reference aimed at securing truth conditions of referential expression. The problem of reference is that of obtaining access to the matters in the world. This access may be forthcoming through the senses, or through descriptions. A review of how the problem of reference is handled shows though that one main practice is to indulge in relations of acquaintance supporting logical proper names, demonstratives, indexicals and causal or historical chains. This testifies that the problem of reference involves the zero point, and with it phenomenology of intentionality. Communication-intention is but one dimension of rich phenomenology that constitutes an agent’s experiential space, his experiential world. Zero point is another constitutive aspect of phenomenology involved in the referential relation. Realizing that the problem of reference is phenomenology based opens a new perspective upon the contribution of analytical philosophy in this area, reconciling it with continental approach, and demonstrating variations of the impossibility related to the real. Chromatic illumination from the cognitive background empowers the referential act, in the best tradition of ordinary language philosophy.

  14. Cognitive Defusion versus Thought Distraction: A Clinical Rationale, Training, and Experiential Exercise in Altering Psychological Impacts of Negative Self-Referential Thoughts

    Science.gov (United States)

    Masuda, Akihiko; Feinstein, Amanda B.; Wendell, Johanna W.; Sheehan, Shawn T.

    2010-01-01

    Using two modes of intervention delivery, the present study compared the effects of a cognitive defusion strategy with a thought distraction strategy on the emotional discomfort and believability of negative self-referential thoughts. One mode of intervention delivery consisted of a clinical rationale and training (i.e., Partial condition). The…

  15. Negative Emotion Weakens the Degree of Self-reference Effect: Evidence from ERPs

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-09-01

    Full Text Available We investigated the influence of negative emotion on the degree of self-reference effect using event-related potentials (ERPs. We presented emotional pictures and self-referential stimuli (stimuli that accelerate and improve processing and improve memory of information related to an individual’s self-concept in sequence. Participants judged the color of the target stimulus (self-referential stimuli. ERP results showed that the target stimuli elicited larger P2 amplitudes under neutral conditions than under negative emotional conditions. Under neutral conditions, N2 amplitudes for highly self-relevant names (target stimulus were smaller than those for any other names. Under negative emotional conditions, highly and moderately self-referential stimuli activated smaller N2 amplitudes. P3 amplitudes activated by self-referential processing under negative emotional conditions were smaller than neutral conditions. In the left and central sites, highly self-relevant names activated larger P3 amplitudes than any other names. But in the central sites, moderately self-relevant names activated larger P3 amplitudes than non-self-relevant names. The findings indicate that negative emotional processing could weaken the degree of self-reference effect.

  16. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Self-reflection and the psychosis-prone brain: an fMRI study.

    Science.gov (United States)

    Modinos, Gemma; Renken, Remco; Ormel, Johan; Aleman, André

    2011-05-01

    The Cortical Midline Structures (CMS) play a critical role in self-reflection, together with the insula. Abnormalities in self-referential processing and its neural underpinnings have been reported in schizophrenia and at-risk populations, suggesting they might be markers of psychotic vulnerability. Psychometric measures of schizotypal traits may be used to index psychosis proneness (PP) in nonclinical samples. It remains an unresolved question whether differences in self-reflective processing are associated with PP. Six hundred students completed the Community Assessment of Psychic Experiences Questionnaire, positive subscale. Two groups were formed from the extremes of the distribution (total N = 36). fMRI was used to examine CMS/insula function during a self-reflection task. Participants judged personality trait sentences about self and about an acquaintance. High PP subjects attributed less positive traits to others (i.e., acquaintances) than subjects with low PP. Across groups, the contrasts self > semantic and self > other induced activation in CMS and insula, whereas other > semantic did not produce insula activation. Other > self induced posterior cingulate cortex activation in low PP but not in high PP. In addition, high PP subjects showed stronger activation than low PP in left insula during self > semantic. Examining valence effects revealed that high PP individuals showed increased activation in left insula, right dMPFC, and left vMPFC for positive self-related traits, and in bilateral insula, ACC, and right dMPFC for negative self-related traits. The findings suggest that aspects of self-referential processing and underlying brain mechanisms are similar in clinical and subclinical (high PP) forms of psychosis, suggesting that these may be associated with vulnerability to psychosis.

  18. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    Science.gov (United States)

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  19. Self-organized critical neural networks

    International Nuclear Information System (INIS)

    Bornholdt, Stefan; Roehl, Torsten

    2003-01-01

    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters

  20. A Referential Communication Demonstration versus a Lecture-Only Control: Learning Benefits

    Science.gov (United States)

    Balch, William R.

    2014-01-01

    To evaluate a demonstration involving active and cooperative learning, 40 students in a cognitive psychology course and 132 students in an introductory psychology course completed a brief multiple-choice pretest on referential communication. Two days later, randomly assigned students either participated in a classroom referential communication…

  1. Equivalent neural responses in children and adolescents with and without autism during judgments of affect

    Directory of Open Access Journals (Sweden)

    Brent C. Vander Wyk

    2014-04-01

    Full Text Available Previous research has noted disrupted patterns of neural activation during emotion, processing in individuals with autism spectrum disorders (ASD. However, prior research relied on, designs that may place greater cognitive load on individuals with ASD. In order to address this issue, we adapted the fMRI task of Ochsner et al. (2004a for children by, presenting fewer stimuli, with fewer valence levels, and longer stimuli duration. A localizer sample of, typically developing children (n = 26 was used to construct regions of interest involved in emotional, processing. Activations in these regions during self- and other-referential emotion processing was, compared in age, IQ, gender matched groups (n = 17 ASD, n = 16 TD. Matched samples replicate, condition contrasts of the localizer, but no group differences were found in behavior measures or, neural activation. An exploratory functional connectivity analysis in a subset of the matched groups, also did not detect striking differences between the groups. These findings suggest that disruptions in activation in emotion processing neural networks in ASD is partially a function of task related cognitive load.

  2. Art reaches within: aesthetic experience, the self and the default mode network

    Directory of Open Access Journals (Sweden)

    Edward A Vessel

    2013-12-01

    Full Text Available In a task of rating images of artworks in an fMRI scanner, regions in the medial prefrontal cortex that are known to be part of the default mode network (DMN were positively activated on the highest-rated trials. This is surprising given the DMN's original characterization as the set of brain regions that show greater fMRI activity during rest periods than during performance of tasks requiring focus on external stimuli. But further research showed that DMN regions could be positively activated also in structured tasks, if those tasks involved self-referential thought or self-relevant information. How may our findings be understood in this context? Although our task had no explicit self-referential aspect and the stimuli had no a priori self-relevance to the observers, the experimental design we employed emphasized the personal aspects of aesthetic experience. Observers were told that we were interested in their individual tastes, and asked to base their ratings on how much each artwork "moved" them. Moreover, we used little-known artworks that covered a wide range of styles, which led to high individual variability: each artwork was rated highly by some observers and poorly by others. This means that rating-specific neural responses cannot be attributed to the features of any particular artworks, but rather to the aesthetic experience itself. The DMN activity therefore suggests that certain artworks, albeit unfamiliar, may be so well-matched to an individual’s unique makeup that they obtain access to the neural substrates concerned with the self – access which other external stimuli normally do not get. This mediates a sense of being moved, or touched from within. This account is consistent with the modern notion that individuals’ taste in art is linked with their sense of identity, and suggests that DMN activity may serve to signal self-relevance in a broader sense than has been thought so far.

  3. Vocal learning in the functionally referential food grunts of chimpanzees.

    Science.gov (United States)

    Watson, Stuart K; Townsend, Simon W; Schel, Anne M; Wilke, Claudia; Wallace, Emma K; Cheng, Leveda; West, Victoria; Slocombe, Katie E

    2015-02-16

    One standout feature of human language is our ability to reference external objects and events with socially learned symbols, or words. Exploring the phylogenetic origins of this capacity is therefore key to a comprehensive understanding of the evolution of language. While non-human primates can produce vocalizations that refer to external objects in the environment, it is generally accepted that their acoustic structure is fixed and a product of arousal states. Indeed, it has been argued that the apparent lack of flexible control over the structure of referential vocalizations represents a key discontinuity with language. Here, we demonstrate vocal learning in the acoustic structure of referential food grunts in captive chimpanzees. We found that, following the integration of two groups of adult chimpanzees, the acoustic structure of referential food grunts produced for a specific food converged over 3 years. Acoustic convergence arose independently of preference for the food, and social network analyses indicated this only occurred after strong affiliative relationships were established between the original subgroups. We argue that these data represent the first evidence of non-human animals actively modifying and socially learning the structure of a meaningful referential vocalization from conspecifics. Our findings indicate that primate referential call structure is not simply determined by arousal and that the socially learned nature of referential words in humans likely has ancient evolutionary origins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Issues in the formal semantics of referentiality

    Directory of Open Access Journals (Sweden)

    Roberta Pires de Oliveira

    2015-06-01

    Full Text Available On October 21st, and 22nd, 2013, during the Conference “On Referentiality”, which took place in Curitiba, Paraná, Brazil, the papers that compose this issue were first discussed. The conference is one of the activities of the Cooperation Project CAPES-NUFFIC, between universities in Brazil and the Netherlands, entitled 'The Effects of Modification on Referentiality '(CAPES process number 040/12. The aim of this project is to investigate the effects of modification in the licensing and blocking of nominal phrases. The project’s main hypothesis is that “modification” introduces a feature of referentiality, precisely the notion the conference aimed at clarifying.

  5. Behavioral and neural reactions to emotions of others in the distribution of resources.

    Science.gov (United States)

    Lelieveld, Gert-Jan; Van Dijk, Eric; Güroğlu, Berna; Van Beest, Ilja; Van Kleef, Gerben A; Rombouts, Serge A R B; Crone, Eveline A

    2013-01-01

    This study investigated the neural mechanisms involved in the interpersonal effects of emotions--i.e., how people are influenced by other people's emotions. Participants were allocators in a version of the dictator game and made a choice between two offers after receiving written emotional expressions of the recipients. The results showed that participants more often made a self-serving offer when dealing with an angry recipient than when dealing with a happy or disappointed recipient. Compared to disappointment, expressions of anger increased activation in regions associated with self-referential thinking (anterior medial prefrontal cortex, aMPFC) and (emotional) conflict (anterior cingulate cortex). We found increased activation in temporoparietal junction for receiving happy reactions in comparison with receiving angry or disappointed reactions. This study thus emphasizes that distinct emotions have distinct effects on people in terms of behavior and underlying neurological mechanisms.

  6. The Investigation of Youth Religiosity, with the Emphasis on Self Referential Religiosity (Using Grounded Theory

    Directory of Open Access Journals (Sweden)

    Arash Hassan pour

    2015-12-01

    Full Text Available Religiosity has been pluralized and diversified at present era. This study, accepted this presupposition that religiosity as a varied, diverse and instable issue is out of duality of being religiousness or not. By accepting this presupposition we study and interpret one type of religiosity among youth in Isfahan. To achieve the given purpose, by review the previous studies, in interpretive approach, qualitative method framework, Grounded Theory tradition, interview and Simmel theory about religiosity, data is collected. Based on the findings of the study, and with criteria of “self-recognition” we discovered and identified Self referential religiosity. Also, the results of the qualitative data reveal that religiosity of Youth change to: individual, non-compulsory, private, dispositional, and selective, based on self- Intellection, non-accepting heteronomy of religious institution and tend to contingency, hedonistic Phenomena. Finally In this study we also tried to offer, describe and illustrate paradigmatic model of qualitative data in frame of casual, contextual, consequential circumstances about advent and influence this type of religiosity.

  7. Race modulates neural activity during imitation

    Science.gov (United States)

    Losin, Elizabeth A. Reynolds; Iacoboni, Marco; Martin, Alia; Cross, Katy A.; Dapretto, Mirella

    2014-01-01

    Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study. PMID:22062193

  8. Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations

    Science.gov (United States)

    Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong

    2010-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information

  9. The self-pleasantness judgment modulates the encoding performance and the Default Mode Network activity

    Directory of Open Access Journals (Sweden)

    Perrone-Bertolotti eMarcela

    2016-03-01

    Full Text Available In this functional magnetic resonance imaging (fMRI study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal thoughts and increase default mode network (DMN activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention. To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding recruits two key medial posterior DMN regions, the posterior cingulate cortex and precuneus. A region of interest analysis including classic DMN areas, revealed significantly greater involvement of the medial Prefrontal Cortex in pleasant compared to unpleasant judgments, suggesting this region’s involvement in self-referential (i.e., internal processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful and pleasantness was observed for the posterior cingulate cortex, precuneus and inferior frontal gyrus. Overall, our

  10. Dynamic cultural influences on neural representations of the self.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2010-01-01

    People living in multicultural environments often encounter situations which require them to acquire different cultural schemas and to switch between these cultural schemas depending on their immediate sociocultural context. Prior behavioral studies show that priming cultural schemas reliably impacts mental processes and behavior underlying self-concept. However, less well understood is whether or not cultural priming affects neurobiological mechanisms underlying the self. Here we examined whether priming cultural values of individualism and collectivism in bicultural individuals affects neural activity in cortical midline structures underlying self-relevant processes using functional magnetic resonance imaging. Biculturals primed with individualistic values showed increased activation within medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) during general relative to contextual self-judgments, whereas biculturals primed with collectivistic values showed increased response within MPFC and PCC during contextual relative to general self-judgments. Moreover, degree of cultural priming was positively correlated with degree of MPFC and PCC activity during culturally congruent self-judgments. These findings illustrate the dynamic influence of culture on neural representations underlying the self and, more broadly, suggest a neurobiological basis by which people acculturate to novel environments.

  11. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    Science.gov (United States)

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Neural substrates of interpreting actions and emotions from body postures.

    Science.gov (United States)

    Kana, Rajesh K; Travers, Brittany G

    2012-04-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual representation of the body, motion processing and emotion recognition. Behaviorally, participants demonstrated greater ease in judging the physical actions of the characters compared to judging their emotional states, and participants showed more activation in areas associated with emotion processing in the emotion detection task, whereas they showed more activation in visual, spatial and action-related areas in the physical action task. Gender differences emerged in brain responses, such that men showed greater activation than women in the left dorsal premotor cortex in both tasks. Finally, participants higher in self-reported empathy demonstrated greater activation in areas associated with self-referential processing and emotion interpretation. These results suggest that empathy levels and sex of the participant may affect neural responses to emotional body language.

  13. Neural basis of self and other representation in autism: an FMRI study of self-face recognition.

    Directory of Open Access Journals (Sweden)

    Lucina Q Uddin

    Full Text Available Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD. Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others.

  14. Model for a flexible motor memory based on a self-active recurrent neural network.

    Science.gov (United States)

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Identifying Emotions on the Basis of Neural Activation.

    Science.gov (United States)

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  16. Implicit Referential Meaning with Reference to English Arabic Translation

    Science.gov (United States)

    Al-Zughoul, Basem

    2014-01-01

    The purpose of this study is to investigate how English implicit referential meaning is translated into Arabic by analyzing sentences containing implicit referential meanings found in the novel "Harry Potter and the Prisoner of Azkaban". The analysis shows that the translation of English implicit referential meaning into Arabic can be…

  17. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  18. Neural correlates of the processing of self-referent emotional information in bulimia nervosa.

    Science.gov (United States)

    Pringle, A; Ashworth, F; Harmer, C J; Norbury, R; Cooper, M J

    2011-10-01

    There is increasing interest in understanding the roles of distorted beliefs about the self, ostensibly unrelated to eating, weight and shape, in eating disorders (EDs), but little is known about their neural correlates. We therefore used functional magnetic resonance imaging to investigate the neural correlates of self-referent emotional processing in EDs. During the scan, unmedicated patients with bulimia nervosa (n=11) and healthy controls (n=16) responded to personality words previously found to be related to negative self beliefs in EDs and depression. Rating of the negative personality descriptors resulted in reduced activation in patients compared to controls in parietal, occipital and limbic areas including the amygdala. There was no evidence that reduced activity in patients was secondary to increased cognitive control. Different patterns of neural activation between patients and controls may be the result of either habituation to personally relevant negative self beliefs or of emotional blunting in patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Neural correlates of self-perceptions in adolescents with major depressive disorder.

    Science.gov (United States)

    Bradley, Kailyn A L; Colcombe, Stan; Henderson, Sarah E; Alonso, Carmen M; Milham, Michael P; Gabbay, Vilma

    2016-06-01

    Alteration in self-perception is a salient feature in major depression. Hyperactivity of anterior cortical midline regions has been implicated in this phenomenon in depressed adults. Here, we extend this work to depressed adolescents during a developmental time when neuronal circuitry underlying the sense of self matures by using task-based functional magnetic resonance imaging (fMRI) and connectivity analyses. Twenty-three depressed adolescents and 18 healthy controls (HC) viewed positive and negative trait words in a scanner and judged whether each word described them ('self' condition) or was a good trait to have ('general' condition). Self-perception scores were based on participants' endorsements of positive and negative traits during the fMRI task. Depressed adolescents exhibited more negative self-perceptions than HC. Both groups activated cortical midline regions in response to self-judgments compared to general-judgments. However, depressed adolescents recruited the posterior cingulate cortex/precuneus more for positive self-judgments. Additionally, local connectivity of the dorsal medial prefrontal cortex was reduced during self-reflection in depressed adolescents. Our findings highlight differences in self-referential processing network function between depressed and healthy adolescents and support the need for further investigation of brain mechanisms associated with the self, as they may be paramount to understanding the etiology and development of major depressive disorder. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Self-Referential Thinking, Suicide, and Function of the Cortical Midline Structures and Striatum in Mood Disorders: Possible Implications for Treatment Studies of Mindfulness-Based Interventions for Bipolar Depression

    Directory of Open Access Journals (Sweden)

    William R. Marchand

    2012-01-01

    Full Text Available Bipolar depression is often refractory to treatment and is frequently associated with anxiety symptoms and elevated suicide risk. There is a great need for adjunctive psychotherapeutic interventions. Treatments with effectiveness for depressive and anxiety symptoms as well as suicide-related thoughts and behaviors would be particularly beneficial. Mindfulness-based interventions hold promise, and studies of these approaches for bipolar disorder are warranted. The aim of this paper is to provide a conceptual background for such studies by reviewing key findings from diverse lines of investigation. Results of that review indicate that cortical midline structures (CMS appear to link abnormal self-referential thinking to emotional dysregulation in mood disorders. Furthermore, CMS and striatal dysfunction may play a role in the neuropathology underlying suicide-related thoughts and behaviors. Thus, combining studies of mindfulness interventions targeting abnormal self-referential thinking with functional imaging of CMS and striatal function may help delineate the neurobiological mechanisms of action of these treatments.

  1. Neural correlates of self-perceptions in adolescents with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Kailyn A.L. Bradley

    2016-06-01

    Full Text Available Alteration in self-perception is a salient feature in major depression. Hyperactivity of anterior cortical midline regions has been implicated in this phenomenon in depressed adults. Here, we extend this work to depressed adolescents during a developmental time when neuronal circuitry underlying the sense of self matures by using task-based functional magnetic resonance imaging (fMRI and connectivity analyses. Twenty-three depressed adolescents and 18 healthy controls (HC viewed positive and negative trait words in a scanner and judged whether each word described them (‘self’ condition or was a good trait to have (‘general’ condition. Self-perception scores were based on participants’ endorsements of positive and negative traits during the fMRI task. Depressed adolescents exhibited more negative self-perceptions than HC. Both groups activated cortical midline regions in response to self-judgments compared to general-judgments. However, depressed adolescents recruited the posterior cingulate cortex/precuneus more for positive self-judgments. Additionally, local connectivity of the dorsal medial prefrontal cortex was reduced during self-reflection in depressed adolescents. Our findings highlight differences in self-referential processing network function between depressed and healthy adolescents and support the need for further investigation of brain mechanisms associated with the self, as they may be paramount to understanding the etiology and development of major depressive disorder.

  2. Brain activation patterns during memory of cognitive agency.

    Science.gov (United States)

    Vinogradov, Sophia; Luks, Tracy L; Simpson, Gregory V; Schulman, Brian J; Glenn, Shenly; Wong, Amy E

    2006-06-01

    Agency is the awareness that one's own self is the agent or author of an action, a thought, or a feeling. The implicit memory that one's self was the originator of a cognitive event - the sense of cognitive agency - has not yet been fully explored in terms of relevant neural systems. In this functional magnetic resonance imaging (fMRI) study, we examined brain activation patterns differentiating memory for the source of previously self-generated vs. experimenter-presented word items from a sentence completion paradigm designed to be emotionally neutral and semantically constrained in content. Accurate memory for the source of self-generated vs. externally-presented word items resulted in activation of dorsal medial prefrontal cortex (mPFC) bilaterally, supporting an emerging body of work that indicates a key role for this region in self-referential processing. Our data extend the function of mPFC into the domain of memory and the accurate retrieval of the sense of cognitive agency under conditions where agency was encoded implicitly.

  3. Collective Referential Intentionality in the Semantics of Dialogue

    Directory of Open Access Journals (Sweden)

    Jacquette Dale

    2014-03-01

    Full Text Available The concept of a dialogue is considered in general terms from the standpoint of its referential presuppositions. The semantics of dialogue implies that dialogue participants must generally have a collective intentionality of agreed-upon references that is minimally sufficient for them to be able to disagree about other things, and ideally for outstanding disagreements to become clearer at successive stages of the dialogue. These points are detailed and illustrated in a fictional dialogue, in which precisely these kinds of referential confusions impede progress in shared understanding. It is only through a continuous exchange of question and answer in this dialogue case study that the meanings of key terms and anaphorical references are disambiguated, and a relevantly complete collective intentionality of shared meaning between dialogue participants is achieved. The importance of a minimally shared referential semantics for the terms entering into reasoning and argument in dialogue contexts broadly construed cannot be over-estimated. Where to draw the line between referential agreement and disagreement within any chosen dialogue, as participants work toward better mutual understanding in clearing up referential incongruities, is sometimes among the dialogue’s main points of dispute.

  4. Neural processing of race during imitation: self-similarity versus social status

    Science.gov (United States)

    Reynolds Losin, Elizabeth A.; Cross, Katy A.; Iacoboni, Marco; Dapretto, Mirella

    2017-01-01

    People preferentially imitate others who are similar to them or have high social status. Such imitative biases are thought to have evolved because they increase the efficiency of cultural acquisition. Here we focused on distinguishing between self-similarity and social status as two candidate mechanisms underlying neural responses to a person’s race during imitation. We used fMRI to measure neural responses when 20 African American (AA) and 20 European American (EA) young adults imitated AA, EA and Chinese American (CA) models and also passively observed their gestures and faces. We found that both AA and EA participants exhibited more activity in lateral fronto-parietal and visual regions when imitating AAs compared to EAs or CAs. These results suggest that racial self-similarity is not likely to modulate neural responses to race during imitation, in contrast with findings from previous neuroimaging studies of face perception and action observation. Furthermore, AA and EA participants associated AAs with lower social status than EAs or CAs, suggesting that the social status associated with different racial groups may instead modulate neural activity during imitation of individuals from those groups. Taken together, these findings suggest that neural responses to race during imitation are driven by socially-learned associations rather than self-similarity. This may reflect the adaptive role of imitation in social learning, where learning from higher-status models can be more beneficial. This study provides neural evidence consistent with evolutionary theories of cultural acquisition. PMID:23813738

  5. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    Science.gov (United States)

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  6. Linguistic measures of the referential process in psychodynamic treatment: the English and Italian versions.

    Science.gov (United States)

    Mariani, Rachele; Maskit, Bernard; Bucci, Wilma; De Coro, Alessandra

    2013-01-01

    The referential process is defined in the context of Bucci's multiple code theory as the process by which nonverbal experience is connected to language. The English computerized measures of the referential process, which have been applied in psychotherapy research, include the Weighted Referential Activity Dictionary (WRAD), and measures of Reflection, Affect and Disfluency. This paper presents the development of the Italian version of the IWRAD by modeling Italian texts scored by judges, and shows the application of the IWRAD and other Italian measures in three psychodynamic treatments evaluated for personality change using the Shedler-Westen Assessment Procedure (SWAP-200). Clinical predictions based on applications of the English measures were supported.

  7. Multimodal frontostriatal connectivity underlies individual differences in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2015-03-01

    A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. The neural subjective frame: from bodily signals to perceptual consciousness.

    Science.gov (United States)

    Park, Hyeong-Dong; Tallon-Baudry, Catherine

    2014-05-05

    The report 'I saw the stimulus' operationally defines visual consciousness, but where does the 'I' come from? To account for the subjective dimension of perceptual experience, we introduce the concept of the neural subjective frame. The neural subjective frame would be based on the constantly updated neural maps of the internal state of the body and constitute a neural referential from which first person experience can be created. We propose to root the neural subjective frame in the neural representation of visceral information which is transmitted through multiple anatomical pathways to a number of target sites, including posterior insula, ventral anterior cingulate cortex, amygdala and somatosensory cortex. We review existing experimental evidence showing that the processing of external stimuli can interact with visceral function. The neural subjective frame is a low-level building block of subjective experience which is not explicitly experienced by itself which is necessary but not sufficient for perceptual experience. It could also underlie other types of subjective experiences such as self-consciousness and emotional feelings. Because the neural subjective frame is tightly linked to homeostatic regulations involved in vigilance, it could also make a link between state and content consciousness.

  9. Neural correlates of anticipation and processing of performance feedback in social anxiety.

    Science.gov (United States)

    Heitmann, Carina Y; Peterburs, Jutta; Mothes-Lasch, Martin; Hallfarth, Marlit C; Böhme, Stephanie; Miltner, Wolfgang H R; Straube, Thomas

    2014-12-01

    Fear of negative evaluation, such as negative social performance feedback, is the core symptom of social anxiety. The present study investigated the neural correlates of anticipation and perception of social performance feedback in social anxiety. High (HSA) and low (LSA) socially anxious individuals were asked to give a speech on a personally relevant topic and received standardized but appropriate expert performance feedback in a succeeding experimental session in which neural activity was measured during anticipation and presentation of negative and positive performance feedback concerning the speech performance, or a neutral feedback-unrelated control condition. HSA compared to LSA subjects reported greater anxiety during anticipation of negative feedback. Functional magnetic resonance imaging results showed deactivation of medial prefrontal brain areas during anticipation of negative feedback relative to the control and the positive condition, and medial prefrontal and insular hyperactivation during presentation of negative as well as positive feedback in HSA compared to LSA subjects. The results indicate distinct processes underlying feedback processing during anticipation and presentation of feedback in HSA as compared to LSA individuals. In line with the role of the medial prefrontal cortex in self-referential information processing and the insula in interoception, social anxiety seems to be associated with lower self-monitoring during feedback anticipation, and an increased self-focus and interoception during feedback presentation, regardless of feedback valence. © 2014 Wiley Periodicals, Inc.

  10. Neural Response After a Single ECT Session During Retrieval of Emotional Self-Referent Words in Depression

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Macoveanu, Julian; Jørgensen, Martin B

    2018-01-01

    of their electroconvulsive therapy course in a double-blind, between-groups design. The following day, patients were given a self-referential emotional word categorization test and a free recall test. This was followed by an incidental word recognition task during whole-brain functional magnetic resonance imaging at 3T...... response may reflect early facilitation of memory for positive self-referent information, which could contribute to improvements in depressive symptoms including feelings of self-worth with repeated treatments....

  11. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation

    Directory of Open Access Journals (Sweden)

    Antonela Bonafina

    2018-03-01

    Full Text Available Summary: The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2, promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. : In this article, Ledda and colleagues show that GDNF acting through its receptor GFRα1 plays a critical role in the maturation of cortical progenitors by counteracting FGF2 self-renewal activity on neural stem cells and promoting neuronal differentiation. Keywords: GDNF, GFRα1, cortical precursors, proliferation, postmitotic neurons, neuronal differentiation

  12. Neural basis of moral elevation demonstrated through inter-subject synchronization of cortical activity during free-viewing.

    Directory of Open Access Journals (Sweden)

    Zoë A Englander

    Full Text Available Most research investigating the neural basis of social emotions has examined emotions that give rise to negative evaluations of others (e.g. anger, disgust. Emotions triggered by the virtues and excellences of others have been largely ignored. Using fMRI, we investigated the neural basis of two "other-praising" emotions--Moral Elevation (a response to witnessing acts of moral beauty, and Admiration (which we restricted to admiration for physical skill.Ten participants viewed the same nine video clips. Three clips elicited moral elevation, three elicited admiration, and three were emotionally neutral. We then performed pair-wise voxel-by-voxel correlations of the BOLD signal between individuals for each video clip and a separate resting-state run. We observed a high degree of inter-subject synchronization, regardless of stimulus type, across several brain regions during free-viewing of videos. Videos in the elevation condition evoked significant inter-subject synchronization in brain regions previously implicated in self-referential and interoceptive processes, including the medial prefrontal cortex, precuneus, and insula. The degree of synchronization was highly variable over the course of the videos, with the strongest synchrony occurring during portions of the videos that were independently rated as most emotionally arousing. Synchrony in these same brain regions was not consistently observed during the admiration videos, and was absent for the neutral videos.Results suggest that the neural systems supporting moral elevation are remarkably consistent across subjects viewing the same emotional content. We demonstrate that model-free techniques such as inter-subject synchronization may be a useful tool for studying complex, context dependent emotions such as self-transcendent emotion.

  13. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    DEFF Research Database (Denmark)

    Allen, Micah Galen

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through...... prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending...

  14. Neural differences in self-perception during illness and after weight-recovery in anorexia nervosa.

    Science.gov (United States)

    McAdams, Carrie J; Jeon-Slaughter, Haekyung; Evans, Siobahn; Lohrenz, Terry; Montague, P Read; Krawczyk, Daniel C

    2016-11-01

    Anorexia nervosa (AN) is a severe mental illness characterized by problems with self-perception. Whole-brain neural activations in healthy women, women with AN and women in long-term weight recovery following AN were compared using two functional magnetic resonance imaging tasks probing different aspects of self-perception. The Social Identity-V2 task involved consideration about oneself and others using socially descriptive adjectives. Both the ill and weight-recovered women with AN engaged medial prefrontal cortex less than healthy women for self-relevant cognitions, a potential biological trait difference. Weight-recovered women also activated the inferior frontal gyri and dorsal anterior cingulate more for direct self-evaluations than for reflected self-evaluations, unlike both other groups, suggesting that recovery may include compensatory neural changes related to social perspectives. The Faces task compared viewing oneself to a stranger. Participants with AN showed elevated activity in the bilateral fusiform gyri for self-images, unlike the weight-recovered and healthy women, suggesting cognitive distortions about physical appearance are a state rather than trait problem in this disease. Because both ill and recovered women showed neural differences related to social self-perception, but only recovered women differed when considering social perspectives, these neurocognitive targets may be particularly important for treatment. © The Author (2016). Published by Oxford University Press.

  15. Young Children Create Partner-Specific Referential Pacts with Peers

    Science.gov (United States)

    Köymen, Bahar; Schmerse, Daniel; Lieven, Elena; Tomasello, Michael

    2014-01-01

    In 2 studies, we investigated how peers establish a "referential pact" to call something, for example, a "cushion" versus a "pillow" (both equally felicitous). In Study 1, pairs of 4-and 6-year-old German-speaking peers established a referential pact for an artifact, for example, a "woman's shoe," in a…

  16. What Can Psychiatric Disorders Tell Us about Neural Processing of the Self?

    Science.gov (United States)

    Zhao, Weihua; Luo, Lizhu; Li, Qin; Kendrick, Keith M

    2013-01-01

    Many psychiatric disorders are associated with abnormal self-processing. While these disorders also have a wide-range of complex, and often heterogeneous sets of symptoms involving different cognitive, emotional, and motor domains, an impaired sense of self can contribute to many of these. Research investigating self-processing in healthy subjects has facilitated identification of changes in specific neural circuits which may cause altered self-processing in psychiatric disorders. While there is evidence for altered self-processing in many psychiatric disorders, here we will focus on four of the most studied ones, schizophrenia, autism spectrum disorder (ASD), major depression, and borderline personality disorder (BPD). We review evidence for dysfunction in two different neural systems implicated in self-processing, namely the cortical midline system (CMS) and the mirror neuron system (MNS), as well as contributions from altered inter-hemispheric connectivity (IHC). We conclude that while abnormalities in frontal-parietal activity and/or connectivity in the CMS are common to all four disorders there is more disruption of integration between frontal and parietal regions resulting in a shift toward parietal control in schizophrenia and ASD which may contribute to the greater severity and delusional aspects of their symptoms. Abnormalities in the MNS and in IHC are also particularly evident in schizophrenia and ASD and may lead to disturbances in sense of agency and the physical self in these two disorders. A better future understanding of how changes in the neural systems sub-serving self-processing contribute to different aspects of symptom abnormality in psychiatric disorders will require that more studies carry out detailed individual assessments of altered self-processing in conjunction with measurements of neural functioning.

  17. The Brain on Art: Intense Aesthetic Experience Activates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Edward A Vessel

    2012-04-01

    Full Text Available Aesthetic responses to visual art comprise multiple types of experiences, from sensation and perception to emotion and self-reflection. Moreover, aesthetic experience is highly individual, with observers varying significantly in their responses to the same artwork. Combining fMRI and behavioral analysis of individual differences in aesthetic response, we identify two distinct patterns of neural activity exhibited by different subnetworks. Activity increased linearly with observers’ ratings (4-level scale in sensory (occipito-temporal regions. Activity in the striatum also varied linearly with ratings, with below-baseline activations for low-rated artworks. In contrast, a network of frontal regions showed a step-like increase only for the most moving artworks (4 ratings and non-differential activity for all others. This included several regions belonging to the default mode network previously associated with self-referential mentation. Our results suggest that aesthetic experience involves the integration of sensory and emotional reactions in a manner linked with their personal relevance.

  18. Self-affirmation activates brain systems associated with self-related processing and reward and is reinforced by future orientation.

    Science.gov (United States)

    Cascio, Christopher N; O'Donnell, Matthew Brook; Tinney, Francis J; Lieberman, Matthew D; Taylor, Shelley E; Strecher, Victor J; Falk, Emily B

    2016-04-01

    Self-affirmation theory posits that people are motivated to maintain a positive self-view and that threats to perceived self-competence are met with resistance. When threatened, self-affirmations can restore self-competence by allowing individuals to reflect on sources of self-worth, such as core values. Many questions exist, however, about the underlying mechanisms associated with self-affirmation. We examined the neural mechanisms of self-affirmation with a task developed for use in a functional magnetic resonance imaging environment. Results of a region of interest analysis demonstrated that participants who were affirmed (compared with unaffirmed participants) showed increased activity in key regions of the brain's self-processing (medial prefrontal cortex + posterior cingulate cortex) and valuation (ventral striatum + ventral medial prefrontal cortex) systems when reflecting on future-oriented core values (compared with everyday activities). Furthermore, this neural activity went on to predict changes in sedentary behavior consistent with successful affirmation in response to a separate physical activity intervention. These results highlight neural processes associated with successful self-affirmation, and further suggest that key pathways may be amplified in conjunction with prospection. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. The Neural Correlates Underlying Belief Reasoning for Self and for Others: Evidence from ERPs.

    Science.gov (United States)

    Jiang, Qin; Wang, Qi; Li, Peng; Li, Hong

    2016-01-01

    Belief reasoning is typical mental state reasoning in theory of mind (ToM). Although previous studies have explored the neural bases of belief reasoning, the neural correlates of belief reasoning for self and for others are rarely addressed. The decoupling mechanism of distinguishing the mental state of others from one's own is essential for ToM processing. To address the electrophysiological bases underlying the decoupling mechanism, the present event-related potential study compared the time course of neural activities associated with belief reasoning for self and for others when the belief belonging to self was consistent or inconsistent with others. Results showed that during a 450-600 ms period, belief reasoning for self elicited a larger late positive component (LPC) than for others when beliefs were inconsistent with each other. The LPC divergence is assumed to reflect the categorization of agencies in ToM processes.

  20. Neural Response After a Single ECT Session During Retrieval of Emotional Self-Referent Words in Depression: A Randomized, Sham-Controlled fMRI Study

    Science.gov (United States)

    Miskowiak, Kamilla W; Macoveanu, Julian; Jørgensen, Martin B; Støttrup, Mette M; Ott, Caroline V; Jensen, Hans M; Jørgensen, Anders; Harmer, J; Paulson, Olaf B; Kessing, Lars V; Siebner, Hartwig R

    2018-01-01

    Abstract Background Negative neurocognitive bias is a core feature of depression that is reversed by antidepressant drug treatment. However, it is unclear whether modulation of neurocognitive bias is a common mechanism of distinct biological treatments. This randomized controlled functional magnetic resonance imaging study explored the effects of a single electroconvulsive therapy session on self-referent emotional processing. Methods Twenty-nine patients with treatment-resistant major depressive disorder were randomized to one active or sham electroconvulsive therapy session at the beginning of their electroconvulsive therapy course in a double-blind, between-groups design. The following day, patients were given a self-referential emotional word categorization test and a free recall test. This was followed by an incidental word recognition task during whole-brain functional magnetic resonance imaging at 3T. Mood was assessed at baseline, on the functional magnetic resonance imaging day, and after 6 electroconvulsive therapy sessions. Data were complete and analyzed for 25 patients (electroconvulsive therapy: n = 14, sham: n = 11). The functional magnetic resonance imaging data were analyzed using the FMRIB Software Library randomize algorithm, and the Threshold-Free Cluster Enhancement method was used to identify significant clusters (corrected at P words. However, electroconvulsive therapy reduced the retrieval-specific neural response for positive words in the left frontopolar cortex. This effect occurred in the absence of differences between groups in behavioral performance or mood symptoms. Conclusions The observed effect of electroconvulsive therapy on prefrontal response may reflect early facilitation of memory for positive self-referent information, which could contribute to improvements in depressive symptoms including feelings of self-worth with repeated treatments. PMID:29718333

  1. Neural activity in the reward-related brain regions predicts implicit self-esteem: A novel validity test of psychological measures using neuroimaging.

    Science.gov (United States)

    Izuma, Keise; Kennedy, Kate; Fitzjohn, Alexander; Sedikides, Constantine; Shibata, Kazuhisa

    2018-03-01

    Self-esteem, arguably the most important attitudes an individual possesses, has been a premier research topic in psychology for more than a century. Following a surge of interest in implicit attitude measures in the 90s, researchers have tried to assess self-esteem implicitly to circumvent the influence of biases inherent in explicit measures. However, the validity of implicit self-esteem measures remains elusive. Critical tests are often inconclusive, as the validity of such measures is examined in the backdrop of imperfect behavioral measures. To overcome this serious limitation, we tested the neural validity of the most widely used implicit self-esteem measure, the implicit association test (IAT). Given the conceptualization of self-esteem as attitude toward the self, and neuroscience findings that the reward-related brain regions represent an individual's attitude or preference for an object when viewing its image, individual differences in implicit self-esteem should be associated with neural signals in the reward-related regions during passive-viewing of self-face (the most obvious representation of the self). Using multi-voxel pattern analysis (MVPA) on functional MRI (fMRI) data, we demonstrate that the neural signals in the reward-related regions were robustly associated with implicit (but not explicit) self-esteem, thus providing unique evidence for the neural validity of the self-esteem IAT. In addition, both implicit and explicit self-esteem were related, although differently, to neural signals in regions involved in self-processing. Our finding highlights the utility of neuroscience methods in addressing fundamental psychological questions and providing unique insights into important psychological constructs. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Effects of the exposure to self- and other-referential bodies on state body image and negative affect in resistance-trained men.

    Science.gov (United States)

    Cordes, Martin; Vocks, Silja; Düsing, Rainer; Waldorf, Manuel

    2017-06-01

    Previous body image research suggests that first, exposure to body stimuli can negatively affect men's body satisfaction and second, body concerns are associated with dysfunctional gaze behavior. To date, however, the effects of self- vs. other-referential body stimuli and of gaze behavior on body image in men under exposure conditions have not been investigated. Therefore, 49 weight-trained men were presented with pictures of their own and other bodies of different builds (i.e., normal, muscular, hyper-muscular) while being eye-tracked. Participants completed pre- and post-exposure measures of body image and affect. Results indicated that one's own and the muscular body negatively affected men's body image to a comparable degree. Exposure to one's own body also led to increased negative affect. Increased attention toward disliked own body parts was associated with a more negative post-exposure body image and affect. These results suggest a crucial role of critical self-examination in maintaining body dissatisfaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The fragmented self: imbalance between intrinsic and extrinsic self-networks in psychotic disorders.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Aleman, André

    2016-08-01

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging evidence for disrupted communication between neural networks subserving the so-called intrinsic self and extrinsic self. This disruption might be mainly caused by impaired integrity of key brain hubs. The intrinsic self has been associated with cortical midline structures involved in self-referential processing, autobiographical memory, and emotional evaluation. Additionally, we highlight central aspects of the extrinsic self in its interaction with the environment using sensorimotor networks, including self-experience in sensation and actions. A deficient relationship between these self-aspects because of disrupted between-network interactions offers a framework to explain core clinical features of psychotic disorders. In particular, we show how relative isolation and reduced modularity of networks subserving intrinsic and extrinsic self-processing might trigger the emergence of hallucinations and delusions, and why patients with psychosis typically have difficulties with self-other relationships and do not recognise mental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Relationship of mindful awareness to neural processing of angry faces and impact of mindfulness training: A pilot investigation.

    Science.gov (United States)

    Lee, Athene K W; Gansler, David A; Zhang, Nanyin; Jerram, Matthew W; King, Jean A; Fulwiler, Carl

    2017-06-30

    Mindfulness is paying attention, non-judgmentally, to experience in the moment. Mindfulness training reduces depression and anxiety and influences neural processes in midline self-referential and lateralized somatosensory and executive networks. Although mindfulness benefits emotion regulation, less is known about its relationship to anger and the corresponding neural correlates. This study examined the relationship of mindful awareness and brain hemodynamics of angry face processing, and the impact of mindfulness training. Eighteen healthy volunteers completed an angry face processing fMRI paradigm and measurement of mindfulness and anger traits. Ten of these participants were recruited from a Mindfulness-Based Stress Reduction (MBSR) class and also completed imaging and other assessments post-training. Self-reported mindful awareness increased after MBSR, but trait anger did not change. Baseline mindful awareness was negatively related to left inferior parietal lobule activation to angry faces; trait anger was positively related to right middle frontal gyrus and bilateral angular gyrus. No significant pre-post changes in angry face processing were found, but changes in trait mindful awareness and anger were associated with sub-threshold differences in paralimbic activation. These preliminary and hypothesis-generating findings, suggest the analysis of possible impact of mindfulness training on anger may begin with individual differences in angry face processing. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Neural correlates of self-deception and impression-management.

    Science.gov (United States)

    Farrow, Tom F D; Burgess, Jenny; Wilkinson, Iain D; Hunter, Michael D

    2015-01-01

    Self-deception and impression-management comprise two types of deceptive, but generally socially acceptable behaviours, which are common in everyday life as well as being present in a number of psychiatric disorders. We sought to establish and dissociate the 'normal' brain substrates of self-deception and impression-management. Twenty healthy participants underwent fMRI scanning at 3T whilst completing the 'Balanced Inventory of Desirable Responding' test under two conditions: 'fake good', giving the most desirable impression possible and 'fake bad' giving an undesirable impression. Impression-management scores were more malleable to manipulation via 'faking' than self-deception scores. Response times to self-deception questions and 'fake bad' instructions were significantly longer than to impression-management questions and 'fake good' instructions respectively. Self-deception and impression-management manipulation and 'faking bad' were associated with activation of medial prefrontal cortex (mPFC) and left ventrolateral prefrontal cortex (vlPFC). Impression-management manipulation was additionally associated with activation of left dorsolateral prefrontal cortex and left posterior middle temporal gyrus. 'Faking bad' was additionally associated with activation of right vlPFC, left temporo-parietal junction and right cerebellum. There were no supra-threshold activations associated with 'faking good'. Our neuroimaging data suggest that manipulating self-deception and impression-management and more specifically 'faking bad' engages a common network comprising mPFC and left vlPFC. Shorter response times and lack of dissociable neural activations suggests that 'faking good', particularly when it comes to impression-management, may be our most practiced 'default' mode. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neural representations of the self and the mother for Chinese individuals.

    Directory of Open Access Journals (Sweden)

    Gaowa Wuyun

    Full Text Available An important question in social neuroscience is the similarities and differences in the neural representations between the self and close others. Most studies examining this topic have identified the medial prefrontal cortex (MPFC region as the primary area involved in this process. However, several studies have reported conflicting data, making further investigation of this topic very important. In this functional magnetic resonance imaging (fMRI study, we investigated the brain activity in the anterior cingulate cortex (ACC when Chinese participants passively listened to their self-name (SN, their mother's name (MN, and unknown names (UN. The results showed that compared with UN recognition, SN perception was associated with a robust activation in a widely distributed bilateral network, including the cortical midline structure (the MPFC and ACC, the inferior frontal gyrus, and the middle temporal gyrus. The SN invoked the bilateral superior temporal gyrus in contrast to the MN; the MN recognition provoked a stronger activation in the central and posterior brain regions in contrast to the SN recognition. The SN and MN caused an activation of overlapping areas, namely, the ACC, MPFC, and superior frontal gyrus. These results suggest that Chinese individuals utilize certain common brain region in processing both the SN and the MN. The present findings provide evidence for the neural basis of the self and close others for Chinese individuals.

  7. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  8. Sociocultural patterning of neural activity during self-reflection

    DEFF Research Database (Denmark)

    Ma, Yina; Bang, Dan; Wang, Chenbo

    2014-01-01

    ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e., interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection...

  9. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  10. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  11. Neural and computational processes underlying dynamic changes in self-esteem.

    Science.gov (United States)

    Will, Geert-Jan; Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-10-24

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an 'interpersonal vulnerability' dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability.

  12. Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts

    Science.gov (United States)

    Babo-Rebelo, Mariana; Richter, Craig G.

    2016-01-01

    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. SIGNIFICANCE STATEMENT The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by

  13. Psychosis-proneness and neural correlates of self-inhibition in theory of mind.

    Directory of Open Access Journals (Sweden)

    Lisette van der Meer

    Full Text Available Impaired Theory of Mind (ToM has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments.

  14. Psychosis-proneness and neural correlates of self-inhibition in theory of mind.

    Science.gov (United States)

    van der Meer, Lisette; Groenewold, Nynke A; Pijnenborg, Marieke; Aleman, André

    2013-01-01

    Impaired Theory of Mind (ToM) has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP) and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG) in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments.

  15. Control of beam halo-chaos using neural network self-adaptation method

    International Nuclear Information System (INIS)

    Fang Jinqing; Huang Guoxian; Luo Xiaoshu

    2004-11-01

    Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)

  16. The neural signature of self-concept development in adolescence: The role of domain and valence distinctions

    Directory of Open Access Journals (Sweden)

    R. van der Cruijsen

    2018-04-01

    Full Text Available Neuroimaging studies in adults showed that cortical midline regions including medial prefrontal cortex (mPFC and posterior parietal cortex (PPC are important in self-evaluations. The goals of this study were to investigate the contribution of these regions to self-evaluations in late childhood, adolescence, and early adulthood, and to examine whether these differed per domain (academic, physical and prosocial and valence (positive versus negative. Also, we tested whether this activation changes across adolescence. For this purpose, participants between ages 11–21-years (N = 150 evaluated themselves on trait sentences in an fMRI session. Behaviorally, adolescents rated their academic traits less positively than children and young adults. The neural analyses showed that evaluating self-traits versus a control condition was associated with increased activity in mPFC (domain-general effect, and positive traits were associated with increased activity in ventral mPFC (valence effect. Self-related mPFC activation increased linearly with age, but only for evaluating physical traits. Furthermore, an adolescent-specific decrease in striatum activation for positive self traits was found. Finally, we found domain-specific neural activity for evaluating traits in physical (dorsolateral PFC, dorsal mPFC and academic (PPC domains. Together, these results highlight the importance of domain distinctions when studying self-concept development in late childhood, adolescence, and early adulthood. Keywords: Self, fMRI, Adolescence, Development, Medial prefrontal cortex, Self-concept

  17. Referential communication in children with autism spectrum disorder.

    Science.gov (United States)

    Dahlgren, Svenolof; Sandberg, Annika Dahlgren

    2008-07-01

    Referential communication was studied in children with autism spectrum disorder (ASD) including children with autism and Asperger syndrome. The aim was to study alternative explanations for the children's communicative problems in such situations. Factors studied were theory of mind, IQ, verbal ability and memory. The main results demonstrated diminished performance in children with autism spectrum disorder, mirroring performance in everyday life, in comparison to verbal IQ and mental age matched typically developing children. Among children with autism spectrum disorders, there was a positive relationship between performance in referential communication and theory of mind. Memory capacity also proved to play a role in success in the task.

  18. The impact of acute stress on the neural processing of food cues in bulimia nervosa: Replication in two samples.

    Science.gov (United States)

    Collins, Brittany; Breithaupt, Lauren; McDowell, Jennifer E; Miller, L Stephen; Thompson, James; Fischer, Sarah

    2017-07-01

    The impact of acute stress on the neural processing of food cues in bulimia nervosa (BN) is unknown, despite theory that acute stress decreases cognitive control over food and hence increases vulnerability to environmental triggers for binge eating. Thus, the goals of this manuscript were to explore the impact of acute stress on the neural processing of food cues in BN. In Study 1, 10 women with Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) BN and 10 healthy controls participated in an fMRI paradigm examining the neural correlates of visual food cue processing pre and post an acute stress induction. Whole brain analysis indicated that women with BN exhibited significant decreases in activation in the precuneus, associated with self-referential processing, the paracingulate gyrus, and the anterior vermis of the cerebellum. Healthy controls exhibited increased activation in these regions in response to food cues poststress. In Study 2, 17 women with DSM-5 BN or otherwise specified feeding and eating disorder with BN symptoms participated in the same paradigm. A region of interest analysis replicated findings from Study 1. Replication of imaging findings in 2 different samples suggests the potential importance of these regions in relation to BN. Decreased activation in the precuneus, specifically, is consistent with models of BN that posit that binge eating serves as a concrete distraction from aversive internal stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. How the human brain goes virtual: distinct cortical regions of the person-processing network are involved in self-identification with virtual agents.

    Science.gov (United States)

    Ganesh, Shanti; van Schie, Hein T; de Lange, Floris P; Thompson, Evan; Wigboldus, Daniël H J

    2012-07-01

    Millions of people worldwide engage in online role-playing with their avatar, a virtual agent that represents the self. Previous behavioral studies have indicated that many gamers identify more strongly with their avatar than with their biological self. Through their avatar, gamers develop social networks and learn new social-cognitive skills. The cognitive neurosciences have yet to identify the neural processes that underlie self-identification with these virtual agents. We applied functional neuroimaging to 22 long-term online gamers and 21 nongaming controls, while they rated personality traits of self, avatar, and familiar others. Strikingly, neuroimaging data revealed greater avatar-referential cortical activity in the left inferior parietal lobe, a region associated with self-identification from a third-person perspective. The magnitude of this brain activity correlated positively with the propensity to incorporate external body enhancements into one's bodily identity. Avatar-referencing furthermore recruited greater activity in the rostral anterior cingulate gyrus, suggesting relatively greater emotional self-involvement with one's avatar. Post-scanning behavioral data revealed superior recognition memory for avatar relative to others. Interestingly, memory for avatar positively covaried with play duration. These findings significantly advance our knowledge about the brain's plasticity to self-identify with virtual agents and the human cognitive-affective potential to live and learn in virtual worlds.

  20. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    Science.gov (United States)

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. SA72. Neural Correlates of Self-Reflection in Schizophrenia: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Hiremath, Chaitra; Dey, Avyarthana

    2017-01-01

    Abstract Background: Self-reflection is the process of conscious evaluation of one’s traits, abilities, and attitudes. Deficient self-reflective processes might underlie lack of insight into schizophrenia. The limited research literature on the neural correlates of self-reflection in schizophrenia is inconclusive. In this study, we investigated the neural correlates of self-reflection in schizophrenia patients attending a tertiary care hospital in India. Methods: Nineteen male schizophrenia patients (mean age = 32.68 ± 7.11, mean years of education =15.21 ± 1.93) and 19 male healthy controls (mean age = 26.96 ± 4.67, mean years of education = 18.11 ± 3.13) participated in the study. Participants performed a previously validated self-reflection task while undergoing functional magnetic resonance imaging (fMRI; 3-Tesla). The task comprised of 144 words subdivided into 4 domains: Self-reflection, Other-reflection, Affect labeling, and Perceptual. The task was presented as 3 runs of 8 blocks each. The images were preprocessed and analyzed using SPM-12. After preprocessing, contrasts comparing Self-reflection with the other domains were modeled at the individual subject level. In second-level analysis, the first-level contrasts were entered into a 2-sample t test to compare patient and healthy control groups. The results were thresholded at P Self-reflection > Other-reflection contrast, schizophrenia patients demonstrated greater activation of right and left superior parietal lobules (BA 5 and 7), right inferior parietal lobule (BA 39), left parahippocampal gyrus (BA 36), and left premotor cortex (BA 6). For the Self-reflection > Affect labeling contrast, patients showed greater activation of precuneus (BA 7) and right inferior occipital gyrus (BA 19), and lesser activation of left inferior frontal gyrus (BA 45 and 47). And for the Self-reflection > Perceptual contrast, patients showed greater activation of left middle frontal gyrus (BA 10

  2. Meditation experience is associated with differences in default mode network activity and connectivity

    Science.gov (United States)

    Brewer, Judson A.; Worhunsky, Patrick D.; Gray, Jeremy R.; Tang, Yi-Yuan; Weber, Jochen; Kober, Hedy

    2011-01-01

    Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation. PMID:22114193

  3. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    Science.gov (United States)

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  4. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    Science.gov (United States)

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  5. Cognitive control in adolescence: neural underpinnings and relation to self-report behaviors.

    Directory of Open Access Journals (Sweden)

    Jessica R Andrews-Hanna

    Full Text Available Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established.To test the hypothesis that these adolescent behaviors are linked to under-developed proactive control mechanisms, the present study employed a hybrid block/event-related functional Magnetic Resonance Imaging (fMRI Stroop paradigm combined with self-report questionnaires in a large sample of adolescents and adults, ranging in age from 14 to 25. Compared to adults, adolescents under-activated a set of brain regions implicated in proactive top-down control across task blocks comprised of difficult and easy trials. Moreover, the magnitude of lateral prefrontal activity in adolescents predicted self-report measures of impulse control, foresight, and resistance to peer pressure. Consistent with reactive compensatory mechanisms to reduced proactive control, older adolescents exhibited elevated transient activity in regions implicated in response-related interference resolution.Collectively, these results suggest that maturation of cognitive control may be partly mediated by earlier development of neural systems supporting reactive control and delayed development of systems supporting proactive control. Importantly, the development of these mechanisms is associated with cognitive control in real-life behaviors.

  6. Challenging emotional prejudice by changing self-concept: priming independent self-construal reduces racial in-group bias in neural responses to other's pain.

    Science.gov (United States)

    Wang, Chenbo; Wu, Bing; Liu, Yi; Wu, Xinhuai; Han, Shihui

    2015-09-01

    Humans show stronger empathy for in-group compared with out-group members' suffering and help in-group members more than out-group members. Moreover, the in-group bias in empathy and parochial altruism tend to be more salient in collectivistic than individualistic cultures. This work tested the hypothesis that modifying self-construals, which differentiate between collectivistic and individualistic cultural orientations, affects in-group bias in empathy for perceived own-race vs other-race pain. By scanning adults using functional magnetic resonance imaging, we found stronger neural activities in the mid-cingulate, left insula and supplementary motor area (SMA) in response to racial in-group compared with out-group members' pain after participants had been primed with interdependent self-construals. However, the racial in-group bias in neural responses to others' pain in the left SMA, mid-cingulate cortex and insula was significantly reduced by priming independent self-construals. Our findings suggest that shifting an individual's self-construal leads to changes of his/her racial in-group bias in neural responses to others' suffering. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  8. Discourse Analysis of the Documentary Method as "Key" to Self-Referential Communication Systems? Theoretic-Methodological Basics and Empirical Vignettes

    Directory of Open Access Journals (Sweden)

    Gian-Claudio Gentile

    2010-09-01

    Full Text Available Niklas LUHMANN is well known for his deliberate departure from the classical focus on studying individual actions and directing attention on the actors' relatedness through so called (autopoietic communication systems. In contrast to the gain of a new perspective of observation his focus on autopoietic systems is simultaneously its biggest methodological obstacle for the use in social and management sciences. The present contribution considers the above shift on a theoretical level and with a specific qualitative method. It argues for a deeper understanding of systemic sense making and its enactment in a systematic and comprehensible way. Central to this approach is its focus on groups. Using group discussions as the method of data collection, and the "documentary method" by Ralf BOHNSACK (2003 as a method of data analysis, the article describes a methodologically grounded way to record the self-referential systems proposed by LUHMANN's system theory. The theoretical considerations of the paper are illustrated by empirical vignettes derived from a research project conducted in Switzerland concerning the social responsibility of business. URN: urn:nbn:de:0114-fqs1003156

  9. Referential shift in Nicaraguan Sign Language: a transition from lexical to spatial devices.

    Science.gov (United States)

    Kocab, Annemarie; Pyers, Jennie; Senghas, Ann

    2014-01-01

    Even the simplest narratives combine multiple strands of information, integrating different characters and their actions by expressing multiple perspectives of events. We examined the emergence of referential shift devices, which indicate changes among these perspectives, in Nicaraguan Sign Language (NSL). Sign languages, like spoken languages, mark referential shift grammatically with a shift in deictic perspective. In addition, sign languages can mark the shift with a point or a movement of the body to a specified spatial location in the three-dimensional space in front of the signer, capitalizing on the spatial affordances of the manual modality. We asked whether the use of space to mark referential shift emerges early in a new sign language by comparing the first two age cohorts of deaf signers of NSL. Eight first-cohort signers and 10 second-cohort signers watched video vignettes and described them in NSL. Narratives were coded for lexical (use of words) and spatial (use of signing space) devices. Although the cohorts did not differ significantly in the number of perspectives represented, second-cohort signers used referential shift devices to explicitly mark a shift in perspective in more of their narratives. Furthermore, while there was no significant difference between cohorts in the use of non-spatial, lexical devices, there was a difference in spatial devices, with second-cohort signers using them in significantly more of their narratives. This suggests that spatial devices have only recently increased as systematic markers of referential shift. Spatial referential shift devices may have emerged more slowly because they depend on the establishment of fundamental spatial conventions in the language. While the modality of sign languages can ultimately engender the syntactic use of three-dimensional space, we propose that a language must first develop systematic spatial distinctions before harnessing space for grammatical functions.

  10. Self-organization via active exploration in robotic applications

    Science.gov (United States)

    Ogmen, H.; Prakash, R. V.

    1992-01-01

    We describe a neural network based robotic system. Unlike traditional robotic systems, our approach focussed on non-stationary problems. We indicate that self-organization capability is necessary for any system to operate successfully in a non-stationary environment. We suggest that self-organization should be based on an active exploration process. We investigated neural architectures having novelty sensitivity, selective attention, reinforcement learning, habit formation, flexible criteria categorization properties and analyzed the resulting behavior (consisting of an intelligent initiation of exploration) by computer simulations. While various computer vision researchers acknowledged recently the importance of active processes (Swain and Stricker, 1991), the proposed approaches within the new framework still suffer from a lack of self-organization (Aloimonos and Bandyopadhyay, 1987; Bajcsy, 1988). A self-organizing, neural network based robot (MAVIN) has been recently proposed (Baloch and Waxman, 1991). This robot has the capability of position, size rotation invariant pattern categorization, recognition and pavlovian conditioning. Our robot does not have initially invariant processing properties. The reason for this is the emphasis we put on active exploration. We maintain the point of view that such invariant properties emerge from an internalization of exploratory sensory-motor activity. Rather than coding the equilibria of such mental capabilities, we are seeking to capture its dynamics to understand on the one hand how the emergence of such invariances is possible and on the other hand the dynamics that lead to these invariances. The second point is crucial for an adaptive robot to acquire new invariances in non-stationary environments, as demonstrated by the inverting glass experiments of Helmholtz. We will introduce Pavlovian conditioning circuits in our future work for the precise objective of achieving the generation, coordination, and internalization

  11. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  12. Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network.

    Science.gov (United States)

    Del Papa, Bruno; Priesemann, Viola; Triesch, Jochen

    2017-01-01

    Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions - matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model's performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN's spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences.

  13. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The wandering self : Tracking distracting self-generated thought in a cognitively demanding context

    NARCIS (Netherlands)

    Huijser, Stefan; van Vugt, Marieke K; Taatgen, Niels A

    We investigated how self-referential processing (SRP) affected self-generated thought in a complex working memory task (CWM) to test the predictions of a computational cognitive model. This model described self-generated thought as resulting from competition between task- and distracting processes,

  15. Referential processing: reciprocity and correlates of naming and imaging.

    Science.gov (United States)

    Paivio, A; Clark, J M; Digdon, N; Bons, T

    1989-03-01

    To shed light on the referential processes that underlie mental translation between representations of objects and words, we studied the reciprocity and determinants of naming and imaging reaction times (RT). Ninety-six subjects pressed a key when they had covertly named 248 pictures or imaged to their names. Mean naming and imagery RTs for each item were correlated with one another, and with properties of names, images, and their interconnections suggested by prior research and dual coding theory. Imagery RTs correlated .56 (df = 246) with manual naming RTs and .58 with voicekey naming RTs from prior studies. A factor analysis of the RTs and of 31 item characteristics revealed 7 dimensions. Imagery and naming RTs loaded on a common referential factor that included variables related to both directions of processing (e.g., missing names and missing images). Naming RTs also loaded on a nonverbal-to-verbal factor that included such variables as number of different names, whereas imagery RTs loaded on a verbal-to-nonverbal factor that included such variables as rated consistency of imagery. The other factors were verbal familiarity, verbal complexity, nonverbal familiarity, and nonverbal complexity. The findings confirm the reciprocity of imaging and naming, and their relation to constructs associated with distinct phases of referential processing.

  16. Brain activations during judgments of positive self-conscious emotion and positive basic emotion: pride and joy.

    Science.gov (United States)

    Takahashi, Hidehiko; Matsuura, Masato; Koeda, Michihiko; Yahata, Noriaki; Suhara, Tetsuya; Kato, Motoichiro; Okubo, Yoshiro

    2008-04-01

    We aimed to investigate the neural correlates associated with judgments of a positive self-conscious emotion, pride, and elucidate the difference between pride and a basic positive emotion, joy, at the neural basis level using functional magnetic resonance imaging. Study of the neural basis associated with pride might contribute to a better understanding of the pride-related behaviors observed in neuropsychiatric disorders. Sixteen healthy volunteers were studied. The participants read sentences expressing joy or pride contents during the scans. Pride conditions activated the right posterior superior temporal sulcus and left temporal pole, the regions implicated in the neural substrate of social cognition or theory of mind. However, against our prediction, we did not find brain activation in the medial prefrontal cortex, a region responsible for inferring others' intention or self-reflection. Joy condition produced activations in the ventral striatum and insula/operculum, the key nodes of processing of hedonic or appetitive stimuli. Our results support the idea that pride is a self-conscious emotion, requiring the ability to detect the intention of others. At the same time, judgment of pride might require less self-reflection compared with those of negative self-conscious emotions such as guilt or embarrassment.

  17. Posterior midline activation during symptom provocation in acute stress disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Jan Christopher Cwik

    2014-05-01

    Full Text Available Functional imaging studies of patients with Posttraumatic Stress Disorder showed wide-spread activation of mid-line cortical areas during symptom provocation i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with Acute Stress Disorder (ASD shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in mid-line cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.

  18. Noun complement clauses as referential modifiers

    Directory of Open Access Journals (Sweden)

    Carlos de Cuba

    2017-01-01

    Full Text Available A number of recent analyses propose that so-called noun complement clauses should be analyzed as a type of relative clause. In this paper, I present a number of complications for any analysis that equates noun complement clauses to relative clauses, and conclude that this type of analysis is on the wrong track. I present cross-linguistic evidence showing that the syntactic behavior of noun complement clauses does not pattern with relative clauses. Patterns of complementizer choice and complementizer drop as well as patterns involving main clause phenomena and extraction differ in the two constructions, which I argue is unexpected under a relative clause analysis that involves operator movement. Instead I present an alternative analysis in which I propose that the referentiality of a noun complement clause is linked to its syntactic behavior. Following recent work, I claim that referential clauses have a syntactically truncated left-periphery, and this truncation can account for the lack of main clause phenomena in noun complement clauses. I argue that the truncation analysis is also able to accommodate complementizer data patterns more easily than relative clause analyses that appeal to operator movement.

  19. 5-HTTLPR polymorphism modulates neural mechanisms of negative self-reflection.

    Science.gov (United States)

    Ma, Yina; Li, Bingfeng; Wang, Chenbo; Shi, Zhenhao; Sun, Yun; Sheng, Feng; Zhang, Yifan; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2014-09-01

    Cognitive distortion in depression is characterized by enhanced negative thoughts about both environment and oneself. Carriers of a risk allele for depression, that is, the short (s) allele of the serotonin transporter promoter polymorphism (5-HTTLPR), exhibit amygdala hyperresponsiveness to negative environmental stimuli relative to homozygous long variant (l/l). However, the neural correlates of negative self-schema in s allele carriers remain unknown. Using functional MRI, we scanned individuals with s/s or l/l genotype of the 5-HTTLPR during reflection on their own personality traits or a friend's personality traits. We found that relative to l/l carriers, s/s carriers showed stronger distressed feelings and greater activity in the dorsal anterior cingulate (dACC)/dorsal medial prefrontal cortex (dmPFC) and the right anterior insula (AI) during negative self-reflection. The 5-HTTLPR effect on the distressed feelings was mediated by the AI/inferior frontal (IF) activity during negative self-reflection. The dACC/dmPFC activity explained 20% of the variation in harm-avoidance tendency in s/s but not l/l carriers. The genotype effects on distress and brain activity were not observed during reflection on a friend's negative traits. Our findings reveal that 5-HTTLPR polymorphism modulates distressed feelings and brain activities associated with negative self-schema and suggest a potential neurogenetic susceptibility mechanism for depression. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Neural responses during social and self-knowledge tasks in bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Carrie J Mcadams

    2013-09-01

    Full Text Available Self-evaluation closely dependent upon body shape and weight is one of the defining criteria for bulimia nervosa. We studied 53 adult women, 17 with bulimia nervosa, 18 with a recent history of anorexia nervosa, and 18 healthy comparison women, using three different fMRI tasks that required thinking about self-knowledge and social interactions: the Social Identity task, the Physical Identity task, and the Social Attribution task. Previously, we identified regions of interest (ROI in the same tasks using whole brain voxel-wise comparisons of the healthy comparison women and women with a recent history of anorexia nervosa. Here, we report on the neural activations in those ROIs in subjects with bulimia nervosa. In the Social Attribution task, we examined activity in the right temporoparietal junction, an area frequently associated with mentalization. In the Social Identity task, we examined activity in the precuneus and dorsal anterior cingulate. In the Physical Identity task, we examined activity in a ventral region of the dorsal anterior cingulate. Interestingly, in all tested regions, the average activation in subjects with bulimia was more than the average activation levels seen in the subjects with a history of anorexia but less than that seen in healthy subjects. In three regions, the right temporoparietal junction, the precuneus, and the dorsal anterior cingulate, group responses in the subjects with bulimia were significantly different from healthy subjects but not subjects with anorexia. The neural activations of people with bulimia nervosa performing fMRI tasks engaging social processing are more similar to people with anorexia nervosa than healthy people. This suggests biological measures of social processes may be helpful in characterizing individuals with eating disorders.

  1. Nonlinear dynamics analysis of a self-organizing recurrent neural network: chaos waning.

    Science.gov (United States)

    Eser, Jürgen; Zheng, Pengsheng; Triesch, Jochen

    2014-01-01

    Self-organization is thought to play an important role in structuring nervous systems. It frequently arises as a consequence of plasticity mechanisms in neural networks: connectivity determines network dynamics which in turn feed back on network structure through various forms of plasticity. Recently, self-organizing recurrent neural network models (SORNs) have been shown to learn non-trivial structure in their inputs and to reproduce the experimentally observed statistics and fluctuations of synaptic connection strengths in cortex and hippocampus. However, the dynamics in these networks and how they change with network evolution are still poorly understood. Here we investigate the degree of chaos in SORNs by studying how the networks' self-organization changes their response to small perturbations. We study the effect of perturbations to the excitatory-to-excitatory weight matrix on connection strengths and on unit activities. We find that the network dynamics, characterized by an estimate of the maximum Lyapunov exponent, becomes less chaotic during its self-organization, developing into a regime where only few perturbations become amplified. We also find that due to the mixing of discrete and (quasi-)continuous variables in SORNs, small perturbations to the synaptic weights may become amplified only after a substantial delay, a phenomenon we propose to call deferred chaos.

  2. Gender differences of brain activity in the conflicts based on implicit self-esteem.

    Science.gov (United States)

    Miyamoto, Reiko; Kikuchi, Yoshiaki

    2012-01-01

    There are gender differences in global and domain-specific self-esteem and the incidence of some psychiatric disorders related to self-esteem, suggesting that there are gender differences in the neural basis underlying one's own self-esteem. We investigated gender differences in the brain activity while subjects (14 males and 12 females) performed an implicit self-esteem task, using fMRI. While ventromedial prefrontal cortex (vmPFC) was significantly activated in females, medial and dorsomedial PFC (dmPFC) were activated in males in the incongruent condition (self = negative) compared with the congruent condition (self = positive). Additionally, scores on the explicit self-esteem test were negatively correlated with vmPFC activity in females and positively correlated with dmPFC activity in males. Furthermore, the functional relationships among the regions found by direct gender comparisons were discussed based on the somatic-marker model. These showed that, compared to males, females more firmly store even the incongruent associations as part of their schematic self-knowledge, and such associations automatically activate the neural networks for emotional response and control, in which vmPFC plays a central role. This may explain female cognitive/behavioral traits; females have more tendency to ruminate more often than males, which sometimes results in a prolonged negative affect.

  3. Gender differences of brain activity in the conflicts based on implicit self-esteem.

    Directory of Open Access Journals (Sweden)

    Reiko Miyamoto

    Full Text Available There are gender differences in global and domain-specific self-esteem and the incidence of some psychiatric disorders related to self-esteem, suggesting that there are gender differences in the neural basis underlying one's own self-esteem. We investigated gender differences in the brain activity while subjects (14 males and 12 females performed an implicit self-esteem task, using fMRI. While ventromedial prefrontal cortex (vmPFC was significantly activated in females, medial and dorsomedial PFC (dmPFC were activated in males in the incongruent condition (self = negative compared with the congruent condition (self = positive. Additionally, scores on the explicit self-esteem test were negatively correlated with vmPFC activity in females and positively correlated with dmPFC activity in males. Furthermore, the functional relationships among the regions found by direct gender comparisons were discussed based on the somatic-marker model. These showed that, compared to males, females more firmly store even the incongruent associations as part of their schematic self-knowledge, and such associations automatically activate the neural networks for emotional response and control, in which vmPFC plays a central role. This may explain female cognitive/behavioral traits; females have more tendency to ruminate more often than males, which sometimes results in a prolonged negative affect.

  4. Brain activity and infant attachment history in young men during loss and reward processing.

    Science.gov (United States)

    Quevedo, Karina; Waters, Theodore E A; Scott, Hannah; Roisman, Glenn I; Shaw, Daniel S; Forbes, Erika E

    2017-05-01

    There is now ample evidence that the quality of early attachment experiences shapes expectations for supportive and responsive care and ultimately serves to scaffold adaptation to the salient tasks of development. Nonetheless, few studies have identified neural mechanisms that might give rise to these associations. Using a moderately large sample of low-income male participants recruited during infancy (N = 171), we studied the predictive significance of attachment insecurity and disorganization at age 18 months (as measured in the Strange Situation Procedure) for patterns of neural activation to reward and loss at age 20 years (assessed during a reward-based task as part of a functional magnetic resonance imaging scan). Results indicated that individuals with a history of insecure attachment showed hyperactivity in (a) reward- and emotion-related (e.g., basal ganglia and amygdala) structures and (b) emotion regulation and self-referential processing (cortical midline structures) in response to positive and negative outcomes (and anticipation of those outcomes). Further, the neural activation of individuals with a history of disorganized attachment suggested that they had greater emotional reactivity in anticipation of reward and employed greater cognitive control when negative outcomes were encountered. Overall, results suggest that the quality of early attachments has lasting impacts on brain function and reward processing.

  5. The Neural Mechanisms of Meditative Practices: Novel Approaches for Healthy Aging.

    Science.gov (United States)

    Acevedo, Bianca P; Pospos, Sarah; Lavretsky, Helen

    2016-01-01

    Meditation has been shown to have physical, cognitive, and psychological health benefits that can be used to promote healthy aging. However, the common and specific mechanisms of response remain elusive due to the diverse nature of mind-body practices. In this review, we aim to compare the neural circuits implicated in focused-attention meditative practices that focus on present-moment awareness to those involved in active-type meditative practices (e.g., yoga) that combine movement, including chanting, with breath practices and meditation. Recent meta-analyses and individual studies demonstrated common brain effects for attention-based meditative practices and active-based meditations in areas involved in reward processing and learning, attention and memory, awareness and sensory integration, and self-referential processing and emotional control, while deactivation was seen in the amygdala, an area implicated in emotion processing. Unique effects for mindfulness practices were found in brain regions involved in body awareness, attention, and the integration of emotion and sensory processing. Effects specific to active-based meditations appeared in brain areas involved in self-control, social cognition, language, speech, tactile stimulation, sensorimotor integration, and motor function. This review suggests that mind-body practices can target different brain systems that are involved in the regulation of attention, emotional control, mood, and executive cognition that can be used to treat or prevent mood and cognitive disorders of aging, such as depression and caregiver stress, or serve as "brain fitness" exercise. Benefits may include improving brain functional connectivity in brain systems that generally degenerate with Alzheimer's disease, Parkinson's disease, and other aging-related diseases.

  6. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mindful attention reduces neural and self-reported cue-induced craving in smokers

    Science.gov (United States)

    Creswell, John David; Tabibnia, Golnaz; Julson, Erica; Kober, Hedy; Tindle, Hilary A.

    2013-01-01

    An emerging body of research suggests that mindfulness-based interventions may be beneficial for smoking cessation and the treatment of other addictive disorders. One way that mindfulness may facilitate smoking cessation is through the reduction of craving to smoking cues. The present work considers whether mindful attention can reduce self-reported and neural markers of cue-induced craving in treatment seeking smokers. Forty-seven (n = 47) meditation-naïve treatment-seeking smokers (12-h abstinent from smoking) viewed and made ratings of smoking and neutral images while undergoing functional magnetic resonance imaging (fMRI). Participants were trained and instructed to view these images passively or with mindful attention. Results indicated that mindful attention reduced self-reported craving to smoking images, and reduced neural activity in a craving-related region of subgenual anterior cingulate cortex (sgACC). Moreover, a psychophysiological interaction analysis revealed that mindful attention reduced functional connectivity between sgACC and other craving-related regions compared to passively viewing smoking images, suggesting that mindfulness may decouple craving neurocircuitry when viewing smoking cues. These results provide an initial indication that mindful attention may describe a ‘bottom-up’ attention to one’s present moment experience in ways that can help reduce subjective and neural reactivity to smoking cues in smokers. PMID:22114078

  8. Distinct effects of reminding mortality and physical pain on the default-mode activity and activity underlying self-reflection.

    Science.gov (United States)

    Shi, Zhenhao; Han, Shihui

    2018-06-01

    Behavioral research suggests that reminding both mortality and negative affect influences self-related thoughts. Using functional magnetic resonance imaging (MRI), we tested the hypothesis that reminders of mortality and physical pain decrease brain activity underlying self-related thoughts. Three groups of adults underwent priming procedures during which they answered questions pertaining to mortality, physical pain, or leisure time, respectively. Before and after priming, participants performed personality trait judgments on oneself or a celebrity, identified the font of words, or passively viewed a fixation. The default-mode activity and neural activity underlying self-reflection were identified by contrasting viewing a fixation vs. font judgment and trait judgments on oneself vs. a celebrity, respectively. The analyses of the pre-priming functional MRI (fMRI) data identified the default-mode activity in the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (MPFC), and parahippocampal gyrus, and the activity underlying instructed self-reflection in both the ventral and dorsal regions of the MPFC. The analyses of the post-priming fMRI data revealed that, relative to leisure time priming, reminding mortality significantly reduced the default-mode PCC activity, and reminding physical pain significantly decreased the dorsal MPFC activity during instructed self-reflection. Our findings suggest distinct neural underpinnings of the effect of reminding morality and aversive emotion on default-mode and instructed self-reflection.

  9. Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal.

    Science.gov (United States)

    Georges, Pauline; Boissart, Claire; Poulet, Aurélie; Peschanski, Marc; Benchoua, Alexandra

    2015-12-01

    Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. © 2015 AlphaMed Press.

  10. Discourse Model Representation of Referential and Attributive Descriptions.

    Science.gov (United States)

    Onishi, Kristine H.; Murphy, Gregory L.

    2002-01-01

    Manipulated shared knowledge and focus on specific entities, the verb in the sentence, and whether the description was definite or indefinite. Each factor influenced interpretation of the description. Confirmed that changing verbs alone affected reference choice. Indicated that both referentially and attributively introduced entities are…

  11. Love flows downstream: mothers' and children's neural representation similarity in perceiving distress of self and family.

    Science.gov (United States)

    Lee, Tae-Ho; Qu, Yang; Telzer, Eva H

    2017-12-01

    The current study aimed to capture empathy processing in an interpersonal context. Mother-adolescent dyads (N = 22) each completed an empathy task during fMRI, in which they imagined the target person in distressing scenes as either themselves or their family (i.e. child for the mother, mother for the child). Using multi-voxel pattern approach, we compared neural pattern similarity for the self and family conditions and found that mothers showed greater perceptual similarity between self and child in the fusiform face area (FFA), representing high self-child overlap, whereas adolescents showed significantly less self-mother overlap. Adolescents' pattern similarity was dependent upon family relationship quality, such that they showed greater self-mother overlap with higher relationship quality, whereas mothers' pattern similarity was independent of relationship quality. Furthermore, adolescents' perceptual similarity in the FFA was associated with increased social brain activation (e.g. temporal parietal junction). Mediation analyses indicated that high relationship quality was associated with greater social brain activation, which was mediated by greater self-mother overlap in the FFA. Our findings suggest that adolescents show more distinct neural patterns in perceiving their own vs their mother's distress, and such distinction is sensitive to mother-child relationship quality. In contrast, mothers' perception for their own and child's distress is highly similar and unconditional. © The Author (2017). Published by Oxford University Press.

  12. Self-Orientation Modulates the Neural Correlates of Global and Local Processing.

    Science.gov (United States)

    Liddell, Belinda J; Das, Pritha; Battaglini, Eva; Malhi, Gin S; Felmingham, Kim L; Whitford, Thomas J; Bryant, Richard A

    2015-01-01

    Differences in self-orientation (or "self-construal") may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment.

  13. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Self-Organizing Neural Circuits for Sensory-Guided Motor Control

    National Research Council Canada - National Science Library

    Grossberg, Stephen

    1999-01-01

    The reported projects developed mathematical models to explain how self-organizing neural circuits that operate under continuous or intermittent sensory guidance achieve flexible and accurate control of human movement...

  15. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  16. Neural basis of distorted self-face recognition in social anxiety disorder.

    Science.gov (United States)

    Kim, Min-Kyeong; Yoon, Hyung-Jun; Shin, Yu-Bin; Lee, Seung-Koo; Kim, Jae-Jin

    2016-01-01

    The observer perspective causes patients with social anxiety disorder (SAD) to excessively inspect their performance and appearance. This study aimed to investigate the neural basis of distorted self-face recognition in non-social situations in patients with SAD. Twenty patients with SAD and 20 age- and gender-matched healthy controls participated in this fMRI study. Data were acquired while participants performed a Composite Face Evaluation Task, during which they had to press a button indicating how much they liked a series of self-faces, attractively transformed self-faces, and attractive others' faces. Patients had a tendency to show more favorable responses to the self-face and unfavorable responses to the others' faces compared with controls, but the two groups' responses to the attractively transformed self-faces did not differ. Significant group differences in regional activity were observed in the middle frontal and supramarginal gyri in the self-face condition (patients self-face condition (patients > controls); and the middle frontal, supramarginal, and angular gyri in the attractive others' face condition (patients > controls). Most fronto-parietal activities during observation of the self-face were negatively correlated with preference scores in patients but not in controls. Patients with SAD have a positive point of view of their own face and experience self-relevance for the attractively transformed self-faces. This distorted cognition may be based on dysfunctions in the frontal and inferior parietal regions. The abnormal engagement of the fronto-parietal attentional network during processing face stimuli in non-social situations may be linked to distorted self-recognition in SAD.

  17. Plastic modulation of episodic memory networks in the aging brain with cognitive decline.

    Science.gov (United States)

    Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun

    2016-07-15

    Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Referential Communication in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Dahlgren, Svenolof; Sandberg, Annika Dahlgren

    2008-01-01

    Referential communication was studied in children with autism spectrum disorder (ASD) including children with autism and Asperger syndrome. The aim was to study alternative explanations for the children's communicative problems in such situations. Factors studied were theory of mind, IQ, verbal ability and memory. The main results demonstrated…

  19. The neural correlates of visual self-recognition.

    Science.gov (United States)

    Devue, Christel; Brédart, Serge

    2011-03-01

    This paper presents a review of studies that were aimed at determining which brain regions are recruited during visual self-recognition, with a particular focus on self-face recognition. A complex bilateral network, involving frontal, parietal and occipital areas, appears to be associated with self-face recognition, with a particularly high implication of the right hemisphere. Results indicate that it remains difficult to determine which specific cognitive operation is reflected by each recruited brain area, in part due to the variability of used control stimuli and experimental tasks. A synthesis of the interpretations provided by previous studies is presented. The relevance of using self-recognition as an indicator of self-awareness is discussed. We argue that a major aim of future research in the field should be to identify more clearly the cognitive operations induced by the perception of the self-face, and search for dissociations between neural correlates and cognitive components. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Pragmatic Failure and Referential Ambiguity when Attorneys Ask Child Witnesses "Do You Know/Remember" Questions.

    Science.gov (United States)

    Evans, Angela D; Stolzenberg, Stacia N; Lyon, Thomas D

    2017-05-01

    "Do you know" and "Do you remember" (DYK/R) questions explicitly ask whether one knows or remembers some information while implicitly asking for that information. This study examined how 104 4- to 9-year-old children testifying in child sexual abuse cases responded to DYK/R wh- and yes/no questions. When asked DYK/R questions containing an implicit wh- question requesting information, children often provided unelaborated "Yes" responses. Attorneys' follow-up questions suggested that children usually misunderstood the pragmatics of the questions. When DYK/R questions contained an implicit yes/no question, unelaborated "Yes" or "No" responses could be responding to the explicit or the implicit questions resulting in referentially ambiguous responses. Children often provided referentially ambiguous responses and attorneys usually failed to disambiguate children's answers. Although pragmatic failure following DYK/R wh- questions decreased with age, the likelihood of referential ambiguity following DYK/R yes/no questions did not. The results highlight the risks of serious miscommunications caused by pragmatic misunderstanding and referential ambiguity when children testify.

  1. Referential calls coordinate multi-species mobbing in a forest bird community.

    Science.gov (United States)

    Suzuki, Toshitaka N

    2016-01-01

    Japanese great tits ( Parus minor ) use a sophisticated system of anti-predator communication when defending their offspring: they produce different mobbing calls for different nest predators (snake versus non-snake predators) and thereby convey this information to conspecifics (i.e. functionally referential call system). The present playback experiments revealed that these calls also serve to coordinate multi-species mobbing at nests; snake-specific mobbing calls attracted heterospecific individuals close to the sound source and elicited snake-searching behaviour, whereas non-snake mobbing calls attracted these birds at a distance. This study demonstrates for the first time that referential mobbing calls trigger different formations of multi-species mobbing parties.

  2. Kwelders en schorren in de Kaderrichtlijn Water; ontwikkeling van potentiële referenties en van potentiële goede ecologische toestanden

    NARCIS (Netherlands)

    Dijkema, K.S.; Jong, de D.J.; Vreeken-Buijs, M.J.; Duin, van W.E.

    2005-01-01

    Ten behoeve van maatlatontwikkeling worden in dit document twee parameters ontwikkeld voor de Nederlandse kwelders. En wel: een areaal-referentie (deze studie gaat uit van historische referenties over bedijkingen; soms is het huidige areaal als referentie of als goede ecologische toestand gebruikt)

  3. Self-control with spiking and non-spiking neural networks playing games.

    Science.gov (United States)

    Christodoulou, Chris; Banfield, Gaye; Cleanthous, Aristodemos

    2010-01-01

    Self-control can be defined as choosing a large delayed reward over a small immediate reward, while precommitment is the making of a choice with the specific aim of denying oneself future choices. Humans recognise that they have self-control problems and attempt to overcome them by applying precommitment. Problems in exercising self-control, suggest a conflict between cognition and motivation, which has been linked to competition between higher and lower brain functions (representing the frontal lobes and the limbic system respectively). This premise of an internal process conflict, lead to a behavioural model being proposed, based on which, we implemented a computational model for studying and explaining self-control through precommitment behaviour. Our model consists of two neural networks, initially non-spiking and then spiking ones, representing the higher and lower brain systems viewed as cooperating for the benefit of the organism. The non-spiking neural networks are of simple feed forward multilayer type with reinforcement learning, one with selective bootstrap weight update rule, which is seen as myopic, representing the lower brain and the other with the temporal difference weight update rule, which is seen as far-sighted, representing the higher brain. The spiking neural networks are implemented with leaky integrate-and-fire neurons with learning based on stochastic synaptic transmission. The differentiating element between the two brain centres in this implementation is based on the memory of past actions determined by an eligibility trace time constant. As the structure of the self-control problem can be likened to the Iterated Prisoner's Dilemma (IPD) game in that cooperation is to defection what self-control is to impulsiveness or what compromising is to insisting, we implemented the neural networks as two players, learning simultaneously but independently, competing in the IPD game. With a technique resembling the precommitment effect, whereby the

  4. Neural responses to feedback information produced by self-generated or other-generated decision-making and their impairment in schizophrenia.

    Science.gov (United States)

    Toyomaki, Atsuhito; Hashimoto, Naoki; Kako, Yuki; Murohashi, Harumitsu; Kusumi, Ichiro

    2017-01-01

    Several studies of self-monitoring dysfunction in schizophrenia have focused on the sense of agency to motor action using behavioral and psychophysiological techniques. So far, no study has ever tried to investigate whether the sense of agency or causal attribution for external events produced by self-generated decision-making is abnormal in schizophrenia. The purpose of this study was to investigate neural responses to feedback information produced by self-generated or other-generated decision-making in a multiplayer gambling task using even-related potentials and electroencephalogram synchronization. We found that the late positive component and theta/alpha synchronization were increased in response to feedback information in the self-decision condition in normal controls, but that these responses were significantly decreased in patients with schizophrenia. These neural activities thus reflect the self-reference effect that affects the cognitive appraisal of external events following decision-making and their impairment in schizophrenia.

  5. Talented football players' development of achievement motives, volitional components, and self-referential cognitions: A longitudinal study.

    Science.gov (United States)

    Feichtinger, Philip; Höner, Oliver

    2015-01-01

    Adolescence is regarded as a key developmental phase in the course of talented football players' careers. The present study focuses on early adolescent players' development of achievement motives, volitional components, and self-referential cognitions. Based on the multidimensional and dynamic nature of talent, the development of multifaceted personality characteristics is an important issue in the context of sports talent research. According to previous findings in psychology, personality characteristics' development is defined by both stability and change, and the current study analyses four different types: differential stability (I), mean-level change (II), individual-level change (III), and structural stability (IV). The sample consists of 151 male players in the talent development programme of the German Football Association. Psychological diagnostics of the personality characteristics are implemented across longitudinal sections over a time period of three seasons, from the U12 to U14 age classes. The results reveal that the personality characteristics show (I) moderate test-retest correlations over one-year intervals (.43 ≤ rtt ≤ .62), and lower coefficients for a two-year period (.26 ≤ rtt ≤ .53). (II) Most of the personality characteristics' mean values differ significantly across the age classes with small effect sizes (.01 ≤ [Formula: see text] ≤ .03). (III) Only minor individual-level changes in the football players' development are found. (IV) The personality characteristics' associations within a two-factor structure do not stay invariant over time. From the results of the present study, conclusions are drawn regarding the talent identification and development process.

  6. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research

    Science.gov (United States)

    Di Domenico, Stefano I.; Ryan, Richard M.

    2017-01-01

    Intrinsic motivation refers to people’s spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation. PMID:28392765

  7. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research.

    Science.gov (United States)

    Di Domenico, Stefano I; Ryan, Richard M

    2017-01-01

    Intrinsic motivation refers to people's spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation.

  8. Do domestic dogs learn words based on humans' referential behaviour?

    Directory of Open Access Journals (Sweden)

    Sebastian Tempelmann

    Full Text Available Some domestic dogs learn to comprehend human words, although the nature and basis of this learning is unknown. In the studies presented here we investigated whether dogs learn words through an understanding of referential actions by humans rather than simple association. In three studies, each modelled on a study conducted with human infants, we confronted four word-experienced dogs with situations involving no spatial-temporal contiguity between the word and the referent; the only available cues were referential actions displaced in time from exposure to their referents. We found that no dogs were able to reliably link an object with a label based on social-pragmatic cues alone in all the tests. However, one dog did show skills in some tests, possibly indicating an ability to learn based on social-pragmatic cues.

  9. Application of self-organizing competition artificial neural network to logging data explanation of sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Xu Jianguo; Xu Xianli; Wang Weiguo

    2008-01-01

    The article describes the model construction of self-organizing competition artificial neural network, its principle and automatic recognition process of borehole lithology in detail, and then proves the efficiency of the neural network model for automatically recognizing the borehole lithology with some cases. The self-organizing competition artificial neural network has the ability of self- organization, self-adjustment and high permitting errors. Compared with the BP algorithm, it takes less calculation quantity and more rapidly converges. Furthermore, it can automatically confirm the category without the known sample information. Trial results based on contrasting the identification results of the borehole lithology with geological documentations, indicate that self-organizing artificial neural network can be well applied to automatically performing the category of borehole lithology, during the logging data explanation of sandstone-hosted uranium deposits. (authors)

  10. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    Science.gov (United States)

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Descriptive and discourse-referential modifiers in a layered model of the noun phrase

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    This article argues that adnominal modifiers in a layered model of the noun phrase can be divided into two major subcategories: descriptive modifiers and discourse-referential modifiers. Whereas descriptive modifiers can be subdivided into classifying, qualifying, quantifying and localizing...... modifiers (section 2), discourse-referential modifiers in the noun phrase are concerned with the status of entities as referents in the world of discourse (section 3). I will pay particular attention to three issues: (i) formal reflections of the layered, semantic structure of the noun phrase (section 4...

  12. Psychological and neural mechanisms of subjective time dilation

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2011-04-01

    Full Text Available For a given physical duration, certain events can be experienced as subjectively longer in duration than others. Try this for yourself: take a quick glance at the second hand of a clock. Immediately, the tick will pause momentarily and appear to be longer than the subsequent ticks. Yet, they all last exactly one second. By and large, a deviant or an unexpected stimulus in a series of similar events (same duration, same features can elicit a relative overestimation of subjective time (or "time dilation" but, as is shown here, this is not always the case. We conducted an event-related functional magnetic neuroimaging (fMRI study on the time dilation effect. Participants were presented with a series of five visual discs, all static and of equal duration (standards except for the fourth one, a looming or a receding target. The duration of the target was systematically varied and participants judged whether it was shorter or longer than all other standards in the sequence. Subjective time dilation was observed for the looming stimulus but not for the receding one, which was estimated to be of equal duration to the standards. The neural activation for targets (looming and receding contrasted with the standards revealed an increased activation of the anterior insula and of the anterior cingulate cortex. Contrasting the looming with the receding targets (i.e. capturing the time dilation effect proper revealed a specific activation of cortical midline structures. The implication of midline structures in the time dilation illusion is here interpreted in the context of self-referential processes.

  13. "Estoy viejo" [I'm old]: internalized ageism as self-referential, negative, ageist speech in the Republic of Panama.

    Science.gov (United States)

    Campos, Irma D; Stripling, Ashley M; Heesacker, Martin

    2012-12-01

    Ageism is a form of discrimination that anyone may experience at some point in life (Palmore 2004). Yet ageism is rarely the focus of behavioral research (Nelson 2005). Age can be understood as a social construct that reflects social norms (Lemus and Exposito 2005). Based on our review of the published literature, there were two studies on perceptions of aging among Latina/os in the United States (Beyene et al. 2002; Sarkisian et al. 2006). These studies investigated perceptions and expectations of aging among older Latina/o adults rather than direct experiences of ageism. It is important to note that Latina/os are not a homogenous group and that there are within-group differences. For this reason, this study explored internalized, negative ageism specifically in the Republic of Panama. Although Panama has unique characteristics, it also reflects Central American culture and therefore should provide initial insights regarding Central American self-referential, negative, ageist talk, which we labeled "Estoy viejo." Flanagan's Critical Incident Technique was used to access and understand participants' (ages 18-65) negative ageist talk (n=159). Participants who reported engaging in "Estoy viejo." (46.3% of those sampled) were significantly younger than participants who did not (pexplanation is that younger participants may have been more influenced by North American culture and its strongly negative ageist stereotypes than older participants, who may have identified primarily with Central American culture.

  14. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  15. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...... we developed a discriminative training algorithm for SHC models, where each SHC model for a specific speech pattern is trained with utterances of the pattern to be recognized and with other utterances. The discriminative training of SHC neural models has been tested on the TIDIGITS database...

  16. Is it me? Verbal self-monitoring neural network and clinical insight in schizophrenia.

    Science.gov (United States)

    Sapara, Adegboyega; Ffytche, Dominic H; Cooke, Michael A; Williams, Steven C R; Kumari, Veena

    2015-12-30

    Self-monitoring, defined as the ability to distinguish between self-generated stimuli from other-generated ones, is known to be impaired in schizophrenia. This impairment has been theorised as the basis for many of the core psychotic symptoms, in particular, poor clinical insight. This study aimed to investigate verbal self-monitoring related neural substrates of preserved and poor clinical insight in schizophrenia. It involved 40 stable schizophrenia outpatients, 20 with preserved and 20 with poor insight, and 20 healthy participants. All participants underwent functional magnetic resonance imaging with brain coverage covering key areas in the self-monitoring network during a verbal self-monitoring task. Healthy participants showed higher performance accuracy and greater thalamic activity than both preserved and poor insight patient groups. Preserved insight patients showed higher activity in the putamen extending into the caudate, insula and inferior frontal gyrus, compared to poor insight patients, and in the anterior cingulate and medial frontal gyrus, compared to healthy participants. Poor insight patients did not show greater activity in any brain area compared to preserved insight patients or healthy participants. Future studies may pursue therapeutic avenues, such as meta-cognitive therapies to promote self-monitoring or targeted stimulation of relevant brain areas, as means of enhancing insight in schizophrenia. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Neural responses to feedback information produced by self-generated or other-generated decision-making and their impairment in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Atsuhito Toyomaki

    Full Text Available Several studies of self-monitoring dysfunction in schizophrenia have focused on the sense of agency to motor action using behavioral and psychophysiological techniques. So far, no study has ever tried to investigate whether the sense of agency or causal attribution for external events produced by self-generated decision-making is abnormal in schizophrenia. The purpose of this study was to investigate neural responses to feedback information produced by self-generated or other-generated decision-making in a multiplayer gambling task using even-related potentials and electroencephalogram synchronization. We found that the late positive component and theta/alpha synchronization were increased in response to feedback information in the self-decision condition in normal controls, but that these responses were significantly decreased in patients with schizophrenia. These neural activities thus reflect the self-reference effect that affects the cognitive appraisal of external events following decision-making and their impairment in schizophrenia.

  18. Written production of learners of Portuguese as an additional foreign language: referentiation as a sociocognitive processing resource

    Directory of Open Access Journals (Sweden)

    Lucia Rottava

    2011-12-01

    Full Text Available This article discusses referentiation in texts written by learners of Portuguese as an additional foreign language. Referentiation consists of construction and reconstruction of discourse objects, a product that results from cognitive and interactive activity. Among forms of interaction, written production is an interactive process as meanings derive from the interaction between writer/reader and text in complex and multifaceted experiences that involve prior experiences and/or knowledge, besides the interlocutor’s discursive purpose. Therefore, the text is the result of an action ‘under construction’ made possible through the use of language. Data for this article come from written production developed in classes of Portuguese as a foreign language. The findings reveal learners’ textual processing and its peculiarities resulting from the learners’ proficiency levels and the requirements of the type and theme of the specified task.

  19. Activation of anterior insula during self-reflection.

    Science.gov (United States)

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  20. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    Science.gov (United States)

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Pragmatic Failure and Referential Ambiguity when Attorneys Ask Child Witnesses “Do You Know/Remember” Questions

    Science.gov (United States)

    Evans, Angela D.; Stolzenberg, Stacia N.; Lyon, Thomas D.

    2016-01-01

    “Do you know” and “Do you remember” (DYK/R) questions explicitly ask whether one knows or remembers some information while implicitly asking for that information. This study examined how 104 4- to 9-year-old children testifying in child sexual abuse cases responded to DYK/R wh- and yes/no questions. When asked DYK/R questions containing an implicit wh- question requesting information, children often provided unelaborated “Yes” responses. Attorneys’ follow-up questions suggested that children usually misunderstood the pragmatics of the questions. When DYK/R questions contained an implicit yes/no question, unelaborated “Yes” or “No” responses could be responding to the explicit or the implicit questions resulting in referentially ambiguous responses. Children often provided referentially ambiguous responses and attorneys usually failed to disambiguate children’s answers. Although pragmatic failure following DYK/R wh- questions decreased with age, the likelihood of referential ambiguity following DYK/R yes/no questions did not. The results highlight the risks of serious miscommunications caused by pragmatic misunderstanding and referential ambiguity when children testify. PMID:28652686

  2. Neural congruence between intertemporal and interpersonal self-control: Evidence from delay and social discounting.

    Science.gov (United States)

    Hill, Paul F; Yi, Richard; Spreng, R Nathan; Diana, Rachel A

    2017-11-15

    Behavioral studies using delay and social discounting as indices of self-control and altruism, respectively, have revealed functional similarities between farsighted and social decisions. However, neural evidence for this functional link is lacking. Twenty-five young adults completed a delay and social discounting task during fMRI scanning. A spatiotemporal partial least squares analysis revealed that both forms of discounting were well characterized by a pattern of brain activity in areas comprising frontoparietal control, default, and mesolimbic reward networks. Both forms of discounting appear to draw on common neurocognitive mechanisms, regardless of whether choices involve intertemporal or interpersonal outcomes. We also observed neural profiles differentiating between high and low discounters. High discounters were well characterized by increased medial temporal lobe and limbic activity. In contrast, low discount rates were associated with activity in the medial prefrontal cortex and right temporoparietal junction. This pattern may reflect biological mechanisms underlying behavioral heterogeneity in discount rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Differences in Neural Activation as a Function of Risk-taking Task Parameters

    Directory of Open Access Journals (Sweden)

    Eliza eCongdon

    2013-09-01

    Full Text Available Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART, which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analogue Risk Taking (BART task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step towards characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  4. Neural foundations to moral reasoning and antisocial behavior

    Science.gov (United States)

    Yang, Yaling

    2006-01-01

    A common feature of the antisocial, rule-breaking behavior that is central to criminal, violent and psychopathic individuals is the failure to follow moral guidelines. This review summarizes key findings from brain imaging research on both antisocial behavior and moral reasoning, and integrates these findings into a neural moral model of antisocial behavior. Key areas found to be functionally or structurally impaired in antisocial populations include dorsal and ventral regions of the prefrontal cortex (PFC), amygdala, hippocampus, angular gyrus, anterior cingulate and temporal cortex. Regions most commonly activated in moral judgment tasks consist of the polar/medial and ventral PFC, amygdala, angular gyrus and posterior cingulate. It is hypothesized that the rule-breaking behavior common to antisocial, violent and psychopathic individuals is in part due to impairments in some of the structures (dorsal and ventral PFC, amygdala and angular gyrus) subserving moral cognition and emotion. Impairments to the emotional component that comprises the feeling of what is moral is viewed as the primary deficit in antisocials, although some disruption to the cognitive and cognitive-emotional components of morality (particularly self-referential thinking and emotion regulation) cannot be ruled out. While this neurobiological predisposition is likely only one of several biosocial processes involved in the etiology of antisocial behavior, it raises significant moral issues for the legal system and neuroethics. PMID:18985107

  5. False memory in aging resulting from self-referential processing.

    Science.gov (United States)

    Rosa, Nicole M; Gutchess, Angela H

    2013-11-01

    Referencing the self is known to enhance accurate memory, but less is known about how the strategy affects false memory, particularly for highly self-relevant information. Because older adults are more prone to false memories, we tested whether self-referencing increased false memories with age. In 2 studies, older and younger adults rated adjectives for self-descriptiveness and later completed a surprise recognition test comprised of words rated previously for self-descriptiveness and novel lure words. Lure words were subsequently rated for self-descriptiveness in order to assess the impact of self-relevance on false memory. Study 2 introduced commonness judgments as a control condition, such that participants completed a recognition test on adjectives rated for commonness in addition to adjectives in the self-descriptiveness condition. Across both studies, findings indicate an increased response bias to self-referencing that increased hit rates for both older and younger adults but also increased false alarms as information became more self-descriptive, particularly for older adults. Although the present study supports previous literature showing a boost in memory for self-referenced information, the increase in false alarms, especially in older adults, highlights the potential for memory errors, particularly for information that is strongly related to the self.

  6. Neural Networks for Self-tuning Control Systems

    Directory of Open Access Journals (Sweden)

    A. Noriega Ponce

    2004-01-01

    Full Text Available In this paper, we presented a self-tuning control algorithm based on a three layers perceptron type neural network. The proposed algorithm is advantageous in the sense that practically a previous training of the net is not required and some changes in the set-point are generally enough to adjust the learning coefficient. Optionally, it is possible to introduce a self-tuning mechanism of the learning coefficient although by the moment it is not possible to give final conclusions about this possibility. The proposed algorithm has the special feature that the regulation error instead of the net output error is retropropagated for the weighting coefficients modifications. 

  7. Image Fusion Based on the Self-Organizing Feature Map Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaoli; SUN Shenghe

    2001-01-01

    This paper presents a new image datafusion scheme based on the self-organizing featuremap (SOFM) neural networks.The scheme consists ofthree steps:(1) pre-processing of the images,whereweighted median filtering removes part of the noisecomponents corrupting the image,(2) pixel clusteringfor each image using two-dimensional self-organizingfeature map neural networks,and (3) fusion of the im-ages obtained in Step (2) utilizing fuzzy logic,whichsuppresses the residual noise components and thusfurther improves the image quality.It proves thatsuch a three-step combination offers an impressive ef-fectiveness and performance improvement,which isconfirmed by simulations involving three image sen-sors (each of which has a different noise structure).

  8. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  9. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    Science.gov (United States)

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  10. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  11. An experimental investigation of referential looking in free-ranging Barbary macaques (Macaca sylvanus).

    Science.gov (United States)

    Roberts, Sam G B; McComb, Karen; Ruffman, Ted

    2008-02-01

    The authors examined looking behavior between 15 Barbary macaque (Macaca sylvanus) infants and their mothers in the presence of a rubber snake (experimental period) and in the absence of the snake (control period). Two of the 15 infants looked referentially at their mother in the experimental period. Including both referential and nonreferential looks, the six older infants (aged 5 to 12 months) displayed a higher frequency of looks to mother than nine younger infants (aged 3 to 4.5 months) in the experimental period, but not in the control period. Older infants looked more to the mother in the experimental condition, whereas the younger infants looked more to the mother in the control condition, or looked equally in the two conditions. These results suggest that age is an important factor in determining looking behavior to mother in situations of uncertainty. Compared to hand-reared chimpanzees or human infants tested in standard social referencing paradigms, the infant macaques displayed a low rate of referential looking. Possible explanations for this are discussed. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  12. SORN: a self-organizing recurrent neural network

    Directory of Open Access Journals (Sweden)

    Andreea Lazar

    2009-10-01

    Full Text Available Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural network models. Here we introduce SORN, a self-organizing recurrent network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN learns to encode information in the form of trajectories through its high-dimensional state space reminiscent of recent biological findings on cortical coding. All three forms of plasticity are shown to be essential for the network's success.

  13. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal.

    Science.gov (United States)

    McNeill, Brian; Mazerolle, Chantal; Bassett, Erin A; Mears, Alan J; Ringuette, Randy; Lagali, Pamela; Picketts, David J; Paes, Kim; Rice, Dennis; Wallace, Valerie A

    2013-03-01

    Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.

  14. Dissociable Neural Processes Underlying Risky Decisions for Self Versus Other

    Science.gov (United States)

    Jung, Daehyun; Sul, Sunhae; Kim, Hackjin

    2013-01-01

    Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for oneself. The present study directly compared risky decisions for self with those for another person using functional magnetic resonance imaging (fMRI). Participants were asked to perform a gambling task on behalf of themselves (decision-for-self condition) or another person (decision-for-other condition) while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points) and a high-risk option (i.e., win or lose 90 points) with variable levels of winning probability. Compared with choices regarding others, those regarding oneself were more risk-averse at lower winning probabilities and more risk-seeking at higher winning probabilities, perhaps due to stronger affective process during risky decisions for oneself compared with those for other. The brain-activation pattern changed according to the target, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM) showed greater activation in the decision-for-other condition than in the decision-for-self condition. Parametric modulation analysis using individual decision models revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC) were associated with value computations for oneself and for another, respectively, during risky financial decisions. The results of the present study suggest that decisions for oneself and for other may recruit fundamentally distinct neural processes, which can be mainly characterized as dominant affective/impulsive and cognitive/regulatory processes, respectively. PMID:23519016

  15. Neural activity to a partner's facial expression predicts self-regulation after conflict

    Science.gov (United States)

    Hooker, Christine I.; Gyurak, Anett; Verosky, Sara; Miyakawa, Asako; Ayduk, Özlem

    2009-01-01

    Introduction Failure to self-regulate after an interpersonal conflict can result in persistent negative mood and maladaptive behaviors. Research indicates that lateral prefrontal cortex (LPFC) activity is related to the regulation of emotional experience in response to lab-based affective challenges, such as viewing emotional pictures. This suggests that compromised LPFC function may be a risk-factor for mood and behavior problems after an interpersonal stressor. However, it remains unclear whether LPFC activity to a lab-based affective challenge predicts self-regulation in real-life. Method We investigated whether LPFC activity to a lab-based affective challenge (negative facial expressions of a partner) predicts self-regulation after a real-life affective challenge (interpersonal conflict). During an fMRI scan, healthy, adult participants in committed, dating relationships (N = 27) viewed positive, negative, and neutral facial expressions of their partners. In an online daily-diary, participants reported conflict occurrence, level of negative mood, rumination, and substance-use. Results LPFC activity in response to the lab-based affective challenge predicted self-regulation after an interpersonal conflict in daily life. When there was no interpersonal conflict, LPFC activity was not related to the change in mood or behavior the next day. However, when an interpersonal conflict did occur, ventral LPFC (VLPFC) activity predicted the change in mood and behavior the next day, such that lower VLPFC activity was related to higher levels of negative mood, rumination, and substance-use. Conclusions Low LPFC function may be a vulnerability and high LPFC function may be a protective factor for the development of mood and behavior problems after an interpersonal stressor. PMID:20004365

  16. Neural activity to a partner's facial expression predicts self-regulation after conflict.

    Science.gov (United States)

    Hooker, Christine I; Gyurak, Anett; Verosky, Sara C; Miyakawa, Asako; Ayduk, Ozlem

    2010-03-01

    Failure to self-regulate after an interpersonal conflict can result in persistent negative mood and maladaptive behaviors. Research indicates that lateral prefrontal cortex (LPFC) activity is related to emotion regulation in response to laboratory-based affective challenges, such as viewing emotional pictures. This suggests that compromised LPFC function may be a risk factor for mood and behavior problems after an interpersonal conflict. However, it remains unclear whether LPFC activity to a laboratory-based affective challenge predicts self-regulation in real life. We investigated whether LPFC activity to a laboratory-based affective challenge (negative facial expressions of a partner) predicts self-regulation after a real-life affective challenge (interpersonal conflict). During a functional magnetic resonance imaging scan, healthy, adult participants in committed relationships (n = 27) viewed positive, negative, and neutral facial expressions of their partners. In a three-week online daily diary, participants reported conflict occurrence, level of negative mood, rumination, and substance use. LPFC activity in response to the laboratory-based affective challenge predicted self-regulation after an interpersonal conflict in daily life. When there was no interpersonal conflict, LPFC activity was not related to mood or behavior the next day. However, when an interpersonal conflict did occur, ventral LPFC (VLPFC) activity predicted mood and behavior the next day, such that lower VLPFC activity was related to higher levels of negative mood, rumination, and substance use. Low LPFC function may be a vulnerability and high LPFC function may be a protective factor for the development of mood and behavior problems after an interpersonal stressor. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Neural responses to unfairness and fairness depend on self-contribution to the income.

    Science.gov (United States)

    Guo, Xiuyan; Zheng, Li; Cheng, Xuemei; Chen, Menghe; Zhu, Lei; Li, Jianqi; Chen, Luguang; Yang, Zhiliang

    2014-10-01

    Self-contribution to the income (individual achievement) was an important factor which needs to be taken into individual's fairness considerations. This study aimed at elucidating the modulation of self-contribution to the income, on recipient's responses to unfairness in the Ultimatum Game. Eighteen participants were scanned while they were playing an adapted version of the Ultimatum Game as responders. Before splitting money, the proposer and the participant (responder) played the ball-guessing game. The responder's contribution to the income was manipulated by both the participant's and the proposer's accuracy in the ball-guessing game. It turned out that the participants more often rejected unfair offers and gave lower fairness ratings when they played a more important part in the earnings. At the neural level, anterior insula, anterior cingulate cortex, dorsolateral prefrontal cortex and temporoparietal junction showed greater activities to unfairness when self-contribution increased, whereas ventral striatum and medial orbitofrontal gyrus showed higher activations to fair (vs unfair) offers in the other-contributed condition relative to the other two. Besides, the activations of right dorsolateral prefrontal cortex during unfair offers showed positive correlation with rejection rates in the self-contributed condition. These findings shed light on the significance of self-contribution in fairness-related social decision-making processes. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Divided attention selectively impairs memory for self-relevant information.

    Science.gov (United States)

    Turk, David J; Brady-van den Bos, Mirjam; Collard, Philip; Gillespie-Smith, Karri; Conway, Martin A; Cunningham, Sheila J

    2013-05-01

    Information that is relevant to oneself tends to be remembered more than information that relates to other people, but the role of attention in eliciting this "self-reference effect" is unclear. In the present study, we assessed the importance of attention in self-referential encoding using an ownership paradigm, which required participants to encode items under conditions of imagined ownership by themselves or by another person. Previous work has established that this paradigm elicits a robust self-reference effect, with more "self-owned" items being remembered than "other-owned" items. Access to attentional resources was manipulated using divided-attention tasks at encoding. A significant self-reference effect emerged under full-attention conditions and was related to an increase in episodic recollection for self-owned items, but dividing attention eliminated this memory advantage. These findings are discussed in relation to the nature of self-referential cognition and the importance of attentional resources at encoding in the manifestation of the self-reference effect in memory.

  19. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  20. The neural architecture of music-evoked autobiographical memories

    OpenAIRE

    Janata, P

    2009-01-01

    The medial prefrontal cortex (MPFC) is regarded as a region of the brain that supports self-referential processes, including the integration of sensory information with self-knowledge and the retrieval of autobiographical information. I used functional magnetic resonance imaging and a novel procedure for eliciting autobiographical memories with excerpts of popular music dating to one's extended childhood to test the hypothesis that music and autobiographical memories are integrated in the MPF...

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Adolescent Gender Differences in Cognitive Control Performance and Functional Connectivity Between Default Mode and Fronto-Parietal Networks Within a Self-Referential Context

    Directory of Open Access Journals (Sweden)

    Gabriela Alarcón

    2018-04-01

    Full Text Available Ineffective reduction of functional connectivity between the default mode network (DMN and frontoparietal network (FPN during cognitive control can interfere with performance in healthy individuals—a phenomenon present in psychiatric disorders, such as depression. Here, this mechanism is studied in healthy adolescents by examining gender differences in task-regressed functional connectivity using functional magnetic resonance imaging (MRI and a novel task designed to place the DMN—supporting self-referential processing (SRP—and FPN—supporting cognitive control—into conflict. Compared to boys, girls showed stronger functional connectivity between DMN and FPN during cognitive control in an SRP context (n = 40; boys = 20, a context that also elicited more errors of omission in girls. The gender difference in errors of omission was mediated by higher self-reported co-rumination—the extensive and repetitive discussion of problems and focus on negative feelings with a same-gender peer—by girls, compared to boys. These findings indicate that placing internal and external attentional demands in conflict lead to persistent functional connectivity between FPN and DMN in girls, but not boys; however, deficits in performance during this context were explained by co-rumination, such that youth with higher co-rumination displayed the largest performance deficits. Previous research shows that co-rumination predicts depressive symptoms during adolescence; thus, gender differences in the mechanisms involved with transitioning from internal to external processing may be relevant for understanding heightened vulnerability for depression in adolescent girls.

  3. Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.

  4. Referential communication in children with ADHD: challenges in the role of a listener.

    Science.gov (United States)

    Nilsen, Elizabeth S; Mangal, Leilani; Macdonald, Kristi

    2013-04-01

    Successful communication requires that listeners accurately interpret the meaning of speakers' statements. The present work examined whether children with and without attention-deficit/hyperactivity disorder (ADHD) differ in their ability to interpret referential statements (i.e., phrases that denote objects or events) from speakers. Children (6 to 9 years old), diagnosed with ADHD (n = 27) and typically developing (n = 26), took part in an interactive task in which they were asked by an adult speaker to retrieve objects from a display case. Children interpreted the referential statements in contexts that either did or did not require perspective-taking. Children's eye movements and object choices were recorded. Parents completed questionnaires assessing their child's frequency of ADHD symptoms and pragmatic communicative abilities. Behavioral and eye movement measures revealed that children with ADHD made more interpretive errors and were less likely to consider target referents across the 2 communicative conditions. Furthermore, ADHD symptoms related to children's performance on the communicative task and to parental report of the child's pragmatic skills. Children with ADHD are less accurate in their interpretations of referential statements. Such difficulties would lead to greater occurrences of miscommunication.

  5. Neural Mechanism for Mirrored Self-face Recognition.

    Science.gov (United States)

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-09-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a "virtual mirror" system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. © The Author 2014. Published by Oxford University Press.

  6. Book review: ALMOG, J. Referential Mechanics: Direct Reference and the Foundations of Semantics (Oxford University Press, 2014

    Directory of Open Access Journals (Sweden)

    Filipe Martone

    Full Text Available Abstract: In this review I discuss Joseph Almog's book "Referential Mechanics". The book discusses direct reference as conceived by three of its founding fathers, Kripke, Kaplan and Donnellan, and introduces Almog's ambitious project of providing a referential semantics to all subject-phrases. I offer a brief overview of its four chapters and point out some of their virtues and shortcomings.

  7. Large-scale multielectrode recording and stimulation of neural activity

    International Nuclear Information System (INIS)

    Sher, A.; Chichilnisky, E.J.; Dabrowski, W.; Grillo, A.A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A.M.; Mathieson, K.; Petrusca, D.

    2007-01-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

  8. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  9. Neural activation to monetary reward is associated with amphetamine reward sensitivity.

    Science.gov (United States)

    Crane, Natania A; Gorka, Stephanie M; Weafer, Jessica; Langenecker, Scott A; de Wit, Harriet; Phan, K Luan

    2018-03-14

    One known risk factor for drug use and abuse is sensitivity to rewarding effects of drugs. It is not known whether this risk factor extends to sensitivity to non-drug rewards. In this study with healthy young adults, we examined the association between sensitivity to the subjective rewarding effects of amphetamine and a neural indicator of anticipation of monetary reward. We hypothesized that greater euphorigenic response to amphetamine would be associated with greater neural activation to anticipation of monetary reward (Win > Loss). Healthy participants (N = 61) completed four laboratory sessions in which they received d-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation at regular intervals. At a separate visit 1-3 weeks later, participants completed the guessing reward task (GRT) during fMRI in a drug-free state. Participants reporting greater euphoria after amphetamine also exhibited greater neural activation during monetary reward anticipation in mesolimbic reward regions, including the bilateral caudate and putamen. This is the first study to show a relationship between neural correlates of monetary reward and sensitivity to the subjective rewarding effects of amphetamine in humans. These findings support growing evidence that sensitivity to reward in general is a risk factor for drug use and abuse, and suggest that sensitivity of drug-induced euphoria may reflect a general sensitivity to rewards. This may be an index of vulnerability for drug use or abuse.

  10. What are the odds? The neural correlates of active choice during gambling

    Directory of Open Access Journals (Sweden)

    Bettina eStuder

    2012-04-01

    Full Text Available Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials participants actively chose their bets; in the other half the computer dictated the bet size. Our results highlight the impact of volitional choice upon the neural substrates of gambling: Neural activity in a distributed network - including key structures of the reward circuitry (midbrain, striatum - was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active choice condition, where this information was used to guide bet selection. Our results indicate a neglected role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.

  11. Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

    Science.gov (United States)

    Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay

    2016-03-01

    Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. © 2015 Wiley Periodicals, Inc.

  12. Ways of thinking: an essay on referential coordination

    OpenAIRE

    Clarke, H. H. P.

    2016-01-01

    Referential coordination occurs when a thinker is rational in treating her thoughts as being about the same thing. This is manifested primarily in the thinker’s dispositions to make inferences, paradigmatically the disposition to infer an existential generalisation conjoining two or more properties without recourse to an additional premise concerning an identity. It therefore presents an indispensable way for identity to figure in thought. This topic is often addressed in the form of discussi...

  13. Transformation-invariant visual representations in self-organizing spiking neural networks.

    Science.gov (United States)

    Evans, Benjamin D; Stringer, Simon M

    2012-01-01

    The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT) learning. However, it has not previously been investigated how transformation-invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP) where the change in synaptic strength is dependent on the relative times of the spikes emitted by the presynaptic and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF) neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model parameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  14. Transform-invariant visual representations in self-organizing spiking neural networks

    Directory of Open Access Journals (Sweden)

    Benjamin eEvans

    2012-07-01

    Full Text Available The ventral visual pathway achieves object and face recognition by building transform-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transform invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT learning. However, it has not previously been investigated how transform invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP where the change in synaptic strength is dependent on the relative times of the spikes emitted by the pre- and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model pa- rameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  15. Disentangling neural processes of egocentric and allocentric mental spatial transformations using whole-body photos of self and other.

    Science.gov (United States)

    Ganesh, Shanti; van Schie, Hein T; Cross, Emily S; de Lange, Floris P; Wigboldus, Daniël H J

    2015-08-01

    Mental imagery of one's body moving through space is important for imagining changing visuospatial perspectives, as well as for determining how we might appear to other people. Previous neuroimaging research has implicated the temporoparietal junction (TPJ) in this process. It is unclear, however, how neural activity in the TPJ relates to the rotation perspectives from which mental spatial transformation (MST) of one's own body can take place, i.e. from an egocentric or an allocentric perspective. It is also unclear whether TPJ involvement in MST is self-specific or whether the TPJ may also be involved in MST of other human bodies. The aim of the current study was to disentangle neural processes involved in egocentric versus allocentric MSTs of human bodies representing self and other. We measured functional brain activity of healthy participants while they performed egocentric and allocentric MSTs in relation to whole-body photographs of themselves and a same-sex stranger. Findings indicated higher blood oxygen level-dependent (BOLD) response in bilateral TPJ during egocentric versus allocentric MST. Moreover, BOLD response in the TPJ during egocentric MST correlated positively with self-report scores indicating how awkward participants felt while viewing whole-body photos of themselves. These findings considerably advance our understanding of TPJ involvement in MST and its interplay with self-awareness. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  17. Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations.

    Science.gov (United States)

    Debbané, Martin; Badoud, Deborah; Sander, David; Eliez, Stephan; Luyten, Patrick; Vrtička, Pascal

    2017-06-01

    One of teenagers' key developmental tasks is to engage in new and meaningful relationships with peers and adults outside the family context. Attachment-derived expectations about the self and others in terms of internal attachment working models have the potential to shape such social reorientation processes critically and thereby influence adolescents' social-emotional development and social integration. Because the neural underpinnings of this developmental task remain largely unknown, we sought to investigate them by functional magnetic resonance imaging. We asked n = 44 adolescents (ages 12.01-18.84 years) to evaluate positive and negative adjectives regarding either themselves or a close other during an adapted version of the well-established self-other trait-evaluation task. As measures of attachment, we obtained scores reflecting participants' positive versus negative attachment-derived self- and other-models by means of the Relationship Questionnaire. We controlled for possible confounding factors by also obtaining scores reflecting internalizing/externalizing problems, schizotypy, and borderline symptomatology. Our results revealed that participants with a more negative attachment-derived self-model showed increased brain activity during positive and negative adjective evaluation regarding the self, but decreased brain activity during negative adjective evaluation regarding a close other, in bilateral amygdala/parahippocampus, bilateral anterior temporal pole/anterior superior temporal gyrus, and left dorsolateral prefrontal cortex. These findings suggest that a low positivity of the self-concept characteristic for the attachment anxiety dimension may influence neural information processing, but in opposite directions when it comes to self- versus (close) other-representations. We discuss our results in the framework of attachment theory and regarding their implications especially for adolescent social-emotional development and social integration.

  18. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  19. Self-reflection and the temporal focus of the wandering mind.

    Science.gov (United States)

    Smallwood, Jonathan; Schooler, Jonathan W; Turk, David J; Cunningham, Sheila J; Burns, Phebe; Macrae, C Neil

    2011-12-01

    Current accounts suggest that self-referential thought serves a pivotal function in the human ability to simulate the future during mind-wandering. Using experience sampling, this hypothesis was tested in two studies that explored the extent to which self-reflection impacts both retrospection and prospection during mind-wandering. Study 1 demonstrated that a brief period of self-reflection yielded a prospective bias during mind-wandering such that participants' engaged more frequently in spontaneous future than past thought. In Study 2, individual differences in the strength of self-referential thought - as indexed by the memorial advantage for self rather than other-encoded items - was shown to vary with future thinking during mind-wandering. Together these results confirm that self-reflection is a core component of future thinking during mind-wandering and provide novel evidence that a key function of the autobiographical memory system may be to mentally simulate events in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  1. Prefrontal recruitment during social rejection predicts greater subsequent self-regulatory imbalance and impairment: neural and longitudinal evidence.

    Science.gov (United States)

    Chester, David S; DeWall, C Nathan

    2014-11-01

    Social rejection impairs self-regulation, yet the neural mechanisms underlying this relationship remain unknown. The right ventrolateral prefrontal cortex (rVLPFC) facilitates self-regulation and plays a robust role in regulating the distress of social rejection. However, recruiting this region's inhibitory function during social rejection may come at a self-regulatory cost. As supported by prominent theories of self-regulation, we hypothesized that greater rVLPFC recruitment during rejection would predict a subsequent self-regulatory imbalance that favored reflexive impulses (i.e., cravings), which would then impair self-regulation. Supporting our hypotheses, rVLPFC activation during social rejection was associated with greater subsequent nucleus accumbens (NAcc) activation and lesser functional connectivity between the NAcc and rVLPFC to appetitive cues. Over seven days, the effect of daily felt rejection on daily self-regulatory impairment was exacerbated among participants who showed a stronger rVLPFC response to social rejection. This interactive effect was mirrored in the effect of daily felt rejection on heightened daily alcohol cravings. Our findings suggest that social rejection likely impairs self-regulation by recruiting the rVLPFC, which then tips the regulatory balance towards reward-based impulses. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  3. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  4. The Neural Correlates of Self-Regulatory Fatigability During Inhibitory Control of Eye Blinking.

    Science.gov (United States)

    Abi-Jaoude, Elia; Segura, Barbara; Cho, Sang Soo; Crawley, Adrian; Sandor, Paul

    2018-05-30

    The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.

  5. Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks

    International Nuclear Information System (INIS)

    Peng Yafu; Hsu, C.-F.

    2009-01-01

    This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.

  6. Abnormal self-schema in semantic memory in major depressive disorder: Evidence from event-related brain potentials.

    Science.gov (United States)

    Kiang, Michael; Farzan, Faranak; Blumberger, Daniel M; Kutas, Marta; McKinnon, Margaret C; Kansal, Vinay; Rajji, Tarek K; Daskalakis, Zafiris J

    2017-05-01

    An overly negative self-schema is a proposed cognitive mechanism of major depressive disorder (MDD). Self-schema - one's core conception of self, including how strongly one believes one possesses various characteristics - is part of semantic memory (SM), our knowledge about concepts and their relationships. We used the N400 event-related potential (ERP) - elicited by meaningful stimuli, and reduced by greater association of the stimulus with preceding context - to measure association strength between self-concept and positive, negative, and neutral characteristics in SM. ERPs were recorded from MDD patients (n=16) and controls (n=16) who viewed trials comprising a self-referential phrase followed by a positive, negative, or neutral adjective. Participants' task was to indicate via button-press whether or not they felt each adjective described themselves. Controls endorsed more positive adjectives than did MDD patients, but the opposite was true for negative adjectives. Patients had smaller N400s than controls specifically for negative adjectives, suggesting that MDD is associated with stronger than normal functional neural links between self-concept and negative characteristics in SM. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Looking at Eye Gaze Processing and Its Neural Correlates in Infancy--Implications for Social Development and Autism Spectrum Disorder

    Science.gov (United States)

    Hoehl, Stefanie; Reid, Vincent M.; Parise, Eugenio; Handl, Andrea; Palumbo, Letizia; Striano, Tricia

    2009-01-01

    The importance of eye gaze as a means of communication is indisputable. However, there is debate about whether there is a dedicated neural module, which functions as an eye gaze detector and when infants are able to use eye gaze cues in a referential way. The application of neuroscience methodologies to developmental psychology has provided new…

  8. Sensitivity to Referential Ambiguity in Discourse: The Role of Attention, Working Memory, and Verbal Ability.

    Science.gov (United States)

    Boudewyn, Megan A; Long, Debra L; Traxler, Matthew J; Lesh, Tyler A; Dave, Shruti; Mangun, George R; Carter, Cameron S; Swaab, Tamara Y

    2015-12-01

    The establishment of reference is essential to language comprehension. The goal of this study was to examine listeners' sensitivity to referential ambiguity as a function of individual variation in attention, working memory capacity, and verbal ability. Participants listened to stories in which two entities were introduced that were either very similar (e.g., two oaks) or less similar (e.g., one oak and one elm). The manipulation rendered an anaphor in a subsequent sentence (e.g., oak) ambiguous or unambiguous. EEG was recorded as listeners comprehended the story, after which participants completed tasks to assess working memory, verbal ability, and the ability to use context in task performance. Power in the alpha and theta frequency bands when listeners received critical information about the discourse entities (e.g., oaks) was used to index attention and the involvement of the working memory system in processing the entities. These measures were then used to predict an ERP component that is sensitive to referential ambiguity, the Nref, which was recorded when listeners received the anaphor. Nref amplitude at the anaphor was predicted by alpha power during the earlier critical sentence: Individuals with increased alpha power in ambiguous compared with unambiguous stories were less sensitive to the anaphor's ambiguity. Verbal ability was also predictive of greater sensitivity to referential ambiguity. Finally, increased theta power in the ambiguous compared with unambiguous condition was associated with higher working-memory span. These results highlight the role of attention and working memory in referential processing during listening comprehension.

  9. Morphological self-organizing feature map neural network with applications to automatic target recognition

    Science.gov (United States)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  10. The material realization of science from Habermas to experimentation and referential realism

    CERN Document Server

    Radder, Hans

    2012-01-01

    This book develops a conception of science as a multi-dimensional practice, which includes experimental action and production, conceptual-theoretical interpretation, and formal-mathematical work. On this basis, it addresses the topical issue of scientific realism and expounds a detailed, referentially realist account of the natural sciences. This account is shown to be compatible with the frequent occurrence of conceptual discontinuities in the historical development of the sciences. Referential realism exploits several fruitful ideas of Jürgen Habermas, especially his distinction between objectivity and truth; it builds on a in-depth analysis of scientific experiments, including their material realization; and it is developed through an extensive case study in the history and philosophy of quantum mechanics. The new postscript explains how the book relates to several important issues in recent philosophy of science and science studies.

  11. Reduced connectivity in the self-processing network of schizophrenia patients with poor insight.

    Directory of Open Access Journals (Sweden)

    Edith J Liemburg

    Full Text Available Lack of insight (unawareness of illness is a common and clinically relevant feature of schizophrenia. Reduced levels of self-referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN has been implicated as a key node in the circuit for self-referential processing. We hypothesized that during resting state the DMN network would show decreased connectivity in schizophrenia patients with poor insight compared to patients with good insight. Patients with schizophrenia were recruited from mental health care centers in the north of the Netherlands and categorized in groups having good insight (n= 25 or poor insight (n = 19. All subjects underwent a resting state fMRI scan. A healthy control group (n = 30 was used as a reference. Functional connectivity of the anterior and posterior part of the DMN, identified using Independent Component Analysis, was compared between groups. Patients with poor insight showed lower connectivity of the ACC within the anterior DMN component and precuneus within the posterior DMN component compared to patients with good insight. Connectivity between the anterior and posterior part of the DMN was lower in patients than controls, and qualitatively different between the good and poor insight patient groups. As predicted, subjects with poor insight in psychosis showed decreased connectivity in DMN regions implicated in self-referential processing, although this concerned only part of the network. This finding is compatible with theories implying a role of reduced self-referential processing as a mechanism contributing to poor insight.

  12. Self-recognition, theory-of-mind, and self-awareness: what side are you on?

    Science.gov (United States)

    Morin, Alain

    2011-05-01

    A fashionable view in comparative psychology states that primates possess self-awareness because they exhibit mirror self-recognition (MSR), which in turn makes it possible to infer mental states in others ("theory-of-mind"; ToM). In cognitive neuroscience, an increasingly popular position holds that the right hemisphere represents the centre of self-awareness because MSR and ToM tasks presumably increase activity in that hemisphere. These two claims are critically assessed here as follows: (1) MSR should not be equated with full-blown self-awareness, as it most probably only requires kinaesthetic self-knowledge and does not involve access to one's mental events; (2) ToM and self-awareness are fairly independent and should also not be taken as equivalent notions; (3) MSR and ToM tasks engage medial and left brain areas; (4) other self-awareness tasks besides MSR and ToM tasks (e.g., self-description, autobiography) mostly recruit medial and left brain areas; (5) and recent neuropsychological evidence implies that inner speech (produced by the left hemisphere) plays a significant role in self-referential activity. The main conclusions reached based on this analysis are that (a) organisms that display MSR most probably do not possess introspective self-awareness, and (b) self-related processes most likely engage a distributed network of brain regions situated in both hemispheres.

  13. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  14. Changes in the relationship between self-reference and emotion as a function of dysphoria

    DEFF Research Database (Denmark)

    Watson, Lynn Ann; Dritschel, Barbara; Jentzsch, Ines

    2008-01-01

    The self-positivity bias is found to be an aspect of normal cognitive function. Changes in this bias are usually associated with changes in emotional states, such as dysphoria or depression. The aim of the present study was to clarify the role of emotional valence within self-referential processing...... the existence of the self-positivity bias in non-dysphoric individuals. More interestingly, dysphoric individuals were able to accurately identify the emotional content of the word stimuli. They failed, however, to associate this emotional valence with self-reference. These findings are discussed in terms....... By asking non-dysphoric and dysphoric individuals to rate separately the emotional and self-referential content of a set of 240 words, it was possible to identify the differences in the relationship between self-reference and emotional valence, which are associated with dysphoria. The results support...

  15. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  16. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Science.gov (United States)

    Butler, David L; Mattingley, Jason B; Cunnington, Ross; Suddendorf, Thomas

    2013-01-01

    Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i) the configural processing of faces (i.e., the N170), (ii) the matching of the currently perceived face to a representation already stored in memory (i.e., the P250), and (iii) the retrieval of information about the person being recognized (i.e., the N400). There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400) differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  17. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Directory of Open Access Journals (Sweden)

    David L Butler

    Full Text Available Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i the configural processing of faces (i.e., the N170, (ii the matching of the currently perceived face to a representation already stored in memory (i.e., the P250, and (iii the retrieval of information about the person being recognized (i.e., the N400. There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400 differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  18. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  19. Cannabis abstinence during treatment and one-year follow-up: relationship to neural activity in men.

    Science.gov (United States)

    Kober, Hedy; DeVito, Elise E; DeLeone, Cameron M; Carroll, Kathleen M; Potenza, Marc N

    2014-09-01

    Cannabis is among the most frequently abused substances in the United States. Cognitive control is a contributory factor in the maintenance of substance-use disorders and may relate to treatment response. Therefore, we assessed whether cognitive-control-related neural activity before treatment differs between treatment-seeking cannabis-dependent and healthy individuals and relates to cannabis-abstinence measures during treatment and 1-year follow-up. Cannabis-dependent males (N=20) completed a functional magnetic resonance imaging (fMRI) cognitive-control (Stroop) task before a 12-week randomized controlled trial of cognitive-behavioral therapy and/or contingency management. A healthy-comparison group (N=20) also completed the fMRI task. Cannabis use was assessed by urine toxicology and self-report during treatment, and by self-report across a 1-year follow-up period (N=18). The cannabis-dependent group displayed diminished Stroop-related neural activity relative to the healthy-comparison group in multiple regions, including those strongly implicated in cognitive-control and addiction-related processes (eg, dorsolateral prefrontal cortex and ventral striatum). The groups did not differ significantly in response times (cannabis-dependent, N=12; healthy-comparison, N=14). Within the cannabis-dependent group, greater Stroop-related activity in regions including the dorsal anterior cingulate cortex was associated with less cannabis use during treatment. Greater activity in regions including the ventral striatum was associated with less cannabis use during 1-year posttreatment follow-up. These data suggest that lower cognitive-control-related neural activity in classic 'control' regions (eg, dorsolateral prefrontal cortex and dorsal anterior cingulate) and classic 'salience/reward/learning' regions (eg, ventral striatum) differentiates cannabis-dependent individuals from healthy individuals and relates to less abstinence within-treatment and during long-term follow

  20. Age Differences in Neural Response to Stereotype Threat and Resiliency for Self-Referenced Information

    Directory of Open Access Journals (Sweden)

    Gabriel eColton

    2013-09-01

    Full Text Available To investigate the contribution of cortical midline regions to stereotype threat and resiliency, we compared age groups in an event-related functional MRI study. During scanning, seventeen younger and sixteen older adults judged whether words stereotypical of aging and control words described them. Judging stereotype words versus control words revealed higher activations in posterior midline regions associated with self-referencing, including the precuneus, for older adults compared to younger adults. While heightening salience of stereotypes can evoke a threat response, detrimentally affecting performance, invoking stereotypes can also lead to a phenomenon called resilience, where older adults use those stereotypes to create downward social comparisons to other older adults and elevate their own self-perception. In an exploration of brain regions underlying stereotype threat responses as well as resilience responses, we found significant activation in older adults for threat over resilient responses in posterior midline regions including the precuneus, associated with self-reflective thought, and parahippocampal gyrus, implicated in autobiographical memory. These findings have implications for understanding how aging stereotypes may affect the engagement of regions associated with contextual and social processing of self-relevant information, indicating ways in which stereotype threat can affect the engagement of neural resources with age.

  1. SOCIAL ANXIETY DISORDER AND THE PSYCHOBIOLOGY OF SELF-CONSCIOUSNESS

    Directory of Open Access Journals (Sweden)

    Dan J Stein

    2015-09-01

    Full Text Available Individuals with social anxiety disorder (SAD are characterized by fear or anxiety about social situations, but also by important alterations in self-referential processing. Given advances in our understanding of the neurocircuitry and neurochemistry of SAD, the question arises of the relationship between this research and an emergent literature on the psychobiology of self and self-consciousness. A number of investigations of SAD have highlighted altered activity in the medial prefrontal cortex (involved in self-representation, insula (involved in interoceptive processing, and other structures that play a role in bodily self-consciousness, as well as the potential value of interventions such as selective serotonin reuptake inhibitors and self-focused reappraisal in normalizing such changes. Future studies to more closely investigate associations between psychobiological alterations and changes in self-related processing in SAD, may be useful in shedding additional light on both SAD and self-consciousness.

  2. Understanding Negative Self-Evaluations in Borderline Personality Disorder-a Review of Self-Related Cognitions, Emotions, and Motives.

    Science.gov (United States)

    Winter, Dorina; Bohus, Martin; Lis, Stefanie

    2017-03-01

    Self-conscious emotions, such as guilt, shame, or self-disgust, as well as self-related motives, such as self-enhancement or self-verification, influence how people perceive, evaluate, memorize, and respond to self-related information. They not only influence peoples' concepts of themselves but may also affect their behavior in social environments. In the current review, we describe alterations of self-related processing in borderline personality disorder (BPD). We chose BPD as an example of a mental disorder of which impairments in self-functioning and identity constitute a major feature. Since terminology used in clinical research on self-referential processing is diverse and often confusing, we start with reviewing some of the main concepts in this area of research using a conceptual framework provided from social psychology. Most studies on self-referential processing in BPD focused on descriptions of self-esteem and revealed a negative self-concept, particularly expressed by explicitly reported low self-esteem. Moreover, self-esteem is unstable in BPD and likely reactive to self-relevant cues. BPD patients are prone to negative emotions with respect to themselves, such as self-disgust and shame. First data point to altered self-related motives, too. In conclusion, although explicit self-esteem is widely studied as a global and trait-like feature of BPD, there is a strong lack of studies that take the complexity of the construct self-esteem into account. Further studies on alterations in self-related processes are required to deepen our understanding of impairments of the self-concept in BPD and enable the improvement of psychosocial therapeutic approaches.

  3. Autonomous dynamics in neural networks: the dHAN concept and associative thought processes

    Science.gov (United States)

    Gros, Claudius

    2007-02-01

    The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept for autonomous associative thought processes in dense and homogeneous associative networks. An associative thought-process is characterized, within this approach, by a time-series of transient attractors. Each transient state corresponds to a stored information, a memory. The subsequent transient states are characterized by large associative overlaps, which are identical to acquired patterns. Memory states, the acquired patterns, have such a dual functionality. In this approach the self-sustained neural activity has a central functional role. The network acquires a discrimination capability, as external stimuli need to compete with the autonomous activity. Noise in the input is readily filtered-out. Hebbian learning of external patterns occurs coinstantaneous with the ongoing associative thought process. The autonomous dynamics needs a long-term working-point optimization which acquires within the dHAN concept a dual functionality: It stabilizes the time development of the associative thought process and limits runaway synaptic growth, which generically occurs otherwise in neural networks with self-induced activities and Hebbian-type learning rules.

  4. The Implicit Relational Assessment Procedure as a Measure of Self-Esteem

    Science.gov (United States)

    Timko, C. Alix; England, Erica L.; Herbert, James D.; Forman, Evan M.

    2010-01-01

    Two studies were conducted to pilot the Implicit Relational Assessment Procedure (IRAP) in measuring attitudes toward the self: one related to body image specifically and another assessing the broader construct of self-esteem. Study 1 utilized the IRAP with female college students to examine self-referential beliefs regarding body image. Results…

  5. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The Effect of Self-Referential Expectation on Emotional Face Processing.

    Directory of Open Access Journals (Sweden)

    Mel McKendrick

    Full Text Available The role of self-relevance has been somewhat neglected in static face processing paradigms but may be important in understanding how emotional faces impact on attention, cognition and affect. The aim of the current study was to investigate the effect of self-relevant primes on processing emotional composite faces. Sentence primes created an expectation of the emotion of the face before sad, happy, neutral or composite face photos were viewed. Eye movements were recorded and subsequent responses measured the cognitive and affective impact of the emotion expressed. Results indicated that primes did not guide attention, but impacted on judgments of valence intensity and self-esteem ratings. Negative self-relevant primes led to the most negative self-esteem ratings, although the effect of the prime was qualified by salient facial features. Self-relevant expectations about the emotion of a face and subsequent attention to a face that is congruent with these expectations strengthened the affective impact of viewing the face.

  7. Neural correlates of own name and own face detection in autism spectrum disorder.

    Science.gov (United States)

    Cygan, Hanna B; Tacikowski, Pawel; Ostaszewski, Pawel; Chojnicka, Izabela; Nowicka, Anna

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition clinically characterized by social interaction and communication difficulties. To date, the majority of research efforts have focused on brain mechanisms underlying the deficits in interpersonal social cognition associated with ASD. Recent empirical and theoretical work has begun to reveal evidence for a reduced or even absent self-preference effect in patients with ASD. One may hypothesize that this is related to the impaired attentional processing of self-referential stimuli. The aim of our study was to test this hypothesis. We investigated the neural correlates of face and name detection in ASD. Four categories of face/name stimuli were used: own, close-other, famous, and unknown. Event-related potentials were recorded from 62 electrodes in 23 subjects with ASD and 23 matched control subjects. P100, N170, and P300 components were analyzed. The control group clearly showed a significant self-preference effect: higher P300 amplitude to the presentation of own face and own name than to the close-other, famous, and unknown categories, indicating preferential attentional engagement in processing of self-related information. In contrast, detection of both own and close-other's face and name in the ASD group was associated with enhanced P300, suggesting similar attention allocation for self and close-other related information. These findings suggest that attention allocation in the ASD group is modulated by the personal significance factor, and that the self-preference effect is absent if self is compared to close-other. These effects are similar for physical and non-physical aspects of the autistic self. In addition, lateralization of face and name processing is attenuated in ASD, suggesting atypical brain organization.

  8. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    Science.gov (United States)

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  9. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  10. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  11. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  12. Can the Pro-Drop Parameter Account for All the Errors in the Acquisition of Non-Referential "It" in L2 English?

    Science.gov (United States)

    Antonova-Ünlü, Elena

    2015-01-01

    Numerous studies, examining the acquisition of non-referential it in [-pro-drop] English by learners of [+pro-drop] languages, have revealed that their participants omit non-referential subjects in English if their L1 allows null-subject position. However, due to the specificity of their focus, these studies have not considered other difficulties…

  13. De sterktebepaling van drie monocomponent insulines ten opzichte van het Europese Referentie Preparaat

    NARCIS (Netherlands)

    Hillen; F.C.; Jong; Y. de; Weick; G.

    1986-01-01

    Drie monocomponent insulines werden geijkt tegen de Europese Referentie Standaar. Van iedere insuline-soort (humaan-, varken-, en runderinsulines) werden drie ijkingen uitgevoerd als 2 x 2 punts- kuisijking bij konijnen met de bloedglucose-verlaging methode. De gecombineerde sterktes waren

  14. Neurofeedback and the Neural Representation of Self: Lessons From Awake State and Sleep.

    Science.gov (United States)

    Ioannides, Andreas A

    2018-01-01

    Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks) has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of "normal" activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in large scale networks

  15. Neurofeedback and the Neural Representation of Self: Lessons From Awake State and Sleep

    Directory of Open Access Journals (Sweden)

    Andreas A. Ioannides

    2018-04-01

    Full Text Available Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of “normal” activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in

  16. Functionally referential and intentional communication in the domestic dog: effects of spatial and social contexts.

    Science.gov (United States)

    Gaunet, Florence; Deputte, Bertrand L

    2011-11-01

    In apes, four criteria are set to explore referential and intentional communication: (1) successive visual orienting between a partner and distant targets, (2) the presence of apparent attention-getting behaviours, (3) the requirement of an audience to exhibit the behaviours, and (4) the influence of the direction of attention of an observer on the behaviours. The present study aimed at identifying these criteria in behaviours used by dogs in communicative episodes with their owner when their toy is out of reach, i.e. gaze at a hidden target or at the owner, gaze alternation between a hidden target and the owner, vocalisations and contacts. In this study, an additional variable was analysed: the position of the dog in relation to the location of the target. Dogs witnessed the hiding of a favourite toy, in a place where they could not get access to. We analysed how dogs engaged in communicative deictic behaviours in the presence of their owner; four heights of the target were tested. To control for the motivational effects of the toy on the dogs' behaviour and for the referential nature of the behaviours, observations were staged where only the toy or only the owner was present, for one of the four heights. The results show that gazing at the container and gaze alternation were used as functionally referential and intentional communicative behaviours. Behavioural patterns of dog position, the new variable, fulfilled the operational criteria for functionally referential behaviour and a subset of operational criteria for intentional communication: the dogs used their own position as a local enhancement signal. Finally, our results suggest that the dogs gazed at their owner at optimal locations in the experimental area, with respect to the target height and their owner's (or their own) line of gaze. © Springer-Verlag 2011

  17. Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia.

    Science.gov (United States)

    van der Meer, Lisette; Costafreda, Sergi; Aleman, André; David, Anthony S

    2010-05-01

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions known as Cortical Midline Structures (CMS) appearing to be critically involved in self-reflection processes. Furthermore, it has been shown that patients suffering damage to the CMS, have difficulties in properly evaluating the problems they encounter and often overestimate their capacities and performance. Building on previous work, a meta-analysis of published fMRI and PET studies on self-reflection was conducted. The results showed that two areas within the medial prefrontal cortex (MPFC) are important in reflective processing, namely the ventral (v) and dorsal (d) MPFC. In this paper a model is proposed in which the vMPFC is responsible for tagging information relevant for 'self', whereas the dMPFC is responsible for evaluation and decision-making processes in self- and other-referential processing. Finally, implications of the model for schizophrenia and lack of insight are noted. (c) 2009 Elsevier Ltd. All rights reserved.

  18. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    Science.gov (United States)

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  19. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  20. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  1. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  2. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    International Nuclear Information System (INIS)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. (interdisciplinary physics and related areas of science and technology)

  3. Processos de Referenciação Na Produção Discursiva Referential processes in discourse production

    Directory of Open Access Journals (Sweden)

    Ingedore Villaça KOCH

    1998-01-01

    Full Text Available Este ensaio analisa algumas das estratégias pelas quais se realizam os processos referenciais na produção do texto oral. Trata de explicar como os referentes são introduzidos, conduzidos, retomados, apontados e identificados no texto. A relevância desta investigação está diretamente ligada à essencialidade do sistema referencial na coesividade e organização tópica do texto. Justamente por isso, Sanford e Garrod (1982:100 julgam importante a resolução do processo referencial para a própria compreensão textual.In this paper, we discuss some of the strategies responsable for the accomplishment of referential processes in spoken language. Our aim is to elucidate how referents are introduced, maintained, retrieved, indicated and identified in the text. The relevance of this investigation is directly connected with the essenciality of referential system for the connexity and tropical organization of texts and with the conviction that the resolution of referential processes is the basis for text comprehension.

  4. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  5. Tone of voice guides word learning in informative referential contexts.

    Science.gov (United States)

    Reinisch, Eva; Jesse, Alexandra; Nygaard, Lynne C

    2013-06-01

    Listeners infer which object in a visual scene a speaker refers to from the systematic variation of the speaker's tone of voice (ToV). We examined whether ToV also guides word learning. During exposure, participants heard novel adjectives (e.g., "daxen") spoken with a ToV representing hot, cold, strong, weak, big, or small while viewing picture pairs representing the meaning of the adjective and its antonym (e.g., elephant-ant for big-small). Eye fixations were recorded to monitor referent detection and learning. During test, participants heard the adjectives spoken with a neutral ToV, while selecting referents from familiar and unfamiliar picture pairs. Participants were able to learn the adjectives' meanings, and, even in the absence of informative ToV, generalize them to new referents. A second experiment addressed whether ToV provides sufficient information to infer the adjectival meaning or needs to operate within a referential context providing information about the relevant semantic dimension. Participants who saw printed versions of the novel words during exposure performed at chance during test. ToV, in conjunction with the referential context, thus serves as a cue to word meaning. ToV establishes relations between labels and referents for listeners to exploit in word learning.

  6. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  7. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  8. Effects of Target Attributes on Children's Patterns of Referential Under- and Overspecification

    Science.gov (United States)

    Charest, Monique; Johnston, Judith R.

    2016-01-01

    We examined the effects of object attributes on children's descriptive patterns in a referential communication task. Thirty preschoolers described object pairs that were selected by the experimenter. The targets were defined by shared size or colour, and differed on the non-target dimension in half of the trials. The children also completed a…

  9. Built-in self-repair of VLSI memories employing neural nets

    Science.gov (United States)

    Mazumder, Pinaki

    1998-10-01

    The decades of the Eighties and the Nineties have witnessed the spectacular growth of VLSI technology, when the chip size has increased from a few hundred devices to a staggering multi-millon transistors. This trend is expected to continue as the CMOS feature size progresses towards the nanometric dimension of 100 nm and less. SIA roadmap projects that, where as the DRAM chips will integrate over 20 billion devices in the next millennium, the future microprocessors may incorporate over 100 million transistors on a single chip. As the VLSI chip size increase, the limited accessibility of circuit components poses great difficulty for external diagnosis and replacement in the presence of faulty components. For this reason, extensive work has been done in built-in self-test techniques, but little research is known concerning built-in self-repair. Moreover, the extra hardware introduced by conventional fault-tolerance techniques is also likely to become faulty, therefore causing the circuit to be useless. This research demonstrates the feasibility of implementing electronic neural networks as intelligent hardware for memory array repair. Most importantly, we show that the neural network control possesses a robust and degradable computing capability under various fault conditions. Overall, a yield analysis performed on 64K DRAM's shows that the yield can be improved from as low as 20 percent to near 99 percent due to the self-repair design, with overhead no more than 7 percent.

  10. Neural Correlates of Biased Responses: The Negative Method Effect in the Rosenberg Self-Esteem Scale Is Associated with Right Amygdala Volume.

    Science.gov (United States)

    Wang, Yinan; Kong, Feng; Huang, Lijie; Liu, Jia

    2016-10-01

    Self-esteem is a widely studied construct in psychology that is typically measured by the Rosenberg Self-Esteem Scale (RSES). However, a series of cross-sectional and longitudinal studies have suggested that a simple and widely used unidimensional factor model does not provide an adequate explanation of RSES responses due to method effects. To identify the neural correlates of the method effect, we sought to determine whether and how method effects were associated with the RSES and investigate the neural basis of these effects. Two hundred and eighty Chinese college students (130 males; mean age = 22.64 years) completed the RSES and underwent magnetic resonance imaging (MRI). Behaviorally, method effects were linked to both positively and negatively worded items in the RSES. Neurally, the right amygdala volume negatively correlated with the negative method factor, while the hippocampal volume positively correlated with the general self-esteem factor in the RSES. The neural dissociation between the general self-esteem factor and negative method factor suggests that there are different neural mechanisms underlying them. The amygdala is involved in modulating negative affectivity; therefore, the current study sheds light on the nature of method effects that are related to self-report with a mix of positively and negatively worded items. © 2015 Wiley Periodicals, Inc.

  11. Neural networks involved in learning lexical-semantic and syntactic information in a second language.

    Science.gov (United States)

    Mueller, Jutta L; Rueschemeyer, Shirley-Ann; Ono, Kentaro; Sugiura, Motoaki; Sadato, Norihiro; Nakamura, Akinori

    2014-01-01

    The present study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of language acquisition in a realistic learning environment. Japanese native speakers were trained in a miniature version of German prior to fMRI scanning. During scanning they listened to (1) familiar sentences, (2) sentences including a novel sentence structure, and (3) sentences containing a novel word while visual context provided referential information. Learning-related decreases of brain activation over time were found in a mainly left-hemispheric network comprising classical frontal and temporal language areas as well as parietal and subcortical regions and were largely overlapping for novel words and the novel sentence structure in initial stages of learning. Differences occurred at later stages of learning during which content-specific activation patterns in prefrontal, parietal and temporal cortices emerged. The results are taken as evidence for a domain-general network supporting the initial stages of language learning which dynamically adapts as learners become proficient.

  12. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  13. Early referential context effects in sentence processing: Evidence from event-related brain potentials

    NARCIS (Netherlands)

    Berkum, J.J.A. van; Brown, C.M.; Hagoort, P.

    1999-01-01

    An event-related brain potentials experiment was carried out to examine the interplay of referential and structural factors during sentence processing in discourse. Subjects read (Dutch) sentences beginning like “David told the girl that … ” in short story contexts that had introduced either one or

  14. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  15. Neural processing of familiar and unfamiliar children’s faces: effects of experienced love withdrawal, but no effects of neutral and threatening priming.

    Directory of Open Access Journals (Sweden)

    Esther eHeckendorf

    2016-05-01

    Full Text Available In the face of a potential threat to his or her child, a parent’s caregiving system becomes activated, motivating the parent to protect and care for the child. However, the neural correlates of these responses are not yet well understood. The current study was a pilot study to investigate the processing of subliminally presented threatening primes and their effects on neural responses to familiar and unfamiliar children’s faces. In addition, we studied potential moderating effects of empathy and childhood experiences of love-withdrawal. A total of 45 students participated in an fMRI experiment in which they were shown pictures of familiar children (pictures morphed to resemble the participant like an own child would and unfamiliar children preceded by neutral and threatening primes. Participants completed a modified version of the Children’s Report of Parental Behavior Inventory to measure parental love withdrawal, and the Empathic Concern scale of the Interpersonal Reactivity Index to measure affective empathy. Contrary to our expectations, we did not find evidence for subliminal priming effects. However, we did find enhanced activity in the right inferior frontal gyrus (involved in self-referential processing and in face processing areas (infero-lateral occipital cortex and fusiform areas in response to the familiar child, indicating preferential processing of these faces. Effects of familiarity in face processing areas were larger for participants reporting more love withdrawal, suggesting enhanced attention to and processing of these highly attachment relevant stimuli. Unfamiliar faces elicited enhanced activity in bilateral superior temporal gyrus and other regions associated with theory of mind (ToM, which may indicate more effortful ToM processing of these faces. We discuss the potential difference between a familiarity and a caregiving effect triggered by the morphed faces, and emphasize the need for replication in parents with

  16. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Neural correlates of own name and own face detection in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Hanna B Cygan

    Full Text Available Autism spectrum disorder (ASD is a heterogeneous neurodevelopmental condition clinically characterized by social interaction and communication difficulties. To date, the majority of research efforts have focused on brain mechanisms underlying the deficits in interpersonal social cognition associated with ASD. Recent empirical and theoretical work has begun to reveal evidence for a reduced or even absent self-preference effect in patients with ASD. One may hypothesize that this is related to the impaired attentional processing of self-referential stimuli. The aim of our study was to test this hypothesis. We investigated the neural correlates of face and name detection in ASD. Four categories of face/name stimuli were used: own, close-other, famous, and unknown. Event-related potentials were recorded from 62 electrodes in 23 subjects with ASD and 23 matched control subjects. P100, N170, and P300 components were analyzed. The control group clearly showed a significant self-preference effect: higher P300 amplitude to the presentation of own face and own name than to the close-other, famous, and unknown categories, indicating preferential attentional engagement in processing of self-related information. In contrast, detection of both own and close-other's face and name in the ASD group was associated with enhanced P300, suggesting similar attention allocation for self and close-other related information. These findings suggest that attention allocation in the ASD group is modulated by the personal significance factor, and that the self-preference effect is absent if self is compared to close-other. These effects are similar for physical and non-physical aspects of the autistic self. In addition, lateralization of face and name processing is attenuated in ASD, suggesting atypical brain organization.

  18. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  19. Self-learning Monte Carlo with deep neural networks

    Science.gov (United States)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  20. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  1. Noradrenergic modulation of neural erotic stimulus perception.

    Science.gov (United States)

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit

    2017-09-01

    We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and

  2. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    Science.gov (United States)

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The effect of transcranial direct current stimulation of the prefrontal cortex on implicit self-esteem is mediated by rumination after criticism.

    Science.gov (United States)

    De Raedt, Rudi; Remue, Jonathan; Loeys, Tom; Hooley, Jill M; Baeken, Chris

    2017-12-01

    It has been proposed that a crucial link between cognitive (i.e., self-schemas) and biological vulnerability is prefrontal control. This is because decreased control leads to impaired ability to inhibit ruminative thinking after the activation of negative self-schemas. However, current evidence is mainly correlational. In the current experimental study we tested whether the effect of neurostimulation of the dorsolateral prefrontal cortex (DLPFC) on self-esteem is mediated by momentary ruminative self-referential thinking (MRST) after the induction of negative self-schemas by criticism. We used a single, sham-controlled crossover session of anodal transcranial Direct Current Stimulation (tDCS) applied to the left DLPFC (cathode over the right supraorbital region) in healthy female individuals. After receiving tDCS/sham stimulation, we measured MRST and exposed the participants to critical audio scripts, followed by another MRST measurement. Subsequently, all participants completed two Implicit Relational Assessment Procedures to implicitly measure actual and ideal self-esteem. Our behavioral data indicated a significant decrease in MRST after real but not sham tDCS. Moreover, although there was no immediate effect of tDCS on implicit self-esteem, an indirect effect was found through double mediation, with the difference in MRST from baseline to after stimulation and from baseline to after criticism as our two mediators. The larger the decrease of criticism induced MRST after real tDCS, the higher the level of actual self-esteem. Our results show that tDCS can influence cognitive processes such as rumination, and subsequently self-esteem, but only after the activation of negative self-schemas. Rumination and negative self-esteem characterize different forms of psychopathology, and these data expand our knowledge of the role of the prefrontal cortex in controlling these self-referential processes, and the mechanisms of action of tDCS. Copyright © 2017 Elsevier Ltd

  4. Self-tuning control of a nuclear reactor using a Gaussian function neural network

    International Nuclear Information System (INIS)

    Park, M.G.; Cho, N.Z.

    1995-01-01

    A self-tuning control method is described for a nuclear reactor system that requires only a set of input-output measurements. The use of an artificial neural network in nonlinear model-based adaptive control, both as a plant model and a controller, is investigated. A neural network called a Gaussian function network is used for one-step-ahead predictive control to track the desired plant output. The effectiveness of the controller is demonstrated by the application of the method to the power tracking control of the Korea Multipurpose Research Reactor

  5. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders. © 2013 Published by Elsevier Ireland Ltd.

  6. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  7. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  8. Tolerating dissimilar other when primed with death: neural evidence of self-control engaged by interdependent people in Japan.

    Science.gov (United States)

    Yanagisawa, Kuniaki; Kashima, Emiko S; Moriya, Hiroki; Masui, Keita; Furutani, Kaichiro; Yoshida, Hiroshi; Ura, Mitsuhiro; Nomura, Michio

    2017-06-01

    Mortality salience (MS) has been shown to lead to derogation of others with dissimilar worldviews, yet recent research has shown that Asian-Americans who presumably adopt an interdependent self-construal (SC) tend to reveal greater tolerance after MS induction. In the present study, we demonstrated that Japanese individuals who are high on interdependent SC indeed show greater tolerance toward worldview-threatening other in the MS (vs control) condition, thus replicating the prior research. Extending this research, we also found that interdependent people's tolerance toward worldview-threatening other was mediated by increased activity in the right ventrolateral prefrontal cortex in the MS condition. These data suggested that when exposed to death-related stimuli, highly interdependent individuals may spontaneously activate their neural self-control system which may serve to increase tolerance toward others. © The Author (2017). Published by Oxford University Press.

  9. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Manasa; Krishnan, Uma Maheswari; Sethuraman, Swaminathan, E-mail: swami@sastra.edu

    2016-05-01

    Electrospun nanofibers are attractive candidates for neural regeneration due to similarity to the extracellular matrix. Several synthetic polymers have been used but they lack in providing the essential biorecognition motifs on their surfaces. Self-assembling peptide nanofiber scaffolds (SAPNFs) like RADA16 and recently, designer SAPs with functional motifs RADA16-I-BMHP1 areexamples, which showed successful spinal cord regeneration. But these peptide nanofiber scaffolds have poor mechanical properties and faster degradation rates that limit their use for larger nerve defects. Hence, we have developed a novel hybrid nanofiber scaffold of polymer poly(L-lactide-co-glycolide) (PLGA) and RADA16-I-BMHP1. The scaffolds were characterized for the presence of peptides both qualitatively and quantitatively using several techniques like SEM, EDX, FTIR, CHN analysis, Circular Dichroism analysis, Confocal and thermal analysis. Peptide self-assembly was retained post-electrospinning and formed rod-like nanostructures on PLGA nanofibers. In vitro cell compatibility was studied using rat Schwann cells and their adhesion, proliferation and gene expression levels on the designed scaffolds were evaluated. Our results have revealed the significant effects of the peptide blended scaffolds on promoting Schwann cell adhesion, extension and phenotypic expression. Neural development markers (SEM3F, NRP2 & PLX1) gene expression levels were significantly upregulated in peptide blended scaffolds compared to the PLGA scaffolds. Thus the hybrid blended novel designer scaffolds seem to be promising candidates for successful and functional regeneration of the peripheral nerve. - Highlights: • A novel blended scaffold of polymer PLGA and designer self-assembling peptide RADA16-I-BMPH1 was designed • The peptide retained the self-assembling features and formed rod like nanostructures on top of PLGA nanofibers • PLGA-peptide scaffolds have promoted the Schwann cell bipolar extension and

  11. The Central Neural Foundations of Awareness and Self-Awareness

    Science.gov (United States)

    Pfaff, D.; Martin, E. M.; Weingarten, W.; Vimal, V.

    In the past, neuroscientists have done very well to concentrate onexplaining the mechanisms for very specific, simple behaviors. For example, our laboratory's work with molecular and neural mechanisms of a simple sex behavior proved for the first time that specific biochemical reactions in specific parts of the brain govern a specific behavior [D. W. Pfaff, Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation (The MIT Press, Cambridge, 1999)]. Now, advances in our field coupled with new techniques permit us to attack the problems of explaining global changes of state in the central nervous system. For example, how does a simple sex behavior depend on sexual arousal, and in turn, how does that sexual arousal depend on other forms of CNS arousal? Of surpassing interest is the explanation of the primary causes of brain arousal [D. W. Pfaff, textit{Brain Arousal and Information Theory: Neural and Genetic Mechanisms} (Harvard University Press, Cambridg e, 2006)]. We have hypothesized that the earliest and most elementary event in waking up the brain is the activation of certain primitive nerve cells in the hindbrain reticular formation. Hypothesizing a `generalized arousal' force emanating from these cells puts forth an idea roughly analogous to the hypothesis of a `big bang' in astrophysics, or to our ideas about the magma of the earth in geophysics. Following the activation of this primitive arousal force we are able to be alert and aware. The neuroanatomical pathways serving brain arousal are fairly well known: they are Bilateral, Bidirectional, Universal among vertebrate animals including humans, and they are always involved in Response Potentiation, approach or avoidance responses (BBURP theory). More than 120 genes are involved in the regulation of brain arousal. In theoretical terms, the discussion so far has dealt with `bottoms up' approaches to awareness -- from mechanisms in the hindbrain working through several phylogenetically ancient

  12. Change in emotional self-concept following socio-cognitive training relates to structural plasticity of the prefrontal cortex.

    Science.gov (United States)

    Lumma, Anna-Lena; Valk, Sofie L; Böckler, Anne; Vrtička, Pascal; Singer, Tania

    2018-04-01

    Self-referential processing is a key component of the emotional self-concept. Previous studies have shown that emotional self-referential processing is related to structure and function of cortical midline areas such as medial prefrontal cortex (mPFC), and that it can be altered on a behavioral level by specific mental training practices. However, it remains unknown how behavioral training-related change in emotional self-concept content relates to structural plasticity. To address this issue, we examined the relationship between training-induced change in participant's emotional self-concept measured through emotional word use in the Twenty Statement Test and change in cortical thickness in the context of a large-scale longitudinal mental training study called the ReSource Project . Based on prior behavioral findings showing increased emotional word use particularly after socio-cognitive training targeting perspective-taking capacities, this study extended these results by revealing that individual differences in the degree to which participants changed their emotional self-concept after training was positively related to cortical thickness change in right mPFC extending to dorsolateral PFC (dlPFC). Furthermore, increased self-related negative emotional word use after training was positively associated with cortical thickness change in left pars orbitalis and bilateral dlPFC. Our findings reveal training-related structural brain change in regions known to be involved in self-referential processing and cognitive control, and could indicate a relationship between restructuring of the emotional self-concept content as well as reappraisal of negative aspects and cortical thickness change. As such, our findings can guide the development of psychological interventions targeted to alter specific facets of the self-concept.

  13. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  14. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis.

    Directory of Open Access Journals (Sweden)

    Stephen N Sansom

    2009-06-01

    Full Text Available Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells

  15. Neural constructivism or self-organization?

    NARCIS (Netherlands)

    van der Maas, H.L.J.; Molenaar, P.C.M.

    2000-01-01

    Comments on the article by S. R. Quartz et al (see record 1998-00749-001) which discussed the constructivist perspective of interaction between cognition and neural processes during development and consequences for theories of learning. Three arguments are given to show that neural constructivism

  16. Referential Communication Skills of Children with Williams Syndrome: Understanding when Messages Are Not Adequate

    Science.gov (United States)

    John, Angela E.; Rowe, Melissa L.; Mervis, Carolyn B.

    2009-01-01

    Although children with Williams syndrome have relatively good structural language and concrete vocabulary abilities, they have difficulty with pragmatic aspects of language. To investigate the impact of pragmatic difficulties on listener-role referential communication, we administered a picture placement task designed to measure ability to…

  17. THE DIALOGICAL SELF IN PSYCHOANALYSIS.

    Science.gov (United States)

    Muller, Felipe

    2016-10-01

    This paper describes the shift that appears to be taking place in contemporary psychoanalysis, as reflected among intersubjective approaches, from a monological conception of the self to a dialogical one. The monological self emphasizes the separation between mind, body, and external world, focusing on the representational and descriptive/referential function of language. In contrast, the dialogical self emphasizes practices, the permeable nature of relationships between subjects, and the constitutive function of language. This paper attempts to explain the growing emphasis on the dialogical self, understood from a theoretical, metatheoretical, and technical point of view, using contemporary intersubjective approaches to illustrate this shift. © 2016 The Psychoanalytic Quarterly, Inc.

  18. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  19. State-dependent, bidirectional modulation of neural network activity by endocannabinoids.

    Science.gov (United States)

    Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J

    2011-11-16

    The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.

  20. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  1. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  2. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  3. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  4. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total ..... Genetic algorithm-based self-learning fuzzy PI controller for shunt active filter, ... Verification of global optimality of the OFC active power filters by means of ...

  5. Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.

    Science.gov (United States)

    Grilli, Matthew D; Glisky, Elizabeth L

    2010-11-01

    The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.

  6. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  7. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  8. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  10. Self-face recognition in social context.

    Science.gov (United States)

    Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta

    2012-06-01

    The concept of "social self" is often described as a representation of the self-reflected in the eyes or minds of others. Although the appearance of one's own face has substantial social significance for humans, neuroimaging studies have failed to link self-face recognition and the likely neural substrate of the social self, the medial prefrontal cortex (MPFC). We assumed that the social self is recruited during self-face recognition under a rich social context where multiple other faces are available for comparison of social values. Using functional magnetic resonance imaging (fMRI), we examined the modulation of neural responses to the faces of the self and of a close friend in a social context. We identified an enhanced response in the ventral MPFC and right occipitoparietal sulcus in the social context specifically for the self-face. Neural response in the right lateral parietal and inferior temporal cortices, previously claimed as self-face-specific, was unaffected for the self-face but unexpectedly enhanced for the friend's face in the social context. Self-face-specific activation in the pars triangularis of the inferior frontal gyrus, and self-face-specific reduction of activation in the left middle temporal gyrus and the right supramarginal gyrus, replicating a previous finding, were not subject to such modulation. Our results thus demonstrated the recruitment of a social self during self-face recognition in the social context. At least three brain networks for self-face-specific activation may be dissociated by different patterns of response-modulation in the social context, suggesting multiple dynamic self-other representations in the human brain. Copyright © 2011 Wiley-Liss, Inc.

  11. What if? Neural activity underlying semantic and episodic counterfactual thinking.

    Science.gov (United States)

    Parikh, Natasha; Ruzic, Luka; Stewart, Gregory W; Spreng, R Nathan; De Brigard, Felipe

    2018-05-25

    Counterfactual thinking (CFT) is the process of mentally simulating alternative versions of known facts. In the past decade, cognitive neuroscientists have begun to uncover the neural underpinnings of CFT, particularly episodic CFT (eCFT), which activates regions in the default network (DN) also activated by episodic memory (eM) recall. However, the engagement of DN regions is different for distinct kinds of eCFT. More plausible counterfactuals and counterfactuals about oneself show stronger activity in DN regions compared to implausible and other- or object-focused counterfactuals. The current study sought to identify a source for this difference in DN activity. Specifically, self-focused counterfactuals may also be more plausible, suggesting that DN core regions are sensitive to the plausibility of a simulation. On the other hand, plausible and self-focused counterfactuals may involve more episodic information than implausible and other-focused counterfactuals, which would imply DN sensitivity to episodic information. In the current study, we compared episodic and semantic counterfactuals generated to be plausible or implausible against episodic and semantic memory reactivation using fMRI. Taking multivariate and univariate approaches, we found that the DN is engaged more during episodic simulations, including eM and all eCFT, than during semantic simulations. Semantic simulations engaged more inferior temporal and lateral occipital regions. The only region that showed strong plausibility effects was the hippocampus, which was significantly engaged for implausible CFT but not for plausible CFT, suggestive of binding more disparate information. Consequences of these findings for the cognitive neuroscience of mental simulation are discussed. Published by Elsevier Inc.

  12. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  13. Applications of self-organizing neural networks in virtual screening and diversity selection.

    Science.gov (United States)

    Selzer, Paul; Ertl, Peter

    2006-01-01

    Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.

  14. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    Accurate self-awareness is essential for adapting one's tasks and goals to one's actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer's disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects' functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer's disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of overlooking

  15. A pattern theory of self.

    Science.gov (United States)

    Gallagher, Shaun

    2013-01-01

    I argue for a pattern theory of self as a useful way to organize an interdisciplinary approach to discussions of what constitutes a self. According to the pattern theory, a self is constituted by a number of characteristic features or aspects that may include minimal embodied, minimal experiential, affective, intersubjective, psychological/cognitive, narrative, extended, and situated aspects. A pattern theory of self helps to clarify various interpretations of self as compatible or commensurable instead of thinking them in opposition, and it helps to show how various aspects of self may be related across certain dimensions. I also suggest that a pattern theory of self can help to adjudicate (or at least map the differences) between the idea that the self correlates to self-referential processing in the cortical midline structures of the brain and other narrower or wider conceptions of self.

  16. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  17. Real-time neural network-based self-tuning control of a nonlinear electro-hydraulic servomotor

    Energy Technology Data Exchange (ETDEWEB)

    Canelon, J.I.; Ortega, A.G. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Electrical Engineering; Shieh, L.S. [Houston Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering; Bastidas, J.I. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Mechanical Engineering; Zhang, Y.; Akujuobi, C.M. [Prairie View A and M Univ., Prairie View, TX (United States). Center of Excellence for Communication Systems Technology Research and Dept. of Engineering Technology

    2010-08-13

    For high power applications, hydraulic actuators offer many advantages over electromagnetic actuators, including higher torque/mass ratios; smaller control gains; excellent torque capability; filtered high frequency noise; better heat transfer characteristics; smaller size; higher speed of response of the servomechanism; cheaper hardware; and higher reliability. Therefore, any application that requires a large force applied smoothly by an actuator is a candidate for hydraulic power. Examples of such applications include vehicle steering and braking systems; roll mills; drilling rigs; heavy duty crane and presses; and industrial robots and actuators for aircraft control surfaces such as ailerons and flaps. It is extremely important to create effective control strategies for hydraulic systems. This paper outlined the real-time implementation of a neural network-based approach, for self-tuning control of the angular position of a nonlinear electro-hydraulic servomotor. Using an online training algorithm, a neural network autoregressive moving-average model with exogenous input (ARMAX) model of the system was identified and continuously updated and an optimal linear ARMAX model was determined. The paper briefly depicted the neural network-based self-tuning control approach and a description of the experimental equipment (hardware and software) was presented including the implementation details. The experimental results were discussed and conclusions were summarized. It was found that the approach proved to be very effective in the control of this fast dynamics system, outperforming a fine tuned PI controller. Therefore, although the self-tuning approach was computationally demanding, it was feasible for real-time implementation. 22 refs., 6 figs.

  18. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    International Nuclear Information System (INIS)

    Zhou Liming; Zhang Yingyue; Chen Tianlun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse, the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  19. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Individual differences in self-reported self-control predict successful emotion regulation.

    Science.gov (United States)

    Paschke, Lena M; Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U; Schubert, Torsten; Stelzel, Christine; Walter, Henrik

    2016-08-01

    Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Neural Correlates of Attitude Change Following Positive and Negative Advertisements

    Science.gov (United States)

    Kato, Junko; Ide, Hiroko; Kabashima, Ikuo; Kadota, Hiroshi; Takano, Kouji; Kansaku, Kenji

    2009-01-01

    Understanding changes in attitudes towards others is critical to understanding human behaviour. Neuropolitical studies have found that the activation of emotion-related areas in the brain is linked to resilient political preferences, and neuroeconomic research has analysed the neural correlates of social preferences that favour or oppose consideration of intrinsic rewards. This study aims to identify the neural correlates in the prefrontal cortices of changes in political attitudes toward others that are linked to social cognition. Functional magnetic resonance imaging (fMRI) experiments have presented videos from previous electoral campaigns and television commercials for major cola brands and then used the subjects' self-rated affinity toward political candidates as behavioural indicators. After viewing negative campaign videos, subjects showing stronger fMRI activation in the dorsolateral prefrontal cortex lowered their ratings of the candidate they originally supported more than did those with smaller fMRI signal changes in the same region. Subjects showing stronger activation in the medial prefrontal cortex tended to increase their ratings more than did those with less activation. The same regions were not activated by viewing negative advertisements for cola. Correlations between the self-rated values and the neural signal changes underscore the metric representation of observed decisions (i.e., whether to support or not) in the brain. This indicates that neurometric analysis may contribute to the exploration of the neural correlates of daily social behaviour. PMID:19503749

  2. Right hemisphere neural activations in the recall of waking fantasies and of dreams.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Ranieri, Rebecca; Genduso, Valeria; Cavallotti, Simone; Castelnovo, Anna; Smeraldi, Enrico; Scarone, Silvio; D'Agostino, Armando

    2015-10-01

    The story-like organization of dreams is characterized by a pervasive bizarreness of events and actions that resembles psychotic thought, and largely exceeds that observed in normal waking fantasies. Little is known about the neural correlates of the confabulatory narrative construction of dreams. In this study, dreams, fantasies elicited by ambiguous pictorial stimuli, and non-imaginative first- and third-person narratives from healthy participants were recorded, and were then studied for brain blood oxygen level-dependent functional magnetic resonance imaging on a 3.0-Tesla scanner while listening to their own narrative reports and attempting a retrieval of the corresponding experience. In respect to non-bizarre reports of daytime activities, the script-driven recall of dreams and fantasies differentially activated a right hemisphere network including areas in the inferior frontal gyrus, and superior and middle temporal gyrus. Neural responses were significantly greater for fantasies than for dreams in all regions, and inversely proportional to the degree of bizarreness observed in narrative reports. The inferior frontal gyrus, superior and middle temporal gyrus have been implicated in the semantic activation, integration and selection needed to build a coherent story representation and to resolve semantic ambiguities; in deductive and inferential reasoning; in self- and other-perspective taking, theory of mind, moral and autobiographical reasoning. Their degree of activation could parallel the level of logical robustness or inconsistency experienced when integrating information and mental representations in the process of building fantasy and dream narratives. © 2015 European Sleep Research Society.

  3. The neural correlates of dealing with social exclusion in childhood.

    Science.gov (United States)

    van der Meulen, Mara; Steinbeis, Nikolaus; Achterberg, Michelle; Bilo, Elisabeth; van den Bulk, Bianca G; van IJzendoorn, Marinus H; Crone, Eveline A

    2017-08-01

    Observing social exclusion can be a distressing experience for children that can be followed by concerns for self-inclusion (self-concerns), as well as prosocial behavior to help others in distress (other-concerns). Indeed, behavioral studies have shown that observed social exclusion elicits prosocial compensating behavior in children, but motivations for the compensation of social exclusion are not well understood. To distinguish between self-concerns and other-concerns when observing social exclusion in childhood, participants (aged 7-10) played a four-player Prosocial Cyberball Game in which they could toss a ball to three other players. When one player was excluded by the two other players, the participant could compensate for this exclusion by tossing the ball more often to the excluded player. Using a three-sample replication (N = 18, N = 27, and N = 26) and meta-analysis design, we demonstrated consistent prosocial compensating behavior in children in response to observing social exclusion. On a neural level, we found activity in reward and salience related areas (striatum and dorsal anterior cingulate cortex (dACC)) when participants experienced inclusion, and activity in social perception related areas (orbitofrontal cortex) when participants experienced exclusion. In contrast, no condition specific neural effects were observed for prosocial compensating behavior. These findings suggest that in childhood observed social exclusion is associated with stronger neural activity for self-concern. This study aims to overcome some of the issues of replicability in developmental psychology and neuroscience by using a replication and meta-analysis design, showing consistent prosocial compensating behavior to the excluded player, and replicable neural correlates of experiencing exclusion and inclusion during middle childhood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neurodynamic system theory: scope and limits.

    Science.gov (United States)

    Erdi, P

    1993-06-01

    This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.

  5. Referential values of certain roentgenometric indices of the humerus diaphysis in newborn infants

    International Nuclear Information System (INIS)

    Georgieva, P.G.; Georgiev, I.G.

    1985-01-01

    A roentgenometric study was made on two indicies of the humerus diaphysis in the corpses of newborn infants: 1) the transverse diameter of the medullar canal in the centre of the diaphysis after Svadkovski; 2) the transverse diameter of the diaphysis at the level of the same bone after Spencer. The statistical processing of the data established had to take into consideration the fact that Gauss's distribution is not often found in biological indices. This complicates the determination of referntial values. That is why a combined method was applied which was worked out by the authors and ensures orderliness and precision. A similar mathematical-statistical apparatus has not been used by other authors. The studies made and the processing of the data obtained contribute to the following inferences on the transverse diameter of the medullar canal in the centre of the humerus diaphysis and the transverse diameter of the diaphysis at the same level of the same bone in newborn infants: 1) their referential values have Gauss's distribution; 2) sex dimorphism does not exist as an objective law; 3) their referential intervals have been determined

  6. Self-processing and the default mode network: Interactions with the mirror neuron system

    Directory of Open Access Journals (Sweden)

    Istvan eMolnar-Szakacs

    2013-09-01

    Full Text Available Recent evidence for the fractionation of the default mode network (DMN into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN - medial prefrontal cortex (MPFC and posterior cingulate cortex (PCC – as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network. Drawing from a rapidly evolving social cognitive neuroscience literature, we propose that embodied simulation and mentalizing are processes which allow us to gain insight into another's physical and mental state by providing privileged access to our own physical and mental states. Embodiment implies that the same neural systems are engaged for self- and other-understanding through a simulation mechanism, while mentalizing refers to the use of high-level conceptual information to make inferences about the mental states of self and others. These mechanisms work together to provide a coherent representation of the self and by extension, of others. Nodes of the DMN selectively interact with brain systems for embodiment and mentalizing, including the mirror neuron system, to produce appropriate mappings in the service of social cognitive demands.

  7. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    , the correlation of ECoG activity to kinematic parameters of arm movement is context-dependent, an important constraint to consider in future development of BMI systems. The third chapter delves into a fundamental organizational principle of the primate motor system---cortical control of contralateral limb movements. However, ipsilateral motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. We also recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.

  8. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Activations of the dorsolateral prefrontal cortex and thalamus during agentic self-evaluation are negatively associated with trait self-esteem.

    Science.gov (United States)

    Jiang, Ke; Wu, Shi; Shi, Zhenhao; Liu, Mingyan; Peng, Maoying; Shen, Yang; Yang, Juan

    2018-08-01

    Individual self-esteem is dominated more by agency than by communion. However, prior research has mainly focused on one's agentic/communal self-evaluation, while little is known about how one endorses others' agentic/communal evaluation of the self. The present study investigated the associations between trait self-esteem and fundamental dimensions of social cognition, i.e. agency vs. communion, during both self-evaluation and endorsement of others' evaluation of oneself. We also investigated the neural mechanisms underlying the relationship between trait self-esteem and agentic self-evaluation. Behavioral results revealed that self-esteem was positively correlated with the agentic ratings from self-evaluation and endorsement of others' evaluation of the self, and that the agentic self-evaluation was a significant full mediator between self-esteem and endorsement of others' agentic evaluation. Whole-brain regression analysis revealed that self-esteem was negatively correlated with right dorsolateral prefrontal and bilateral thalamic response to agentic self-evaluation. A possible interpretation is that low self-esteem people both hold a more self-critical attitude about the self and have less certainty or clarity of their self-concepts than high self-esteem people do. These findings have important implication for understanding the neural and cognitive mechanisms underlying self-esteem's effect on one's agentic self-evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Involvement of extracellular factors in maintaining self-renewal of neural stem cell by nestin.

    Science.gov (United States)

    Di, Chun Guang; Xiang, Andy Peng; Jia, Lei; Liu, Jun Feng; Lahn, Bruce T; Ma, Bao Feng

    2014-07-09

    Nestin knockout leads to embryonic lethality and self-renewal deficiency in neural stem cells (NSCs). However, how nestin maintains self-renewal remains uncertain. Here, we used the dosage effect of nestin in heterozygous mice (Nes+/-) to study self-renewal of NSCs. With existing extracellular signaling in vivo or in vitro, nestin levels do not affect proliferation ability or apoptosis when compared between Nes+/- and Nes+/+ NSCs. However, self-renewal ability of Nes+/- NSCs is impaired when plated at a low cell density and completely lost at a clonal density. This deficiency in self-renewal at a clonal density is rescued using a medium conditioned by Nes+/+ NSCs. In addition, the Akt signaling pathway is altered at low density and reversed by conditioned medium. Our data show that secreted factors contribute toward maintaining self-renewal of NSCs by nestin, potentially through Akt signaling.

  12. A pattern theory of self

    Directory of Open Access Journals (Sweden)

    Shaun eGallagher

    2013-08-01

    Full Text Available I argue for a pattern theory of self as a useful way to organize an interdisciplinary approach to discussions of what constitutes a self. According to the pattern theory, a self is constituted by a number of characteristic features or aspects that may include minimal embodied, minimal experiential, affective, intersubjective, psychological/cognitive, narrative, extended and situated aspects. A pattern theory of self helps to clarify various interpretations of self as compatible or commensurable instead of thinking them in opposition, and it helps to show how various aspects of self may be related across certain dimensions. I also suggest that a pattern theory of self can help to adjudicate (or at least map the differences between the idea that the self correlates to self-referential processing in the cortical midline structures of the brain and other narrower or wider conceptions of self.

  13. Correlation between insula activation and self-reported quality of orgasm in women.

    Science.gov (United States)

    Ortigue, Stephanie; Grafton, Scott T; Bianchi-Demicheli, Francesco

    2007-08-15

    Current multidimensional models of women's sexual function acknowledge the implicit impact of psychosocial factors on women's sexual function. Interaction between human sexual function and intensity of love has been also assumed, even if love is not an absolute condition. Yet, whereas great insights have been made in understanding the central mechanisms of the peripheral manifestations of women's sexual response, including orgasm, the cerebral correlates sustaining the interaction between women's sexual satisfaction and the unconscious role of the partner in this interpersonal experience remain unknown. Using functional imaging, we assessed brain activity elicited when 29 healthy female volunteers were unconsciously exposed to the subliminal presentation of their significant partner's name (a task known to elicit a partner-related neural network) and correlated it with individual scores obtained from different sexual dimensions: self-reported partnered orgasm quality (ease, satisfaction, frequency), love intensity and emotional closeness with that partner. Behavioral results identified a correlation between love and self-reported partnered orgasm quality. The more women were in love/emotionally close to their partner, the more they tended to report being satisfied with the quality of their partnered orgasm. However, no relationship was found between intensity of love and partnered orgasm frequency. Neuroimaging data expanded these behavioral results by demonstrating the involvement of a specific left-lateralized insula focus of neural activity correlating with orgasm scores, irrespective of dimension (frequency, ease, satisfaction). In contrast, intensity of being in love was correlated with a network involving the angular gyrus. These findings strongly suggest that intimate and sexual relationships are sustained by partly different mechanisms, even if they share some emotional-related mechanisms. The critical correlation between self-reports of orgasm quality and

  14. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    Science.gov (United States)

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  15. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  16. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  17. Development of objective flow regime identification method using self-organizing neural network

    International Nuclear Information System (INIS)

    Lee, Jae Young; Kim, Nam Seok; Kwak, Nam Yee

    2004-01-01

    Two-phase flow shows various flow patterns according to the amount of the void and its relative velocity to the liquid flow. This variation directly affect the interfacial transfer which is the key factor for the design or analysis of the phase change systems. Especially the safety analysis of the nuclear power plant has been performed based on the numerical code furnished with the proper constitutive relations depending highly upon the flow regimes. Heavy efforts have been focused to identify the flow regime and at this moment we stand on relative very stable engineering background compare to the other research field. However, the issues related to objectiveness and transient flow regime are still open to study. Lee et al. and Ishii developed the method for the objective and instantaneous flow regime identification based on the neural network and new index of probability distribution of the flow regime which allows just one second observation for the flow regime identification. In the present paper, we developed the self-organized neural network for more objective approach to this problem. Kohonen's Self-Organizing Map (SOM) has been used for clustering, visualization, and abstraction. The SOM is trained through unsupervised competitive learning using a 'winner takes it all' policy. Therefore, its unsupervised training character delete the possible interference of the regime developer to the neural network training. After developing the computer code, we evaluate the performance of the code with the vertically upward two-phase flow in the pipes of 25.4 and 50.4 cmm I.D. Also, the sensitivity of the number of the clusters to the flow regime identification was made

  18. Neural correlates of attitude change following positive and negative advertisements

    Directory of Open Access Journals (Sweden)

    Junko Kato

    2009-05-01

    Full Text Available Understanding changes in attitudes towards others is critical to understanding human behaviour. Neuropolitical studies have found that the activation of emotion-related areas in the brain is linked to resilient political preferences, and neuroeconomic research has analysed the neural correlates of social preferences that favour or oppose consideration of intrinsic rewards. This study aims to identify the neural correlates in the prefrontal cortices of changes in political attitudes toward others that are linked to social cognition. Functional magnetic resonance imaging (fMRI experiments have presented videos from previous electoral campaigns and television commercials for major cola brands and then used the subjects’ self-rated affinity toward political candidates as behavioural indicators. After viewing negative campaign videos, subjects showing stronger fMRI activation in the dorsolateral prefrontal cortex lowered their ratings of the candidate they originally supported more than did those with smaller fMRI signal changes in the same region. Subjects showing stronger activation in the medial prefrontal cortex tended to increase their ratings more than did those with less activation. The same regions were not activated by viewing negative advertisements for cola. Correlations between the self-rated values and the neural signal changes underscore the metric representation of observed decisions (i.e., whether to support or not in the brain. This indicates that neurometric analysis may contribute to the exploration of the neural correlates of daily social behaviour.

  19. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  20. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  1. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Science.gov (United States)

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  2. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  3. Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks

    OpenAIRE

    Kaiser, Marcus; Hilgetag, Claus C.

    2010-01-01

    An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show...

  4. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification.

    Science.gov (United States)

    Lin, Liang; Wang, Keze; Meng, Deyu; Zuo, Wangmeng; Zhang, Lei

    2018-01-01

    This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert recertification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, which include hundreds of persons under diverse conditions, and demonstrate very promising results. Please find the code of this project at: http://hcp.sysu.edu.cn/projects/aspl/.

  5. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  6. Neural response to pictorial health warning labels can predict smoking behavioral change.

    Science.gov (United States)

    Riddle, Philip J; Newman-Norlund, Roger D; Baer, Jessica; Thrasher, James F

    2016-11-01

    In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants' self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals' intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). © The Author (2016). Published by Oxford University Press.

  7. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  8. Imbalance of default mode and regulatory networks during externally focused processing in depression

    Science.gov (United States)

    Belleau, Emily L.; Taubitz, Lauren E.

    2015-01-01

    Attentional control difficulties likely underlie rumination, a core cognitive vulnerability in major depressive disorder (MDD). Abnormalities in the default mode, executive and salience networks are implicated in both rumination and attentional control difficulties in MDD. In the current study, individuals with MDD (n = 16) and healthy controls (n = 16) completed tasks designed to elicit self-focused (ruminative) and externally-focused thinking during fMRI scanning. The MDD group showed greater default mode network connectivity and less executive and salience network connectivity during the external-focus condition. Contrary to our predictions, there were no differences in connectivity between the groups during the self-focus condition. Thus, it appears that when directed to engage in self-referential thinking, both depressed and non-depressed individuals similarly recruit networks supporting this process. In contrast, when instructed to engage in non-self-focused thought, non-depressed individuals show a pattern of network connectivity indicative of minimized self-referential processing, whereas depressed individuals fail to reallocate neural resources in a manner consistent with effective down regulation of self-focused thought. This is consistent with difficulties in regulating self-focused thinking in order to engage in more goal-directed behavior that is seen in individuals with MDD. PMID:25274576

  9. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  10. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  11. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  12. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Jin [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wu, Yongchao; Wu, Bin; Huang, Shuai; Fang, Weizhi; Guo, Xiaodong [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-01-01

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA{sub 16} and designer functional peptide RADA{sub 16}-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA{sub 16} scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA{sub 16}-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA{sub 16}. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA{sub 16} and RADA{sub 16}-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells.

  13. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    Science.gov (United States)

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  14. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  15. Exploring the Neural Basis of Avatar Identification in Pathological Internet Gamers and of Self-Reflection in Pathological Social Network Users.

    Science.gov (United States)

    Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl

    2016-09-01

    Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one's avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one's avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection.

  16. Exploring the Neural Basis of Avatar Identification in Pathological Internet Gamers and of Self-Reflection in Pathological Social Network Users

    Science.gov (United States)

    Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl

    2016-01-01

    Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one’s avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one’s avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection. PMID:27415603

  17. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  18. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  19. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice

    NARCIS (Netherlands)

    Bruggeman, SWM; Valk-Lingbeek, ME; van der Stoop, PPM; Jacobs, JJL; Kieboom, K; Tanger, E; Hulsman, D; Leung, C; Arsenijevic, Y; Marino, S; van Lohuizen, M

    2005-01-01

    The Polycomb group (PcG) gene Bmi1 promotes cell proliferation and stem cell self-renewal by repressing the Ink4a/Arf locus. We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells. We

  20. Gödel, Escher, and degree of handedness: differences in interhemispheric interaction predict differences in understanding self-reference.

    Science.gov (United States)

    Niebauer, Christopher Lee; Garvey, Kilian

    2004-01-01

    Ramachandran (1995) theorised that the left hemisphere (LH) is specialised for making a single and consistent interpretation of the self and the world, whereas the right hemisphere (RH) is responsible for monitoring anomalies in reference to these interpretations. If the anomalous information reaches a threshold, it interacts with the LH to update these interpretations or beliefs. Because mixed handers may have greater degrees of interhemispheric interaction compared to strong handers, they may have a lower threshold for updating beliefs. Two previous studies found this to be the case (Niebauer, Aselage, & Schutte, 2002a; Niebauer, Christman, & Reid, 2002b). Because monitoring one's beliefs may involve metacognitive processes, i.e., cognitions about cognitions, this model was extended to help explain individual differences in understanding self-referential concepts. In the first two studies, mixed-handed participants displayed a greater understanding of self-reference using a conceptual description of Gödel's Incompleteness Theorem. In a third study, mixed-handed participants displayed greater appreciation for self-referential works of M. C. Escher. Implications for a neuropsychological model of metacognition are discussed.

  1. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  2. The response of guide dogs and pet dogs (Canis familiaris) to cues of human referential communication (pointing and gaze).

    Science.gov (United States)

    Ittyerah, Miriam; Gaunet, Florence

    2009-03-01

    The study raises the question of whether guide dogs and pet dogs are expected to differ in response to cues of referential communication given by their owners; especially since guide dogs grow up among sighted humans, and while living with their blind owners, they still have interactions with several sighted people. Guide dogs and pet dogs were required to respond to point, point and gaze, gaze and control cues of referential communication given by their owners. Results indicate that the two groups of dogs do not differ from each other, revealing that the visual status of the owner is not a factor in the use of cues of referential communication. Both groups of dogs have higher frequencies of performance and faster latencies for the point and the point and gaze cues as compared to gaze cue only. However, responses to control cues are below chance performance for the guide dogs, whereas the pet dogs perform at chance. The below chance performance of the guide dogs may be explained by a tendency among them to go and stand by the owner. The study indicates that both groups of dogs respond similarly in normal daily dyadic interaction with their owners and the lower comprehension of the human gaze may be a less salient cue among dogs in comparison to the pointing gesture.

  3. Differential Neural Processing of Social Exclusion and Inclusion in Adolescents with Non-Suicidal Self-Injury and Young Adults with Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Rebecca C. Brown

    2017-11-01

    Full Text Available IntroductionNon-suicidal self-injury (NSSI is a symptom of borderline personality disorder (BPD. However, NSSI often occurs independently of BPD. Altered neural processing of social exclusion has been shown in adolescents with NSSI and adults with BPD with additional alterations during social inclusion in BPD patients. Aims of this study were to investigate differences in neural processing of social inclusion and exclusion situations between adolescents with NSSI and young adults with BPD and NSSI.MethodsUsing fMRI, neural processing of positive and negative social situations (paradigm: “Cyberball” was explored. Participants were 14 adolescents with NSSI, but without BPD (Mage = 15.4; SD = 1.9, 15 adults with BPD and NSSI (Mage = 23.3; SD = 4.1, as well as 15 healthy adolescents (Mage = 14.5; SD = 1.7, and 16 healthy adults (Mage = 23.2; SD = 4.4.ResultsBehavioral results showed enhanced feelings of social exclusion in both patient groups as compared to healthy controls but only the NSSI group showed enhanced activation during social exclusion versus inclusion compared to the other groups. While both NSSI and BPD groups showed enhanced activation in the ventral anterior cingulate cortex during social exclusion as compared to their age-matched controls, enhanced activation during social inclusion as compared to a passive watching condition was mainly observed in the BPD group in the dorsolateral and dorsomedial prefrontal cortex, and the anterior insula.DiscussionWhile neural processing of social exclusion was pronounced in adolescents with NSSI, BPD patients also showed increased activity in a per se positive social situation. These results might point toward a higher responsiveness to social exclusion in adolescents with NSSI, which might then develop into a generalized increased sensitivity to all kinds of social situations in adults with BPD.

  4. Differential Neural Processing of Social Exclusion and Inclusion in Adolescents with Non-Suicidal Self-Injury and Young Adults with Borderline Personality Disorder.

    Science.gov (United States)

    Brown, Rebecca C; Plener, Paul L; Groen, Georg; Neff, Dominik; Bonenberger, Martina; Abler, Birgit

    2017-01-01

    Non-suicidal self-injury (NSSI) is a symptom of borderline personality disorder (BPD). However, NSSI often occurs independently of BPD. Altered neural processing of social exclusion has been shown in adolescents with NSSI and adults with BPD with additional alterations during social inclusion in BPD patients. Aims of this study were to investigate differences in neural processing of social inclusion and exclusion situations between adolescents with NSSI and young adults with BPD and NSSI. Using fMRI, neural processing of positive and negative social situations (paradigm: "Cyberball") was explored. Participants were 14 adolescents with NSSI, but without BPD (M age  = 15.4; SD = 1.9), 15 adults with BPD and NSSI (M age  = 23.3; SD = 4.1), as well as 15 healthy adolescents (M age  = 14.5; SD = 1.7), and 16 healthy adults (M age  = 23.2; SD = 4.4). Behavioral results showed enhanced feelings of social exclusion in both patient groups as compared to healthy controls but only the NSSI group showed enhanced activation during social exclusion versus inclusion compared to the other groups. While both NSSI and BPD groups showed enhanced activation in the ventral anterior cingulate cortex during social exclusion as compared to their age-matched controls, enhanced activation during social inclusion as compared to a passive watching condition was mainly observed in the BPD group in the dorsolateral and dorsomedial prefrontal cortex, and the anterior insula. While neural processing of social exclusion was pronounced in adolescents with NSSI, BPD patients also showed increased activity in a per se positive social situation. These results might point toward a higher responsiveness to social exclusion in adolescents with NSSI, which might then develop into a generalized increased sensitivity to all kinds of social situations in adults with BPD.

  5. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  6. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  7. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  8. Requirement of mouse BCCIP for neural development and progenitor proliferation.

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Huang

    Full Text Available Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.

  9. Heightened Activity in Social Reward Networks is Associated with Adolescents’ Risky Sexual Behaviors

    Science.gov (United States)

    Eckstrand, Kristen L.; Choukas-Bradley, Sophia; Mohanty, Arpita; Cross, Marissa; Allen, Nicholas B.; Silk, Jennifer S.; Jones, Neil P.; Forbes, Erika E.

    2018-01-01

    Adolescent sexual risk behavior can lead to serious health consequences, yet few investigations have addressed its neurodevelopmental mechanisms. Social neurocircuitry is postulated to underlie the development of risky sexual behavior, and response to social reward may be especially relevant. Typically developing adolescents (N=47; 18M, 29F; 16.3±1.4 years; 42.5% sexual intercourse experience) completed a social reward fMRI task and reported their sexual risk behaviors (e.g., lifetime sexual partners) on the Youth Risk Behavior Survey (YRBS). Neural response and functional connectivity to social reward were compared for adolescents with higher- and lower-risk sexual behavior. Adolescents with higher-risk sexual behaviors demonstrated increased activation in the right precuneus and the right temporoparietal junction during receipt of social reward. Adolescents with higher-risk sexual behaviors also demonstrated greater functional connectivity between the precuneus and the temporoparietal junction bilaterally, dorsal medial prefrontal cortex, and left anterior insula/ventrolateral prefrontal cortex. The greater activation and functional connectivity in self-referential, social reward, and affective processing regions among higher sexual risk adolescents underscores the importance of social influence underlying sexual risk behaviors. Furthermore, results suggest an orientation towards and sensitivity to social rewards among youth engaging in higher-risk sexual behavior, perhaps as a consequence of or vulnerability to such behavior. PMID:28755632

  10. Heightened activity in social reward networks is associated with adolescents’ risky sexual behaviors

    Directory of Open Access Journals (Sweden)

    Kristen L. Eckstrand

    2017-10-01

    Full Text Available Adolescent sexual risk behavior can lead to serious health consequences, yet few investigations have addressed its neurodevelopmental mechanisms. Social neurocircuitry is postulated to underlie the development of risky sexual behavior, and response to social reward may be especially relevant. Typically developing adolescents (N = 47; 18M, 29F; 16.3 ± 1.4 years; 42.5% sexual intercourse experience completed a social reward fMRI task and reported their sexual risk behaviors (e.g., lifetime sexual partners on the Youth Risk Behavior Survey (YRBS. Neural response and functional connectivity to social reward were compared for adolescents with higher- and lower-risk sexual behavior. Adolescents with higher-risk sexual behaviors demonstrated increased activation in the right precuneus and the right temporoparietal junction during receipt of social reward. Adolescents with higher-risk sexual behaviors also demonstrated greater functional connectivity between the precuneus and the temporoparietal junction bilaterally, dorsal medial prefrontal cortex, and left anterior insula/ventrolateral prefrontal cortex. The greater activation and functional connectivity in self-referential, social reward, and affective processing regions among higher sexual risk adolescents underscores the importance of social influence underlying sexual risk behaviors. Furthermore, results suggest an orientation towards and sensitivity to social rewards among youth engaging in higher-risk sexual behavior, perhaps as a consequence of or vulnerability to such behavior.

  11. Heightened activity in social reward networks is associated with adolescents' risky sexual behaviors.

    Science.gov (United States)

    Eckstrand, Kristen L; Choukas-Bradley, Sophia; Mohanty, Arpita; Cross, Marissa; Allen, Nicholas B; Silk, Jennifer S; Jones, Neil P; Forbes, Erika E

    2017-10-01

    Adolescent sexual risk behavior can lead to serious health consequences, yet few investigations have addressed its neurodevelopmental mechanisms. Social neurocircuitry is postulated to underlie the development of risky sexual behavior, and response to social reward may be especially relevant. Typically developing adolescents (N=47; 18M, 29F; 16.3±1.4years; 42.5% sexual intercourse experience) completed a social reward fMRI task and reported their sexual risk behaviors (e.g., lifetime sexual partners) on the Youth Risk Behavior Survey (YRBS). Neural response and functional connectivity to social reward were compared for adolescents with higher- and lower-risk sexual behavior. Adolescents with higher-risk sexual behaviors demonstrated increased activation in the right precuneus and the right temporoparietal junction during receipt of social reward. Adolescents with higher-risk sexual behaviors also demonstrated greater functional connectivity between the precuneus and the temporoparietal junction bilaterally, dorsal medial prefrontal cortex, and left anterior insula/ventrolateral prefrontal cortex. The greater activation and functional connectivity in self-referential, social reward, and affective processing regions among higher sexual risk adolescents underscores the importance of social influence underlying sexual risk behaviors. Furthermore, results suggest an orientation towards and sensitivity to social rewards among youth engaging in higher-risk sexual behavior, perhaps as a consequence of or vulnerability to such behavior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Reduced Connectivity in the Self-Processing Network of Schizophrenia Patients with Poor Insight

    NARCIS (Netherlands)

    Liemburg, Edith J.; van der Meer, Lisette; Swart, Marte; Curcic-Blake, Branislava; Bruggeman, Richard; Knegtering, Henderikus; Aleman, Andre

    2012-01-01

    Lack of insight (unawareness of illness) is a common and clinically relevant feature of schizophrenia. Reduced levels of self-referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN) has been implicated as a key node in the circuit for

  13. Referential first mention in narratives by mildly mentally retarded adults.

    Science.gov (United States)

    Kernan, K T; Sabsay, S

    1987-01-01

    Referential first mentions in narrative reports of a short film by 40 mildly mentally retarded adults and 20 nonretarded adults were compared. The mentally retarded sample included equal numbers of male and female, and black and white speakers. The mentally retarded speakers made significantly fewer first mentions and significantly more errors in the form of the first mentions than did nonretarded speakers. A pattern of better performance by black males than by other mentally retarded speakers was found. It is suggested that task difficulty and incomplete mastery of the use of definite and indefinite forms for encoding old and new information, rather than some global type of egocentrism, accounted for the poorer performance by mentally retarded speakers.

  14. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report.

    Directory of Open Access Journals (Sweden)

    Kathleen eGarrison

    2013-08-01

    Full Text Available Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network –the posterior cingulate cortex. We analyzed first-person data consisting of meditators’ accounts of their subjective experience during runs of a real-time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of posterior cingulate cortex activity during the same runs. We found that for meditators, the subjective experiences of ‘undistracted awareness’ such as ‘concentration’ and ‘observing sensory experience’, and ‘effortless doing’ such as ‘observing sensory experience’, ‘not efforting’, and ‘contentment’, correspond with posterior cingulate cortex deactivation. Further, the subjective experiences of ‘distracted awareness’ such as ‘distraction’ and ‘interpreting’, and ‘controlling’ such as ‘efforting’ and ‘discontentment’, correspond with posterior cingulate cortex activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to posterior cingulate cortex activity, such as the difference between meditation and ‘trying to meditate’. These findings offer novel insights into the relationship between meditation and self-related thinking and neural activity in the default mode network, driven by the first-person experience.

  15. Efficient Pruning Method for Ensemble Self-Generating Neural Networks

    Directory of Open Access Journals (Sweden)

    Hirotaka Inoue

    2003-12-01

    Full Text Available Recently, multiple classifier systems (MCS have been used for practical applications to improve classification accuracy. Self-generating neural networks (SGNN are one of the suitable base-classifiers for MCS because of their simple setting and fast learning. However, the computation cost of the MCS increases in proportion to the number of SGNN. In this paper, we propose an efficient pruning method for the structure of the SGNN in the MCS. We compare the pruned MCS with two sampling methods. Experiments have been conducted to compare the pruned MCS with an unpruned MCS, the MCS based on C4.5, and k-nearest neighbor method. The results show that the pruned MCS can improve its classification accuracy as well as reducing the computation cost.

  16. Medial Prefrontal Cortex Activation Is Commonly Invoked by Reputation of Self and Romantic Partners

    Science.gov (United States)

    Kawamichi, Hiroaki; Sasaki, Akihiro T.; Matsunaga, Masahiro; Yoshihara, Kazufumi; Takahashi, Haruka K.; Tanabe, Hiroki C.; Sadato, Norihiro

    2013-01-01

    The reputation of others influences partner selection in human cooperative behaviors through verbal reputation representation. Although the way in which humans represent the verbal reputations of others is a pivotal issue for social neuroscience, the neural correlates underlying the representation of verbal reputations of others are unclear. Humans primarily depend on self-evaluation when assessing reputation of self. Likewise, humans might primarily depend on self-evaluation of others when representing their reputation. As interaction promotes the formation of more nuanced, individualized impressions of an interaction partner, humans tend to form self-evaluations of persons with whom they are intimate in their daily life. Thus, we hypothesized that the representation of reputation of others is modulated by intimacy due to one’s own evaluation formation of that person. To test this hypothesis, we conducted a functional magnetic resonance imaging experiment with 11 pairs of romantic partners while they viewed an evaluation of a target person (self, partner [intimate other], or stranger [non-intimate other]), made by other evaluators. When compared with strangers, viewing evaluations of self and partner activated overlapping regions in the medial prefrontal cortex. Verbal reputation of self-specific activation was found in the precuneus, which represents self-related processing. The data suggest that midline structures represent reputation of self. In addition, intimacy-modulated activation in the medial prefrontal cortex suggests that the verbal reputation of intimate others is represented similarly to reputation of self. These results suggest that the reputation representation in the medial prefrontal cortex is engaged by verbal reputation of self and intimate others stemming from both own and other evaluators’ judgments. PMID:24086409

  17. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-08

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  18. ‘Mom—I don’t want to hear it’: Brain response to maternal praise and criticism in adolescents with major depressive disorder

    Science.gov (United States)

    Lee, Kyung Hwa; Elliott, Rosalind D.; Hooley, Jill M.; Dahl, Ronald E.; Barber, Anita; Siegle, Greg J.

    2017-01-01

    Abstract Recent research has implicated altered neural response to interpersonal feedback as an important factor in adolescent depression, with existing studies focusing on responses to feedback from virtual peers. We investigated whether depressed adolescents differed from healthy youth in neural response to social evaluative feedback from mothers. During neuroimaging, twenty adolescents in a current episode of major depressive disorder (MDD) and 28 healthy controls listened to previously recorded audio clips of their own mothers’ praise, criticism and neutral comments. Whole-brain voxelwise analyses revealed that MDD youth, unlike controls, exhibited increased neural response to critical relative to neutral clips in the parahippocampal gyrus, an area involved in episodic memory encoding and retrieval. Depressed adolescents also showed a blunted response to maternal praise clips relative to neutral clips in the parahippocampal gyrus, as well as areas involved in reward and self-referential processing (i.e. ventromedial prefrontal cortex, precuneus, and thalamus/caudate). Findings suggest that maternal criticism may be more strongly encoded or more strongly activated during memory retrieval related to previous autobiographical instances of negative feedback from mothers in depressed youth compared to healthy youth. Furthermore, depressed adolescents may fail to process the reward value and self-relevance of maternal praise. PMID:28338795

  19. 'Mom-I don't want to hear it': Brain response to maternal praise and criticism in adolescents with major depressive disorder.

    Science.gov (United States)

    Silk, Jennifer S; Lee, Kyung Hwa; Elliott, Rosalind D; Hooley, Jill M; Dahl, Ronald E; Barber, Anita; Siegle, Greg J

    2017-05-01

    Recent research has implicated altered neural response to interpersonal feedback as an important factor in adolescent depression, with existing studies focusing on responses to feedback from virtual peers. We investigated whether depressed adolescents differed from healthy youth in neural response to social evaluative feedback from mothers. During neuroimaging, twenty adolescents in a current episode of major depressive disorder (MDD) and 28 healthy controls listened to previously recorded audio clips of their own mothers' praise, criticism and neutral comments. Whole-brain voxelwise analyses revealed that MDD youth, unlike controls, exhibited increased neural response to critical relative to neutral clips in the parahippocampal gyrus, an area involved in episodic memory encoding and retrieval. Depressed adolescents also showed a blunted response to maternal praise clips relative to neutral clips in the parahippocampal gyrus, as well as areas involved in reward and self-referential processing (i.e. ventromedial prefrontal cortex, precuneus, and thalamus/caudate). Findings suggest that maternal criticism may be more strongly encoded or more strongly activated during memory retrieval related to previous autobiographical instances of negative feedback from mothers in depressed youth compared to healthy youth. Furthermore, depressed adolescents may fail to process the reward value and self-relevance of maternal praise. © The Author (2017). Published by Oxford University Press.

  20. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A cry in the dark: depressed mothers show reduced neural activation to their own infant’s cry

    Science.gov (United States)

    Ablow, Jennifer C.

    2012-01-01

    This study investigated depression-related differences in primiparous mothers’ neural response to their own infant’s distress cues. Mothers diagnosed with major depressive disorder (n = 11) and comparison mothers with no diagnosable psychopathology (n = 11) were exposed to their own 18-months-old infant’s cry sound, as well as unfamiliar infant’s cry and control sound, during functional neuroimaging. Depressed mothers’ response to own infant cry greater than other sounds was compared to non-depressed mothers’ response in the whole brain [false discovery rate (FDR) corrected]. A continuous measure of self-reported depressive symptoms (CESD) was also tested as a predictor of maternal response. Non-depressed mothers activated to their own infant’s cry greater than control sound in a distributed network of para/limbic and prefrontal regions, whereas depressed mothers as a group failed to show activation. Non-depressed compared to depressed mothers showed significantly greater striatal (caudate, nucleus accumbens) and medial thalamic activation. Additionally, mothers with lower depressive symptoms activated more strongly in left orbitofrontal, dorsal anterior cingulate and medial superior frontal regions. Non-depressed compared to depressed mothers activated uniquely to own infant greater than other infant cry in occipital fusiform areas. Disturbance of these neural networks involved in emotional response and regulation may help to explain parenting deficits in depressed mothers. PMID:21208990

  2. Strategies influence neural activity for feedback learning across child and adolescent development.

    Science.gov (United States)

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Self-Organizing Incremental Neural Network based on local distribution learning.

    Science.gov (United States)

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  5. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  6. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    OpenAIRE

    Francisco Javier Ordóñez; Daniel Roggen

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we pro...

  7. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  8. The neural architecture of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr

    2009-11-01

    The medial prefrontal cortex (MPFC) is regarded as a region of the brain that supports self-referential processes, including the integration of sensory information with self-knowledge and the retrieval of autobiographical information. I used functional magnetic resonance imaging and a novel procedure for eliciting autobiographical memories with excerpts of popular music dating to one's extended childhood to test the hypothesis that music and autobiographical memories are integrated in the MPFC. Dorsal regions of the MPFC (Brodmann area 8/9) were shown to respond parametrically to the degree of autobiographical salience experienced over the course of individual 30 s excerpts. Moreover, the dorsal MPFC also responded on a second, faster timescale corresponding to the signature movements of the musical excerpts through tonal space. These results suggest that the dorsal MPFC associates music and memories when we experience emotionally salient episodic memories that are triggered by familiar songs from our personal past. MPFC acted in concert with lateral prefrontal and posterior cortices both in terms of tonality tracking and overall responsiveness to familiar and autobiographically salient songs. These findings extend the results of previous autobiographical memory research by demonstrating the spontaneous activation of an autobiographical memory network in a naturalistic task with low retrieval demands.

  9. The Neural Architecture of Music-Evoked Autobiographical Memories

    Science.gov (United States)

    2009-01-01

    The medial prefrontal cortex (MPFC) is regarded as a region of the brain that supports self-referential processes, including the integration of sensory information with self-knowledge and the retrieval of autobiographical information. I used functional magnetic resonance imaging and a novel procedure for eliciting autobiographical memories with excerpts of popular music dating to one's extended childhood to test the hypothesis that music and autobiographical memories are integrated in the MPFC. Dorsal regions of the MPFC (Brodmann area 8/9) were shown to respond parametrically to the degree of autobiographical salience experienced over the course of individual 30 s excerpts. Moreover, the dorsal MPFC also responded on a second, faster timescale corresponding to the signature movements of the musical excerpts through tonal space. These results suggest that the dorsal MPFC associates music and memories when we experience emotionally salient episodic memories that are triggered by familiar songs from our personal past. MPFC acted in concert with lateral prefrontal and posterior cortices both in terms of tonality tracking and overall responsiveness to familiar and autobiographically salient songs. These findings extend the results of previous autobiographical memory research by demonstrating the spontaneous activation of an autobiographical memory network in a naturalistic task with low retrieval demands. PMID:19240137

  10. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  11. Microglia modulate hippocampal neural precursor activity in response to exercise and aging.

    Science.gov (United States)

    Vukovic, Jana; Colditz, Michael J; Blackmore, Daniel G; Ruitenberg, Marc J; Bartlett, Perry F

    2012-05-09

    Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.

  12. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival.

    Science.gov (United States)

    Chavali, P L; Saini, R K R; Zhai, Q; Vizlin-Hodzic, D; Venkatabalasubramanian, S; Hayashi, A; Johansson, E; Zeng, Z-j; Mohlin, S; Påhlman, S; Hansford, L; Kaplan, D R; Funa, K

    2014-10-30

    Nuclear orphan receptor TLX (Drosophila tailless homolog) is essential for the maintenance of neural stem/progenitor cell self-renewal, but its role in neuroblastoma (NB) is not well understood. Here, we show that TLX is essential for the formation of tumor spheres in three different NB cell lines, when grown in neural stem cell media. We demonstrate that the knock down of TLX in IMR-32 cells diminishes its tumor sphere-forming capacity. In tumor spheres, TLX is coexpressed with the neural progenitor markers Nestin, CD133 and Oct-4. In addition, TLX is coexpressed with the migratory neural progenitor markers CD15 and matrix metalloproteinase-2 (MMP-2) in xenografts of primary NB cells from patients. Subsequently, we show the effect of TLX on the proliferative, invasive and migratory properties of IMR-32 cells. We attribute this to the recruitment of TLX to both MMP-2 and Oct-4 gene promoters, which resulted in the respective gene activation. In support of our findings, we found that TLX expression was high in NB patient tissues when compared with normal peripheral nervous system tissues. Further, the Kaplan-Meier estimator indicated a negative correlation between TLX expression and survival in 88 NB patients. Therefore, our results point at TLX being a crucial player in progression of NB, by promoting self-renewal of NB tumor-initiating cells and altering their migratory and invasive properties.

  13. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

    Science.gov (United States)

    Saddoris, Michael P; Carelli, Regina M

    2014-01-15

    Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. SELF-REGULATORY ABILITIES IN PROFESSIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    G V Ozhiganova

    2016-12-01

    Full Text Available The self-regulation is considered by the author as a general ability of the person. The levels of self-regulation relating to any professional activity, and corresponding to these levels self-regulatory capacities are distinguished: 1 psychophysiological - the ability for self-regulation of emotional and psycho- physiological states; 2 socio-psychological - the ability for self-regulation in the process of social interaction; 3 psychological (the ability to regulate activities; the capacity for personal self-control;spiritual - the highest capacity for self-regulation due to the higher values and meanings of existence. Self-regulation at the highest spiritual level is considered in this research in connection with the actualization of higher self-regulatory capacities, leading to self-realization of the person including professional activity. Processes, levels, components of self-regulation, associated with different conditions of professional activities (for example, in extreme situations, as well as with different types of professions (teachers, sales managers, etc. are described. A particular attention is given to self- regulation in the teaching activities: levels, techniques of teachers’ self-regulatory skills are presented; the importance of teachers’ personal self-regulation is emphasized, because it determines self-development, self-improvement and self-fulfillment in their chosen profession, and is associated with the manifestation of higher self-regulatory capacities. It is noted that in the process of professional activities different levels and types of self-regulation are demanded. The self-regulation in professional activities is carried out due to various self-regulatory capabilities - from simple to complex, including the highest.

  15. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  16. Development of Self-Assembled Nanoribbon Bound Peptide-Polyaniline Composite Scaffolds and Their Interactions with Neural Cortical Cells

    Directory of Open Access Journals (Sweden)

    Andrew M. Smith

    2018-01-01

    Full Text Available Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also

  17. Development of Self-Assembled Nanoribbon Bound Peptide-Polyaniline Composite Scaffolds and Their Interactions with Neural Cortical Cells

    Science.gov (United States)

    Smith, Andrew M.; Pajovich, Harrison T.; Banerjee, Ipsita A.

    2018-01-01

    Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile) was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI) was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also studied by

  18. The neurobiology of self-face recognition in depressed adolescents with low or high suicidality.

    Science.gov (United States)

    Quevedo, Karina; Ng, Rowena; Scott, Hannah; Martin, Jodi; Smyda, Garry; Keener, Matt; Oppenheimer, Caroline W

    2016-11-01

    This study sought to test whether the neurobiology of self-processing differentiated depressed adolescents with high suicidality (HS) from those with low suicidality (LS) and healthy controls (HC; N = 119, MAGE = 14.79, SD = 1.64, Min = 11.3, Max = 17.8). Participants completed a visual self-recognition task in the scanner during which they identified their own or an unfamiliar adolescent face across 3 emotional expressions (happy, neutral or sad). A 3-group (HS, LS, HC) by 2 within-subject factors (2 Self conditions [self, other] and 3 Emotions [happy, neutral, sad]) GLM yielded (a) a main effect of Self condition with all participants showing higher activity in the right occipital, precuneus and fusiform during the self- versus other-face conditions; (b) a main effect of Group where all depressed youth showed higher dorsolateral prefrontal cortex activity than HC across all conditions, and with HS showing higher cuneus and occipital activity versus both LS and HC; and (c) a Group by Self by Emotion interaction with HS showing lower activity in both mid parietal, limbic, and prefrontal areas in the Happy self versus other-face condition relative to the LS group, who in turn had less activity compared to HC youth. Covarying for depression severity replicated all results except the third finding; In this subsequent analysis, a Group by Self interaction showed that although HC had similar midline cortical structure (MCS) activity for all faces, LS showed higher MCS activity for the self versus other faces, whereas HS showed the opposite pattern. Results suggest that the neurophysiology of emotionally charged self-referential information can distinguish depressed, suicidal youth versus nonsuicidal depressed and healthy adolescents. Neurophysiological differences and implications for the prediction of suicidality in youth are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Covalent growth factor tethering to direct neural stem cell differentiation and self-organization.

    Science.gov (United States)

    Ham, Trevor R; Farrag, Mahmoud; Leipzig, Nic D

    2017-04-15

    Tethered growth factors offer exciting new possibilities for guiding stem cell behavior. However, many of the current methods present substantial drawbacks which can limit their application and confound results. In this work, we developed a new method for the site-specific covalent immobilization of azide-tagged growth factors and investigated its utility in a model system for guiding neural stem cell (NSC) behavior. An engineered interferon-γ (IFN-γ) fusion protein was tagged with an N-terminal azide group, and immobilized to two different dibenzocyclooctyne-functionalized biomimetic polysaccharides (chitosan and hyaluronan). We successfully immobilized azide-tagged IFN-γ under a wide variety of reaction conditions, both in solution and to bulk hydrogels. To understand the interplay between surface chemistry and protein immobilization, we cultured primary rat NSCs on both materials and showed pronounced biological effects. Expectedly, immobilized IFN-γ increased neuronal differentiation on both materials. Expression of other lineage markers varied depending on the material, suggesting that the interplay of surface chemistry and protein immobilization plays a large role in nuanced cell behavior. We also investigated the bioactivity of immobilized IFN-γ in a 3D environment in vivo and found that it sparked the robust formation of neural tube-like structures from encapsulated NSCs. These findings support a wide range of potential uses for this approach and provide further evidence that adult NSCs are capable of self-organization when exposed to the proper microenvironment. For stem cells to be used effectively in regenerative medicine applications, they must be provided with the appropriate cues and microenvironment so that they integrate with existing tissue. This study explores a new method for guiding stem cell behavior: covalent growth factor tethering. We found that adding an N-terminal azide-tag to interferon-γ enabled stable and robust Cu-free 'click

  20. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  1. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    Directory of Open Access Journals (Sweden)

    Jon Touryan

    2017-07-01

    Full Text Available A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven and top-down (goal-directed processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts amongst a grid of distractor stimuli (Ls, while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs: occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements.

  2. Self-Organizing Maps Neural Networks Applied to the Classification of Ethanol Samples According to the Region of Commercialization

    Directory of Open Access Journals (Sweden)

    Aline Regina Walkoff

    2017-10-01

    Full Text Available Physical-chemical analysis data were collected, from 998 ethanol samples of automotive ethanol commercialized in the northern, midwestern and eastern regions of the state of Paraná. The data presented self-organizing maps (SOM neural networks, which classified them according to those regions. The self-organizing maps best configuration had a 45 x 45 topology and 5000 training epochs, with a final learning rate of 6.7x10-4, a final neighborhood relationship of 3x10-2 and a mean quantization error of 2x10-2. This neural network provided a topological map depicting three separated groups, each one corresponding to samples of a same region of commercialization. Four maps of weights, one for each parameter, were presented. The network established the pH was the most important variable for classification and electrical conductivity the least one. The self-organizing maps application allowed the segmentation of alcohol samples, therefore identifying them according to the region of commercialization. DOI: http://dx.doi.org/10.17807/orbital.v9i4.982

  3. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).

    Science.gov (United States)

    Justen, C; Herbert, C; Werner, K; Raab, M

    2014-02-14

    Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. Participants (N=14) performed an auditory self-other identification task with EEG. Data was then subjected to a subsequent standardized low-resolution brain electromagnetic tomography (sLORETA) analysis (source localization analysis). Differences between conditions were assessed using t-statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Science.gov (United States)

    Ruocco, Anthony C.; Rodrigo, Achala H.; McMain, Shelley F.; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S.

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT. PMID:27242484

  5. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Charles Ruocco

    2016-05-01

    Full Text Available Self-harm is a potentially lethal symptom of borderline personality disorder (BPD that often improves with dialectical behavior therapy (DBT. While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, twenty-nine actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex during impulse control prior to beginning DBT and after seven months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex prior to beginning treatment, and they showed the greatest increases in activity within this region after seven months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial prefrontal cortex and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right dorsolateral prefrontal cortex even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the prefrontal cortex underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  6. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study.

    Science.gov (United States)

    Ruocco, Anthony C; Rodrigo, Achala H; McMain, Shelley F; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  7. The different faces of one's self: an fMRI study into the recognition of current and past self-facial appearances.

    Science.gov (United States)

    Apps, Matthew A J; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2012-11-15

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one's self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one's own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Neural Activity During The Formation Of A Giant Auditory Synapse

    NARCIS (Netherlands)

    M.C. Sierksma (Martijn)

    2018-01-01

    markdownabstractThe formation of synapses is a critical step in the development of the brain. During this developmental stage neural activity propagates across the brain from synapse to synapse. This activity is thought to instruct the precise, topological connectivity found in the sensory central

  9. Population-wide distributions of neural activity during perceptual decision-making

    Science.gov (United States)

    Machens, Christian

    2018-01-01

    Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding. PMID:23123501

  10. Functional dissociation of the left and right fusiform gyrus in self-face recognition.

    Science.gov (United States)

    Ma, Yina; Han, Shihui

    2012-10-01

    It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.

  11. Accessible cultural mind-set modulates default mode activity: evidence for the culturally situated brain.

    Science.gov (United States)

    Wang, Chenbo; Oyserman, Daphna; Liu, Qiang; Li, Hong; Han, Shihui

    2013-01-01

    Self-construal priming modulates human behavior and associated neural activity. However, the neural activity associated with the self-construal priming procedure itself remains unknown. It is also unclear whether and how self-construal priming affects neural activity prior to engaging in a particular task. To address this gap, we scanned Chinese adults, using functional magnetic resonance imaging, during self-construal priming and a following resting state. We found that, relative to a calculation task, both interdependent and independent self-construal priming activated the ventral medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC). The contrast of interdependent vs. independent self-construal priming also revealed increased activity in the dorsal MPFC and left middle frontal cortex. The regional homogeneity analysis of the resting-state activity revealed increased local synchronization of spontaneous activity in the dorsal MPFC but decreased local synchronization of spontaneous activity in the PCC when contrasting interdependent vs. independent self-construal priming. The functional connectivity analysis of the resting-state activity, however, did not show significant difference in synchronization of activities in remote brain regions between different priming conditions. Our findings suggest that accessible collectivistic/individualistic mind-set induced by self-construal priming is associated with modulations of both task-related and resting-state activity in the default mode network.

  12. On the origin of reproducible sequential activity in neural circuits

    Science.gov (United States)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  13. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  14. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  15. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.

    Science.gov (United States)

    Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng

    2013-02-01

    This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.

  16. Evidence for a neural law of effect.

    Science.gov (United States)

    Athalye, Vivek R; Santos, Fernando J; Carmena, Jose M; Costa, Rui M

    2018-03-02

    Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. The different faces of one’s self: an fMRI study into the recognition of current and past self-facial appearances

    Science.gov (United States)

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2013-01-01

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one’s own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one’s face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one’s self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one’s own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. PMID:22940117

  18. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  19. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Implementation of self-organizing neural networks for visuo-motor control of an industrial robot.

    Science.gov (United States)

    Walter, J A; Schulten, K I

    1993-01-01

    The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the ;neural-gas' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.

  1. Self-reference enhances relational memory in young and older adults.

    Science.gov (United States)

    Hou, Mingzhu; Grilli, Matthew D; Glisky, Elizabeth L

    2017-11-27

    The present study investigated the influence of self-reference on two kinds of relational memory, internal source memory and associative memory, in young and older adults. Participants encoded object-location word pairs using the strategies of imagination and sentence generation, either with reference to themselves or to a famous other (i.e., George Clooney or Oprah Winfrey). Both young and older adults showed memory benefits in the self-reference conditions compared to other-reference conditions on both tests, and the self-referential effects in older adults were not limited by low memory or executive functioning. These results suggest that self-reference can benefit relational memory in older adults relatively independently of basic memory and executive functions.

  2. Neuroscientific Research on the Self

    DEFF Research Database (Denmark)

    Runehov, Anne Leona Cesarine

    2008-01-01

    models are suggested: ES((NS ¿ (SNS n STS)); STS > (NS n SNS) Where ES stands for one Emergent Self comprising a Neural Self (NS), a Subjective Neural Self (SNS) and a Subjective Transcendent Self (STS). There is mutual causation between the neural and subjective selves. Furthermore, the subjective...... transcendent is bigger than both the neural and subjective neural self. EU(UR ¿ (NR ¿ ES)); ES > NR and UR > (NR n ES) Where EU stands for one Emergent Universe comprising Ultimate Reality (UR; GOD), Natural Reality (NR; world) and all Emergent selves (ES). There is mutual causation between God and the world...... millions of religious believers of a satisfactory explanation. The present paper deals with this neglect. It asks the question, if God exists, how then can we understand God's relationship to the world in a scientific age? From contemporary neuroscientific research on the self, the following explanatory...

  3. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography

    International Nuclear Information System (INIS)

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M.

    2005-01-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  4. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  5. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats.

    Science.gov (United States)

    Sood, Ankit; Chaudhari, Karina; Vaidya, Vidita A

    2018-03-01

    Stress enhances the risk for psychiatric disorders such as anxiety and depression. Stress responses vary across sex and may underlie the heightened vulnerability to psychopathology in females. Here, we examined the influence of acute immobilization stress (AIS) and a two-day short-term forced swim stress (FS) on neural activation in multiple cortical and subcortical brain regions, implicated as targets of stress and in the regulation of neuroendocrine stress responses, in male and female rats using Fos as a neural activity marker. AIS evoked a sex-dependent pattern of neural activation within the cingulate and infralimbic subdivisions of the medial prefrontal cortex (mPFC), lateral septum (LS), habenula, and hippocampal subfields. The degree of neural activation in the mPFC, LS, and habenula was higher in males. Female rats exhibited reduced Fos positive cell numbers in the dentate gyrus hippocampal subfield, an effect not observed in males. We addressed whether the sexually dimorphic neural activation pattern noted following AIS was also observed with the short-term stress of FS. In the paraventricular nucleus of the hypothalamus and the amygdala, FS similar to AIS resulted in robust increases in neural activation in both sexes. The pattern of neural activation evoked by FS was distinct across sexes, with a heightened neural activation noted in the prelimbic mPFC subdivision and hippocampal subfields in females and differed from the pattern noted with AIS. This indicates that the sex differences in neural activation patterns observed within stress-responsive brain regions are dependent on the nature of stressor experience.

  6. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  7. Neural responses during the anticipation and receipt of olfactory reward and punishment in human.

    Science.gov (United States)

    Zou, Lai-Quan; Zhou, Han-Yu; Zhuang, Yuan; van Hartevelt, Tim J; Lui, Simon S Y; Cheung, Eric F C; Møller, Arne; Kringelbach, Morten L; Chan, Raymond C K

    2018-03-01

    Pleasure experience is an important part of normal healthy life and is essential for general and mental well-being. Many neuroimaging studies have investigated the underlying neural processing of verbal and visual modalities of reward. However, how the brain processes rewards in the olfactory modality is not fully understood. This study aimed to examine the neural basis of olfactory rewards in 25 healthy participants using functional magnetic resonance imaging (fMRI). We developed an Olfactory Incentive Delay (OLID) imaging task distinguishing between the anticipation and receipt of olfactory rewards and punishments. We found that the pallidum was activated during the anticipation of both olfactory rewards and punishments. The bilateral insula was activated independently from the odours' hedonic valence during the receipt phase. In addition, right caudate activation during the anticipation of unpleasant odours was correlated with self-reported anticipatory hedonic traits, whereas bilateral insular activation during the receipt of pleasant odours was correlated with self-reported consummatory hedonic traits. These findings suggest that activity in the insula and the caudate may be biomarkers of anhedonia. These findings also highlight a useful and valid paradigm to study the neural circuitry underlying reward processing in people with anhedonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The neural substrates of subjective time dilation

    Directory of Open Access Journals (Sweden)

    Marc Wittmann

    2010-02-01

    Full Text Available An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This 'time dilation effect' has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics. We performed an event-related functional magnetic resonance imaging (fMRI, while subjects viewed a stream of five visual events, all of which were static and of identical duration except the fourth one, which was a deviant target consisting of either a looming or a receding disc. The duration of the target was systematically varied and participants judged whether the target was shorter or longer than all other events. A time dilation effect was observed only for looming targets. Relative to the static standards, the looming as well as the receding targets induced increased activation of the anterior insula and anterior cingulate cortices (the “core control network”. The decisive contrast between looming and receding targets representing the time dilation effect showed strong asymmetric activation and, specifically, activation of cortical midline structures (the “default network”. These results provide the first evidence that the illusion of temporal dilation is due to activation of areas that are important for cognitive control and subjective awareness. The involvement of midline structures in the temporal dilation illusion is interpreted as evidence that time perception is related to self-referential processing.

  9. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations

    OpenAIRE

    Harradon, Michael; Druce, Jeff; Ruttenberg, Brian

    2018-01-01

    Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then bu...

  10. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    Science.gov (United States)

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  11. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  12. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  13. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Baertsch, Nathan A; Baker-Herman, Tracy L

    2015-04-15

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. Copyright © 2015 the American Physiological Society.

  14. The mental self

    DEFF Research Database (Denmark)

    Lou, Hans C; Nowak, Markus; Kjaer, Troels W

    2005-01-01

    meditation suggested dopaminergic regulation of this circuit. We then investigated the neural networks supporting episodic retrieval of judgments of individuals with different degrees of self-relevance, in the decreasing order: self, best friend, and the Danish queen. We found that all conditions activated......" condition. Transcranial magnetic stimulation, targeting precuneus, was then applied to the medial parietal region to transiently disrupt the normal function of the circuitry. We found a decreased efficiency of retrieval of self-judgment compared to the judgment of best friend. This shows that the integrity...... of the function of precuneus is essential for self-reference, but not for reference to others....

  15. Neural correlates of visually induced self-motion illusion in depth.

    Science.gov (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W

    2008-08-01

    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  16. Functional connectivity mapping of regions associated with self- and other-processing.

    Science.gov (United States)

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing

  17. Topological probability and connection strength induced activity in complex neural networks

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang; Dong-Yuan, Qiu; Xiao-Shu, Luo

    2010-01-01

    Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied. (general)

  18. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  19. Theories of Person Perception Predict Patterns of Neural Activity During Mentalizing.

    Science.gov (United States)

    Thornton, Mark A; Mitchell, Jason P

    2017-08-22

    Social life requires making inferences about other people. What information do perceivers spontaneously draw upon to make such inferences? Here, we test 4 major theories of person perception, and 1 synthetic theory that combines their features, to determine whether the dimensions of such theories can serve as bases for describing patterns of neural activity during mentalizing. While undergoing functional magnetic resonance imaging, participants made social judgments about well-known public figures. Patterns of brain activity were then predicted using feature encoding models that represented target people's positions on theoretical dimensions such as warmth and competence. All 5 theories of person perception proved highly accurate at reconstructing activity patterns, indicating that each could describe the informational basis of mentalizing. Cross-validation indicated that the theories robustly generalized across both targets and participants. The synthetic theory consistently attained the best performance-approximately two-thirds of noise ceiling accuracy--indicating that, in combination, the theories considered here can account for much of the neural representation of other people. Moreover, encoding models trained on the present data could reconstruct patterns of activity associated with mental state representations in independent data, suggesting the use of a common neural code to represent others' traits and states. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  1. The neuropsychology of self-reflection in psychiatric illness.

    Science.gov (United States)

    Philippi, Carissa L; Koenigs, Michael

    2014-07-01

    The development of robust neuropsychological measures of social and affective function-which link critical dimensions of mental health to their underlying neural circuitry-could be a key step in achieving a more pathophysiologically-based approach to psychiatric medicine. In this article, we summarize research indicating that self-reflection (the inward attention to personal thoughts, memories, feelings, and actions) may be a useful model for developing such a paradigm, as there is evidence that self-reflection is (1) measurable with self-report scales and performance-based tests, (2) linked to the activity of a specific neural circuit, and (3) dimensionally related to mental health and various forms of psychopathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  3. Intranasal oxytocin reduces social perception in women: Neural activation and individual variation.

    Science.gov (United States)

    Hecht, Erin E; Robins, Diana L; Gautam, Pritam; King, Tricia Z

    2017-02-15

    Most intranasal oxytocin research to date has been carried out in men, but recent studies indicate that females' responses can differ substantially from males'. This randomized, double-blind, placebo-controlled study involved an all-female sample of 28 women not using hormonal contraception. Participants viewed animations of geometric shapes depicting either random movement or social interactions such as playing, chasing, or fighting. Probe questions asked whether any shapes were "friends" or "not friends." Social videos were preceded by cues to attend to either social relationships or physical size changes. All subjects received intranasal placebo spray at scan 1. While the experimenter was not blinded to nasal spray contents at Scan 1, the participants were. Scan 2 followed a randomized, double-blind design. At scan 2, half received a second placebo dose while the other half received 24 IU of intranasal oxytocin. We measured neural responses to these animations at baseline, as well as the change in neural activity induced by oxytocin. Oxytocin reduced activation in early visual cortex and dorsal-stream motion processing regions for the social > size contrast, indicating reduced activity related to social attention. Oxytocin also reduced endorsements that shapes were "friends" or "not friends," and this significantly correlated with reduction in neural activation. Furthermore, participants who perceived fewer social relationships at baseline were more likely to show oxytocin-induced increases in a broad network of regions involved in social perception and social cognition, suggesting that lower social processing at baseline may predict more positive neural responses to oxytocin. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation

    Science.gov (United States)

    Lee, Tatia M. C.; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C. Y.; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C. H.

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing. PMID:22905090

  5. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    Science.gov (United States)

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such

  6. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  7. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  8. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  9. Neural correlates of self-appraisals in the near and distant future: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Yangmei Luo

    Full Text Available To investigate perceptual and neural correlates of future self-appraisals as a function of temporal distance, event-related potentials (ERPs were recorded while participants (11 women, eight men made judgments about the applicability of trait adjectives to their near future selves (i.e., one month from now and their distant future selves (i.e., three years from now. Behavioral results indicated people used fewer positive adjectives, more negative adjectives, recalled more specific events coming to mind and felt more psychologically connected to the near future self than the distant future self. Electrophysiological results demonstrated that negative trait adjectives elicited more positive ERP deflections than did positive trait adjectives in the interval between 550 and 800 ms (late positive component within the near future self condition. However, within the same interval, there were no significant differences between negative and positive traits adjectives in the distant future self condition. The results suggest that negative emotional processing in future self-appraisals is modulated by temporal distance, consistent with predictions of construal level theory.

  10. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Directory of Open Access Journals (Sweden)

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  11. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  12. Precursor processes of human self-initiated action.

    Science.gov (United States)

    Khalighinejad, Nima; Schurger, Aaron; Desantis, Andrea; Zmigrod, Leor; Haggard, Patrick

    2018-01-15

    A gradual buildup of electrical potential over motor areas precedes self-initiated movements. Recently, such "readiness potentials" (RPs) were attributed to stochastic fluctuations in neural activity. We developed a new experimental paradigm that operationalized self-initiated actions as endogenous 'skip' responses while waiting for target stimuli in a perceptual decision task. We compared these to a block of trials where participants could not choose when to skip, but were instead instructed to skip. Frequency and timing of motor action were therefore balanced across blocks, so that conditions differed only in how the timing of skip decisions was generated. We reasoned that across-trial variability of EEG could carry as much information about the source of skip decisions as the mean RP. EEG variability decreased more markedly prior to self-initiated compared to externally-triggered skip actions. This convergence suggests a consistent preparatory process prior to self-initiated action. A leaky stochastic accumulator model could reproduce this convergence given the additional assumption of a systematic decrease in input noise prior to self-initiated actions. Our results may provide a novel neurophysiological perspective on the topical debate regarding whether self-initiated actions arise from a deterministic neurocognitive process, or from neural stochasticity. We suggest that the key precursor of self-initiated action may manifest as a reduction in neural noise. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The Development of Narrative Productivity, Syntactic Complexity, Referential Cohesion and Event Content in Four- to Eight-Year-Old Finnish Children

    Science.gov (United States)

    Mäkinen, Leena; Loukusa, Soile; Nieminen, Lea; Leinonen, Eeva; Kunnari, Sari

    2014-01-01

    This study focuses on the development of narrative structure and the relationship between narrative productivity and event content. A total of 172 Finnish children aged between four and eight participated. Their picture-elicited narrations were analysed for productivity, syntactic complexity, referential cohesion and event content. Each measure…

  14. Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network.

    Science.gov (United States)

    Wessing, Ida; Rehbein, Maimu A; Romer, Georg; Achtergarde, Sandra; Dobel, Christian; Zwitserlood, Pienie; Fürniss, Tilman; Junghöfer, Markus

    2015-06-01

    Emotion regulation has an important role in child development and psychopathology. Reappraisal as cognitive regulation technique can be used effectively by children. Moreover, an ERP component known to reflect emotional processing called late positive potential (LPP) can be modulated by children using reappraisal and this modulation is also related to children's emotional adjustment. The present study seeks to elucidate the neural generators of such LPP effects. To this end, children aged 8-14 years reappraised emotional faces, while neural activity in an LPP time window was estimated using magnetoencephalography-based source localization. Additionally, neural activity was correlated with two indexes of emotional adjustment and age. Reappraisal reduced activity in the left dorsolateral prefrontal cortex during down-regulation and enhanced activity in the right parietal cortex during up-regulation. Activity in the visual cortex decreased with increasing age, more adaptive emotion regulation and less anxiety. Results demonstrate that reappraisal changed activity within a frontoparietal network in children. Decreasing activity in the visual cortex with increasing age is suggested to reflect neural maturation. A similar decrease with adaptive emotion regulation and less anxiety implies that better emotional adjustment may be associated with an advance in neural maturation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    Science.gov (United States)

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  17. Enhancement of signal sensitivity in a heterogeneous neural network refined from synaptic plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiumin; Small, Michael, E-mail: ensmall@polyu.edu.h, E-mail: 07901216r@eie.polyu.edu.h [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2010-08-15

    Long-term synaptic plasticity induced by neural activity is of great importance in informing the formation of neural connectivity and the development of the nervous system. It is reasonable to consider self-organized neural networks instead of prior imposition of a specific topology. In this paper, we propose a novel network evolved from two stages of the learning process, which are respectively guided by two experimentally observed synaptic plasticity rules, i.e. the spike-timing-dependent plasticity (STDP) mechanism and the burst-timing-dependent plasticity (BTDP) mechanism. Due to the existence of heterogeneity in neurons that exhibit different degrees of excitability, a two-level hierarchical structure is obtained after the synaptic refinement. This self-organized network shows higher sensitivity to afferent current injection compared with alternative archetypal networks with different neural connectivity. Statistical analysis also demonstrates that it has the small-world properties of small shortest path length and high clustering coefficients. Thus the selectively refined connectivity enhances the ability of neuronal communications and improves the efficiency of signal transmission in the network.

  18. Enhancement of signal sensitivity in a heterogeneous neural network refined from synaptic plasticity

    International Nuclear Information System (INIS)

    Li Xiumin; Small, Michael

    2010-01-01

    Long-term synaptic plasticity induced by neural activity is of great importance in informing the formation of neural connectivity and the development of the nervous system. It is reasonable to consider self-organized neural networks instead of prior imposition of a specific topology. In this paper, we propose a novel network evolved from two stages of the learning process, which are respectively guided by two experimentally observed synaptic plasticity rules, i.e. the spike-timing-dependent plasticity (STDP) mechanism and the burst-timing-dependent plasticity (BTDP) mechanism. Due to the existence of heterogeneity in neurons that exhibit different degrees of excitability, a two-level hierarchical structure is obtained after the synaptic refinement. This self-organized network shows higher sensitivity to afferent current injection compared with alternative archetypal networks with different neural connectivity. Statistical analysis also demonstrates that it has the small-world properties of small shortest path length and high clustering coefficients. Thus the selectively refined connectivity enhances the ability of neuronal communications and improves the efficiency of signal transmission in the network.

  19. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2013-12-01

    Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”.

  20. The neural basis of the bystander effect--the influence of group size on neural activity when witnessing an emergency.

    Science.gov (United States)

    Hortensius, Ruud; de Gelder, Beatrice

    2014-06-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate whether when participants witness an emergency, while performing an unrelated color-naming task in an fMRI scanner, the number of bystanders present at the emergency influences neural activity in regions related to action preparation. The results show a decrease in activity with the increase in group size in the left pre- and postcentral gyri and left medial frontal gyrus. In contrast, regions related to visual perception and attention show an increase in activity. These results demonstrate the neural mechanisms of social influence on automatic action preparation that is at the core of helping behavior when witnessing an emergency. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.

    Science.gov (United States)

    Kok, Peter; de Lange, Floris P

    2014-07-07

    An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. TOUCHING MOMENTS: DESIRE MODULATES THE NEURAL ANTICIPATION OF ACTIVE ROMANTIC CARESS

    Directory of Open Access Journals (Sweden)

    Sjoerd J.H. Ebisch

    2014-02-01

    Full Text Available A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact.

  3. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information.

    Science.gov (United States)

    Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P

    2013-03-01

    In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Neural differences between intrinsic reasons for doing versus extrinsic reasons for doing: an fMRI study.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall; Xue, Yiqun; Xiong, Jinhu

    2012-05-01

    The contemporary neural understanding of motivation is based almost exclusively on the neural mechanisms of incentive motivation. Recognizing this as a limitation, we used event-related functional magnetic resonance imaging (fMRI) to pursue the viability of expanding the neural understanding of motivation by initiating a pioneering study of intrinsic motivation by scanning participants' neural activity when they decided to act for intrinsic reasons versus when they decided to act for extrinsic reasons. As expected, intrinsic reasons for acting more recruited insular cortex activity while extrinsic reasons for acting more recruited posterior cingulate cortex (PCC) activity. The results demonstrate that engagement decisions based on intrinsic motivation are more determined by weighing the presence of spontaneous self-satisfactions such as interest and enjoyment while engagement decisions based on extrinsic motivation are more determined by weighing socially-acquired stored values as to whether the environmental incentive is attractive enough to warrant action.

  6. Recent Advances in Neural Recording Microsystems

    Directory of Open Access Journals (Sweden)

    Benoit Gosselin

    2011-04-01

    Full Text Available The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field.

  7. Neural Correlates of Reflection on Present and Past Selves in Autism Spectrum Disorder.

    Science.gov (United States)

    Cygan, Hanna B; Marchewka, Artur; Kotlewska, Ilona; Nowicka, Anna

    2018-06-05

    Previous studies indicate that autobiographical memory is impaired in individuals with autism spectrum disorder (ASD). Successful recollection of information referring to one's own person requires the intact ability to re-activate representation of the past self. In the current fMRI study we investigated process of conscious reflection on the present self, the past self, and a close-other in the ASD and typically developing groups. Significant inter-group differences were found in the Past-Self condition. In individuals with ASD, reflection on the past self was associated with additional engagement of the posterior cingulate and posterior temporal structures. We hypothesize that this enhanced activation of widely distributed neural network reflects substantial difficulties in processes of reflection on one's own person in the past.

  8. Neural responses to exclusion predict susceptibility to social influence.

    Science.gov (United States)

    Falk, Emily B; Cascio, Christopher N; O'Donnell, Matthew Brook; Carp, Joshua; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G

    2014-05-01

    Social influence is prominent across the lifespan, but sensitivity to influence is especially high during adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences. For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death. Neural measures may be especially useful in understanding the basic mechanisms of adolescents' vulnerability to peer influence. We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring approximately 1 week after the neuroimaging session. Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior) during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress during exclusion. These results address the neural bases of social influence and risk taking; contribute to our understanding of social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications for adolescent driving. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  9. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  11. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  12. Activation and Self-Efficacy in a Randomized Trial of a Depression Self-Care Intervention.

    Science.gov (United States)

    McCusker, Jane; Lambert, Sylvie D; Cole, Martin G; Ciampi, Antonio; Strumpf, Erin; Freeman, Ellen E; Belzile, Eric

    2016-12-01

    In a sample of primary care participants with chronic physical conditions and comorbid depressive symptoms: to describe the cross-sectional and longitudinal associations of activation and self-efficacy with demographic, physical and mental health status, health behaviors, depression self-care, health care utilization, and use of self-care tools; and to examine the effects of a depression self-care coaching intervention on these two outcomes. Design/Study Setting. A secondary analysis of activation and self-efficacy data collected as part of a randomized trial to compare the effects of a telephone-based coached depression self-care intervention with a noncoached intervention. Activation (Patient Activation Measure) was measured at baseline and 6 months. Depression self-care self-efficacy was assessed at baseline, at 3 months, and at 6 months. In multivariable cross-sectional analyses (n = 215), activation and/or self-efficacy were associated with language, birthplace, better physical and mental health, individual exercise, specialist visits, and antidepressant nonuse. In longitudinal analyses (n = 158), an increase in activation was associated with increased medication adherence; an increase in self-efficacy was associated with use of cognitive self-care strategies and increases in social and solitary activities. There were significant improvements from baseline to 6 months in activation and self-efficacy scores both among coached and noncoached groups. The self-care coaching intervention did not affect 6-month activation or self-efficacy but was associated with quicker improvement in self-efficacy. Overall, the results for activation and self-efficacy were similar, although self-efficacy correlated more consistently than activation with depression-specific behaviors and was responsive to a depression self-care coaching intervention. © 2016 Society for Public Health Education.

  13. Increased Neural Activation during Picture Encoding and Retrieval in 60-Year-Olds Compared to 20-Year-Olds

    Science.gov (United States)

    Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.

    2010-01-01

    Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…

  14. Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors

    Directory of Open Access Journals (Sweden)

    Fernando Moya Rueda

    2018-05-01

    Full Text Available Human activity recognition (HAR is a classification task for recognizing human movements. Methods of HAR are of great interest as they have become tools for measuring occurrences and durations of human actions, which are the basis of smart assistive technologies and manual processes analysis. Recently, deep neural networks have been deployed for HAR in the context of activities of daily living using multichannel time-series. These time-series are acquired from body-worn devices, which are composed of different types of sensors. The deep architectures process these measurements for finding basic and complex features in human corporal movements, and for classifying them into a set of human actions. As the devices are worn at different parts of the human body, we propose a novel deep neural network for HAR. This network handles sequence measurements from different body-worn devices separately. An evaluation of the architecture is performed on three datasets, the Oportunity, Pamap2, and an industrial dataset, outperforming the state-of-the-art. In addition, different network configurations will also be evaluated. We find that applying convolutions per sensor channel and per body-worn device improves the capabilities of convolutional neural network (CNNs.

  15. Young Adult Smokers' Neural Response to Graphic Cigarette Warning Labels.

    Science.gov (United States)

    Green, Adam E; Mays, Darren; Falk, Emily B; Vallone, Donna; Gallagher, Natalie; Richardson, Amanda; Tercyak, Kenneth P; Abrams, David B; Niaura, Raymond S

    2016-06-01

    The study examined young adult smokers' neural response to graphic warning labels (GWLs) on cigarette packs using functional magnetic resonance imaging (fMRI). Nineteen young adult smokers ( M age 22.9, 52.6% male, 68.4% non-white, M 4.3 cigarettes/day) completed pre-scan, self-report measures of demographics, cigarette smoking behavior, and nicotine dependence, and an fMRI scanning session. During the scanning session participants viewed cigarette pack images (total 64 stimuli, viewed 4 seconds each) that varied based on the warning label (graphic or visually occluded control) and pack branding (branded or plain packaging) in an event-related experimental design. Participants reported motivation to quit (MTQ) in response to each image using a push-button control. Whole-brain blood oxygenation level-dependent (BOLD) functional images were acquired during the task. GWLs produced significantly greater self-reported MTQ than control warnings ( p branded versus plain cigarette packages. In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.

  16. Neural mechanisms of social influence in adolescence.

    Science.gov (United States)

    Welborn, B Locke; Lieberman, Matthew D; Goldenberg, Diane; Fuligni, Andrew J; Galván, Adriana; Telzer, Eva H

    2016-01-01

    During the transformative period of adolescence, social influence plays a prominent role in shaping young people's emerging social identities, and can impact their propensity to engage in prosocial or risky behaviors. In this study, we examine the neural correlates of social influence from both parents and peers, two important sources of influence. Nineteen adolescents (age 16-18 years) completed a social influence task during a functional magnetic resonance imaging (fMRI) scan. Social influence from both sources evoked activity in brain regions implicated in mentalizing (medial prefrontal cortex, left temporoparietal junction, right temporoparietal junction), reward (ventromedial prefrontal cortex), and self-control (right ventrolateral prefrontal cortex). These results suggest that mental state reasoning, social reward and self-control processes may help adolescents to evaluate others' perspectives and overcome the prepotent force of their own antecedent attitudes to shift their attitudes toward those of others. Findings suggest common neural networks involved in social influence from both parents and peers. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. An adaptive workspace hypothesis about the neural correlates of consciousness: insights from neuroscience and meditation studies.

    Science.gov (United States)

    Raffone, Antonino; Srinivasan, Narayanan

    2009-01-01

    While enormous progress has been made to identify neural correlates of consciousness (NCC), crucial NCC aspects are still very controversial. A major hurdle is the lack of an adequate definition and characterization of different aspects of conscious experience and also its relationship to attention and metacognitive processes like monitoring. In this paper, we therefore attempt to develop a unitary theoretical framework for NCC, with an interdependent characterization of endogenous attention, access consciousness, phenomenal awareness, metacognitive consciousness, and a non-referential form of unified consciousness. We advance an adaptive workspace hypothesis about the NCC based on the global workspace model emphasizing transient resonant neurodynamics and prefrontal cortex function, as well as meditation-related characterizations of conscious experiences. In this hypothesis, transient dynamic links within an adaptive coding net in prefrontal cortex, especially in anterior prefrontal cortex, and between it and the rest of the brain, in terms of ongoing intrinsic and long-range signal exchanges, flexibly regulate the interplay between endogenous attention, access consciousness, phenomenal awareness, and metacognitive consciousness processes. Such processes are established in terms of complementary aspects of an ongoing transition between context-sensitive global workspace assemblies, modulated moment-to-moment by body and environment states. Brain regions associated to momentary interoceptive and exteroceptive self-awareness, or first-person experiential perspective as emphasized in open monitoring meditation, play an important modulatory role in adaptive workspace transitions.

  18. Neural systems for guilt from actions affecting self versus others

    Science.gov (United States)

    Morey, Rajendra A.; McCarthy, Gregory; Selgrade, Elizabeth S.; Seth, Srishti; Nasser, Jessica D.; LaBar, Kevin S.

    2012-01-01

    Guilt is a core emotion governing social behavior by promoting compliance with social norms or self-imposed standards. The goal of this study was to contrast guilty responses to actions that affect self versus others, since actions with social consequences are hypothesized to yield greater guilty feelings due to adopting the perspective and subjective emotional experience of others. Sixteen participants were presented with brief hypothetical scenarios in which the participant’s actions resulted in harmful consequences to self (guilt-self) or to others (guilt-other) during functional MRI. Participants felt more intense guilt for guilt-other than guilt-self and guilt-neutral scenarios. Guilt scenarios revealed distinct regions of activity correlated with intensity of guilt, social consequences of actions, and the interaction of guilt by social consequence. Guilt intensity was associated with activation of the dorsomedial PFC, superior frontal gyrus, supramarginal gyrus, and anterior inferior frontal gyrus. Guilt accompanied by social consequences was associated with greater activation than without social consequences in the ventromedial and dorsomedial PFC, precuneus, posterior cingulate, and posterior superior temporal sulcus. Finally, the interaction analysis highlighted select regions that were more strongly correlated with guilt intensity as a function of social consequence, including the left anterior inferior frontal gyrus, left ventromedial PFC, and left anterior inferior parietal cortex. Our results suggest these regions intensify guilt where harm to others may incur a greater social cost. PMID:22230947

  19. The neural basis of human social values: evidence from functional MRI.

    Science.gov (United States)

    Zahn, Roland; Moll, Jorge; Paiva, Mirella; Garrido, Griselda; Krueger, Frank; Huey, Edward D; Grafman, Jordan

    2009-02-01

    Social values are composed of social concepts (e.g., "generosity") and context-dependent moral sentiments (e.g., "pride"). The neural basis of this intricate cognitive architecture has not been investigated thus far. Here, we used functional magnetic resonance imaging while subjects imagined their own actions toward another person (self-agency) which either conformed or were counter to a social value and were associated with pride or guilt, respectively. Imagined actions of another person toward the subjects (other-agency) in accordance with or counter to a value were associated with gratitude or indignation/anger. As hypothesized, superior anterior temporal lobe (aTL) activity increased with conceptual detail in all conditions. During self-agency, activity in the anterior ventromedial prefrontal cortex correlated with pride and guilt, whereas activity in the subgenual cingulate solely correlated with guilt. In contrast, indignation/anger activated lateral orbitofrontal-insular cortices. Pride and gratitude additionally evoked mesolimbic and basal forebrain activations. Our results demonstrate that social values emerge from coactivation of stable abstract social conceptual representations in the superior aTL and context-dependent moral sentiments encoded in fronto-mesolimbic regions. This neural architecture may provide the basis of our ability to communicate about the meaning of social values across cultural contexts without limiting our flexibility to adapt their emotional interpretation.

  20. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.