WorldWideScience

Sample records for self-quenching streamer mode

  1. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  2. A new front-end for better performances of RPC in streamer mode

    CERN Document Server

    Dupieux, P

    2003-01-01

    Resistive plate chambers (RPC) operated in streamer mode will provide the trigger of the ALICE forward muon spectrometer at the future large hadron collider at CERN. In a previous study, we had demonstrated that the time resolution of RPC in streamer mode could be improved significantly using a new discrimination technique called A DUaL Threshold (ADULT). The conclusions were based on a small sample of cosmic events, hence with almost zero incident flux, collected on a very simple test bench. The ADULT method has then been implanted in a custom integrated circuit and new data have been taken during beam and irradiation tests. The principle and the advantages of ADULT are reminded. The performances of the detector equipped with the new chip are given.

  3. Analysis and interpretation of the performance degradation of glass Resistive Plate Chambers operated in streamer mode

    CERN Document Server

    Calcaterra, A; Patteri, P; Piccolo, M; Della Mea, G; Restello, S; Ferri, F; Musella, P; Redaelli, N; Tabarelli de Fatis, T; Tinti, G; Mannocchi, G; Trinchero, G

    2007-01-01

    The long-term stability of Resistive Plate Chambers (RPCs) with glass electrodes was studied for one year with a dedicated test station hosting about 10 m2 of detectors. RPCs were operated in streamer mode with a ternary gas mixture containing argon (27%), isobutane (9%) and tetrafluoroethane (64%). Environmental conditions were kept under control and, in particular, the water pollution in the gas, deemed responsible for the degradation of glass RPC performance, was monitored never to exceed 30 ppm in the exhaust line. Evidence for a substantial aging of the detectors was observed, resulting in a loss of efficiency correlated to an increased rate of spurious streamers. This can be ascribed to the chemical attack of the glass surface by hydrofluoric acid formed in the streamer process, as confirmed by detailed morphological and chemical analyses of the electrode surface. Our results strengthen the indication that the instability of glass RPCs in the long term is related to the use of fluorocarbons as quenching...

  4. Measurement of cell volume changes by fluorescence self-quenching

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, J.F.; Litman, Thomas

    2002-01-01

    At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination....... The relationship was bell-shaped, with the negative slope in the concentration range where the fluorophore undergoes fluorescence self-quenching. In cultured retinal pigment epithelial cells, calcein fluorescence and extracellular osmolarity were linearly related. A 25-mOsm hypertonic challenge corresponded...

  5. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  6. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  7. Effects of reduced pressure and additives on streamers in white oil in long point-plane gap

    Science.gov (United States)

    Dung, N. V.; Høidalen, H. K.; Linhjell, D.; Lundgaard, L. E.; Unge, M.

    2013-06-01

    Recent experiments show that modern dielectric liquids behave differently from traditional mineral oil, particularly with respect to breakdown voltages for lightning impulse. This paper describes an experimental investigation addressing underlying reasons for this. The influences of reduced pressure and additives on streamers in white oil were investigated under both positive and negative polarities using an 8 cm long point-plane gap. Reduced pressure significantly accelerates streamers, thus increasing stopping length and reducing both breakdown and acceleration voltages. With increasing applied voltage, different typical propagation modes of streamers were recorded for both polarities. A low ionization potential additive strongly affects positive streamers. It significantly changes streamer velocity and reduces the breakdown voltage but increases the acceleration voltage where breakdown streamer velocity increases drastically. Adding an electron scavenger influences streamers of both polarities, but it mainly increases the velocity of negative streamers and results in a reduction of both the breakdown and the acceleration voltages. The propagation mechanisms of streamers are also discussed.

  8. Working group 3: Coronal streamers

    Science.gov (United States)

    Kopp, Roger A.

    1994-10-01

    The working group on coronal streamers convened on the first day of the 2nd SOHO Workshop, which took place in Marciana Marina, Isola d'Elba, 27 September 1 October 1993. Recent progress in streamer observational techniques and theoretical modeling was reported. The contribution of streamers to the mass and energy supply for the solar wind was discussed. Moreover, the importance of thin electric current sheets for determining both the gross dynamical properties of streamers and the fine-scale filamentary structure within streamers, was strongly emphasized. Potential advances to our understanding of these areas of coronal physics that could be made by the contingent of instruments aboard SOHO were pointed out.

  9. Working group 1: Coronal streamers

    Science.gov (United States)

    Kopp, R. A.

    1994-02-01

    The working group on coronal streamers convened on the first day of the 2nd SOHO Workshop, which took place in Marciana Marina, Isola d'Elba, 27 September--1 October 1993. Recent progress in streamer observational techniques and theoretical modeling was reported. The contribution of streamers to the mass and energy supply for the solar wind was discussed. Moreover, the importance of thin electric current sheets for determining both the gross dynamical properties of streamers and the fine-scale filamentary structure within streamers, was strongly emphasized. Potential advances to our understanding of these areas of coronal physics that could be made by the contingent of instruments aboard SOHO were shown.

  10. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  11. Gas mixture studies for streamer operated Resistive Plate Chambers

    Science.gov (United States)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  12. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  13. Land Streamer Surveying Using Multiple Sources

    KAUST Repository

    Mahmoud, Sherif

    2014-12-11

    Various examples are provided for land streamer seismic surveying using multiple sources. In one example, among others, a method includes disposing a land streamer in-line with first and second shot sources. The first shot source is at a first source location adjacent to a proximal end of the land streamer and the second shot source is at a second source location separated by a fixed length corresponding to a length of the land streamer. Shot gathers can be obtained when the shot sources are fired. In another example, a system includes a land streamer including a plurality of receivers, a first shot source located adjacent to the proximal end of the land streamer, and a second shot source located in-line with the land streamer and the first shot source. The second shot source is separated from the first shot source by a fixed overall length corresponding to the land streamer.

  14. Kinetics of a plasma streamer ionization front

    Science.gov (United States)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  15. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  16. Streamer knotwilg branching; sudden transition in morphology of positive streamers in nitrogen

    NARCIS (Netherlands)

    L.C.J. Heijmans (Luuk); T.T.J. Clevis; S. Nijdam (Sander); E.M. van Veldhuizen; U. Ebert (Ute)

    2015-01-01

    htmlabstractWe describe a peculiar branching phenomenon in positive repetitive streamer discharges in high purity nitrogen. We name it knotwilg branching after the Dutch word for a pollard willow tree. In a knotwilg branching a thick streamer suddenly splits into many thin streamers. Under some

  17. Cellular Activation of the Self-Quenched Fluorescent Reporter Probe in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alexei A. Bogdanov, Jr.

    2002-01-01

    Full Text Available The effect of intralysosomal proteolysis of near-infrared fluorescent (NIRF self-quenched macromolecular probe (PGC-Cy5.5 has been previously reported and used for tumor imaging. Here we demonstrate that proteolysis can be detected noninvasively in vivo at the cellular level. A codetection of GFP fluorescence (using two-photon excitation and NIRF was performed in tumor-bearing animals injected with PGC-Cy5.5. In vivo microscopy of tumor cells in subdermal tissue layers (up to 160 μm showed a strong Cy5.5 dequenching effect in GFP-negative cells. This observation was corroborated by flow cytometry, sorting, and reverse transcription polymerase chain reaction analysis of tumor-isolated cells. Both GFP-positive (81% total and GFP-negative (19% total populations contained Cy5.5-positive cells. The GFP-negative cells were confirmed to be host mouse cells by the absence of rat cathepsin mRNA signal. The subfraction of GFPnegative cells (2.5-3.0% had seven times higher NIRF intensity than the majority of GFP-positive or GFPnegative cells (372 and 55 AU, respectively. Highly NIRF-positive, FP-negative cells were CD45-and MAC3-positive. Our results indicate that: 1 intracellular proteolysis can be imaged in vivo at the cellular level using cathepsin-sensitive probes; 2 tumor-recruited cells of hematopoetic origin participate most actively in uptake and degradation of long-circulating macromolecular probes.

  18. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  19. Feather-like structures in positive streamers.

    NARCIS (Netherlands)

    G. Wormeester (Gideon); S. Nijdam (Sander); U. Ebert (Ute)

    2010-01-01

    htmlabstractIn experiments positive streamers can have a feather-like structure, with small hairs connected to the main streamer channel. These feathers were observed in pure nitrogen (with impurities of 1ppm oxygen or less) but not in air. Based on results of numerical simulations, we provide a

  20. Fluorescence self-quenching assay for the detection of target collagen sequences using a short probe peptide.

    Science.gov (United States)

    Nian, Linge; Hu, Yue; Fu, Caihong; Song, Chen; Wang, Jie; Xiao, Jianxi

    2018-01-01

    The development of novel assays to detect collagen fragments is of utmost importance for diagnostic, prognostic and therapeutic decisions in various collagen-related diseases, and one essential question is to discover probe peptides that can specifically recognize target collagen sequences. Herein we have developed the fluorescence self-quenching assay as a convenient tool to screen the capability of a series of fluorescent probe peptides of variable lengths to bind with target collagen peptides. We have revealed that the targeting ability of probe peptides is length-dependent, and have discovered a relatively short probe peptide FAM-G(POG)8 capable to identify the target peptide. We have further demonstrated that fluorescence self-quenching assay together with this short probe peptide can be applied to specifically detect the desired collagen fragment in complex biological media. Fluorescence self-quenching assay provides a powerful new tool to discover effective peptides for the recognition of collagen biomarkers, and it may have great potential to identify probe peptides for various protein biomarkers involved in pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Curved microchannels and bacterial streamers

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2010-03-01

    Bacterial biofilms are commonly identified as microbial communities attached to a surface and encased in a self-secreted extracellular matrix. Due to their increased resistance to antimicrobial agents, biofilms have an enormous impact on health and medicine (e.g., wound healing, implant-associated infections, disease transmission). On the other hand, they constitute a major component of the stream ecosystem by increasing transport of nutrients and retention of suspended particles. In this talk, we present an experimental study of bacterial biofilm development in a microfluidic device. In particular, we show the formation of filamentous structures, or streamers, in curved channels and how these suspended biofilms are linked to the underlying hydrodynamics.

  2. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    Science.gov (United States)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  3. Streamer parameters and breakdown in CO2

    Science.gov (United States)

    Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T.

    2017-01-01

    CO2 is a promising gas for the replacement of SF6 in high-voltage transmission and distribution networks due to its lower environmental impact. The insulation properties of CO2 are, therefore, of great interest. For this, the properties of streamers are important, since they determine the initial discharge propagation and possibly the transition to a leader. The present experimental investigation addresses the streamer inception and propagation at ambient temperature in the pressure range 0.05-0.5 MPa at both polarities. Streamer parameters, namely the stability field, radius and velocity, were deduced in uniform and in strongly non-uniform background fields. The measured breakdown fields can then be understood by streamer propagation and streamer-to-leader transition.

  4. Flue gas cleaning by pulse corona streamer

    Science.gov (United States)

    Keping, Yan; Vanveldhuizen, E. M.

    1993-03-01

    Currents of up to 600 A are obtained on a corona wire of 1 m length by applying DC and pulse voltage. The energy input is upto 6 J/pulse. The current duration is between 100 and 600 ns, and depends strongly on the DC voltage, the stray inductance and resistance of the circuit. Breakdown can be avoided by choosing the appropriate values for the components in the pulse circuit. Average electron energies resolved in space and in time are obtained by means of optical spectroscopy for corona discharge streamers in a wire cylinder reactor in air and in flue gas. The electron energy for primary streamers in air is found to be in the order of 10 eV and increases slightly with the pulse voltage and is almost constant during the streamer propagation. The electron energy for the secondary streamer is about a factor two lower near the anode where its optical emission is strong. In the gap and near the cathode, its emission is much less and the electron energy is another three times lower. The secondary streamer is limited in length, because it must satisfy the stability field requirement. The larger attachment coefficient of flue gas in the low field region explains that in flue gas the secondary streamer is shorter than in air. The ratio of the electrical energy input into primary and secondary streamers is controlled by the length of the electrical pulse. Measurements of NO removal from flue gas indicate that a pulse duration equal to the time required by the primary streamer to cross the gap gives the highest cleaning efficiency.

  5. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  6. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  7. Radio Frequency Electromagnetic Radiation From Streamer Collisions

    Science.gov (United States)

    Luque, Alejandro

    2017-10-01

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  8. Experimental investigations of electrodeless streamer inception

    Science.gov (United States)

    Chvyreva, Anna; Christen, Thomas; Pemen, A. J. M.

    2015-09-01

    Experimental investigations of surface streamer discharges were performed to analyze the conditions of surface streamer inception and determine the important parameters of discharge propagation over a dielectric. The present work is devoted to electrodeless streamer inception in an arrangement typically used in an industrial high voltage device. The process of discharge propagation was investigated under AC and pulsed voltage supplies. The main focus of the work was to determine the velocities of streamer propagation over a dielectric surrounded by nitrogen or air environment. These propagation velocities were estimated by means of time-resolved imaging and current measurements of discharge processes. Other important characteristics of pre-breakdown discharge behavior (such as electric field required for the inception and the values of ionization rates) were obtained. Results demonstrate the influence of a dielectric surface on a process of discharge development; the differences between streamers propagating along a dielectric surface in nitrogen and air environment are analyzed and characteristic parameters are compared to discharge development in bulk gas. The authors acknowledge support by STW project 12119 and ABB-Switzerland Ltd., Corporate Research.

  9. Similarity analysis of the streamer zone of Blue Jets

    CERN Document Server

    Popov, N A; Milikh, G M

    2016-01-01

    Multiple observations of Blue Jets (BJ)) show that BJ emits a fan of streamers similar to a laboratory leader. Moreover,in the exponential atmosphere those long streamers grow preferentially upward, producing a narrow coneconfined by the aperture angle. It was also noticed that BJ are similar to the streamer zone of a leader (streamer corona) and the modeling studies based on the streamers fractal structure were conducted. Objective of this paper is to study the fractal dimension of the bunch of streamer channels emitted by BJ, at different altitude and under the varying reduced electric field. This similarity analysis has been done in three steps: First we described the dendritic structure of streamers in corona discharge applying the fractal theory. Then using this model and the data from existing laboratory experiments we obtained the fractal dimension of the branching streamer channels. Finally the model was validated by the observations of BJ available from the literature.

  10. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  11. Electron acceleration during streamer collisions in air

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    during collisions of negative and a positive streamers. To explore this process, we have conducted the first self-consistent particle simulations of streamer encounters. Our simulation model is a 2-D, cylindrically symmetric, particle-in-cell code tracing the electron dynamics and solving the space...... charge fields, with a Monte Carlo scheme accounting for collisions and ionization. We present the electron density, the electric field, and the velocity distribution as functions of space and time. Assuming a background electric field 1.5 times the breakdown field, we find that the electron density...

  12. Bacterial floc mediated rapid streamer formation in creeping flows

    CERN Document Server

    Hassanpourfard, Mahtab; Ghosh, Ranajay; Das, Siddhartha; Thundat, Thomas; Liu, Yang; Kumar, Aloke

    2015-01-01

    One of the central puzzles concerning the interaction of low Reynolds number (Re<<1) fluid transport with bacterial biomass is the formation of filamentous structures called streamers. In this manuscript, we report our discovery of a new kind of low Re bacterial streamers, which appear from pre-formed bacterial flocs. In sharp contrast to the biofilm-mediated streamers, these streamers form over extremely small timescales (less than a second). Our experiments, carried out in a microchannel with micropillars rely on fluorescence microscopy techniques to illustrate that floc-mediated streamers form when a freely-moving floc adheres to the micropillar wall and gets rapidly sheared by the background flow. We also show that at their inception the deformation of the flocs is dominated by recoverable large strains indicating significant elasticity. These strains subsequently increase tremendously to produce filamentous streamers. Interestingly, we find that these fully formed streamers are not static structure...

  13. Near infrared single photon avalanche detector with negative feedback and self quenching

    Science.gov (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  14. Experimental investigation of streamer radius and length in SF6

    Science.gov (United States)

    Bujotzek, M.; Seeger, M.; Schmidt, F.; Koch, M.; Franck, C.

    2015-06-01

    SF6 has for decades been widely used in high voltage insulation and switching applications, e.g. in gas insulated switchgear. Despite its widespread use some important parameters, like the properties of streamers, are still not sufficiently understood. Since breakdown in SF6 always occurs via the streamer-leader transition the streamer properties are decisive for leader inception and, therefore, breakdown of the insulation. Important parameters are, for example, the streamer radius and the streamer propagation length of arrested streamers. Such properties enter in breakdown prediction models. In the present study the streamer radius and the propagation length were investigated experimentally at 50 and 100 kPa for both polarities using strongly and weakly non-uniform background fields. No experimental information was available so far for negative polarity. The resulting streamer radius scaling agrees with previous experimental results for positive polarity and with expectations from breakdown models for negative polarity. These results were similar for strongly non-uniform and weakly non-uniform background fields. A difference between the two setups was observed for the streamer lengths. It was found that for strongly non-uniform fields the streamer length scales as expected with the critical electric field but with a different field for weakly non-uniform background fields. This was similar for both polarities.

  15. 10 atm helium-methane streamer chamber with holographic registration

    Energy Technology Data Exchange (ETDEWEB)

    Falomkin, I.V.; Ivanov, I.Ts.; Khovansky, N.N.; Lyashenko, V.I.; Pontecorvo, G.B.; Tudor, T.; Shcherbakov, Yu.A.; Yani, Ya.; Trifonov, A.; Troshev, T. (Joint Inst. for Nuclear Research, Dubna (USSR))

    1985-05-15

    Electron track holograms were registered in a 10 atm helium-methane (3/1) self-shunted streamer chamber. From the Gabor holograms tracks were reconstructed: a streamer density of (14 +- 1) str/cm and streamer images of about 150 ..mu..m in diameter were obtained. The density and diameter values remain constant for delay times of the laser pulse with respect to the high voltage pulse within the range of 200 to 9000 ns.

  16. 10 atm helium-methane streamer chamber with holographic registration

    Energy Technology Data Exchange (ETDEWEB)

    Falomkin, I.V.; Ivanov, I.Ts.; Khovansky, N.N.; Lyashenko, V.I.; Pontecorvo, G.B.; Tudor, T.; Shcherbakov, Yu.A.; Yani, Ya.; Trifonov, A.; Troshev, T.; Khristov, V.

    1985-05-15

    Electron track holograms were registered in a 10 atm helium-methane (3/1) self-shunted streamer chamber. From the Gabor holograms tracks were reconstructed: a streamer density of (14+-1) str/cm and streamer images of about 150 ..mu..m in diameter were obtained. The density and diameter values remain constant for delay times of the laser pulse with respect to the high voltage pulse within the range of 200 to 9000 ns. (orig.).

  17. Streamer properties and associated x-rays in perturbed air

    Science.gov (United States)

    Köhn, C.; Chanrion, O.; Babich, L. P.; Neubert, T.

    2018-01-01

    Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%–100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%–10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.

  18. Influences of the pulsed power supply on corona streamer appearance

    NARCIS (Netherlands)

    E.M. van Veldhuizen; T.M.P. Briels (Tanja); L.R. Grabowski; A.J.M. Pemen; U. Ebert (Ute)

    2005-01-01

    textabstractPulsed positive corona streamers in air are studied by images obtained with an intensified CCD camera. Using a switched capacitor power supply, thin streamers are observed that branch. A power supply consisting of a 4-stage transmission line transformer gives pulses of much higher

  19. High order fluid model for ionization fronts in streamer discharges

    NARCIS (Netherlands)

    A. Markosyan (Aram); S. Dujko (Sasa); W. Hundsdorfer (Willem); U. Ebert (Ute)

    2011-01-01

    htmlabstractWhen non-ionized or lowly ionized matter is exposed to high electric fields, non-equilibrium ionization processes, streamer discharges, can develop. Streamers occur in nature and as well in many industrial applications such as the treatment of exhaust gasses, polluted water or biogas. A

  20. Parallel sparse direct solvers for Poisson's equation in streamer discharges

    NARCIS (Netherlands)

    M. Nool (Margreet); M. Genseberger (Menno); U. Ebert (Ute)

    2017-01-01

    textabstractThe aim of this paper is to examine whether a hybrid approach of parallel computing, a combination of the message passing model (MPI) with the threads model (OpenMP) can deliver good performance in streamer discharge simulations. Since one of the bottlenecks of almost all streamer

  1. Formation of bacterial streamers during filtration in microfluidic systems.

    Science.gov (United States)

    Marty, Aurélie; Roques, Christine; Causserand, Christel; Bacchin, Patrice

    2012-01-01

    Bacterial behavior during filtration is complex and is influenced by numerous factors. The aim of this paper is to report on experiments designed to make progress in the understanding of bacterial transfer in filters and membranes. Polydimethylsiloxane (PDMS) microsystems were built to allow direct dynamic observation of bacterial transfer across different microchannel geometries mimicking filtration processes. When filtering Escherichia coli suspensions in such devices, the bacteria accumulated in the downstream zone of the filter forming long streamers undulating in the flow. Confocal microscopy and 3D reconstruction of streamers showed how the streamers are connected to the filter and how they form in the stream. Streamer development was found to be influenced by the flow configuration and the presence of connections or tortuosity between channels. Experiments showed that streamer formation was greatest in a filtration system composed of staggered arrays of squares 10 μm apart.

  2. Streamer properties and associated x-rays in perturbed air

    DEFF Research Database (Denmark)

    Köhn, C; Chanrion, O; Babich, L P

    2018-01-01

    profile of air parallel and perpendicular to the ambient electric field. We consider localsinusoidal perturbations of 5%–100%, as induced from discharge shock waves. We use acylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers andcompare the electron density......Streamers are ionization waves in electric discharges. One of the key ingredients of streamerpropagation is an ambient gas that serves as a source of free electrons. Here, we explore thedependence of streamer dynamics on different spatial distributions of ambient air molecules. We varythe spatial......, electric field, streamer velocity and electron energy of streamers inuniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing airdensity and damped along increasing air density. Perturbations of at most 5%–10% change thevelocity differences by up to approximately...

  3. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  4. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  5. Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Bonaventura, Z.; Cinar, Deniz

    2014-01-01

    -energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam...

  6. Extracellular polymers of acid streamers from pyritic mines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.B.; Kelso, W.I.

    1981-01-01

    Extracellular polymers (slimes) extracted from acid streamers found in three disused North Wales mines were found to be a mixture of polysaccharides and RNA. The polymers exist as microfibrils synthesised by viable members of the acid streamer microbial community. Acid streamers from three mines, and from different zones in one of the mines, were shown to contain similar polymers, although the ratio of monomers varied from site to site. Monosaccharides identified in acid hydrolysates of slimes were glucose, galactose, mannose, ribose, xylose, arabinose, rhamnose and fucose.

  7. Laboratory Studies of Nitrogen Oxide Removal by Pulsed Streamer Corona

    National Research Council Canada - National Science Library

    Locke, Robert

    1995-01-01

    Pulsed streamer corona treatment is an advanced oxidation technology using a non thermal plasma that produces hydroxyl radicals, hydrogen peroxide, and aqueous electrons, all of which react with water...

  8. Modeling the plasma chemistry of stratospheric Blue Jet streamers

    Science.gov (United States)

    Winkler, Holger; Notholt, Justus

    2014-05-01

    Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.

  9. Oxygen abundance in coronal streamers during solar minimum

    Directory of Open Access Journals (Sweden)

    D. Marocchi

    Full Text Available We present a study of the oxygen abundance relative to hydrogen in the equatorial streamer belt of the solar corona during the recent period of activity minimum. The oxygen abundance is derived from the spectroscopic observations of the outer corona performed during 1996 with the Ultraviolet Coronagraph Spectrometer (SOHO in the ultra-violet region. This study shows that the depletion of oxygen, by almost one order of magnitude with respect to the photospheric values, found in the inner part of streamers by Raymond et al. (1997a is a common feature of the solar minimum streamer belt, which exhibits an abundance structure with the following characteristics. In the core of streamers the oxygen abundance is 1.3 × 10-4 at 1.5 R , then it drops to 0.8 × 10-4 at 1.7 R , value which remains almost constant out to 2.2 R . In the lateral bright structures that are ob-served to surround the core of streamers in the oxygen emission, the oxygen abundance drops monotonically with heliodistance, from 3.5 × 10-4 at 1.5 R to 2.2 × 10-4 at 2.2 R . The oxygen abundance structure found in the streamer belt is consistent with the model of magnetic topology of streamers proposed by Noci et al. (1997. The composition of the plasma contained in streamers is not the same as observed in the slow solar wind. Even in the lateral branches, richer in oxygen, at 2.2 R the abundance drops by a factor 2 with respect to the slow wind plasma observed with Ulysses during the declining phase of the solar cycle. Hence the slow wind does not appear to originate primarily from streamers, with the exception perhaps of the plasma flowing along the heliospheric current sheet.

    Key words. Interplanetary physics (solar wind plasma – Solar physics, astrophysics and astronomy (corona and transition region; ultraviolet emissions

  10. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry

    2017-07-07

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a two-dimensional particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.

  11. The diameters of long positive streamers in atmospheric air under lightning impulse voltage

    Science.gov (United States)

    Chen, She; Zeng, Rong; Zhuang, Chijie

    2013-09-01

    Results from experiments on long positive streamers in atmospheric air under lightning impulse voltage are presented. The length of the rod-plane gap is 57 cm. The peak voltages applied to the gap are +210-290 kV. The voltage and current are measured through a synchronized measurement system. The streamer diameters are obtained by the analysis of photographs taken by an intensified CCD (ICCD) camera. The four continuous photographs of single streamer discharge allow us to investigate the variation of the streamer diameters with time. For the hemispherical electrode 2 cm in diameter the diameters vary in the range 1.6-6.3 mm when the streamer length is 2-16 cm. The streamers are thicker when the electrode diameter is doubled from 2 to 4 cm. There is a downward trend in the streamer diameter with the propagation of the streamer heads. Their diameters for higher voltage decline at a lower rate. A modified analytical model is also employed to explain the observations. The streamer head potential and the maximum electric field are analysed for long streamers of tens of centimetres. The model can predict the value of the streamer diameter for different streamer head positions during its propagation. The experimental data and the calculated results are in good agreement.

  12. Streamers, sprites, leaders, lightning: from micro- to macroscales

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Ute [CWI, PO Box 94079, 1090 GB Amsterdam (Netherlands); Sentman, Davis D [Physics Department and Geophysical Institute, University of Alaska Fairbanks, PO Box 755920 Fairbanks, AK 99775-5920 (United States)

    2008-12-07

    'Streamers, sprites, leaders, lightning: from micro- to macroscales' was the theme of a workshop in October 2007 in Leiden, The Netherlands; it brought together researchers from plasma physics, electrical engineering and industry, geophysics and space physics, computational science and nonlinear dynamics around the common topic of generation, structure and products of streamer-like electric breakdown. The present cluster issue collects relevant papers within this area; most of them were presented during the workshop. We here briefly discuss the research questions and very shortly review the papers in the cluster issue, and we also refer to a few recent papers in this and other journals. (editorial review)

  13. Use of a streamer chamber for low energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Van Bibber, K.; Pang, W.; Avery, M.; Bloemhof, E.

    1979-10-01

    A small streamer chamber has been implemented for low energy heavy ion reaction studies at the LBL 88-inch cyclotron. The response of the chamber to light and heavy ions below 35 MeV/nucleon has been examined. The limited sensitivity of light output as a function of ionization works to advantage in recording a wide variety of tracks in the same photograph whose energy loss may vary considerably. Furthermore, as gas targets are attractive for several reasons, we have investigated the suitability of Ar and Xe for use in streamer chambers.

  14. Auroral streamer and its role in driving wave-like pre-onset aurora

    Science.gov (United States)

    Yao, Zhonghua; Pu, Z. Y.; Rae, I. J.; Radioti, A.; Kubyshkina, M. V.

    2017-12-01

    The time scales of reconnection outflow, substorm expansion, and development of instabilities in the terrestrial magnetosphere are comparable, i.e., from several to tens of minutes, and their existence is related. In this paper, we investigate the physical relations among those phenomena with measurements during a substorm event on January 29, 2008. We present conjugate measurements from ground-based high-temporal resolution all-sky imagers and in situ THEMIS measurements. An auroral streamer (north-south aligned thin auroral layer) was formed and propagated equatorward, which usually implies an earthward propagating plasma flow in the magnetotail. At the most equatorward part of the auroral streamer, a wave-like auroral band was formed aligning in the east-west direction. The wave-like auroral structure is usually explained as a consequence of instability development. Using AM03 model, we trace the auroral structure to magnetotail and estimate a wavelength of 0.5 R E. The scale is comparable to the drift mode wavelength determined by the in situ measurements from THEMIS-A, whose footpoint is on the wave-like auroral arc. We also present similar wave-like aurora observations from Cassini ultraviolet imaging spectrograph at Saturn and from Hubble space telescope at Jupiter, suggesting that the wave-like aurora structure is likely a result of fundamental plasma dynamics in the solar system planetary magnetospheres.

  15. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  16. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  17. Reconnection and merging of positive streamers in air

    NARCIS (Netherlands)

    S. Nijdam (Sander); C.G.C. Geurts; E.M. van Veldhuizen; U. Ebert (Ute)

    2009-01-01

    htmlabstractPictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the

  18. Nongeometrically converted shear waves in marine streamer data

    NARCIS (Netherlands)

    Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.

    2012-01-01

    Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called

  19. Deviations from the local field approximation in negative streamer heads,

    NARCIS (Netherlands)

    C. Li (Chao); W.J.M. Brok; U. Ebert (Ute); J.J.A.M. van der Mullen

    2007-01-01

    htmlabstractNegative streamer ionization fronts in nitrogen under normal conditions are investigated both in a particle model and in a fluid model in local field approximation. The parameter functions for the fluid model are derived from swarm experiments in the particle model. The front structure

  20. Moving boundary approximation for curved streamer ionization fronts: solvability analysis

    NARCIS (Netherlands)

    F. Brau (Fabian); B. Davidovitch; U. Ebert (Ute)

    2008-01-01

    textabstractThe minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a “kinetic undercooling” type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature

  1. Streamer spectrometer for the investigation of rare reactions with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, M.N.; Trifonov, A.I.; Troshev, T.M.; Falomkin, I.V.; Khristov, V.Y.; Shcherbakov, Yu.A.; Yanev, T.B.

    1985-01-01

    A short description is given of the streamer spectrometer created at the Institute of Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The streamer spectrometer is intended to investigate rare reactions with neutrons on the horizontal channel of the IRT-2000 reactor in Sofia. The basic element of the spectrometer is the streamer camera with dimensions of 30x20x10 cm/sup 3/, filled with target gas and located in a magnetic field with intensity of 0.07 T. The spectrometer allows the carrying out of a broad program of experiments in which it is necessary to observe at the same time the point of neutron interaction, to record reactions with scattering of various particles, to determine their spatial correlations, and to estimate the degree of their ionization. The streamer camera can work with neutron beams of high intensity, which gives a possibility to observe effectively processes of low probability. The created unit is intended for detection and photographing of traces of internal electron-positron pairs at the capture of thermal neutrons by the nuclei of argon and hydrogen. In our case the target is the gas which fills the camera, which enables us to observe the points of production of the pairs and to ensure good conditions for angular and power measurements.

  2. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2013-09-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.

  3. Characteristics of long-gap AC streamer discharges under low pressure conditions

    Science.gov (United States)

    Yang, Yaqi; Li, Weiguo; Xia, Yu; Yuan, Chuangye

    2017-10-01

    The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current (AC) voltage in a low pressure test platform for a 60 cm rod-plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.

  4. Performance of the MACRO limited streamer tubes for estimates of muon energy

    CERN Document Server

    Giorgini, M

    2002-01-01

    The MACRO limited streamer tubes can be operated in drift mode by using the TDCs included in the QTP system. In this way a considerable improvement in the space resolution is obtained, allowing the analysis of muon tracks in terms of multiple scattering effects and the energy estimates of muons crossing the detector. We present the results of two dedicated tests, performed with the CERN PS-T9 and SPS-X7 beams, to provide a full check of the electronics and to exploit the feasibility of the analysis. Using a neural network, we are able to estimate the muon energies up to E/sub mu / approximately = 40 GeV. The test beam data provide then an absolute energy calibration, which allows to apply the method to the MACRO data. (5 refs).

  5. Plasma fluid modeling of microwave streamers: Approximations and accuracy

    Science.gov (United States)

    Arcese, Emanuele; Rogier, François; Boeuf, Jean-Pierre

    2017-11-01

    Fluid models of microwave streamers at 110 GHz in atmospheric pressure air predict the formation of filamentary plasma patterns that show a good qualitative agreement with experiments. In order to perform more quantitative comparisons with experiments, in this paper, we study the consequences of different types of approximations that are generally used in the fluid models. We consider here the streamer dynamics before gas heating effects become important, i.e., the first few tens of ns after breakdown at atmospheric pressure. The influence on the results of the local effective field approximation vs. the local mean energy approximation is analyzed in detail. Other approximations that are related to the choice and method of calculation of electron transport parameters are also discussed. It is shown that the local effective field approximation is rather good for a large range of conditions of high frequency breakdown at atmospheric pressure in air while the results may be very sensitive to the choice of transport coefficients.

  6. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  7. Investigation of positive streamers by double pulse experiments

    Science.gov (United States)

    Nijdam, Sander; Takahashi, Eiichi; Markosyan, Aram H.; Ebert, Ute

    2013-09-01

    Streamer discharges are influenced by background ionization and other effects of previous discharges. We have studied the influence of repeating positive streamer discharges by applying two subsequent high voltage pulses with a variable interval (200 ns to 40 ms) between them. The discharges are studied with two ICCD cameras that image the discharge during either the first or the second voltage pulse. Experiments have been performed in a 103 mm point-plane gap at a pressure of 133 mbar in artificial air, pure nitrogen and pure argon. We have found a range of phenomena that depend on the inter-pulse time Δt . For small Δt , (below 1 μs for air and nitrogen and below 15 μs for argon) the streamers just continue their old paths. At larger Δt the conductivity has decreased too much for such continuation. However, parts of the old paths do glow up again like secondary streamers. At still larger Δt (roughly above 2.5 μs for air and 30 μs for nitrogen) new channels appear. At first they avoid the entire area of the previous discharge; next they follow the edges of the old channels; then they start to follow the old channels exactly and finally (Δt > 1 ms) they become fully independent of the old paths. This work was supported by JSPS KAKENHI Grant Number 24560249 as well as under FY2012 Researcher Exchange Program between the Japan Society for the Promotion of Science and The Netherlands Organisation for Scientific Research.

  8. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  9. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning

    CERN Document Server

    Ebert, Ute; Li, Chao; Luque, Alejandro; Briels, Tanja; van Veldhuizen, Eddie

    2010-01-01

    It is by now well understood that large sprite discharges at the low air densities of the mesosphere are physically similar to small streamer discharges in air at standard temperature and pressure. This similarity is based on Townsend scaling with air density. First the theoretical basis of Townsend scaling and a list of six possible corrections to scaling are discussed; then the experimental evidence for the similarity between streamers and sprites is reviewed. We then discuss how far present sprite and streamer theory has been developed, and we show how streamer experiments can be interpreted as sprite simulations. We review those results of recent streamer research that are relevant for sprites and other forms of atmospheric electricity and discuss their implications for sprite understanding. These include the large range of streamer diameters and velocities and the overall 3D morphology with branching, interaction and reconnection, the dependence on voltage and polarity, the electron energies in the strea...

  10. Biofilm streamers cause rapid clogging of flow systems

    Science.gov (United States)

    Shen, Yi; Drescher, Knut; Wingreen, Ned; Bassler, Bonnie; Stone, Howard

    2012-11-01

    Biofilms are antibiotic-resistant, sessile bacterial communities that are found on most surfaces on Earth. In addition to constituting the most abundant form of bacterial life, biofilms also cause chronic and medical device-associated infections. Despite their importance, basic information about how biofilms behave in common ecological environments is lacking. Here we demonstrate that flow through soil-like porous materials, industrial filters, and medical stents dramatically modifies the morphology of Pseudomonas aeruginosa biofilms to form streamers which over time bridge the space between obstacles and corners in non-uniform environments. Using a microfluidic model system we find that, contrary to the accepted paradigm, the accumulation of surface-attached bacterial biofilm has little effect on flow resistance whereas the formation of biofilm streamers causes sudden and rapid clogging. The time at which clogging happens depends on bacterial growth, while the duration of the clogging transition is driven by flow-mediated transport of bacteria to the clogging site. Flow-induced shedding of extracellular matrix from the resident biofilm generates a sieve-like network that catches bacteria flowing by, which add to the network of extracellular matrix, to cause exponentially rapid clogging. We expect these biofilm streamers to be ubiquitous in nature, and to have profound effects on flow through porous materials in environmental, industrial, and medical environments.

  11. Study on the streamer inception characteristics under positive lightning impulse voltage

    OpenAIRE

    Zezhong Wang; Yinan Geng

    2017-01-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper...

  12. Positive Streamer in the Surface Dielectric Barrier Discharge in Air: Numerical Modelling and Analytical Estimations

    Science.gov (United States)

    Soloviev, V.; Krivtsov, V.

    2017-11-01

    According to performed numerical simulation of the surface dielectric barrier discharge driven by positive polarity nanosecond voltage pulse the discharge in this case evolves as a streamer “flying” above the dielectric surface. The distance between the streamer and dielectric surface does not depend on dielectric barrier parameters and applied voltage value. The developed analytical model for surface streamer evolution confirms these results and explains the physics of this phenomenon. The electric field in front of a stationary streamer head is constant and defined only by ionization rate constant of the gas and its density.

  13. Live-streaming: Time-lapse video evidence of novel streamer formation mechanism and varying viscosity.

    Science.gov (United States)

    Parvinzadeh Gashti, Mazeyar; Bellavance, Julien; Kroukamp, Otini; Wolfaardt, Gideon; Taghavi, Seyed Mohammad; Greener, Jesse

    2015-07-01

    Time-lapse videos of growing biofilms were analyzed using a background subtraction method, which removed camouflaging effects from the heterogeneous field of view to reveal evidence of streamer formation from optically dense biofilm segments. In addition, quantitative measurements of biofilm velocity and optical density, combined with mathematical modeling, demonstrated that streamer formation occurred from mature, high-viscosity biofilms. We propose a streamer formation mechanism by sudden partial detachment, as opposed to continuous elongation as observed in other microfluidic studies. Additionally, streamer formation occurred in straight microchannels, as opposed to serpentine or pseudo-porous channels, as previously reported.

  14. Towards user-friendly, public domain simulations of the precursor of lightning: streamers

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. Ebert (Ute)

    2012-01-01

    textabstractStreamers play an important role in the early stages of lightning and can be directly seen as sprite discharges. Many kinds of streamer discharge models developed at CWI are presented, using Particle-in-cell/Monte Carlo, fluid and hybrid codes from 1D to 3D. The codes are being improved

  15. Towards user-friendly, public domain simulations of the precursor of lightning: streamers

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. Ebert (Ute)

    2012-01-01

    htmlabstractStreamers play an important role in the early stages of lightning and can be directly seen as sprite discharges. Many kinds of streamer discharge models developed at CWI are presented, using Particle-in-cell/Monte Carlo, fluid and hybrid codes from 1D to 3D. The codes are being improved

  16. The formation of snow streamers in the turbulent atmosphere boundary layer

    Science.gov (United States)

    Huang, Ning; Wang, Zheng-Shi

    2016-12-01

    The drifting snow in the turbulent atmosphere boundary layer is an important type of aeolian multi-phase flow. Current theoretical and numerical studies of drifting snow mostly consider the flow field as steady wind velocity. Whereas, little is known about the effects of turbulent wind structures on saltating snow particles. In this paper, a 3-D drifting snow model based on Large Eddy Simulation is established, in which the trajectory of every snow grain is calculated and the coupling effect between wind field and snow particles is considered. The results indicate that the saltating snow particles are re-organized by the suction effect of high-speed rotating vortexes, which results in the local convergence of particle concentration, known as snow streamers. The turbulent wind leads to the spatial non-uniform of snow particles lifted by aerodynamic entrainment, but this does not affect the formation of snow streamers. Whereas the stochastic grain-bed interactions make a great contribution to the final shapes of snow streamers. Generally, snow streamers display a characteristic length about 0.5 m and a characteristic width of approximately 0.16 m, and their characteristic sizes are not sensitive to the wind speed. Compared to the typical sand streamer, snow streamer is slightly narrower and the occurrence of other complex streamer patterns is later than that of sand streamers due to the better follow performance of snow grains with air flow.

  17. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  18. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  19. Probing photo-ionization: Simulations of positive streamers in varying N2:O2-mixtures

    NARCIS (Netherlands)

    G. Wormeester (Gideon); S. Pancheshnyi; A. Luque (Alejandro); S. Nijdam (Sander); U. Ebert (Ute)

    2010-01-01

    htmlabstractPhoto-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is

  20. Negative streamer fronts: comparison of particle and fluid models and hybrid coupling in space

    NARCIS (Netherlands)

    C. Li (Chao); W.J.M. Brok; U. Ebert (Ute); W. Hundsdorfer (Willem); J.J.A.M. van der Mullen; J. Schmidt; M. Simek; S. Pekarek; V. Prukner

    2007-01-01

    textabstractTo understand ionization fronts and the growth of streamer channels, both fluid and particle models have been developed. While fluid models are computationally efficient in regions with large particle densities like the interior of a streamer finger, particle models represent the full

  1. Simulating streamer discharges in 3D with the parallel adaptive Afivo framework

    Science.gov (United States)

    Teunissen, Jannis; Ebert, Ute

    2017-11-01

    We present an open-source plasma fluid code for 2D, cylindrical and 3D simulations of streamer discharges. The code is based on the Afivo framework, which features adaptive mesh refinement on quadtree/octree grids, geometric multigrid methods for Poisson’s equation, and OpenMP parallelism. We describe the numerical implementation of a fluid model of the drift-diffusion-reaction type, combined with the local field approximation. Then we demonstrate its functionality with 3D simulations of long positive streamers in nitrogen in undervolted gaps. Three examples are presented. The first one shows how a stochastic background density affects streamer propagation and branching. The second one focuses on the interaction of a streamer with preionized regions, and the third one investigates the interaction between two streamers. The simulations use up to 108 grid cells and run in less than a day; without mesh refinement they would require more than 1012 grid cells.

  2. Features of the Electron Avalanche in the Great Gas Amplification Mode

    CERN Document Server

    Zalikhanov, B Zh

    2005-01-01

    The results of studying the electron avalanche in narrow-gap wire chambers in the avalanche-to-streamer transition region are presented. Characteristics of the chambers in the great gas amplification mode ($\\geqslant 10^7$) are given. Specific features of the electric field distribution in narrow-gap chambers made it possible to reveal earlier unknown processes which proceed in a high-current avalanche and elucidate the avalanche development dynamics. Qualitative explanation is offered for these processes, and on its basis consideration is given to the possibility of the avalanche-to-streamer transition and the streamer growth mechanism.

  3. Streamer development in barrier discharge in air: spectral signatures and electric field

    Science.gov (United States)

    Hoder, Tomas; Simek, Milan; Bonaventura, Zdenek; Prukner, Vaclav

    2015-09-01

    Electrical breakdown in the upper atmosphere takes form of so called Transient Luminous Events (TLE). Down to the certain pressure limit, the first phases of the TLE-phenomena are controlled by the streamer mechanism. In order to understand the development of these events, streamers in 10 torr air were generated in volume barrier discharge. Stability and reproducibility of generated streamers were secured by proper electrode geometry and specific applied voltage waveform. In this work, spectrally resolved measurements of the streamer head emission with high spatial and temporal resolution are presented. Precise recordings of the emission of the second positive and first negative systems of molecular nitrogen allowed the determination of the spatio-temporal development of the reduced electric field in the streamer head. This unique experimental result reveals in more details the early stages of the streamer development and gives, besides values for streamer velocity and its diameter, quantitative information on the magnitude of the electric field. T.H. was financed through the ESF Programme TEA-IS (Grant No. 4219), M.S. and V.P. by the AVCR under collaborative project M100431201 and Z.B. acknowledges the support of grant of Czech Science Foundation GA15-04023S.

  4. Interaction of positive streamers in air with bubbles floating on liquid surfaces: conductive and dielectric bubbles

    Science.gov (United States)

    Babaeva, Natalia Yu; Naidis, George V.; Kushner, Mark J.

    2018-01-01

    The interaction of plasmas sustained in humid air with liquids produces reactive species in both the gas phase and liquid for applications ranging from medicine to agriculture. In several experiments, enhanced liquid reactivity has been produced when the liquid is a foam or a bubble coated liquid. To investigate the phenomena of streamers interacting with bubbles a two-dimensional computational investigation has been performed of streamer initiation and propagation on and inside hemispherical bubble-shells floating on a liquid surface. Following prior experiments, water and oil bubble-shells with an electrode located outside and inside the bubble were investigated. We found that positive air streamers interact differently with conductive water and dielectric oil bubbles. The streamer propagates along the external surface of a water bubble while not penetrating through the bubble due to screening of the electric field by the conducting shell. If the electrode is inserted inside the bubble, the path of the streamer depends on how deeply the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. Due to the low conductivity of oil bubble-shells, the electric field from an external electrode penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble.

  5. Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge

    Science.gov (United States)

    Janda, M.; Martišovitš, V.; Buček, A.; Hensel, K.; Molnár, M.; Machala, Z.

    2017-10-01

    Streamer-to-spark transition in a self-pulsing positive transient spark (TS) discharge was investigated at different repetition frequencies. The temporal evolution of the TS was recorded, showing the primary streamer and the secondary streamer phases. A streak camera-like images were obtained using spatio-temporal reconstruction of the discharge emission detected by a photomultiplier tube with light collection system placed on a micrometric translation stage. With increasing TS repetition frequency f (from ~1 to 6 kHz), the increase of the propagation velocity of both the primary and the secondary streamer was observed. Acceleration of the primary and secondary streamers, and shortening of streamer-to-spark transition time τ with increasing f was attributed to the memory effect composed of pre-heating and gas composition changes induced by the previous TS pulses. Fast propagation of the secondary streamer through the entire gap and fast gas heating could explain the short τ (~100 ns) at f above ~3 kHz.

  6. A large Streamer Chamber muon tracking detector in a high-flux fixed-target application

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garabatos, C.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Golutvin, I.A.; Gomez-Tato, A.; Gracia, G.; Groot, N. de; Grosse Perdekamp, M.; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kiryushin, Iu.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Lau, K.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L. E-mail: pinky@uh.edu; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raaedel, G.; Reyhancan, I.; Reicherz, G.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Ropelewski, L.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Sanders, D.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y. [and others

    1999-10-11

    Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 mx4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (author)

  7. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    Science.gov (United States)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  8. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times......Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show...

  9. Production of runaway electrons by negative streamer discharges

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2010-01-01

    and the conditions on the electric field for the acceleration of electrons into the runaway regime. We use particle codes to describe the process of stochastic acceleration and introduce a novel technique that improves the statistics of the relatively few electrons that reach high energies. The calculation......In this paper we estimate the probability that cold electrons can be accelerated by an ambient electric field into the runaway regime, and discuss the implications for negative streamer formation. The study is motivated by the discovery of ms duration bursts of γ-rays from the atmosphere above......V. Instead the relativistic runaway electron discharge has been proposed which requires a lower threshold electric field; however, seed electrons must be born with energies in the runaway regime. In this work we study the fundamental problem of electron acceleration in a conventional discharge...

  10. Investigation of the transition between glow and streamer discharges in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jai Hyuk [Department of Metallurgical Engineering, Yonsei University, Seodaemoon-Ku, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Lee, Tae Il [Department of Metallurgical Engineering, Yonsei University, Seodaemoon-Ku, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Han, Inho [Department of Metallurgical Engineering, Yonsei University, Seodaemoon-Ku, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Baik, Hong Koo [Department of Metallurgical Engineering, Yonsei University, Seodaemoon-Ku, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Song, Kie Moon [Department of Applied Physics, KonKuk University, Chungju 380-701 (Korea, Republic of); Lim, Yong Sik [Department of Applied Physics, KonKuk University, Chungju 380-701 (Korea, Republic of); Lee, Eung Suok [Advanced Technology Team, Samsung Electro-Mechanics Co Ltd, Suwon, 442-743 (Korea, Republic of)

    2006-08-15

    Generally, the parameter p {center_dot} d (pressure x gap distance) in dielectric barrier discharge (DBD) controls the electrical breakdown and also the plasma characteristics. We investigated the optimum plasma transition p {center_dot} d by controlling the pressure. To find the transition p {center_dot} d (p {center_dot} d{sub tr}) condition, optical emission spectroscopy (OES) was used to measure emission spectra from the DBD. All p {center_dot} d data were normalized by the second positive system of nitrogen molecules, the wavelength of which was 337.1 nm. Then we compared the relative intensities of species generated during the discharge by OES analysis. Species selected for comparison were the first negative system (FNS) of nitrogen molecules (391.4 nm) and atomic oxygen spectra (777.1 nm). Experimental results showed that relative intensities were almost constant as p {center_dot} d decreased, but at specific p {center_dot} d data, the intensity started to increase. The increase in FNS of nitrogen molecules means not only an increase in electron energy but also a change in the plasma mode, streamer to glow transition. In the case of DBD using alumina with 1 mm thickness applied ac power, the plasma transition occurred at the 1 Torr cm condition.

  11. DC high voltage to drive helium plasma jet comprised of repetitive streamer breakdowns

    CERN Document Server

    Wang, Xingxing

    2016-01-01

    This paper demonstrates and studies helium atmospheric pressure plasma jet comprised of series of repetitive streamer breakdowns, which is driven by a pure DC high voltage (auto-oscillations). Repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV/cm. Repetition frequency of the streamer breakdowns excited using this principle can be simply tuned by reconfiguring the discharge electrode geometry. This custom-designed type of the helium plasma jet, which operates on the DC high voltage and is comprised of the series of the repetitive streamer breakdowns at frequency about 13 kHz, is demonstrated.

  12. Climatological features of stratospheric streamers in the FUB-CMAM with increased horizontal resolution

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2005-01-01

    Full Text Available The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999 and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003. Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003. In the

  13. 3D PIC-MCC simulations of positive streamers in air gaps

    Science.gov (United States)

    Jiang, M.; Li, Y.; Wang, H.; Liu, C.

    2017-10-01

    Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.

  14. Computational investigations of streamers in a single bubble suspended in distilled water under atmospheric pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan

    2016-09-01

    We present a computational model of nanosecond streamers generated in helium bubbles immersed in distilled water at the atmospheric pressure conditions. The model is based on the self-consistent, multispecies and the continuum description of plasma and takes into account the presence of water vapor in the gas bubble for a more accurate description of the kinetics of the discharge. We find that the dynamic characteristics of the streamer discharge are completely different at low and high over voltages. We observe that the polarity of the trigger voltage has a substantial effect on initiation, transition and evolution stages of streamers with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages due to the presence of multiple streamers. We also find that the presence of water vapor significantly influences the distribution of the dominant species in the streamer trail and has a profound effect on the flux of the dominant species to the bubble wall. The research reported in this publication was supported by Competitive Research Funding from King Abdullah University of Science and Technology (KAUST).

  15. Streamer discharges as advancing imperfect conductors: inhomogeneities in long ionized channels

    Science.gov (United States)

    Luque, A.; González, M.; Gordillo-Vázquez, F. J.

    2017-12-01

    A major obstacle for the understanding of long electrical discharges is the complex dynamics of streamer coronas, formed by many thin conducting filaments. Building macroscopic models for these filaments is one approach to attain a deeper knowledge of the discharge corona. Here, we present a one-dimensional, macroscopic model of a propagating streamer channel with a finite and evolving internal conductivity. We represent the streamer as an advancing finite-conductivity channel with a surface charge density at its boundary. This charge evolves self-consistently due to the electric current that flows through the streamer body and within a thin layer at its surface. We couple this electrodynamic evolution with a field-dependent set of chemical reactions that determine the internal channel conductivity. With this one-dimensional model, we investigate the formation of persisting structures in the wake of a streamer head. In accordance with experimental observations, our model shows that a within a streamer channel some regions are driven towards high fields that can be maintaned for tens of nanoseconds.

  16. Computational Studies of Positive and Negative Streamers in Bubbles Suspended in Distilled Water

    KAUST Repository

    Sharma, Ashish

    2017-01-05

    We perform computational studies of nanosecond streamers generated in helium bubbles immersed in distilled water under high pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the chemical kinetics of the discharge. We apply positive and negative trigger voltages much higher than the breakdown voltage and study the dynamic characteristics of the resulting discharge. We observe that, for high positive trigger voltages, the streamer moves along the surface of the gas bubble during the initial stages of the discharge. We also find a considerable difference in the evolution of the streamer discharge for positive and negative trigger voltages with more uniform volumetric distribution of species in the streamer channel for negative trigger voltages due to formation of multiple streamers. We also observe that the presence of water vapor does not influence the breakdown voltage of the discharge but greatly affects the composition of dominant species in the trail of the streamer channel.

  17. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    Science.gov (United States)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  18. OES characterization of streamers in a nanosecond pulsed SDBD using N2 and Ar transitions

    Science.gov (United States)

    Goekce, S.; Peschke, P.; Hollenstein, Ch; Leyland, P.; Ott, P.

    2016-08-01

    The characterization of non-thermal homogeneous plasmas is possible using optical emission spectroscopy (OES), notably by estimating the reduced electric field. This method was applied to characterize streamers generated by a nanosecond pulsed surface dielectric barrier discharge (SDBD) operated in quiescent air at atmospheric pressure and also at 0.5 atm. The average reduced electric field associated with the surface streamers was determined using four different sets of transitions occurring in air plasmas, the first negative system (FNS) of \\text{N}2+ , the first positive system (FPS) and second positive system (SPS) of {{\\text{N}}2} and argon transitions 2{{p}x}-1{{s}y} . The analysis of the results allowed to critically assess the validity of the estimated reduced electric field for the present conditions. It is shown experimentally that the inhomogeneous nature of the streamer head influences significantly the estimation of the reduced electric field. Moreover, the estimated reduced electric field is not sufficient to characterize the processes taking place in the streamer head, due to the steep variation of both the reduced electric field E/N and the electron density n e in space and time. To overcome this limitation, a new method is proposed to take into account the spatial structure of a streamer head. The applicability of the new method is demonstrated for these experimental conditions and shows a very good agreement for the transitions tested.

  19. Multi-source waveform inversion of marine streamer data using the normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    Even though the encoded multi-source approach dramatically reduces the computational cost of waveform inversion, it is generally not applicable to marine streamer data. This is because the simultaneous-sources modeled data cannot be muted to comply with the configuration of the marine streamer data, which causes differences in the number of stacked-traces, or energy levels, between the modeled and observed data. Since the conventional L2 norm does not account for the difference in energy levels, multi-source inversion based on the conventional L2 norm does not work for marine streamer data. In this study, we propose the L2, approximated L2, and L1 norm using the normalized wavefields for the multi-source waveform inversion of marine streamer data. Since the normalized wavefields mitigate the different energy levels between the observed and modeled wavefields, the multi-source waveform inversion using the normalized wavefields can be applied to marine streamer data. We obtain the gradient of the objective functions using the back-propagation algorithm. To conclude, the gradient of the L2 norm using the normalized wavefields is exactly the same as that of the global correlation norm. In the numerical examples, the new objective functions using the normalized wavefields generate successful results whereas conventional L2 norm does not.

  20. Polyurethane seismic streamer skins: an application of cold spray metal embedment.

    Science.gov (United States)

    Vucko, M J; King, P C; Poole, A J; Jahedi, M Z; de Nys, R

    2013-01-01

    Cold spray metal embedment is an innovative antifouling (AF) technology that delivers metal particles with AF properties into many thermoplastic polymers. AF efficacy was quantified for low (22.1 ± 4.8 g m(-2)) and high (101.1 ± 10.8 g m(-2)) densities of copper particles embedded into polyurethane (PU) seismic streamer skins, which are used in geophysical exploration. Failure of each Cu-embedded treatment was defined as settlement of hard foulers. Low-density streamers failed after 42 days while high-density streamers failed after 210 days. Most importantly, the high-density streamers were completely free of hard foulers including the barnacle Amphibalanus reticulatus during this time period. In conclusion, cold-spray metal embedment is an effective AF technology for PU seismic streamer skins, under intense fouling conditions. Higher copper particle densities enhance AF longevity and the effect of density provides a tool to extend efficacy and enhance AF performance for specific polymers.

  1. THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Pfuhl, Oliver; Gillessen, Stefan; Eisenhauer, Frank; Genzel, Reinhard; Plewa, Philipp M.; Ott, Thomas; Ballone, Alessandro; Schartmann, Marc; Burkert, Andreas [Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., D-85741 Garching (Germany); Fritz, Tobias K. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Sari, Re' em; Steinberg, Elad [Racah Institute of Physics, Hebrew University of Jerusalem, 91904 (Israel); Madigan, Ann-Marie [Department of Astronomy, B-20 Hearst Field Annex 3411, University of California, Berkeley, CA 94720 (United States)

    2015-01-10

    We present new, deep near-infrared SINFONI @ VLT integral field spectroscopy of the gas cloud G2 in the Galactic Center, from late 2013 August, 2014 April, and 2014 July. G2 is visible in recombination line emission. The spatially resolved kinematic data track the ongoing tidal disruption. The cloud reached minimum distance to the MBH of 1950 Schwarzschild radii. As expected for an observation near the pericenter passage, roughly half of the gas in 2014 is found at the redshifted, pre-pericenter side of the orbit, while the other half is at the post-pericenter, blueshifted side. We also present an orbital solution for the gas cloud G1, which was discovered a decade ago in L'-band images when it was spatially almost coincident with Sgr A*. The orientation of the G1 orbit in the three angles is almost identical to that of G2, but it has a lower eccentricity and smaller semi-major axis. We show that the observed astrometric positions and radial velocities of G1 are compatible with the G2 orbit, assuming that (1) G1 was originally on the G2 orbit preceding G2 by 13 yr, and (2) a simple drag force acted on it during pericenter passage. Taken together with the previously described tail of G2, which we detect in recombination line emission and thermal broadband emission, we propose that G2 may be a bright knot in a much more extensive gas streamer. This matches purely gaseous models for G2, such as a stellar wind clump or the tidal debris from a partial disruption of a star.

  2. Development of a large streamer chamber for the Intersecting Storage Rings at CERN

    CERN Document Server

    Eckardt, V; Meinke, R; Sander, O R

    1973-01-01

    A streamer chamber system has been constructed surrounding as completely as possible one of the intersection regions of the CERN Intersecting Storage Rings. The system consists of two identical streamer chambers with ground electrodes shaped to fit the vacuum tubes of the storage rings. To detect photons, lead oxide plates have been inserted into the sensitive volume of the chambers. To have a very short and constant memory time, a system which measures and regulates the memory time within a few per cent is used. (4 refs).

  3. The Time Evolution of Streamer Discharges in Single and Multiple Bubbles in Water

    Science.gov (United States)

    Mujovic, Selman; Groele, Joseph; Foster, John

    2015-09-01

    The interaction of plasma with liquid water lies at the heart of a variety of revisited technological applications ranging from water treatment to wound healing. Plasma ignition and propagation in water, however, is poorly understood. It has been theorized that plasma streamer propagation takes place in microbubbles, namely streamer bubble hopping. In this work, discharge development in single and multiple bubble acoustic systems is investigated using high-speed imaging and emission spectroscopy. Optical filters allow for time resolved measurements of specific chemical species as well. Better understanding of these breakdown processes will guide the construction of an effective plasma water purifier. NSF CBET 1336375.

  4. Numerical simulation of positive streamer development in thundercloud field enhanced near raindrops

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2016-01-01

    electric field in a vicinity of hydrometeors. To test the idea, we carry out numerical simulations of positive streamer development around charged water drops at air pressure typical at thundercloud altitudes and at different background fields, drop sizes and charges. With real drop sizes and charges......As the threshold field strength for the breakdown in air significantly exceeds the maximum measured thundercloud strength 3 kV/cm/atm, the problem of lightning initiation remains unclear. According to the popular idea, lightning can be initiated from streamer discharges developed in the enhanced...

  5. Analyses of electron runaway in front of the negative streamer channel

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2017-01-01

    , which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit......-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the pre-ionization in front...... of the channel via REs will lead to the ionization wave propagation self-consistent with REs generation....

  6. Streamer inception from hydrometeors as a stochastic process with a particle-based model

    Science.gov (United States)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Teunissen, Jannis; Buitink, Stijn; Scholten, Olaf; Trihn, Gia

    2017-04-01

    In thunderstorms, streamers (as precursors for lightning leaders) can be initiated from hydrometeors (droplets, graupel, ice needles, etc.) which enhance the thundercloud electric field to values above electric breakdown; and initial electrons may come from extensive air showers [1]. Typically, streamer inception from hydrometeors is theoretically studied with deterministic fluid simulations (i.e. drift-diffusion-reaction coupled with Poisson), see [1, 2, 3] and references therein. However, electrons will only multiply in the area above breakdown, which is of the order of a cubic millimeter for hydrometeors of sub-centimeter scale. Initial electron densities, even in extreme extensive air shower events, do not exceed 10 per cubic millimeter. Hence only individual electron avalanches - with their intrinsically random nature - are entering the breakdown area sequentially. On these scales, a deterministic fluid description is thus not valid. Therefore, we developed a new stochastic particle-based model to study the behavior of the system described above, to calculate the probability of streamer inception, for given hydrometeor, electric field and initial electron density. Results show that the discharge starts with great jitter and usually off the symmetry axis, demanding stochastic approach in full 3D for streamer inception in realistic thunderstorm conditions. The developed software will be made publically available as an open source project. [1] Dubinova et al. 2015. Phys. Rev. Lett. 115(1), 015002. [2] Liu et al. 2012. Phys. Rev. Lett. 109(2), 025002. [3] Babich et al. 2016. J. Geophys. Res. Atmos. 121, 6393-6403.

  7. Derivation and test of high order fluid model for streamer discharges

    NARCIS (Netherlands)

    A. Markosyan (Aram); S. Dujko (Sasa); U. Ebert (Ute); A. Blaszczyk; R. Hiptmair; P. Leuchtmann; J. Ostrowski

    2012-01-01

    textabstractA high order fluid model for streamer dynamics is developed by closing the system after the 4th moment of the Boltzmann equation in local mean energy approximation. This is done by approximating the high order pressure tensor in the heat flux equation through the previous moments.

  8. The role of free electrons in the guiding of positive streamers

    NARCIS (Netherlands)

    S. Nijdam (Sander); H.J. Teunissen (Jannis); E. Takahashi; U. Ebert (Ute)

    2016-01-01

    textabstractBecause positive streamers propagate opposite to the electron drift velocity, their growth not only depends on the local electric field, but also on the electron density ahead of them. We have recently demonstrated the importance of this electron density, by showing that positive

  9. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    CERN Document Server

    Buntat, Z; Smith, I R

    2003-01-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  10. Positive streamer propagation due to background or photo ionization: Experiments and theory

    NARCIS (Netherlands)

    S. Nijdam (Sander); G. Wormeester (Gideon); U. Ebert (Ute)

    2012-01-01

    textabstractPositive streamers in air are generally believed to propagate against the electron drift direction due to the nonlocal photo-ionization reaction. Photo-ionization is the ionization of O2 molecules by UV radiation from excited N2 molecules; therefore this reaction depends on the ratio

  11. Positive streamers in air of varying density: experiments on the scaling of the excitation density

    NARCIS (Netherlands)

    D. Dubrovin; S. Nijdam (Sander); T.T.J. Clevis; L.C.J. Heijmans (Luuk); U. Ebert (Ute); Y. Yair; C. Price

    2015-01-01

    htmlabstractStreamers are rapidly extending ionized finger-like structures that dominate the initial breakdown of large gas volumes in the presence of a sufficiently strong electric field. Their macroscopic parameters are described by simple scaling relations, where the densities of electrons and

  12. Application of multi-source waveform inversion to marine streamer data using the global correlation norm

    KAUST Repository

    Choi, Yun Seok

    2012-05-02

    Conventional multi-source waveform inversion using an objective function based on the least-square misfit cannot be applied to marine streamer acquisition data because of inconsistent acquisition geometries between observed and modelled data. To apply the multi-source waveform inversion to marine streamer data, we use the global correlation between observed and modelled data as an alternative objective function. The new residual seismogram derived from the global correlation norm attenuates modelled data not supported by the configuration of observed data and thus, can be applied to multi-source waveform inversion of marine streamer data. We also show that the global correlation norm is theoretically the same as the least-square norm of the normalized wavefield. To efficiently calculate the gradient, our method employs a back-propagation algorithm similar to reverse-time migration based on the adjoint-state of the wave equation. In numerical examples, the multi-source waveform inversion using the global correlation norm results in better inversion results for marine streamer acquisition data than the conventional approach. © 2012 European Association of Geoscientists & Engineers.

  13. TEMPERATURE AND EXTREME-ULTRAVIOLET INTENSITY IN A CORONAL PROMINENCE CAVITY AND STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, T. A. [NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States); Gibson, S. E.; Schmit, D. J. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Science, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143 (United States); Tripathi, D. [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune University Campus, Pune 411 007 (India)

    2012-09-20

    We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 August 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model predictions to the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) Mark 4 K-coronameter. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude-dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude-dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the EUV line intensities by a factor of 4-10, without overestimating pB. We discuss this difference in terms of filling factors and uncertainties in density diagnostics and elemental abundances.

  14. A model of the streamer-induced spark formation based on neutral dynamics

    NARCIS (Netherlands)

    E. Marode; F. Bastien; M. Bakker (Miente)

    1979-01-01

    textabstractThe breakdown of a positive point to plane gap in air near atmospheric pressure begins with the formation of a low-conductivity filament by the space-charge-controlled streamer process. Within the filament, the rate of electron attachment exceeds that of ionization, and the external

  15. Slow decay of radiation after a pulsed streamer discharge in pure nitrogen

    NARCIS (Netherlands)

    T.T.J. Clevis; S. Nijdam (Sander); U. Ebert (Ute); P.G.C. Almeida; L.L. Alves; V. Guerra

    2012-01-01

    textabstractLight emission and electrical characteristics in the early post-discharge of a high purity nitrogen streamer have been investigated. Up to the millisecond regime, both light emission and current are significant, while the voltage has decayed after several tens of microseconds. The

  16. Simulation for spatio-temporal variation of chemically active species in an atmospheric pressure streamer discharge.

    Science.gov (United States)

    Komuro, Atsushi; Takaahshi, Kazunori; Ando, Akira

    2016-09-01

    Spatiotemporal variation of radical density in an atmospheric pressure plasma discharge has been investigated by two-dimensional numerical simulation. Behaviors of radicals are characterized by four areas as ``Hot anode region'', ``Secondary streamer region'', ``Primary streamer region'', and ``Near-cathode region''. Although the reduced electric field in ``Hot anode region'' is relatively high, the gas temperature also increases and the ozone destruction process proceed. On the other hand, in ``Near-cathode region'', the high-energy radicals such as N(4S) is effectively produced because the instantaneous value of reduced electric field is high. Behaiviour of OH is also investigated. The results show that OH is effectively produced in ``Secondary streamer region'' and is not effective in ``Hot anode region''. This is because the reduced electric filed in ``Secondary streamer region'' is sufficiently high for the dissociation of H2O by O(D) and N2(a) and the gas temperature in ``Hot anode region'' is too high for the production of OH.

  17. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry

    Science.gov (United States)

    Hoder, T.; Šimek, M.; Bonaventura, Z.; Prukner, V.; Gordillo-Vázquez, F. J.

    2016-08-01

    The initial stages of transient luminous events (TLEs) occurring in the upper atmosphere of the Earth are, in a certain pressure range, controlled by the streamer mechanism. This paper presents the results of the first laboratory experiments to study the TLE streamer phenomena under conditions close to those of the upper atmosphere. Spectrally and highly spatiotemporally resolved emissions originating from radiative states {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) (second positive system) and \\text{N}2+≤ft({{\\text{B}}2}Σu+\\right) (first negative system) have been recorded from the positive streamer discharge. Periodic ionizing events were generated in a barrier discharge arrangement at a pressure of 4 torr of synthetic air, i.e. simulating the pressure conditions at altitudes of ≃37 km. Employing Abel inversion on the radially scanned streamer emission and a 2D fitting procedure, access was obtained to the local spectral signatures within the over 106  m s-1 fast propagating streamers. The reduced electric field strength distribution within the streamer head was determined from the ratio of the \\text{N}2+/{{\\text{N}}2} band intensities with peak values up to 500 Td and overall duration of about 10 ns. The 2D profiles of the streamer head electric fields were used as an experimentally obtained input for kinetic simulations of the streamer-induced air plasma chemistry. The radial and temporal computed distribution of the ground vibrational levels of the radiative states involved in the radiative transitions analyzed (337.1 nm and 391.5 nm), atomic oxygen, nitrogen, nitric oxide and ozone concentrations are vizualized and discussed in comparison with available models of the streamer phase of Blue Jet discharges in the stratosphere.

  18. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic.

    Science.gov (United States)

    Niederberger, Thomas D; Perreault, Nancy N; Lawrence, John R; Nadeau, Jay L; Mielke, Randall E; Greer, Charles W; Andersen, Dale T; Whyte, Lyle G

    2009-03-01

    The perennial springs at Gypsum Hill (GH) and Colour Peak (CP), situated at nearly 80 degrees N on Axel Heiberg Island in the Canadian high Arctic, are one of the few known examples of cold springs in thick permafrost on Earth. The springs emanate from deep saline aquifers and discharge cold anoxic brines rich in both sulfide and sulfate. Grey-coloured microbial streamers form during the winter months in snow-covered regions of the GH spring run-off channels (-1.3 degrees C to 6.9 degrees C, approximately 7.5% NaCl, 0-20 p.p.m. dissolved sulfide, 1 p.p.m. dissolved oxygen) but disappear during the Arctic summer. Culture- and molecular-based analyses of the 16S rRNA gene (FISH, DGGE and clone libraries) indicated that the streamers were uniquely dominated by chemolithoautotrophic sulfur-oxidizing Thiomicrospira species. The streamers oxidized both sulfide and thiosulfate and fixed CO(2) under in situ conditions and a Thiomicrospira strain isolated from the streamers also actively oxidized sulfide and thiosulfate and fixed CO(2) under cold, saline conditions. Overall, the snow-covered spring channels appear to represent a unique polar saline microhabitat that protects and allows Thiomicrospira streamers to form and flourish via chemolithoautrophic, phototrophic-independent metabolism in a high Arctic winter environment characterized by air temperatures commonly below -40 degrees C and with an annual average air temperature of -15 degrees C. These results broaden our knowledge of the physical and chemical boundaries that define life on Earth and have astrobiological implications for the possibility of life existing under similar Martian conditions.

  19. 3D streamers simulation in a pin to plane configuration using massively parallel computing

    Science.gov (United States)

    Plewa, J.-M.; Eichwald, O.; Ducasse, O.; Dessante, P.; Jacobs, C.; Renon, N.; Yousfi, M.

    2018-03-01

    This paper concerns the 3D simulation of corona discharge using high performance computing (HPC) managed with the message passing interface (MPI) library. In the field of finite volume methods applied on non-adaptive mesh grids and in the case of a specific 3D dynamic benchmark test devoted to streamer studies, the great efficiency of the iterative R&B SOR and BiCGSTAB methods versus the direct MUMPS method was clearly demonstrated in solving the Poisson equation using HPC resources. The optimization of the parallelization and the resulting scalability was undertaken as a function of the HPC architecture for a number of mesh cells ranging from 8 to 512 million and a number of cores ranging from 20 to 1600. The R&B SOR method remains at least about four times faster than the BiCGSTAB method and requires significantly less memory for all tested situations. The R&B SOR method was then implemented in a 3D MPI parallelized code that solves the classical first order model of an atmospheric pressure corona discharge in air. The 3D code capabilities were tested by following the development of one, two and four coplanar streamers generated by initial plasma spots for 6 ns. The preliminary results obtained allowed us to follow in detail the formation of the tree structure of a corona discharge and the effects of the mutual interactions between the streamers in terms of streamer velocity, trajectory and diameter. The computing time for 64 million of mesh cells distributed over 1000 cores using the MPI procedures is about 30 min ns‑1, regardless of the number of streamers.

  20. Two-dimensional electron density measurement of pulsed positive primary streamer discharge in atmospheric-pressure air

    Science.gov (United States)

    Inada, Yuki; Aono, Kaiho; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2017-05-01

    Elucidating the electron density of streamer discharges propagating in atmospheric-pressure air is critical for achieving a systematic understanding of the production mechanisms of reactive species. Using Shack-Hartmann-type laser wavefront sensors with a temporal resolution of 2 ns, we carried out single-shot two-dimensional electron density measurements for positive primary streamers generated in a 13 mm air gap between pin-to-plate electrodes. The electron density over the positive primary streamers decayed from 1015 to {{10}14}\\text{c}{{\\text{m}}-3} during the propagation. The decay time constant of the electron density in the primary streamer channels was estimated to be  ˜2 ns. The distribution widths of the electron density were in good agreement with those of the light emission, typically ranging from 0.8 to 1.5 mm.

  1. Voltage and Pressure Scaling of Streamer Dynamics in a Helium Plasma Jet With N2 CO-Flow (Postprint)

    Science.gov (United States)

    2014-08-14

    annular co- flow gas into the helium core flow can be neglected at positions approximately up to 33...diffusional mixing layer of the annular co- flow N2 for the conditions shown in Figure 7. Thus, it is unlikely that both the core - flow helium and annular ...directed streamer propagation in helium flow channel with N2 annular co- flow compared to the streamer propagation in air or nitrogen have been

  2. Three-dimensional multi-fluid model of a coronal streamer belt with a tilted magnetic dipole

    Directory of Open Access Journals (Sweden)

    L. Ofman

    2015-01-01

    Full Text Available Observations of streamers in extreme ultraviolet (EUV emission with SOHO/UVCS show dramatic differences in line profiles and latitudinal variations in heavy ion emission compared to hydrogen Ly-α emission. In order to use ion emission observations of streamers as the diagnostics of the slow solar wind properties, an adequate model of a streamer including heavy ions is required. We extended a previous 2.5-D multi-species magnetohydrodynamics (MHD model of a coronal streamer to 3-D spherical geometry, and in the first approach we consider a tilted dipole configuration of the solar magnetic field. The aim of the present study is to test the 3-D results by comparing to previous 2.5-D model result for a 3-D case with moderate departure from azimuthal symmetry. The model includes O5+ ions with preferential empirical heating and allows for calculation of their density, velocity and temperature in coronal streamers. We present the first results of our 3-D multi-fluid model showing the parameters of protons, electrons and heavy ions (O5+ at the steady-state solar corona with a tilted steamer belt. We find that the 3-D results are in qualitative agreement with our previous 2.5-D model, and show longitudinal variation in the variables in accordance with the tilted streamer belt structure. Properties of heavy coronal ions obtained from the 3-D model together with EUV spectroscopic observations of streamers will help understanding the 3-D structures of streamers reducing line-of-sight integration ambiguities and identifying the sources of the slow solar wind in the lower corona. This leads to improved understanding of the physics of the slow solar wind.

  3. Multisource full waveform inversion of marine streamer data with frequency selection

    KAUST Repository

    Huang, Yunsong

    2013-01-01

    Multisource migration with frequency selection is now extended to multisource full waveform inversion (FWI) of supergathers for marine streamer data. There are three advantages of this approach compared to conventional FWI for marine streamer data. 1. The multisource FWI method with frequency selection is computationally more efficient than conventional FWI. 2. A supergather requires more than an order of magnitude less storage than the the original data. 3. Frequency selection overcomes the acquisition mismatch between the observed data and the simulated multisource supergathers for marine data. This mismatch problem has prevented the efficient application of FWI to marine geometries in the space-time domain. Preliminary result of applying multisource FWI with frequency selection to a synthetic marine data set suggests it is at least four times more efficient than standard FWI.

  4. ASSESSMENT TO EFFECTIVENESS OF THE NEW EARLY STREAMER EMISSION LIGHTNING PROTECTION SYSTEM

    OpenAIRE

    A. Chen, Yen-Hong; Lin, Kai-Jan; M. Li, Yu-Chu

    2017-01-01

    A novel early streamer emission (ESE) lightning air terminal system is designed and fabricated. By comparing the intercepted artificial lightning striking numbers of the new ESE lightning protection device and the conventional lightning rod (CLR) lightning protection device in laboratory, the effectiveness of intercepting the artificial lightning strokes by the new ESE lightning protection device is superior to that by the conventional lightning rod lightning protection device. A modified Tes...

  5. Water Reverberation Travel Time Analysis Acquired Using Multi-Depth Streamers

    OpenAIRE

    Po-Yen Tseng; Young-Fo Chang; Chih-Hsiung Chang; Ruey-Chyuan Shih

    2016-01-01

    Ghost reflections and water reverberations are major and inevitable seismic noises in marine seismic exploration. More recently, new receiver deployment techniques at different sea depths for signal-to-noise ratio (SNR) enhancement are developing. The reverberation characteristics must be known before applying the reverberation attenuation methods. This paper studies the characteristics of reverberations acquired using multi-depth streamers by analyzing the seismic ray path geometry and the s...

  6. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    Science.gov (United States)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  7. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    Science.gov (United States)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  8. Fluid modeling of radical species generation mechanism in dense methane-air mixture streamer discharge

    Science.gov (United States)

    Qian, Muyang; Li, Gui; Kang, Jinsong; Liu, Sanqiu; Ren, Chunsheng; Zhang, Jialiang; Wang, Dezhen

    2018-01-01

    Atmospheric dielectric barrier discharge (DBD) was found to be promising in the context of plasma chemistry, plasma medicine, and plasma-assisted combustion. In this paper, we present a detailed fluid modeling study of abundant radical species produced by a positive streamer in atmospheric dense methane-air DBD. A two-dimensional axisymmetric fluid model is constructed, in which 82 plasma chemical reactions and 30 different species are considered. Spatial and temporal density distributions of dominant radicals and ions are presented. We lay our emphasis on the effect of varying relative permittivity (ɛr = 2, 4.5, and 9) on the streamer dynamics in the plasma column, such as electric field behavior, production, and destruction pathways of dominant radical species. We find that higher relative permittivity promotes propagation of electric field and formation of conduction channel in the plasma column. The streamer discharge is sustained by the direct electron-impact ionization of methane molecule. Furthermore, the electron-impact dissociation of methane (e + CH4 = >e + H+CH3) is found to be the dominant reaction pathway to produce CH3 and H radicals. Similarly, the electron-impact dissociations of oxygen (e + O2 = >e + O+O(1D), e + O2 = >e + O+O) are the major routes for O production.

  9. Laboratory Measurements of X-Ray Emissions From Centimeter-Long Streamer Corona Discharges

    Science.gov (United States)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; LaBelle, J.; Dwyer, J.

    2017-11-01

    We provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in negative electrical discharges with voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. Centimeter long streamer corona discharges produce bursts of X-ray radiation, emitted by a source highly compact in space and time, leading to photon pileup. Median photon burst energies vary between 33 and 96 keV in 100 kV discharges. Statistical analysis of 5,000+ discharges shows that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when streamers are not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. In an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and the electron acceleration is not necessarily correlated with streamer collisions.

  10. Laboratory coupling tests for optimum land streamer design over sand dunes surface

    KAUST Repository

    Almalki, Hashim

    2012-02-26

    The cost of data acquisition in land is becoming a major issue as we strive to cover larger areas with seismic surveys at high resolution. Over sand dunes the problem is compounded by the week coupling obtain using geophones, which often forces us to bury the phone. A major challenge is designing such a land streamer system that combines durability, mobility and the required coupling. We share a couple of such designs and discuss the merits behind such designs and test their capability. The testing includes, the level of coupling, mobility and drag over sand surfaces. For specific designs loose sand can accumulate inside the steamer reducing its mobility. On the other hand, poor coupling will attenuate the high frequencies and cause an effective delay in the signal. The weight of the streamer is also an important factor in both mobility and coupling as it adds to the coupling it reduces the mobility of the streamer. We study the impact of weight and base plate surface area on the seismic signal quality, as well as the friction factor of different designs.

  11. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys.

    Science.gov (United States)

    Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

  12. Towards a fluid model for the streamer-to-leader transition in lightning channels.

    Science.gov (United States)

    Malagón, Alejandro; Luque, Alejandro

    2017-04-01

    Electric discharges are a very common phenomenon on Earth's atmosphere. However some of their features are still poorly understood. A sufficiently long electric discharge, such as a lightning channel, propagates along two phases. The first phase is known as "streamer phase" and consists in thin filaments of ionized air that advance due to a high electric field at their tip. The dominant process of ionization is impact ionization, involving electrons and the two major components in the air mass, which are nitrogen and oxygen. In the second phase called "leader phase", the electric current of the streamers has increased the air temperature highly enough so the thermal energy of the molecules present in the air is comparable to the ionization potential of nitrogen and oxygen. The underlying mechanism whereby the streamer-to-leader transition occurs is not precisely known. High-speed observations show that in negative discharges, comprising 90% of cloud-to-ground lightning, this transition is not smooth but mediated by the formation of a "space leader", that is, an isolated hot segment within the streamer region. This space leader is connected to the main leader in a sudden jump and therefore one speaks of a "stepped leader". However, the origin of the space leader is so far unknown. Here we present recent steps in the modeling of the streamer-to-leader transition, which requires coupling fluid mechanics, electromagnetism and air plasma chemistry. We discuss our work towards a model that solves Euler's equations (3 dimensions reduced to 2 by virtue of symmetry) coupled to electron drift using high-resolution finite volume methods for hyperbolic systems [1] implemented in the software package CLAWPACK. The drift of electrons is determined by a self-consistent electric field, which we obtain by solving Poisson's equation by means of off-the-shelf solvers. Our model also includes a selection of chemical reactions that have a relevant effect on the electron density in air

  13. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air

    Science.gov (United States)

    Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D. A.; Laux, C. O.; Vervisch, P.

    2017-04-01

    This study is focused on the streamer-to-spark transition generated by an overvoltage nanosecond pulsed discharge under atmospheric pressure air in order to provide a quantitative insight into plasma-assisted ignition. The discharge is generated in atmospheric pressure air by the application of a positive high voltage pulse of 35 kV to pin-to-pin electrodes and a rise time of 5 ns. The generated discharge consists of a streamer phase with high voltage and high current followed by a spark phase characterized by a low voltage and a decreasing current in several hundreds of nanosecond. During the streamer phase, the gas temperature measured by optical emission spectroscopy related to the second positive system of nitrogen shows an ultra-fast gas heating up to 1200 K at 15 ns after the current rise. This ultra-fast gas heating, due to the quenching of electronically excited species by oxygen molecules, is followed by a quick dissociation of molecules and then the discharge transition to a spark. At this transition, the discharge contracts toward the channel axis and evolves into a highly conducting thin column. The spark phase is characterized by a high degree of ionization of nitrogen and oxygen atoms shown by the electron number density and temperature measured from optical emission spectroscopy measurements of N+ lines. Schlieren imaging and optical emission spectroscopy techniques provide the time evolution of the spark radius, from which the initial pressure in the spark is estimated. The expansion of the plasma is adiabatic in the early phase. The electronic temperature and density during this phase allows the determination of the isentropic coefficient. The value around 1.2-1.3 is coherent with the high ionization rate of the plasma in the early phase. The results obtained in this study provide a database and the initial conditions for the validation of numerical simulations of the ignition by plasma discharge.

  14. Evaluation of the effectiveness of light streamer tori-lines and characteristics of bait attacks by seabirds in the western North Pacific.

    Directory of Open Access Journals (Sweden)

    Noriyosi Sato

    Full Text Available To improve the effectiveness of tori-lines it is necessary to evaluate the ability of tori-lines to mitigate seabird bycatch and determine what kind of seabird species gather during line settings, attack the bait and are incidentally caught. We conducted two experiments in the western North Pacific and examined the effectiveness for seabird mitigation of light streamer tori-lines which have no long streamers but many light (short streamers and are mainly used in the North Pacific area. Firstly, the effectiveness of two different types of tori-line (light streamer (1 m and long streamer (up to 7 m tori-line and of two different colors (yellow and red of light streamers for seabird bycatch avoidance was evaluated using 567 sets based on data from 20 offshore surface commercial longliners. No significant difference in the bycatch number between the different tori-line types and streamer colors was found. Secondly, we investigated the characteristics of the seabird bycatch in the North Pacific and the effectiveness of three different types of streamers (light, hybrid and modified light types by detailed observations of seabird attacks using a chartered longline vessel. Although the appearance rate of albatrosses and shearwaters were 40.9% and 27.7%, Laysan albatross was the main seabird species that followed the vessel but shearwaters seldom followed the vessel and did not aggregate during line setting. In all attacks on bait observed during line settings, 81% and 7% were by albatrosses and shearwaters, respectively. In the number of primary attacks by Laysan albatrosses which attacked most aggressively of all seabirds, there were no significant differences among the tori-line types. No individuals of shearwater were caught. The results of both experiments indicated that light streamer tori-lines were as effective as tori-lines with long streamers for mitigating seabird bycatch in the North Pacific.

  15. STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition

    Science.gov (United States)

    Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2011-10-01

    The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.

  16. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.

    Directory of Open Access Journals (Sweden)

    Johannes Höhne

    Full Text Available Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: "CharStreamer". The speller can be used with an instruction as simple as "please attend to what you want to spell". The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10 of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.

  17. A PIC-MCC code for simulation of streamer propagation in air

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2008-01-01

    A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche...... particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes...... photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at ∼10km relevant...

  18. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice

    Science.gov (United States)

    Mizuno, Kazue; Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Ono, Ryo

    2017-03-01

    Plasma is known to activate immune cells in vitro; however, its effect on cancer immunotherapy is not well understood in vivo. In this study, we report B16-F10 tumor growth suppression at a non-irradiated site on a mouse leg after a nanosecond pulsed streamer discharge was applied to the tumor on the other leg. The tumor growth suppression at non-irradiated remote sites was observed from the day next to that of plasma irradiation: the rapid abscopal effect suggests innate immune response activation. Additionally, the production of inflammatory cytokines from splenocytes was enhanced after plasma irradiation. This suggests the activation of adaptive immune response specific to B16-F10 melanoma by plasma irradiation.

  19. The UA5 streamer chamber experiment at the SPS pp collider

    CERN Document Server

    Rushbrooke, John G

    1981-01-01

    A multiparticle detector based on two large (6 m long) streamer chambers triggered by surrounding scintillation hodoscopes and viewed by cameras via image intensifiers is being assembled at CERN and tested at the ISR. Its purpose is to perform a first rapid visual survey of the new energy region afforded by the SPS pp collider. Charged tracks can be observed down to 3/4 degrees , and hence over most of the pseudorapidity range ( mod eta mod

  20. Display of a proton-proton interaction as seen in the streamer chamber of NA5

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This experiment was performed by the Bari-Cracow-Liverpool-Munich (MPI)-Nijmegen Collaboration using the unseparated H2 beam in the EHN1 hall. The setup consisted of a three-gap streamer chamber (2x1.4x0.72 m3) inside a superconducting vertex magnet, large magnetostrictive spark chambers, proportional chambers and beam defining counters. A large acceptance electron and hadron calorimeter completed the setup. Particles from beam interactions on a target, 36.5 cm long, 2 cm in diameter (for liquid hydrogen) located inside the chamber at its entrance were photographed. Multiplicities, rapidity distributions, and correlations were studied for interactions with a large value for the sum of the transverse momenta.

  1. Effect of streamer plasma air purifier on sbs symptoms and performance of office work

    DEFF Research Database (Denmark)

    Zhang, X.J.; Fang, Lei; Wargocki, Pawel

    2011-01-01

    Subjective experiments were conducted to evaluate the effect of a streamer plasma air purifier on perceived air quality, SBS symptoms and performance of office work during 5-hour exposure of 32 recruited subjects in field laboratory in which real materials were used to establishing a realistic...... level of air pollution. Intensity of SBS symptoms were indicated using visual-analogue scales. Subjects’ performance was evaluated with several computer tasks. The results show that operation of the air purifiers improved perceived air quality and reduced the odor intensity of indoor air. Eye dryness...... symptom was found significantly improved when the air purifiers were used but no other SBS symptoms or performance of office work were improved when the air purifiers were in operation compared to the condition when they were off....

  2. Modelling of lightning streamer formation and propagation in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    setups. Furthermore, the tests may need to be repeated when a new conducting element is included in the blade with unpredictable effects for the lightning protection system. Numerical methods to determine the areas of a structure more likely to be struck by lightning have proved to be a useful tool....... The present paper presents a method to investigate the origin and propagation of streamers from different conductive elements of the blade when exposed to a high electric field. The calculations are performed using dynamic simulations with the finite element method, and the results have been correlated...... models can involve a high level of detail and therefore be used in the detailed positioning of air terminations in blades equipped with conductive elements such as carbon fiber or electrical monitoring systems (load, temperature, etc.)....

  3. Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events

    National Research Council Canada - National Science Library

    Celestin, Sebastien; Pasko, Victor P

    2011-01-01

    ... to the exponential growth of electric potential differences in streamer heads. These electric potential differences are directly related to the energy that thermal runaway electrons can gain once created...

  4. Measured Current Distribution Functions Describing an Array of High Voltage Needles Operating In the Avalanche and Streamer Modes

    Science.gov (United States)

    Wemlinger, Erik; Pedrow, Patrick; Garcia-Perez, Manuel; Ha, Su; Marin-Flores, Oscar; Pitts, Marvin

    2009-10-01

    It is hypothesized that cold plasma processing of small oxygenated molecules present in bio-oil will reduce coking in a catalytic steam reformer. The cold plasma reactor will be placed upstream of the reformer and will consist of an array of needles held at a DC voltage in the 5-10 kV range. The distribution of current pulses on each needle will be measured for gas mixtures consisting of varying amounts of argon, water, methanol, oxygen, and carbon dioxide. The small oxygenated hydrocarbon molecules from bio-oil can be reduced to hydrogen and synthesis gas by the catalytic steam reformer. However, the steam reforming of these oxygenated hydrocarbon molecules has a high tendency of coke formation. In this work, catalyst coking will be reduced by integrating the atmospheric pressure cold plasma reactor. Studying how distribution functions for elements in a small array (< 10 needles) ``interact'' will facilitate design of larger needle arrays that can be used for the commercial processing of biofuels.

  5. The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air

    Science.gov (United States)

    Janda, Mário; Machala, Zdenko; Niklová, Adriana; Martišovitš, Viktor

    2012-08-01

    We present a study of the streamer-to-spark transition in a self-pulsing dc-driven discharge called a transient spark (TS). The TS is a streamer-to-spark transition discharge with short spark duration (˜10-100 ns), based on charging and discharging of the internal capacity of the electric circuit with repetition frequency 1-10 kHz. The TS can be maintained under relatively low energy conditions (0.1-1 mJ pulse-1). It generates a very reactive non-equilibrium air plasma applicable for flue gas cleaning or bio-decontamination. Thanks to the short spark current pulse duration, the steady-state gas temperature, measured at the beginning of the streamers initiating the TS, increases from an initial value of ˜300 K only up to ˜550 K at 10 kHz. The streamer-to-spark transition is governed by the subsequent increase in the gas temperature in the plasma channel up to ˜1000 K. This breakdown temperature does not change with increasing repetition frequency f. The heating after the streamer accelerates with increasing f, leading to a decrease in the average streamer-to-spark transition time from a few µs to less than 100 ns.

  6. A southeastern Mediterranean PV streamer and its role in December 2001 case with torrential rains in Israel

    Directory of Open Access Journals (Sweden)

    S. O. Krichak

    2007-01-01

    Full Text Available A precipitation event of unprecedented intensity took place over northern part of Israel during 4 December 2001–5 December 2001. The case was associated with formation of a Cyprus Low cyclone over the Asia Minor. In the current study the synoptic developments over the eastern part of the Mediterranean region are simulated with the MM5 nonhydrostatic model and analyzed based on dynamic tropopause patterns calculated from the simulation results. According to the results, a powerful potential vorticity (PV streamer system played a major role in the process over the southeastern Mediterranean region. The PV streamer created conditions for seclusion of moist air masses from the equatorial East Africa and Atlantics during the cyclone development. Condensation of the moisture, associated with the latent heat release processes have contributed to the intense thunderstorm activity and heavy precipitation of the event.

  7. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm

    Science.gov (United States)

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978

  8. Mapping the base of sand dunes using a new design of land-streamer for static correction applications

    KAUST Repository

    Almalki, H.

    2012-05-16

    The complex near-surface structure is a major problem in land seismic data. This is more critical when data acquisition takes place over sand dune surfaces, where the base of the sand acts as a trap for energy and, depending on its shape, can considerably distort conventionally acquired seismic data. Estimating the base of the sand dune surface can help model the sand dune and reduce its harmful influence on conventional seismic data. Among the current methods to do so are drilling upholes and using conventional seismic data to apply static correction. Both methods have costs and limitations. For upholes, the cost factor and their inability to provide a continuous model is well realized. Meanwhile, conventional seismic data lack the resolution necessary to obtain accurate modeling of the sand basement. We developed a method to estimate the sand base from land-streamer seismic acquisition that is developed and geared to sand surfaces. Seismic data acquisition took place over a sand surface in the Al-Thumamah area, where an uphole is located, using the developed land-streamer and conventional spiked geophone systems. Land-streamer acquisition not only provides a more efficient data acquisition system than the conventional spiked geophone approach, but also in our case, the land-streamer provided better quality data with a broader frequency bandwidth. Such data enabled us to do accurate near-surface velocity estimation that resulted in velocities that are very close to those measured using uphole methods. This fact is demonstrated on multiple lines acquired near upholes, and agreement between the seismic velocities and the upholes is high. The stacked depth seismic section shows three layers. The interface between the first and second layers is located at 7 m depth, while the interface between second and third layers is located at 68 m depth, which agrees with the uphole result. 2012 The Author(s).

  9. Mechanism of bullet-to-streamer transition in water surface incident helium atmospheric pressure plasma jet (APPJ)

    Science.gov (United States)

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Su-Jeong; Bae, Byeongjun; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2016-09-01

    The mechanism of bullet to streamer transition of helium-APPJ bullet on the electrolyte surface was investigated. The APPJ was discharged in pin-to-ring DBD reactor system with helium gas by applying the ac-driven voltage at a frequency of 10 kHz. The water evaporation was controlled via saline temperature. The temporal- and 2-dimensional spatially- resolved plasma properties are monitored by optical diagnostics. During the APPJ bullet propagation from reactor to electrolyte surface, the transition of bullet from streamer was recognized from the high speed image, hydrogen beta emission line, and bullet propagation speed. The He metastable species density profiles from the tunable diode laser absorption spectroscopy (TDLAS) showed the metastable lost the energy near electrolyte surface. It is found that the bullet transited to streamer when the water fraction reached to 29%. This can be fascinating result to study the plasma physics liquid surface, non-fixed boundary. Acknowledgements: This work was partly supported by R&D Program of `Plasma Advanced Technology for Agriculture and Food (Plasma Farming)' through the National Fusion Research Institute of Korea (NFRI) funded by the Government fund was carried out as part.

  10. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation)

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  11. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Science.gov (United States)

    Zhang, Cheng; Tarasenko, Viktor F.; Shao, Tao; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Wang, Ruixue; Sorokin, Dmitry A.; Yan, Ping

    2015-03-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05-0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08-0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%-50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  12. Visualization of Streamer Channels and Shock Waves Generated by Positive Pulsed Corona Discharge Using Laser Schlieren Method

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2004-01-01

    Streamer channels generated by a positive pulsed corona discharge are visualized using the laser schlieren method. The discharge occurs between a point-to-plane gap at atmospheric pressure with a pulse duration of less than 1 μs. In order to enhance the intensity of the schlieren image, water vapor is added to ambient gas. The schlieren visualizes heated gas in a streamer filament of 0.4 mm diameter. A temporal variation of the schlieren image after the discharge pulse shows that the heated gas moves outward from the streamer channel due to the diffusion. The diameter of the heated filament, in which the heated gas exists, increases from 0.4 mm to 1.1 mm within 1 ms following the discharge pulse. The schlieren image also shows shock waves generated by the discharge: a spherical shock wave generated at the tip of the point electrode and a plane shock wave generated at the surface of the plane electrode.

  13. Vibroseismic-Streamer Systems to Image Sub-Ice Properties and Englacial Layering on Large Scales

    Science.gov (United States)

    Diez, A.; Eisen, O.; Lambrecht, A.; Christoph, M.; Hofstede, C. M.; Kristoffersen, Y.; Blenkner, R.; Hilmarsson, S.

    2014-12-01

    After testing different vibroseismic systems on firn from small scale vibrators to heavy trucks we now established an operational vibroseis system, excellent to image englacial layering and sub-ice conditions below ice sheets and shelves. This allowed the longest vibroseismic traverse with continuous data acquisition in Antarctica, along a route from the Ekströmisen over the grounding line onto the ice sheet. We covered about 500 km distance within three weeks including 407 km seismic profile. 110 km of 6-fold data were acquired with 125 m shot spacing and 25 km of 3-fold data with 250 m shot spacing. The remaining distance was covered with 1-fold data. The operational vibroseismic system consists of a vibroseis Buggy 'EnviroVibe' in combination with a 1.5 km long snow streamer towed behind a Pistenbully. The vibroseis on Mattracks was set onto a polyethylene sled to distribute the load of the vibroseis on the surface and allow flexibility on rough surfaces. The highest production was reached for an operation speed of 6 km/h ensuring minimal damage to the 1.5 km streamer, consisting of 60 channels with 8 geophones each. Still the setup allowed for the measurement of 20 km of seismic 6-fold data per day or 40 km/day for 1-fold data. This survey allowed covering the bathymetry below the Ekströmisen, the bed topography within the catchment area of the Ekstömisen as well as englacial features. It was possible to map the ice shelf bottom and produce a clear image of the sea bed. The production speed allowed for high fold-coverage increasing image quality compared to 1-fold seismic data. Especially, the imaging of deepenings within the bed topography and their steep sidewalls shows the advantages and the additional information that can be gained from these seismic surveys compared to airborne or ground-penetrating radar data. We present the overall characteristics of the different vibroseis sources and mounting set-ups investigated over the last six years and provide

  14. Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Swingley, Wesley; Raymond, Jason; Havig, Jeff; Shock, Everett L; Summons, Roger E

    2011-08-01

    In Yellowstone National Park, a small percentage of thermal features support streamer biofilm communities (SBCs), but their growth criteria are poorly understood. This study investigates biofilms in two SBC hosting, and two non-SBC springs. Sequencing of 16S rRNA clones indicates changing community structure as a function of downstream geochemistry, with many novel representatives particularly among the Crenarchaeota. While some taxonomic groups show little genetic variation, others show specialization by sample location. The transition fringe environment between the hotter chemosynthetic and cooler photosynthetic zones hosts a larger diversity of organisms in SBC bearing springs. This transition is proposed to represent an ecotone; this is the first description of an ecotone in a hydrothermal environment. The Aquificales are ubiquitous and dominate among the Bacteria in the hottest environments. However, there is no difference in species of Aquificales from SBC and non-SBC locations, suggesting they are not responsible for the formation of SBCs, or that their role in SBC formation is competitively suppressed in non-SBC sites. In addition, only SBC locations support Thermotogales-like organisms, highlighting the potential importance these organisms may have in SBC formation. Here, we present a novel view of SBC formation and variability in hydrothermal ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Low-mass X-ray binaries and globular clusters streamers and arcs in NGC 4278

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Fabbiano, G. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Brassington, N. J. [Center for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertordshire, AL10 9AB (United Kingdom)

    2014-03-01

    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50'' in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D {sub 25} isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.

  16. Water Reverberation Travel Time Analysis Acquired Using Multi-Depth Streamers

    Directory of Open Access Journals (Sweden)

    Po-Yen Tseng

    2016-01-01

    Full Text Available Ghost reflections and water reverberations are major and inevitable seismic noises in marine seismic exploration. More recently, new receiver deployment techniques at different sea depths for signal-to-noise ratio (SNR enhancement are developing. The reverberation characteristics must be known before applying the reverberation attenuation methods. This paper studies the characteristics of reverberations acquired using multi-depth streamers by analyzing the seismic ray path geometry and the scaled physical model data. The study results show that the primary reflection waveforms and reverberations are broadened with an increase in offset. The reverberation waveforms are quite different from those of primary reflections due to the wide-angle reflection. Under shallow water and small spread approximation, new arrival time equations for the primary reflections and reverberations are derived and fit the scaled physical model data very well. The depth-arrival time relationships of the primary reflections and reverberations in the common-source vertical-array gather are linear but their depth-arrival time relationship slopes are different. The primary reflection slopes are the same for different common-source vertical-array offsets but the reverberation slopes increase with offsets.

  17. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    Energy Technology Data Exchange (ETDEWEB)

    Goryaev, F.; Slemzin, V.; Vainshtein, L. [P.N. Lebedev Physical Institute of the RAS (LPI), Moscow 119991 (Russian Federation); Williams, David R., E-mail: goryaev_farid@mail.ru [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom)

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.

  18. A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Wu, S. T.; Guo, W. P.

    1997-01-01

    We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.

  19. The dynamic velocity of long positive streamers observed using a multi-frame ICCD camera in a 57 cm air gap

    Science.gov (United States)

    Zeng, Rong; Chen, She

    2013-12-01

    The streamer propagation plays an important role in long air gap discharge. In this paper, a multi-frame intensified charge-coupled display (ICCD) camera was used to observe the long positive streamers in a 57 cm air gap. The propagation process of the 20-30 cm long streamers was captured, and the velocity variation in a single streamer was analysed. When applying a +210-290 kV lightning impulse voltage on a rod-plane gap with three different tips, the velocity of a streamer decreases from 8.3 ± 2.7 mm ns-1 at the ignition stage to 0.4 ± 0.1 mm ns-1 at the later stage. The influence of the applied voltage and the electrode size was obtained and analysed. Higher voltage amplitude and larger electrode size lead to a greater velocity. In addition, the relationship between the velocity and the background electric field is discussed here, and the experimental results are compared with an analytical model of different parameters.

  20. Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone

    Science.gov (United States)

    Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold

    2017-04-01

    The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 cu.in.). The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km

  1. Determining Muon Detection Efficiency Rates of Limited Streamer Tube Modules using Cosmic Ray Detector

    Energy Technology Data Exchange (ETDEWEB)

    Pan, M.

    2004-09-03

    In the Babar detector at the Stanford Linear Accelerator Center, the existing muon detector system in the Instrumented Flux Return gaps is currently being upgraded. Limited Streamer Tubes (LST) have been successful in other projects in the past, and are thus reliable and sensible detectors to use. The tubes have been assembled into modules to strengthen the mechanical structure [2]. Before installation, numerous tests must be performed on the LST modules to ensure that they are in good condition. One important check is to determine the muon detection efficiency rates of the modules. In this study, a cosmic ray detector was built to measure the efficiency rates of the LST modules. Five modules themselves were used as muon triggers. Two z strip planes were also constructed as part of the setup. Singles rate measurements were done on the five modules to ensure that high voltage could be safely applied to the LST. Particle count vs. voltage graphs were generated, and most of the graphs plateau normally. Wire signals from the LST modules as well as induced signals from the strip planes were used to determine the x-y-z coordinates of the muon hits in a stack of modules. Knowing the geometry of the stack, a plot of the potential muon path was generated. Preliminary results on muon detection efficiency rates of the modules in one stack are presented here. Efficiencies of the modules were determined to be between 80% and 90%, but there were large statistical errors (7%) due to the limited time available for cosmic data runs. More data samples will be taken soon; they will hopefully provide more precise measurements, with 1-2% errors for most modules before installation. Future work includes systematic studies of muon detection efficiency as a function of the operating voltage and threshold voltage settings.

  2. Multisource least-squares migration of marine streamer and land data with frequency-division encoding

    KAUST Repository

    Huang, Yunsong

    2012-05-22

    Multisource migration of phase-encoded supergathers has shown great promise in reducing the computational cost of conventional migration. The accompanying crosstalk noise, in addition to the migration footprint, can be reduced by least-squares inversion. But the application of this approach to marine streamer data is hampered by the mismatch between the limited number of live traces/shot recorded in the field and the pervasive number of traces generated by the finite-difference modelling method. This leads to a strong mismatch in the misfit function and results in strong artefacts (crosstalk) in the multisource least-squares migration image. To eliminate this noise, we present a frequency-division multiplexing (FDM) strategy with iterative least-squares migration (ILSM) of supergathers. The key idea is, at each ILSM iteration, to assign a unique frequency band to each shot gather. In this case there is no overlap in the crosstalk spectrum of each migrated shot gather m(x, ω i), so the spectral crosstalk product m(x, ω i)m(x, ω j) =δ i, j is zero, unless i=j. Our results in applying this method to 2D marine data for a SEG/EAGE salt model show better resolved images than standard migration computed at about 1/10 th of the cost. Similar results are achieved after applying this method to synthetic data for a 3D SEG/EAGE salt model, except the acquisition geometry is similar to that of a marine OBS survey. Here, the speedup of this method over conventional migration is more than 10. We conclude that multisource migration for a marine geometry can be successfully achieved by a frequency-division encoding strategy, as long as crosstalk-prone sources are segregated in their spectral content. This is both the strength and the potential limitation of this method. © 2012 European Association of Geoscientists & Engineers.

  3. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  4. The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader

    Energy Technology Data Exchange (ETDEWEB)

    Bazelyan, E M [Krzhizhanovsky Power Engineering Institute, Moscow 117927 (Russian Federation); Raizer, Yu P [Institute for Problems in Mechanics, Moscow 117526 (Russian Federation); Aleksandrov, N L [Moscow Institute of Physics and Technology, Dolgoprudny 141700 (Russian Federation)

    2007-07-21

    New results of observations of the leader process in a pressure chamber are presented for reduced air pressures. The analysis of these data and observations of the leader discharge in peak regions shows that the length of the leader tip and some other characteristics vary by several times as pressure decreases from 1 to 0.3 atm, whereas, under the conditions considered, the leader velocity remains almost independent of air density, the leader current being the same. These data are used to extract relationships between discharge parameters. It is shown that, at reduced air densities, electric field in a 'young' section of the leader channel exceeds electric field in the streamer zone. Therefore, transition of the leader process to the final-jump phase is not inevitably followed by a breakdown of the gap for reduced pressures, as opposed to the discharge in atmospheric pressure air. The model suggested previously by the authors for the streamer-to- leader transition at atmospheric pressure is amended to take into account hydrodynamic expansion of the channel and used to simulate the process at a relative air density of 0.3. The calculated results are used to interpret the observations of the leader process at reduced air pressures.

  5. A Route to Marine Oil Snow: Bacteria Produce Extracellular Polymeric Streamers on Oil Micro-Droplets with Significant Impacts on Drag

    Science.gov (United States)

    White, Andrew; Jalali, Maryam; Miranda, Michael; Amaro, Matthew; Sheng, Jian

    2017-11-01

    After the Deepwater Horizon oil spill in 2010 a substantial fraction of oil settled to the seafloor. This contradicts popular belief that dispersed oil merely undergoes bioconsumption and dissolution following a spill; results suggest these only account for up to 50% of the droplet's volume. A possible mechanism for sedimentation is Marine Oil Snow (MOS): mucus-rich aggregates of plankton, extracellular polymeric substances (EPS), oil and other debris. However, MOS formation, particularly in real marine environments, are poorly understood. For instance, our previous results suggested plankton encounter rates on a rising oil drop would be too low and microbial residence times too short to form substantial aggregates. In this work we use a microfluidic bioassay (Ecology-on-a-Chip) to simulate a crude oil drop rising in a bacteria suspension by pinning the drop in a microchannel with a continuously flowing bacteria culture. Microbial EPS streamers form on an oil-water interface within 30 min. High speed microscopy provides snapshots of the evolving flow including increased drag due to streamers and recovery when streamers detach. The streamer induced drag and consequential reduction in rising velocity establish a missing link for MOS as a key pathway for the fate of spilled oil. Funded by GoMRI, NSF, ARO.

  6. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  7. An improved model to determine the inception of positive upward leader-streamer system considering the leader propagation during dark period

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shijun; He Junjia [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Chen Weijiang [State Grid Corporation of China, No. 86, West Chang' an Street, Beijing 100031 (China)

    2013-04-15

    Stem-leader transition and front-streamer inception are two essential conditions for the inception of positive upward leader-streamer system (LSS). Previous models have not considered the initial-leader propagation during dark period and have not been verified systematically. In this paper, a series of positive upward discharge simulation experiments was designed and carried out. Characteristic parameters of the discharge process related to the inception of positive upward LSS, namely, the first-corona inception voltage, the first-corona charge, the dark period, and the LSS inception voltage, were obtained. By comparing these experiment results with simulation results calculated using previous models, it was found that it is improper to assume that the length of the initial leader is a fixed value. Finally, an improved inception model of positive upward LSS considering the leader propagation during dark period was developed and verified with experiment results.

  8. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  9. Numerical Simulation of Rod-Plate Gap Streamer Discharge in SF6/N2 Gas Mixtures Based on ETG-FCT Method

    Directory of Open Access Journals (Sweden)

    Min Li

    2015-01-01

    Full Text Available The Euler-Taylor-Galerkin flux-corrected transport (ETG-FCT algorithm for the numerical solution of particle transport equations is described, based on the method developed by Lohner to solve conservation equations in fluid mechanics, and its application is extended to gas discharge problems. To improve the efficiency of computing and reduce numerical error, the nonuniform triangular mesh method is introduced, and the continuity equation is solved by ETG-FCT. The new contributions in this paper include the development of the ETG scheme and its application to rod-plate gap streamer discharge in 50~50% SF6/N2 gas mixtures problems. Results are obtained: the spatial distributions of electron densities, positive ion densities, negative ion densities, photoelectron densities, and the electric field, respectively. The velocities of streamer propagations and the radius of streamer obtained from the proposed model are in good agreement with experimental and simulation results in literature. The results also prove that the ETG-FCT method is valid.

  10. A study on ionization potential and electron trap of vegetable insulating oil related to streamer inception and propagation

    Science.gov (United States)

    Li, Jian; Wang, Yachao; Wang, Feipeng; Liang, Suning; Lin, Xiang; Chen, Xiuping; Zhou, Jinghan

    2017-11-01

    Vegetable oils, mainly composed of triacylglycerol molecules, have been widely studied as new insulation materials in the recent years. In this work, we study the electronic properties of various triacylglycerol molecules with different degree of unsaturation by density functional theory (DFT). The ionization potential (IP), electron affinity (EA), and electron trap are estimated by theoretical analysis and experiments. The results show that the C atoms of cis Cdbnd C double bond make the primary contribution to the highest occupied molecular orbital (HOMO) of unsaturated triacylglycerol molecule; the IPs of fully unsaturated triacylglycerol molecules are almost confined to the narrow ranges from 7.30 to 7.45 eV in gas-phase and from 6.77 to 6.84 eV in liquid-phase correspond to LnLnLn and OOO molecules, respectively; the atoms of ester group and neighboring atoms make the primary contribution to the lowest unoccupied molecular orbital (LUMO) of both saturated and unsaturated triacylglycerol molecules; the EAs of triacylglycerol molecules are confined to the narrow ranges from -0.34 to -0.18 eV and the chemical trap is estimated to be 0-0.16 eV; the total trap is 0.32-0.36 eV. The IP distribution character and shallow trap feature maybe the main causes that vegetable oils demonstrate a low resistance against the fast streamers. The work can provide theoretical basis to molecular modification for performance improvement of vegetable insulating oils.

  11. Deformation of an elastic body in low Reynolds number transport: Relevance to biofilm deformation and streamer formation

    CERN Document Server

    Gupta, Nikhil; Mitra, Sushanta K; Kumar, Aloke

    2015-01-01

    In this paper, we obtain analytical results for shear stress distributions inside an elastic body placed in a low Reynolds number transport. The problem definition is inspired by a recent experimental study (Valiei et al., Lab Chip, 2012, 12, 5133-5137) that reports the flow-triggered deformation of bacterial biofilms, formed on cylindrical rigid microposts, into long filamentous structures known as streamers. In our analysis, we consider an elastic body of finite thickness (forming a rim) placed over a rigid cylinder, i.e., we mimic the biofilm structure in the experiment. We consider Oseen flow solution to describe the low Reynolds transport past this cylindrical elastic structure. The stress and strain distributions inside the elastic structure are found to be functions of position, Poisson ratio, initial thickness of the elastic rim and the ratio of the flow-driven shear stress to the shear modulus of the elastic body. More importantly, these analyses, which can be deemed as one of the first formal analys...

  12. Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable

    Science.gov (United States)

    Lee, Ho-Young; Kim, Wonsik; Koo, Nam-Hyung; Park, Keun-Pil; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Seo, Gab-Seok; Hwang, Kyu-Duk

    2014-06-01

    We conducted a high-resolution seismic survey off Yeosu, Korea, using a 30 in3 small airgun as a seismic source and an 8-channel streamer cable with a 5 m group interval as a receiver, to find out the proper acquisition and processing parameters at the study area where shallow sedimentary layers were well deposited. The data were digitally recorded with a shot interval of 2 s and a sample interval of 0.1 ms using an in-house PC-based acquisition and processing system. The quality of the subsurface image depends on the acquisition parameters such as the sample interval, common midpoint (CMP) interval and CMP fold. To understand the effects of these parameters, we resampled the field data with various sample intervals, CMP intervals and CMP folds and processed the data. The analysis results show that thin layers of 70-80 cm thickness at a depth of 30-45 m from the sea bottom can be imaged with good resolution and continuity using acquisition parameters with a sample interval of less than 0.2 ms, a CMP interval of shorter than 2.5 m and a CMP fold of greater than 4. The data quality of the shallow marine seismic survey is greatly enhanced through multichannel data processing flows such as spiking deconvolution, frequency filtering and careful static correction. Our results demonstrate that very high-resolution seismic reflection images can be made from 8-channel data recoded with high sample rates and processed with appropriate parameters.

  13. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  14. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  15. Study of Interaction of Low-Energy Antiprotons with H$^{2}$,He$^{3}$,He$^{4}$,Ne-Nuclei Using a Streamer Chamber in Magnetic Field

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the systematic study of the interaction between low-energy antiprotons and the H|2,~He|3,~He|4,~Ne-nuclei using a self shunted streamer chamber in a magnetic field exposed to the antiproton beam of the LEAR facility. The properties of the self shunted streamer chamber, which allows the use of the filling gas (hydrogen, helium, neon at a pressure of l~atm) as a target, permit to carry out experiments also in the very low-energy region. \\\\ \\\\ The experimental apparatus is suitable for a large programme of measurements. We plan to measure the @*H|2 cross section and the spectator momentum distributions at @* momenta lower than 250~MeV/c, where data are lacking. It is interesting to study for the first time the @*He|3 and @*He|4 interactions measuring the cross sections and the emitted particle distributions. Among other things the knowledge of the branching ratio of the @*He|4 annihilation channels clarifies some open cosmological questions. The study of the process of nuclear absor...

  16. Method for determining the position of seismic streamers in a reflection seismic measuring system. Fremgangsmaate til posisjonsbestemmelse av minst to seismiske kabler i et refleksjonsseismisk maalesystem

    Energy Technology Data Exchange (ETDEWEB)

    Langeland, J.Aa.; Aasheim, S.; Nordmoen, B.; Vigen, E.

    1993-08-02

    The invention deals with a method for determining the position of at least two seismic streamers in a reflection seismic measuring system. Hydroacoustic distance measurements are used which are taken by means of acoustic transceivers provided in vessels, buoys, floats, seismic sources and in the seismic streamers. Absolute reference positions are determined by means of position determining equipment provided in at least two locations, for instance on a vessel or a float. The acoustic transceivers and the position determining equipment form a three-dimensional structure. According to the method the position determination takes place by trilateration between the acoustic transceivers and the determination of at least two reference positions. Therefore, there is no dependency on compass bearings or optical visibility, and high redundancy is obtained. The method is particularly suited for application in connection with three-dimensional marine seismic surveys. The method may be integrated with suitable surface navigation systems in order to find the reference positions and provide absolute positions at any point within a marginal error of 5 to 10 m. 9 figs.

  17. The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures

    Science.gov (United States)

    Kong, Xiangliang; Guo, Fan; Giacalone, Joe; Li, Hui; Chen, Yao

    2017-12-01

    Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that particles can be sufficiently accelerated to up to several hundred MeV within 2-3 solar radii. When the shock propagates through a streamer-like magnetic field, particles are more efficiently accelerated compared to the case with a simple radial magnetic field, mainly due to perpendicular shock geometry and the natural trapping effect of closed magnetic fields. Our results suggest that the coronal magnetic field configuration is an important factor for producing large SEP events. We further show that the coronal magnetic field configuration strongly influences the distribution of energetic particles, leading to different locations of source regions along the shock front where most high-energy particles are concentrated. This work may have strong implications for SEP observations. The upcoming Parker Solar Probe will provide in situ observations for the distribution of energetic particles in the coronal shock region, and test the results of the study.

  18. Streamer free operation of a 2 mm gap resistive plate chamber with $C_{2}F_{5}H$

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Williams, M C S; Zichichi, A

    1999-01-01

    It is necessary to operate the resistive plate chamber (RPC) in avalanche mode to obtain high efficiency at elevated particle fluxes. We examine this mode of operation with a 2 mm gap RPC using gas mixtures containing C/sub 2/F/sub 4/H/sub 2/ and C/sub 2/F/sub 5/H. In order to explain the data we propose that the avalanche growth is strongly limited by space charge effects. (10 refs).

  19. Performance and simulation of a double-gap resistive plate chamber in the avalanche mode

    CERN Document Server

    Ahn Sung Hwan; Hong Byung Sik; Hong Seong Jong; Ito, M; Kang, T I; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee Hyup Woo; Lee, K B; Lee Kyong Sei; Lee Seok Jae; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee June Tak; Ryu, M S; Sim Kwang Souk

    2004-01-01

    We present a detailed analysis of the time and the charge signals of a prototype double-gap resistive plate chamber for the endcap region of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The chamber was built with relatively low-resistivity bakelite. The time and the charge results demonstrate that the high- voltage plateau, which satisfies various CMS requirements for the efficiency, the noise cluster rate, the fraction of the large signal, and the streamer probability, can be extended at least up to 400 V with the present design. In addition, a simple avalanche multiplication model is studied in detail. The model can reproduce the experimental charge spectra reasonably well. The charge information enables us to estimate the effective Townsend coefficient in avalanche-mode operation.

  20. Evolution of N2(A3 \\Sigma _{u}^{+} ) in streamer discharges: influence of oxygen admixtures on formation of low vibrational levels

    Science.gov (United States)

    Šimek, M.; Ambrico, P. F.; Prukner, V.

    2017-12-01

    The formation of N2(A3 Σ u+ ) metastable species, produced by cathode-directed streamer discharge, was investigated using the technique of laser-induced fluorescence. A triggered single streamer filament was periodically produced in pure nitrogen (and in nitrogen with admixtures of oxygen) at total pressure of 50 Torr and metastable species were monitored during the streamer channel decay in the centre of the discharge gap. We revealed the dynamics of individual vibrational (v  =  0–8) levels of N2(A3 Σ u+ ) for various oxygen admixtures (0–20%). In pure nitrogen, the observed evolution of the N2(A3 Σ u+ ) during the decaying streamer channel is evidence of initial vibrational relaxation of high vibrational levels towards the v  =  2 and 3 levels, followed by a delayed increase of terminal (v  =  0, 1) levels. A calibration procedure based on the rate of energy-pooling processes was used to place all detected vibronic levels in pure nitrogen on the absolute scale. Population maxima exceeding 1  ×  1014 cm‑3 were fixed for the v  =  2 and 3 vibrational levels, while the lowest v  =  0 level reaches only 3  ×  1013 cm‑3. Populations of v  =  2–5 vibrational levels were also estimated for N2  +  O2 mixtures after scaling of laser-induced fluorescence signals obtained at various oxygen admixtures. The total N2(A3 Σ u+ ) population in an air-like mixture is formed mainly by v  =  3–4 vibronic levels with the population maximum of ~3  ×  1013 cm‑3 fixed at the shortest analyzed delay. This observation, together with the fact that we were unable to detect v  =  0 and 1 levels (fluorescence signals below detection threshold), gives a strong evidence of the inhibition of Δv  =  2 vibrational relaxation towards terminal v  =  0 and 1 levels, causing much lower populations of the lowest v  =  0–1 levels. By analyzing data obtained in

  1. Guiding of positive streamers in nitrogen, argon and N$_{2}$-O$_{2}$ mixtures by very low $n_{e}$ laser-induced pre-ionization trails

    CERN Document Server

    Nijdam, S

    2016-01-01

    In previous work we have shown that positive streamers in pure nitrogen can be guided by a laser-induced trail of low electron density. Here we show more detailed results from such measurements. We show the sensitivity of this laser-guiding on pressure p and found that the maximum delay between the laser pulse and voltage pulse for guiding scales with something between $1/p$ and $1/p^{2}$. We also show that when we use a narrower laser beam the laser guiding occurs less frequent and that when we move the laser beam away from the symmetry axis, guiding hardly is observed. Finally we show that laser guiding can also occur in pure argon.

  2. SNV's modes of ordering

    NARCIS (Netherlands)

    Hummel, John; Duim, van der Rene

    2016-01-01

    This article adopts an aidnographic approach to examine how internal organizational modes of ordering have influenced tourism development practices of SNV Netherlands Development Organisation (SNV). Our research revealed six modes of ordering: administration, project management, enterprising,

  3. Modes of log gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized

  4. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  5. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  6. Multi-scale Simulations of DIII-D near-edge L-mode plasmas

    Science.gov (United States)

    Neiser, T.; Jenko, F.; Carter, T.; Schmitz, L.; Told, D.; Navarro, A. Banon; McKee, G.; Yan, Z.

    2016-10-01

    In order to self-consistently describe the L-H transition we have to be able to quantitatively characterize near-edge L-mode plasmas (ρ=0.8). Instructed by a linear analysis, we perform nonlinear gyrokinetic simulations of a DIII-D L-mode discharge. Comparison between single-scale and multi-scale simulations reveals that stability of ion temperature gradient (ITG) turbulence affects cross-scale coupling. When ion transport is stabilized by zonal flows, electron temperature gradient (ETG) streamer amplitude is reduced but persists at sub-ion-scales, causing radial electron heat transport to dominate. When ITG modes are unstable, we find that ion heat transport dominates, in agreement with experimental data. Moreover, nonlinear de-stabilization of ion transport occurs at higher critical gradients for multi-scale than for single-scale simulations, showing an enhanced Dimits shift. All simulations are performed with the GENE code (genecode.org). Experimental and computational work supported by the U.S. DOE, DE-FG02-08ER54984, DE-FC02-04ER54698, and DE-AC02-05CH11231.

  7. Near‐surface evaluation of Ball Mountain Dam, Vermont, using multi‐channel analysis of surface waves (MASW) and refraction tomography seismic methods on land‐streamer data

    Science.gov (United States)

    Ivanov, Julian M.; Johnson, Carole D.; Lane, John W.; Miller, Richard D.; Clemens, Drew

    2009-01-01

    A limited seismic investigation of Ball Mountain Dam, an earthen dam near Jamaica, Vermont, was conducted using multiple seismic methods including multi‐channel analysis of surface waves (MASW), refraction tomography, and vertical seismic profiling (VSP). The refraction and MASW data were efficiently collected in one survey using a towed land streamer containing vertical‐displacement geophones and two seismic sources, a 9‐kg hammer at the beginning of the spread and a 40‐kg accelerated weight drop one spread length from the geophones, to obtain near‐ and far‐offset data sets. The quality of the seismic data for the purposes of both refraction and MASW analyses was good for near offsets, decreasing in quality at farther offsets, thus limiting the depth of investigation to about 12 m. Refraction tomography and MASW analyses provided 2D compressional (Vp) and shear‐wave (Vs) velocity sections along the dam crest and access road, which are consistent with the corresponding VSP seismic velocity estimates from nearby wells. The velocity sections helped identify zonal variations in both Vp and Vs (rigidity) properties, indicative of material heterogeneity or dynamic processes (e.g. differential settlement) at specific areas of the dam. The results indicate that refraction tomography and MASW methods are tools with significant potential for economical, non‐invasive characterization of construction materials at earthen dam sites.

  8. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  9. Microbubble Surface Modes

    NARCIS (Netherlands)

    Versluis, Michel; Palanchon, P.; Goertz, D.; van der Meer, S.M.; Chin, C.T.; Lohse, Detlef; de Jong, N.

    2004-01-01

    We have investigated surface vibrations generated by ultrasound excitation of individual unencapsulated micron-sized bubbles. In addition, we present surface modes (n=2 and 3) observed for phospholipid-coated ultrasound contrast agents excited through excitation of radial modes at frequencies

  10. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  11. Shaft mode shape demonstration

    Science.gov (United States)

    Grissom, R.

    1985-01-01

    The dynamic response of a rotating machine is directly influenced by its geometric configuration and all aspects of the rotor construction. These determine two significant parameters, mass distribution and stiffness, which yield a spectrum of natural frequencies and mode shapes. The mode shapes can be presented as snapshots of the characteristic amplitude/phase reponse patterns of the shaft, due to the major forcing function of unbalance, at different rotative speeds. To demonstrate the three shaft mode shapes of the rotor rig using the Shaft Mode Demonstrator and oscilloscopes. The synchronous (1X) amplitude and phase of the rotor vibration in the vertical direction from several points along the shaft is displayed on corresponding points of the demonstrator. Unfiltered vibration from vertical and horizontal probe pairs is displayed on the oscilloscopes in orbit format for a dynamic presentation of the mode shape.

  12. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others....... The research presented in this thesis falls in three parts. In the first part, a first time demonstration of the break of the azimuthal symmetry of the Bessel-like LP0X modes is presented. This effect, known as the bowtie effect, causes the mode to have an azimuthal dependence as well as a quasi......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...

  13. Mode choice model parameters estimation

    OpenAIRE

    Strnad, Irena

    2010-01-01

    The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...

  14. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yi, M.

    2004-09-03

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO{sub 2}, argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 {+-} 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 {+-} 1000SCCM and a time requirement of 56 {+-} 5 seconds to flush an entire module.

  15. New Signatures of the Milky Way Formation in the Local Halo and Inner-halo Streamers in the Era of Gaia

    Science.gov (United States)

    Re Fiorentin, Paola; Lattanzi, Mario G.; Spagna, Alessandro; Curir, Anna

    2015-10-01

    We explore the vicinity of the Milky Way through the use of spectrophotometric data from the Sloan Digital Sky Survey and high-quality proper motions derived from multi-epoch positions extracted from the Guide Star Catalog II database. In order to identify and characterize streams as relics of the Milky Way formation, we start with classifying, selecting, and studying 2417 subdwarfs with [{Fe}/{{H}}] \\lt -1.5 up to 3 kpc away from the Sun as tracers of the local halo system. Then, through phase-space analysis, we find statistical evidence of five discrete kinematic overdensities among 67 of the fastest-moving stars and compare them to high-resolution N-body simulations of the interaction between a Milky Way-like galaxy and orbiting dwarf galaxies with four representative cases of merging histories. The observed overdensities can be interpreted as fossil substructures consisting of streamers torn from their progenitors; such progenitors appear to be satellites on prograde and retrograde orbits on different inclinations. In particular, of the five detected overdensities, two appear to be associated, yielding 21 additional main-sequence members, with the stream of Helmi et al. that our analysis confirms is on a high-inclination prograde orbit. The three newly identified kinematic groups could be associated with the retrograde streams detected by Dinescu and Kepley et al.; whatever their origin, the progenitor(s) would be on retrograde orbit(s) and inclination(s) within the range 10^\\circ \\div60^\\circ . Finally, we use our simulations to investigate the impact of observational errors and compare the current picture to the promising prospect of highly improved data expected from the Gaia mission.

  16. Investigation of spatially resolved spectra of OH and N2+ in N2 and H2O mixture wire-plate positive pulsed streamer discharge.

    Science.gov (United States)

    Liu, Feng; Wang, Wenchun; Zheng, Wei; Wang, Younian

    2008-03-01

    Optical emission spectroscopy has been applied to study the spatially resolved measurements of the emission intensities of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) produced by a high-voltage positive pulsed streamer discharge consisting of a gas mixture of N(2) and H(2)O in a wire-plate reactor under severe electromagnetic interference at atmospheric pressure. The effects of pulse peak voltage, pulse repetition rate, and the added O(2) flow rate on the spatial distributions of the emission intensity of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) in the lengthwise direction (direction from wire to plate) are investigated. It has been found that the emission intensities of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) rise with an increase in both pulse peak voltage and pulse repetition rate and decrease with an increase in oxygen flows added in an N(2) and H(2)O gas mixture. The emission intensity of OH (A(2)Sigma-->X(2)Pi, 0-0) decreases with increasing the distance from the wire electrode. The emission intensity of N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) is nearly constant at 0-4mm from wire electrode, and sharply increases near the ground electrode. The vibrational temperature of N(2) (C) increases with increasing O(2) flows and keeps almost constant in the lengthwise direction under the present experimental conditions. The main physicochemical processes involved are also discussed in this paper.

  17. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  18. Gyrokinetic simulations of DIII-D near-edge L-mode plasmas

    Science.gov (United States)

    Neiser, Tom; Jenko, Frank; Carter, Troy; Schmitz, Lothar; Merlo, Gabriele; Told, Daniel; Banon Navarro, Alejandro; McKee, George; Yan, Zheng

    2017-10-01

    In order to understand the L-H transition, a good understanding of the L-mode edge region is necessary. We perform nonlinear gyrokinetic simulations of a DIII-D L-mode discharge with the GENE code in the near-edge, which we define as ρtor >= 0.8 . At ρ = 0.9 , ion-scale simulations reproduce experimental heat fluxes within the uncertainty of the experiment. At ρ = 0 . 8 , electron-scale simulations reproduce the experimental electron heat flux while ion-scale simulations do not reproduce the respective ion heat flux due to a strong poloidal zonal flow. However, we reproduce both electron and ion heat fluxes by increasing the local ion temperature gradient by 80 % . Local fitting to the CER data in the domain 0.7 <= ρ <= 0.9 is compatible with such an increase in ion temperature gradient within the error bars. Ongoing multi-scale simulations are investigating whether radial electron streamers could dampen the poloidal zonal flows at ρ = 0.8 and increase the radial ion-scale flux. Supported by U.S. DOE under Contract Numbers DE-FG02-08ER54984, DE-FC02-04ER54698, and DE-AC02-05CH11231.

  19. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  20. Swell effect correction for the high-resolution marine seismic data acquired using an airgun and an 8-channel streamer cable

    Science.gov (United States)

    Lee, Ho-Young; Koo, Nam-Hyung; Kim, Wonsik; Kim, Byoung-yeop; Cheong, Snons; Kim, Young-Jun

    2015-04-01

    High-resolution marine seismic surveys are used for the imaging of the detailed subsurface geological structure in engineering and marine geological survey. When the sea state gets worse, the quality of the seismic data become worse due to the sea swell. We corrected the swell effect to enhance the quality of seismic data. To remove the swell effect, we picked the sea bottom location automatically, averaged the picked sea bottom times of the adjacent traces and corrected the differences between the calculated and averaged sea bottom location. To make high quality seismic section, we used high-resolution marine 8-channel airgun seismic data acquired off Yeosu, Korea. The energy source was a 30 in3 airgun and the receiver was a 40 m long 8 channel streamer cable with a group interval of 5 m. The offset distance between the source and the first channel was 20 m. The shot interval was 2 seconds corresponding to ~5 m in distance, assuming ship's speed 5 knots. The data were digitally recorded with a sample interval of 0.1 ms and a record length of 1 s. The processing sequence includes basic processing procedures such as gain recovery, deconvolution, frequency filtering, CMP sorting, NMO correction, swell effect correction and stacking. To select sea bottom location for the swell effect correction, we pick maximum amplitude within the expected range including sea bottom location and find the first location at which the amplitude is larger than the threshold that is 40% of the maximum amplitude. We averaged these two-way travel times of sea bottom and corrected the differences. The range of the swell effect correction was -0.5 ~ 0.4 ms. After correction the continuity of reflectors were improved and high quality of the seismic data was produced. This study is a part of a Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM), a National Research Laboratory (NRL) project supported by the Ministry of Science and Technology (MOST), and

  1. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Schubotz, F; Meyer-Dombard, D R; Bradley, A S; Fredricks, H F; Hinrichs, K-U; Shock, E L; Summons, R E

    2013-11-01

    Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show

  2. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  3. Free boundary ballooning mode representation

    Science.gov (United States)

    Zheng, Linjin

    2012-03-01

    Considerable efforts have been made in this field to develop a free boundary ballooning mode representation, which can incorporate the peeling mode stability criterion. Those efforts have not succeeded, simply because the so-called ballooning mode invariance is broken toward plasma edge. This makes 1D description of high n modes at plasma edge become impossible, where n is toroidal mode number. Nevertheless, we prove that the existence of ``half" ballooning mode invariance toward plasma core enables an 1.δ-dimentional representation of the modes, where δ˜O(1/n). This considerably reduces the complicity in investigating high n modes at plasma edge and can be used to study peeling-ballooning modes. This technique can also be useful to extend the 1D calculation of fixed boundary ballooning modes for free boundary ballooning modes. Numerical example will also be presented together with the topological symmetry analysis.

  4. Effects of SF$_{6}$ on the avalanche mode operation of a real-sized double-gap resistive plate chamber for the Compact Muon Solenoid experiment

    CERN Document Server

    Ahn Sung Hwan; Hong, B; Hong, S J; Ito, M; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S; Kang, T I

    2005-01-01

    We present the design and the test, results for a real-sized prototype resistive plate chamber by using cosmic-ray muons for the forward region of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). In particular, we investigate the effects of adding SF/sub 6/ to the gas mixture for the avalanche mode operation of a resistive plate chamber. A small fraction of SF/sub 6/ is very effective in suppressing streamer signals in a resistive plate chamber. The shapes of the muon detection efficiency and the muon cluster size remain similar, but are shifted to higher operating voltage by SF/sub 6/. The noise cluster rate and size are not influenced by SF/sub 6/.

  5. Modeli diskretne izbire

    Directory of Open Access Journals (Sweden)

    Boštjan Kerbler – Kefo

    2006-01-01

    Full Text Available V članku je sistematično predstavljena posebna oblika regresijskih metod – modelov diskretne izbire –, imenovanih tudi verjetnostni modeli. Poleg njihovega pomena so opisane še metodološke značilnosti pri njihovi izvedbi, natančneje pa so predstavljeni modeli binarne izbire in tisti z omejeno odvisno spremenljivko, logistični model ter modela probit in tobit kot izhodiščni metodološki pristopi k izvedbi modelov.

  6. Mode og mozzarella

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2013-01-01

    Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie.......Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie....

  7. Nonclassicality in two-mode BEC

    OpenAIRE

    Giri, Sandip Kumar; Sen, Biswajit; Ooi, C H Raymond; Pathak, Anirban

    2013-01-01

    The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here to investigate the possibility of obtaining intermodal entanglement between different modes involved in the Raman processes (e.g. pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode). Intermodal entanglement is reported between a) pump mode and anti-Stokes mode, b) pump mode and vibration (phonon) mode c) Stokes mode and vibration phonon mode, d) Stokes mode and anti-stoke...

  8. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  9. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  10. New Modes of Citizenship

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    2017-01-01

    in common that they involve important elements of autonomy and self-care and are part of an international movement toward empowering citizens and patients. This chapter discusses the relation between care innovation and new modes of citizenship in terms of the ‘active’ citizen. By way of an ethnographic...

  11. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  12. Theories and Modes

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  13. Modes of perceiving and imagining

    OpenAIRE

    Nudds, Matthew

    2000-01-01

    We enjoy modes of sensory imagining corresponding to our five modes of perception - seeing, touching, hearing, smelling and tasting. An account of what constitutes these different modes of perseption needs also to explain what constitutes the corresponding modes of sensory perception. In this paper I argue that we can explain what distinguishes the different modes of sensory imagination in terms of their characteristic experiences without supposing that we must distinguish the senses in terms...

  14. Whispering Gallery Mode Thermometry.

    Science.gov (United States)

    Corbellini, Simone; Ramella, Chiara; Yu, Lili; Pirola, Marco; Fernicola, Vito

    2016-10-29

    This paper presents a state-of-the-art whispering gallery mode (WGM) thermometer system, which could replace platinum resistance thermometers currently used in many industrial applications, thus overcoming some of their well-known limitations and their potential for providing lower measurement uncertainty. The temperature-sensing element is a sapphire-crystal-based whispering gallery mode resonator with the main resonant modes between 10 GHz and 20 GHz. In particular, it was found that the WGM around 13.6 GHz maximizes measurement performance, affording sub-millikelvin resolution and temperature stability of better than 1 mK at 0 °C. The thermometer system was made portable and low-cost by developing an ad hoc interrogation system (hardware and software) able to achieve an accuracy in the order of a few parts in 10⁸ in the determination of resonance frequencies. Herein we report the experimental assessment of the measurement stability, repeatability and resolution, and the calibration of the thermometer in the temperature range from -74 °C to 85 °C. The combined standard uncertainty for a single temperature calibration point is found to be within 5 mK (i.e., comparable with state-of-the-art for industrial thermometry), and is mainly due to the employed calibration setup. The uncertainty contribution of the WGM thermometer alone is within a millikelvin.

  15. Whispering Gallery Mode Thermometry

    Directory of Open Access Journals (Sweden)

    Simone Corbellini

    2016-10-01

    Full Text Available This paper presents a state-of-the-art whispering gallery mode (WGM thermometer system, which could replace platinum resistance thermometers currently used in many industrial applications, thus overcoming some of their well-known limitations and their potential for providing lower measurement uncertainty. The temperature-sensing element is a sapphire-crystal-based whispering gallery mode resonator with the main resonant modes between 10 GHz and 20 GHz. In particular, it was found that the WGM around 13.6 GHz maximizes measurement performance, affording sub-millikelvin resolution and temperature stability of better than 1 mK at 0 °C. The thermometer system was made portable and low-cost by developing an ad hoc interrogation system (hardware and software able to achieve an accuracy in the order of a few parts in 109 in the determination of resonance frequencies. Herein we report the experimental assessment of the measurement stability, repeatability and resolution, and the calibration of the thermometer in the temperature range from −74 °C to 85 °C. The combined standard uncertainty for a single temperature calibration point is found to be within 5 mK (i.e., comparable with state-of-the-art for industrial thermometry, and is mainly due to the employed calibration setup. The uncertainty contribution of the WGM thermometer alone is within a millikelvin.

  16. Seismic imaging of esker structures from a combination of high-resolution broadband multicomponent streamer and wireless sensors, Turku-Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2015-04-01

    Eskers and glaciofluvial interlobate formations, mainly composed of sands and gravels and deposited in winding ridges, define the locations of glacial melt-water streams. These sediments, porous and permeable, form the most important aquifers in Finland and are often used as aggregates or for artificial aquifer recharge. The Virttaankangas interlobate suite and artificial aquifer recharge plant provides the entire water supply for the city of Turku and therefore an accurate delineation of the aquifer is critical for long term planning and sustainable use of these natural resources. The study area is part of the Säkylänharju-Virttaankangas Glaciofluvial esker-chain complex and lies on an igneous, crystalline basement rocks. To provide complementary information to existing boreholes and GPR studies at the site, such as identification of potential esker cores, planning for a water extraction, fractured bedrock and possible kettle holes, a new seismic investigation was designed and carried out during summer 2014. Two seismic profiles each about 1 km long were acquired using a newly developed 200 m long prototype, comprising of 80-3C MEMs-based, landstreamer system. To provide velocity information at larger depths (and longer offsets), fifty-two 10-Hz 1C wireless sensors spaced at about every 20 m were used. A Bobcat mounted drop-hammer source, generating three hits per source location, was used as the seismic source. This proved to be a good choice given the attenuative nature of the dry sediments down to about 20 m depth. One of the seismic lines overlaps an existing streamer survey and thus allows a comparison between the system used in this study and the one employed before. Except at a few places where the loose sands mixed with leaves affected the coupling, the data quality is excellent with several reflections identifiable in the raw shot gathers. First arrivals were easily identifiable in almost all the traces and shots and this allowed obtaining velocity

  17. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  18. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  19. Free boundary ballooning mode representation

    Science.gov (United States)

    Zheng, L. J.

    2012-10-01

    A new type of ballooning mode invariance is found in this paper. Application of this invariance is shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In contrast to the conventional ballooning representation, which requires the translational invariance of the Fourier components of the perturbations, the new invariance reflects that the independent solutions of the high n mode equations are translationally invariant from one radial interval surrounding a single singular surface to the other intervals. The conventional ballooning mode invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational surfaces in vacuum region are completely different from those with rational surfaces in plasma region. But, the new type of invariance remains valid. This overcomes the limitation of the conventional ballooning mode representation for studying free boundary modes.

  20. Aristotelian Syllogistic, Subalternate Modes, Theophrastus’ Modes and the Fourth Figure

    OpenAIRE

    СЛИНИН Я.А.

    2015-01-01

    In his treatise «New Essays Concerning Human Understanding» Leibniz gives some evidence which suggests that he believed that each of the four figures of Aristotle’s categorical syllogism has 6 correct modes. It is known that Aristotle stated and proved correct syllogisms modes in the three figures, with the fi rst of them having a number of the indirect modes. Why Aristotle did not explicitly introduced into his syllogistic subalternative modes and modes with conversed conclusion? In the pape...

  1. Damage mechanics - failure modes

    Energy Technology Data Exchange (ETDEWEB)

    Krajcinovic, D.; Vujosevic, M. [Arizona State Univ., Tempe, AZ (United States)

    1996-12-31

    The present study summarizes the results of the DOE sponsored research program focused on the brittle failure of solids with disordered microstructure. The failure is related to the stochastic processes on the microstructural scale; namely, the nucleation and growth of microcracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical phenomena and new concepts that emerges from this research demonstrates the reasons behind the limitations of traditional, deterministic, and local continuum models.

  2. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Standardization of Keyword Search Mode

    Science.gov (United States)

    Su, Di

    2010-01-01

    In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…

  4. Raman amplification of OAM modes

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    The set of fibre modes carrying orbital angular momentum (OAM) is a possible basis for mode division multiplexing. In this regard, fibres supporting OAM modes have been fabricated [1], and optical communication using these fibres, has been demonstrated [2]. A vital part of any long range communic...

  5. Fluxon modes in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2004-01-01

    We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...

  6. Design of large mode area, mode selection fiber

    Science.gov (United States)

    Jin, Liang; Xu, Li; Zhang, He; Zou, Yonggang; Ding, Ye; Ma, Xiaohui

    2014-12-01

    The paper study on the effect of index distribution on the mode field and calculated the mode distribution in various index profiles. A single mode gaussian hybrid multicore fiber with 19 hexagonally arranged high index quartz rods is designed and investigated. Theoretical and simulative results are presented and compared to the conventional large mode area double clad fiber, the fundamental mode (FM) area can be reached 694.28 μm2, the confinement loss of FM and high order modes (HOMs) are 0.186 dB/m and 1.48 dB/m respectively with the bending radius of 20 cm at 1.064 μm wavelength, moreover, the index distribution can resistant the mode field distortion, which caused by fiber bending. So the FM delivery can be formed and the beam quality can be improved.

  7. Viscoelastic pulsational mode

    Science.gov (United States)

    Dutta, Pranamika; Karmakar, Pralay Kumar

    2017-08-01

    We present a theoretical model analysis to study the linear pulsational mode dynamics in viscoelastic complex self-gravitating infinitely extended clouds in the presence of active frictional coupling and dust-charge fluctuations. The complex cloud consists of uniformly distributed lighter hot mutually thermalized electrons and ions, and heavier cold dust grains amid partial ionization in a homogeneous, quasi-neutral, hydrostatic equilibrium configuration. A normal mode analysis over the closed set of slightly perturbed cloud governing equations is employed to obtain a generalized dispersion relation (septic) of unique analytic construct on the plasma parameters. Two extreme cases of physical interest depending on the perturbation scaling, hydrodynamic limits and kinetic limits are considered. It is shown that the grain mass and viscoelastic relaxation time associated with the charged dust fluid play stabilizing roles to the fluctuations in the hydrodynamic regime. In contrast, however in the kinetic regime, the stabilizing effects are introduced by the dust mass, dust equilibrium density and equilibrium ionic population distribution. Besides, the oscillatory and propagatory features are illustrated numerically and interpreted in detail. The results are in good agreement with the previously reported findings as special corollaries in like situations. Finally, a focalized indication to new implications and applications of the outcomes in the astronomical context is foregrounded.

  8. Monolithic mode-selective few-mode multicore fiber multiplexers.

    Science.gov (United States)

    Riesen, Nicolas; Gross, Simon; Love, John D; Sasaki, Yusuke; Withford, Michael J

    2017-08-01

    With the capacity limits of standard single-mode optical fiber fast approaching, new technologies such as space-division multiplexing are required to avoid an Internet capacity crunch. Few-mode multicore fiber (FM-MCF) could allow for a two orders of magnitude increase in capacity by using the individual spatial modes in the different cores as unique data channels. We report the realization of a monolithic mode-selective few-mode multicore fiber multiplexer capable of addressing the individual modes of such a fiber. These compact multiplexers operate across the S + C + L telecommunications bands and were inscribed into a photonic chip using ultrafast laser inscription. They allow for the simultaneous multiplexing of the LP 01 , LP 11a and LP 11b modes of all cores in a 3-mode, 4-core fiber with excellent mode extinction ratios and low insertion losses. The devices are scalable to more modes and cores and therefore could represent an enabling technology for practical ultra-high capacity dense space-division multiplexing.

  9. Polarization Mode Dispersion

    CERN Document Server

    Galtarossa, Andrea

    2005-01-01

    This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.

  10. The Integrated Mode Management Interface

    Science.gov (United States)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  11. Waveguides having patterned, flattened modes

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  12. Whispering gallery mode sensors.

    Science.gov (United States)

    Foreman, Matthew R; Swaim, Jon D; Vollmer, Frank

    2015-06-30

    We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.

  13. Intrinsic localized modes and nonlinear impurity modes in curved ...

    Indian Academy of Sciences (India)

    We explore the nature of intrinsic localized modes (ILMs) in a curved Fermi–. Pasta–Ulam (FPU) chain ... We further demonstrate that a nonlinear impurity mode may be treated as a bound state of an ILM with the impurity .... length [14] and see that the particular choice of the chain geometry ensures the DB propagation with ...

  14. Mode Launcher Design for the Multi-moded DLDS

    CERN Document Server

    Li, Z

    2003-01-01

    The DLDS (Delay Line Distribution System) power delivery system proposed by KEK combines several klystrons to obtain the high peak power required to drive a TeV scale linear collider. In this system the combined klystron output is subdivided into shorter pulses by proper phasing of the sources, and each subpulse is delivered to various accelerator sections via separate waveguides. A cost-saving improvement suggested by SLAC is to use a single multimoded waveguide to deliver the power of all the subpulses. This scheme requires a mode launcher that can deliver each subpulse by way of a different waveguide mode through selective phasing of the sources when combining their power. We present a compact design for such a mode launcher that converts the power from four rectangular waveguide feeds to separate modes in a multi-moded circular guide through coupling slots. Such a design has been simulated and found to satisfy the requirements for high efficiency and low surface fields.

  15. Theory of psychological adaptive modes.

    Science.gov (United States)

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Transformation and Modes of Production

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    modes of production and examine the ways of life that are enabled by the two modes of production. The central questions are around how market-based fisheries management transforms the principal preconditions for the self-employed fishers; and, in turn, why capitalist organized large-scale fisheries...

  17. 2D Travel-time tomography of downward continued streamer multichannel seismic data followed by a band-limited full waveform inversion. Application to the Alboran basin (SE Iberia)

    Science.gov (United States)

    Gras Andreu, Claudia; Dagnino, Daniel; Estela Jiménez-Tejero, Clara; Meléndez, Adrià; Sallarès, Valentí; Ranero, César

    2017-04-01

    High-resolution velocity models can be retrieved by applying adjoint-state full-waveform inversion (FWI) to controlled source data. However the strong non-linearity of the problem makes the solution strongly dependent on the initial model chosen and on the low frequency content of the seismic source. Besides, typical relatively-short offset multi-channel seismic (MCS) data lacks first -refracted- arrivals that are commonly used to obtain a suitable starting model for FWI. Here we show that this problem can be solved by combining a joint refraction and reflection Travel Time Tomography (TTT) of a re-datumed version of the same data set to obtain an appropriate reference model with the correct low wavenumber on it that is subsequently refined by FWI. The proposed workflow is first described and then applied to MCS data acquired with 6 km-long streamer during the TOPOMED-2011 experiment in the Gulf of Cadiz (SE Iberia). The applied strategy includes as a first step a wave equation-based downward continuation (DC) or redatuming of the MCS data to simulate a sea bottom acquisition geometry, followed by a joint travel-time tomographic inversion of first arrivals identified in the DC data set together with the top of the basement (TOB) reflection from the MCS common mid point gathers to finally perform the multi-scale FWI of the original streamer data using the model obtained by TTT as initial model. The robustness of the Vp and TOB geometry model obtained by joint refraction and reflection TTT is assessed by comparing the results obtained using three independent data sets (different groups of shotgathers). The three models coincide within parameter uncertainty bounds, and the two-way-time transformed TOB geometry is also coincident with the time migrated image. We conclude therefore that the velocity and reflector depth model obtained is robust. The joint DC refraction and reflection travel-time inversion scheme helps to reduce the inherent existing velocity-depth trade

  18. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    An enduring characteristic of extant literature on foreign operation modes is its discrete choice approach, where companies are assumed to choose one among a small number of distinctive alternatives. In this paper we use detailed information about the operations of six Norwegian companies in three...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...... reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...

  19. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    An enduring characteristic of extant literature on foreign operation modes is its discrete choice approach, where companies are assumed to choose one among a small number of distinctive alternatives. In this paper, detailed information about the operations of six Norwegian companies in three key...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...... reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...

  20. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm`s law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise {Delta}{prime} stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface.

  1. Mode-by-mode hydrodynamics: Ideas and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2014-06-15

    The main ideas, technical concepts and perspectives for a mode resolved description of the hydrodynamical regime of relativistic heavy ion collisions are discussed. A background-fluctuation splitting and a Bessel–Fourier expansion for the fluctuating part of the hydrodynamical fields allows for a complete characterization of initial conditions, the fluid dynamical propagation of single modes, the study of interaction effects between modes, the determination of the associated particle spectra and the generalization of the whole program to event-by-event correlations and probability distributions.

  2. Exotic decay: Transition from cluster mode to fission mode

    Indian Academy of Sciences (India)

    ' reaction were studied taking interacting barrier consisting of Coulomb and proximity potential. Calculated half-life time shows that some modes of decay are well within the present upper limit for measurements (1/2 < 1030 s). Cluster ...

  3. Mode control and mode conversion in nonlinear aluminum nitride waveguides.

    Science.gov (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P

    2013-11-04

    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  4. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  5. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    Science.gov (United States)

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  6. Distributed Mode Filtering Rod Fiber Amplifier With Improved Mode Stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2012-01-01

    We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime.......We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime....

  7. Intelligence and musical mode preference

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2016-01-01

    The relationship between fluid intelligence and preference for major–minor musical mode was investigated in a sample of 80 university students. Intelligence was assessed by the Raven’s Advanced Progressive Matrices. Musical mode preference was assessed by presenting 14 pairs of musical stimuli...... that varied only in mode. Mood and personality were assessed, respectively, by the Brief Mood Introspection Scale and the Big Five Questionnaire. Preference for minor stimuli was related positively and significantly to fluid intelligence and openness to experience. The results add evidence of individual...

  8. Few-mode fiber technology for mode division multiplexing

    Science.gov (United States)

    Mori, Takayoshi; Sakamoto, Taiji; Wada, Masaki; Yamamoto, Takashi; Nakajima, Kazuhide

    2017-02-01

    We review recent progress on few-mode fiber (FMF) technologies for mode-division multiplexing (MDM) transmission. First, we introduce fibers for use without and with multiple-input multiple-output (MIMO) digital signal processing (DSP) to compensate for modal crosstalk, and briefly report recent work on FMF for use without/with a MIMO DSP system. We next discuss in detail a fiber for MIMO transmission systems, and show numerically that a graded-index core can flexibly tune the differential mode group delay (DMD) and a cladding trench can flexibly control the guiding mode number. We optimized the spacing of the core and trench. Accordingly, we can achieve a 6 LP (10 spatial) mode operation and a low DMD while preventing the high index difference that leads to manufacturing difficulties and any loss increase. We finally describe our experimental results for a 6 LP (10 spatial) mode transmission line for use in a C + L band wavelength-division multiplexing (WDM) MDM transmission with MIMO DSP.

  9. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  10. Adaptive Structural Mode Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes the development of an adaptive structural mode control system. The adaptive control system will begin from a "baseline" dynamic model of the...

  11. Rotational Modes in Phononic Crystals

    Science.gov (United States)

    Wu, Ying; Peng, Pai; Mei, Jun

    2014-03-01

    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  12. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  13. Novel Modes Workshop Summary Report

    Science.gov (United States)

    2015-12-01

    On December 2-3, 2014, the Federal Highway Administration's (FHWA's) Exploratory Advanced Research Program, with support from the John A. Volpe National Transportation Systems Center, convened the 2-day workshop "Novel Modes." It was held concurrentl...

  14. The Kuhnian mode of HPS

    DEFF Research Database (Denmark)

    Schindler, Samuel

    2013-01-01

    In this article I argue that a methodological challenge to an integrated history and philosophy of science approach put forth by Ronald Giere almost forty years ago can be met by what I call the Kuhnian mode of History and Philosophy of Science (HPS). Although in the Kuhnian mode of HPS norms about...... science are motivated by historical facts about scientific practice, the justifiers of the constructed norms are not historical facts. The Kuhnian mode of HPS therefore evades the naturalistic fallacy which Giere’s challenge is a version of. Against the backdrop of a discussion of Laudan’s normative...... naturalism I argue that the Kuhnian mode of HPS is a superior form of naturalism: it establishes contact to the practice of science without making itself dependent on its contingencies....

  15. Examination of the 'web mode effect'

    DEFF Research Database (Denmark)

    Clement, Sanne Lund; Shamshiri-Petersen, Ditte

    for different modes, and mode differences then are influenced by stratification differences. In both cases the real mode differences are nearly impossible to determine and remains rather speculative. The purpose of this contribution is to examine potential “web mode effects” in mixed-mode surveys. Compared...

  16. The Fifth Mode of Representation

    DEFF Research Database (Denmark)

    Hansen, Per Krogh; Behrendt, Poul Olaf

    2011-01-01

    “The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York......“The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York...

  17. An interdecadal American rainfall mode

    Science.gov (United States)

    Jury, Mark R.

    2009-04-01

    Low-frequency climate variability across the American continents and surrounding oceans is analyzed by application of singular value decomposition (SVD) to gauge-based rainfall and environmental anomaly fields in the period 1901-2002. A 5-year filter is used to maintain a focus on interdecadal cycles. The rainfall regime of particular interest (mode 1) is when West Africa and the Caribbean share positive loading and North and South America share negative loading. Wavelet cospectral energy is found at ˜8, 24, and 50 years for Caribbean/West African zones and 16 and 32 years for North/South America. West Africa and South America exhibit antiphase multidecadal variability, while North America and the Caribbean rainfall exhibit quasi-decadal cycles. The rainfall associations are nonstationary. In the early 1900s, Caribbean and South American rainfall were antiphase. Since 1930 low-frequency oscillations of North American (West African) rainfall have been positively (negatively) associated with South America. Low-frequency oscillations of North American rainfall have been consistently antiphase with respect to Caribbean rainfall; however, West Africa rainfall fluctuations have been in phase with the Caribbean more in the period 1920-1950 than at other times. Hemispheric-scale environmental SVD patterns and scores were compared with the leading rainfall modes. The north-south gradient modes in temperature are influential in respect of mode 1 rainfall, while east-west gradients relate to mode 2 (northern Brazil) rainfall. The ability of the GFDL2.1 coupled (ocean-atmosphere) general circulation model to represent interdecadal rainfall modes in the 20th century was evaluated. While mode 2 is reproduced, mode 1 remains elusive.

  18. Normal modes and mode transformation of pure electron vortex beams.

    Science.gov (United States)

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  19. Investigating the Mode Structure of the Weakly Coherent Mode

    Science.gov (United States)

    Golfinopoulos, T.; Labombard, B.; Hubbard, A.; Hughes, J. W.; Whyte, D.; Granetz, R.; Davis, E. M.; Edlund, E.; Ennever, P.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team

    2017-10-01

    The Weakly Coherent Mode (WCM, 200-500 kHz, k⊥ρs < 0.1) is an edge phenomenon associated with I-mode, a steady state, ELM-free confinement regime that has been observed on the Alcator C-Mod, ASDEX-Upgrade, and DIII-D tokamaks. I-mode is characterized by high particle flux, creating a separation of transport channels that leads to the development of a temperature pedestal, but not a density pedestal. The WCM is thought to contribute to this increased particle flux, though its precise role in regulating edge transport is not well-understood. Here, we investigate the structure of the WCM, particularly regarding poloidal asymmetry, using data from poloidally- and toroidally-arrayed Mirnov coils, as well as phase contrast imaging, with radial profiles of Te, ne, and Φ in the scrape-off layer provided by the Mirror Langmuir Probe. The WCM phenomenology is then compared to that of the Quasi-Coherent Mode, the edge fluctuation responsible for exhausting impurities in the Enhanced Dα H-mode. This work is supported by USDoE award DE-FC02-99ER54512.

  20. Optically Mediated Hybridization Between Two Mechanical Modes

    CERN Document Server

    Shkarin, A B; Hoch, S W; Deutsch, C; Reichel, J; Harris, J G E

    2013-01-01

    In this paper we study a system consisting of two nearly degenerate mechanical modes that couple to a single mode of an optical cavity. We show that this coupling leads to nearly complete (99.5%) hybridization of the two mechanical modes into a bright mode that experiences strong optomechanical interactions and a dark mode that experiences almost no optomechanical interactions. We use this hybridization to transfer energy between the mechanical modes with 40% efficiency.

  1. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  2. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  3. Macroscopic (and microscopic massless modes

    Directory of Open Access Journals (Sweden)

    Michael C. Abbott

    2015-05-01

    Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.

  4. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  5. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    SO4 crystal by a theoretical model which is extended with two sublattice pseudospin lattice coupled mode model by adding third, fourth and fifth order phonon anharmonic interaction terms as well as external electric field term in the crystal ...

  6. Nonlinear oscillations of TM-mode gyrotrons

    Science.gov (United States)

    Chang, Tsun-Hsu; Yao, Hsin-Yu; Su, Bo-Yuan; Huang, Wei-Chen; Wei, Bo-Yuan

    2017-12-01

    This study investigates the interaction between the relativistic electrons and the waves in cavities with fixed field profiles. Both the transverse electric (TE) and the transverse magnetic (TM) cavity modes are examined, including three first-axial modes, TE011, TM011, and TM111, and two zero-axial modes, TM010 and TM110. The first-axial modes have the same resonant frequency, so a direct comparison can be made. By sweeping the electron pitch factor (α) and the electron transit angle (Θ), the optimal converting efficiency of TM modes occurs at α = 1.5 and Θ = 1.5π, unlike the TE mode of α = 2.0 and Θ = 1.0π. The converting efficiencies of both the first-axial TM modes are much lower than that of TE011 mode. The starting currents of TM011 and TM111 modes are four times higher than that of TE011 mode, indicating that these two TM modes are very difficult to oscillate. This evidences that under the traditional operating conditions, the TM-mode gyrotrons are insignificant. However, the two unique, zero-axial TM modes have relatively high converting efficiency. The highest converting efficiency of TM110 is 27.4%, the same value as that of TE011 mode. The starting currents of TM110 mode and TE011 mode are at the same level. The results suggest that some TM-mode gyrotron oscillators are feasible and deserve further theoretical and experimental studies.

  7. Dually-mode-locked ND: YAG laser

    Science.gov (United States)

    Osmundson, J.; Rowe, E.; Santarpia, D.

    1974-01-01

    Mode-locking is stabilized effectively by conventional loss-modulator and phase-modulator, mode-locking elements placed in laser cavity in optical series with one another. Resulting dually-mode-locked system provides pulses with constant phase relative to mode-lock drive signal without presence of relaxation oscillation noise.

  8. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  9. Mode structure of active resonators

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  10. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  11. Theory of Modes and Impulses

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  12. A Study of the Dielectric Breakdown of SiO2 Films on Si by the Self- Quenching Technique

    Science.gov (United States)

    1974-10-01

    which caused a hole to bp evaporated through the metal and oxide. In coi.tinuation, the capacitor discharged in an arc through the...Scratches, made on the Al field plate either deliberately or unintentionally, arc found to affect the breakdown only when the field...the Technique of Metallized Paper Capacitor for Power System." 1958 Conf. Int. des Grands Re-seaux Electriques , Paris, Rept

  13. Determination of bull sperm membrane permeability to water and cryoprotectants using a concentration-dependent self-quenching fluorophore

    NARCIS (Netherlands)

    Chaveiro, A.; Liu, J.; Mullen, S.; Woelders, H.; Critser, J.K.

    2004-01-01

    The objective of this study was to determine the membrane permeability characteristics of bovine spermatozoa. These included the hydraulic conductivity (L-p), the permeability coefficients (P-s) of four common cryoprotective agents (CPAs) and the associated reflection coefficients (sigma).

  14. Two-mode Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang

    2000-01-01

    Two-mode nonlinear coherent states are introduced in this paper. The pair coherent states and the two-mode Perelomov coherent states are special cases of the two-mode nonlinear coherent states. The exponential form of the two-mode nonlinear coherent states is given. The photon-added or photon-subtracted two-mode nonlinear coherent states are found to be two-mode nonlinear coherent states with different nonlinear functions. The parity coherent states are introduced as examples of two-mode nonl...

  15. Suppression of high order modes employing active self-imaging mode filter in large mode area strongly pumped fiber amplifier

    Science.gov (United States)

    Zhao, Xiang; Bai, Gang; Zheng, Ye; Chen, Xiaolong; Yang, Yifeng; Qi, Yunfeng; He, Bing; Zhou, Jun

    2017-10-01

    To suppress high order modes and improve the beam quality, an active self-imaging mode filter based on multimode interference and self-imaging effect is proposed in large mode area (LMA) fiber amplifier. With this filter structure, transverse mode competition and individual transverse mode power distributions in strongly pumped fiber amplifiers are theoretically demonstrated. Employing this mode selection technique in 30/400 LMA strongly pumped fiber amplifier, the percentage of the fundamental mode rises from 27.8% (without filter) to 96.3%. By the modal power decomposition, the M2 parameter of beam quality decrease dramatically from 2.24 to 1.11 (0 relative phase) and from 3.01 to 1.24 (π/2 relative phase). This study provides a new method to achieve single mode in LMA fiber amplifier and this filter would be extended to larger mode area fiber amplifier to improve the beam quality.

  16. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  17. All-fiber 6-mode multiplexers based on fiber mode selective couplers.

    Science.gov (United States)

    Chang, Sun Hyok; Moon, Sang-Rok; Chen, Haoshuo; Ryf, Roland; Fontaine, Nicolas K; Park, Kyung Jun; Kim, Kwangjoon; Lee, Joon Ki

    2017-03-06

    All-fiber 6-mode multiplexer composed of two consecutive LP11-mode selective couplers (MSC), two LP21-MSCs and an LP02-MSC is fully characterized by wavelength-swept interferometer technique. The MSCs are fabricated by polished-type fiber couplers coupling LP01 mode of a single mode fiber into a higher-order mode of a few mode fiber. A pair of the mode multiplexers has minimum mode dependent loss of 4 dB and high mode group selectivity of over 15 dB. Mode division multiplexed transmission enabled by the all-fiber mode multiplexers is demonstrated over fiber spans of 117 km employing an in-line multi-mode optical amplifier. 6 modes of 120 Gb/s dual polarization quadrature phase shift keying signals combined with 30 wavelength channels are successfully transmitted.

  18. Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2004-01-01

    Using a finite-element mode solver, the modes of a commercial endlessly single-mode photonic crystal fiber (ESM-PCF) were investigated. Based on the loss discrimination between the dominant and the nearest higher order mode, we set-up a criterion for the single-modeness. Using that measure, we

  19. Vainshtein solutions without superluminal modes

    Science.gov (United States)

    Gabadadze, Gregory; Kimura, Rampei; Pirtskhalava, David

    2015-06-01

    The Vainshtein mechanism suppresses the fifth force at astrophysical distances, while enabling it to compete with gravity at cosmological scales. Typically, Vainshtein solutions exhibit superluminal perturbations. However, a restricted class of solutions with special boundary conditions was shown to be devoid of the faster-than-light modes. Here we extend this class by finding solutions in a theory of quasidilaton, amended by derivative terms consistent with its symmetries. Solutions with Minkowski asymptotics are not stable, while the ones that exhibit the Vainshtein mechanism by transitioning to cosmological backgrounds are free of ghosts, tachyons, gradient instability, and superluminality, for all propagating modes present in the theory. These solutions require a special choice of the strength and signs of nonlinear terms, as well as a choice of asymptotic cosmological boundary conditions.

  20. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  1. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  2. Dual Mode Slotted Monopole Antenna

    Science.gov (United States)

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is directed...such as this that is capable of radiating at a different frequency below this cutoff. The present invention provides a means by which the overall

  3. Substructuring and Component Mode Synthesis

    Directory of Open Access Journals (Sweden)

    P. Seshu

    1997-01-01

    Full Text Available Substructuring and component mode synthesis (CMS, is a very popular method of model reduction for large structural dynamics problems. Starting from the pioneering works on this technique in the early 1960s, many researchers have studied and used this technique in a variety of applications. Besides model reduction, CMS offers several other crucial advantages. The present work aims to provide a review of the available literature on this important technique.

  4. Mode pumping experiments on biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R.H.; Erramilli, S. [Princeton Univ., NJ (United States); Xie, A.; Schramm, A.

    1995-12-31

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T{sub 1} and T{sub 2} relaxation measurements at 1650 cm{sup -1}. (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm{sup -1}. A form of action spectrum using FEL excitation will be used to probe this state.

  5. A History of Emerging Modes?

    Directory of Open Access Journals (Sweden)

    Schmitz Michael

    2016-03-01

    Full Text Available In this paper I first introduce Tomasello’s notion of thought and his account of its emergence and development through differentiation, arguing that it calls into question the theory bias of the philosophical tradition on thought as well as its frequent atomism. I then raise some worries that he may be overextending the concept of thought, arguing that we should recognize an area of intentionality intermediate between action and perception on the one hand and thought on the other. After that I argue that the co-operative nature of humans is reflected in the very structure of their intentionality and thought: in co-operative modes such as the mode of joint attention and action and the we-mode, they experience and represent others as co-subjects of joint relations to situations in the world rather than as mere objects. In conclusion, I briefly comment on what Tomasello refers to as one of two big open questions in the theory of collective intentionality, namely that of the irreducibility of jointness.

  6. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  7. Mixed-Mode-Bending Delamination Apparatus

    Science.gov (United States)

    Crews, John H., Jr.; Reeder, James R.

    1991-01-01

    Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.

  8. Digital holograms for laser mode multiplexing

    CSIR Research Space (South Africa)

    Mhlanga, T

    2014-10-02

    Full Text Available the sensitivity of the setup to misalignment, that leads to mode-coupling. It is also important that the injected modes ha a uniform power spectrum so that are weighted equally. The size of the multi-modes is highly dependent on the resolution of the SLM. Keywords...: spatial modes, multiplex, mode coupling 1. INTRODUCTION Optical networks form a foundation of modern communications networks since the replacement of copper wires with optical fibres in the 1980’s. This fibre technology has been based on single mode fibres...

  9. Predicting the Diversity of Foreign Entry Modes

    DEFF Research Database (Denmark)

    Hashai, Niron; Geisler Asmussen, Christian; Benito, Gabriel

    2007-01-01

    This paper expands entry mode literature by referring to multiple modes exerted in different value chain activities within and across host markets, rather than to a single entry mode at the host market level. Scale of operations and knowledge intensity are argued to affect firms' entry mode...... diversity across value chain activities and host markets. Analyzing a sample of Israeli based firms we show that larger firms exhibit a higher degree of entry mode diversity both across value chain activities and across host markets. Higher levels of knowledge intensity are also associated with more...... diversity in firms' entry modes across both dimensions....

  10. Mixed-Mode Crack Growth in Wood

    Directory of Open Access Journals (Sweden)

    Octavian POP

    2012-09-01

    Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.

  11. Optically controllable dual-mode switching in single-mode Fabry-Pérot laser diode subject to one side-mode feedback and external single mode injection

    Science.gov (United States)

    Wu, Jian-Wei; Won, Yong Hyub

    2017-06-01

    In this paper, broadly tunable dual-mode lasing system is presented and demonstrated based on single-mode Fabry-Pérot laser diode subject to the feedback of one side mode amplified by an erbium-doped fiber amplifier in the external feedback cavity. The spacing between two resonance modes in output lasing spectrum is broadly tuned by introducing differently amplified side mode into the single-mode laser via the external cavity consisted of amplifier, filter, and polarization controller so that two difference frequencies of 1 THz and 0.6 THz are given to display the tunable behavior of dual-mode emission in this work. Therefore, under an external injection mode into the laser condition, the power dependent injection locking and optical bistability of generated dual-mode emission are discussed in detail. At different wavelength detunings, the emitted two resonance modes including the dominant and feedback modes are switched to on- or off-state by selecting proper high-low power level of the external injection mode. As a consequence, the maximum value of achieved dual-mode on-off ratio is as high as up to 45 dB.

  12. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a slow light.

  13. All-fiber mode selective couplers for mode-division-multiplexed optical transmission

    Science.gov (United States)

    Chang, Sun Hyok; Kim, Kwangjoon; Lee, Joon Ki

    2017-01-01

    All-fiber mode selective coupler (MSC) is comprised of a few mode fiber (FMF) and a single mode fiber (SMF), coupling the LP01 mode of the SMF to a specific higher-order mode (HOM) of the FMF. In order to achieve high coupling ratio and low insertion loss, phase-matching condition between the LP01 mode of SMF arm and the HOM of FMF arm should be satisfied. A polished-type MSC is made by getting their cores into intimate contact. Prism coupling with a polished coupler block can measure the effective refractive index of the mode accurately. We propose and demonstrate three kinds of allfiber mode multiplexer that is composed of consecutive MSCs. 4-mode multiplexer can multiplex 4 modes of LP01, LP11, LP21, and LP02 by cascading LP11, LP21, and LP02 MSCs. It is used for MDM transmission of three modes with 120 Gb/s DP-QPSK signals. In order to enhance the signal transmission performance by receiving degenerate LP modes simultaneously, a mode multiplexer to utilize two-fold degenerate LP11 modes is proposed. It is composed of two consecutive LP11 MSCs that allows the multiplexing of LP01 mode and two orthogonal LP11 modes. We demonstrates WDM transmission of 30 wavelength channels with 33.3 GHz spacing, each carrying 3 modes, over 560 km of FMF. 6- mode multiplexer can multiplex 6 modes of LP01, LP11a, LP11b, LP21a, LP21b, LP02 modes. We demonstrated WDM-MDM transmission with the all-fiber 6-mode multiplexer. In this paper, the manufacturing method and the recent advancements of the all-fiber mode multiplexer based on the MSCs are reviewed. Long-distance mode division multiplexing (MDM) optical signal transmissions with the all-fiber mode multiplexer are experimentally demonstrated.

  14. Automobile Road Vibration Reproduction using Sliding Modes

    NARCIS (Netherlands)

    Monsees, G.; Scherpen, J.M.A.

    2001-01-01

    Sliding mode controllers have a reputation for their robustness against parameter variations, modeling errors and disturbances. They have been successfully applied in several practical situations which demonstrated the potential of sliding mode control for other control problems. However research

  15. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  16. Transverse mode-locking in microcavity lasers

    Science.gov (United States)

    Gordon, R.; Heberle, A. P.; Cleaver, J. R. A.

    2002-12-01

    We experimentally demonstrate mode-locking between the transverse modes of a laser. A vertical-cavity surface-emitting laser with evenly-spaced transverse modes is shown to emit a train of 2.1±0.1 ps pulses with an 11 ps repetition rate and a timing jitter of 235±30 fs. Transverse mode-locking in microcavity lasers has potential to improve the compactness, stability, integrability, repetition rate tunability, and efficiency of ultrafast optical communication sources.

  17. Language Differences and Operation Mode

    DEFF Research Database (Denmark)

    Dasi, Angels; Pedersen, Torben

    2013-01-01

    Language serves different purposes depending on the international activity in question. Language has many dimensions and firms’ communicative requirements vary by operational platform. We argue that different dimensions of language vary in their importance depending on the operation mode chosen...... for a foreign market, so that language distance matters in the case of a home-based sales force, while language incidence is key when operating through a local agent. The hypotheses are tested on a large data set encompassing 462 multinational corporations headquartered in Finland, South Korea, New Zealand......, and Sweden that have undertaken a business operation in a foreign country....

  18. Applications of sliding mode control

    CERN Document Server

    Ghommam, Jawhar; Zhu, Quanmin

    2017-01-01

    This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .

  19. Squint mode SAR processing algorithms

    Science.gov (United States)

    Chang, C. Y.; Jin, M.; Curlander, J. C.

    1989-01-01

    The unique characteristics of a spaceborne SAR (synthetic aperture radar) operating in a squint mode include large range walk and large variation in the Doppler centroid as a function of range. A pointing control technique to reduce the Doppler drift and a new processing algorithm to accommodate large range walk are presented. Simulations of the new algorithm for squint angles up to 20 deg and look angles up to 44 deg for the Earth Observing System (Eos) L-band SAR configuration demonstrate that it is capable of maintaining the resolution broadening within 20 percent and the ISLR within a fraction of a decibel of the theoretical value.

  20. A comparison of short distance transport modes

    NARCIS (Netherlands)

    Bouwman, M.E.; Sucharov, LJ

    2000-01-01

    This paper presents a comparison of seven transport modes in both urban and rural settings, based on four characteristics of transport modes: space use, energy use, costs and travel time. The characteristics are calculated with a computer model and based on these results the modes can be ranked.

  1. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control...

  2. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully exc...

  3. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid ...

  4. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  5. Adaptive Batch Mode Active Learning.

    Science.gov (United States)

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  6. Forms of knowledge and modes of innovation

    DEFF Research Database (Denmark)

    Jensen, Morten Berg; Johnson, Björn; Lorenz, Edward

    2007-01-01

    This paper contrasts two modes of innovation. One, the Science, Technology and Innovation (STI) mode, is based on the production and use of codified scientific and technical knowledge. The other, the Doing, Using and Interacting (DUI) mode, relies on informal processes of learning and experience......-based know-how. Drawing on the results of the 2001 Danish DISKO Survey, latent class analysis is used to identify groups of firms that practice the two modes with different intensities. Logit regression analysis is used to show that firms combining the two modes are more likely to innovate new products...

  7. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  8. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    modes are critical for SDM applications. Here we present such building blocks implemented on the silicon-on-insulator (SOI) platform. These include fabrication tolerant wideband (de) multiplexers, ultra-compact mode converters and (de) multiplexers designed by topology optimization, and mode filters...... using one-dimensional (1D) photonic crystal silicon waveguides. We furthermore use the fabricated devices to demonstrate on-chip point-to-point mode division multiplexing transmission, and all-optical signal processing by mode-selective wavelength conversion. Finally, we report an efficient silicon...

  9. Influence of the linear mode coupling on the nonlinear impairments in few-mode fibers

    DEFF Research Database (Denmark)

    Kutluyarov, R.V.; Lyubopytov, V.S.; Bagmanov, V.Kh

    2017-01-01

    This paper is focused on the influence of the linear mode coupling caused by the fiber bending on the nonlinear distortions in a mode-division multiplexed system. The system under test utilizes the fundamental Gaussian mode and the conjugated first-order vortex modes propagating in the step-index...

  10. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode...

  11. Intermodal Raman Scattering between Full Vectorial Modes in Few Moded Fiber

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Ramachandran, Siddharth; Rottwitt, Karsten

    2013-01-01

    We experimentally investigate intermodal Raman interaction. The pump is in the fundamental mode, HE11, and the signal is in either of two full vectorial modes, TM01 or TE01. The on-off gain is approximately 3 dB for both modes, using 4 km of few-moded fiber and 400 mW of pump power....

  12. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...

  13. GATS Mode 4 Negotiation and Policy Options

    Directory of Open Access Journals (Sweden)

    Kil-Sang Yoo

    2004-06-01

    Full Text Available This study reviews the characteristics and issues of GATS Mode 4 and guesses the effects of Mode 4 liberalization on Korean economy and labor market to suggest policy options to Korea. Mode 4 negotiation started from the trade perspective, however, since Mode 4 involves international labor migration, it also has migration perspective. Thus developed countries, that have competitiveness in service sector, are interested in free movement of skilled workers such as intra-company transferees and business visitors. On the other hand, developing countries, that have little competitiveness in service sector, are interested in free movement of low-skilled workers. Empirical studies predict that the benefits of Mode 4 liberalization will be focused on developed countries rather than developing countries. The latter may suffer from brain drain and reduction of labor supply. Nevertheless developed countries are reluctant to Mode 4 negotiation because they can utilize skilled workers from developing countries by use of their own temporary visa programs. They are interested in Mode 4 related with Mode 3 in order to ease direct investment and movement of natural persons to developing countries. Regardless of the direction of a single undertaking of Mode 4 negotiation, the net effects of Mode 4 liberalization on Korean economy and labor market may be negative. The Korean initial offer on Mode 4 is the same as the UR offer. Since Korean position on Mode 4 is most defensive, it is hard to expect that Korean position will be accepted as the single undertaking of Mode 4 negotiation. Thus Korea has to prepare strategic package measures to minimize the costs of Mode 4 liberalization and improve competitiveness of service sector.

  14. Wake mode sidebands and instability in mode-locked lasers with slow saturable absorbers.

    Science.gov (United States)

    Wang, Shaokang; Droste, Stefan; Sinclair, Laura C; Coddington, Ian; Newbury, Nathan R; Carruthers, Thomas F; Menyuk, Curtis R

    2017-06-15

    Passively mode-locked lasers with semiconductor saturable absorption mirrors are attractive comb sources due to their simplicity, excellent self-starting properties, and their environmental robustness. These lasers, however, can have an increased noise level and wake mode instabilities. Here, we investigate the wake mode dynamics in detail using a combination of evolutionary and dynamical methods. We describe the mode-locked pulse generation from noise when a stable pulse exists and the evolution of the wake mode instability when no stable pulse exists. We then calculate the dynamical spectrum of the mode-locked pulse, and we show that it has six discrete eigenmodes, two of which correspond to wake modes. The wake modes are unstable when the wake mode eigenvalues have a positive real part. We also show that even when the laser is stable, the wake modes lead to experimentally observed sidebands.

  15. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  16. Statistical Distributions of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2010-01-01

    Full Text Available A new theoretical concept of fractal multiplication of electron avalanches has resulted in forming a generalized distribution function whose multiparameter character has been subjected to detailed discussion. 

  17. Construction of a Pulsed Streamer Corona Reactor

    National Research Council Canada - National Science Library

    Locke, Bruce

    1995-01-01

    The objective of this effort was to construct a pulsed corona discharge capability for conducting investigations into the destruction of noxious combustion products from jet engines and ground support equipment...

  18. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  19. Low-collective scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A. (Tuebingen Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1990-06-01

    Realistic microscopic RPA calculations for {sup 156}Gd with a deformed Woods-Saxon mean field, quadrupole-quadrupole, spin-spin and symmetry-restoring residual interactions show that the purely collective scissors mode of the two-rotor model is fragmented over orbital isovector 1{sup +} states, lying at 2-7 MeV. The strongest experimentally observed magnetic dipole state is interpreted as performing a low-collective scissors-type of geometrical motion. This conclusion evolves from the identification of the above state with the strongest RPA excitation, which reproduces well the experimental energy, B(M1) value and (e, e') form factor, has the largest overlap with the scissors state and can be represented as a low-collective scissors type vibration. (orig.).

  20. High-energy scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    1995-05-01

    All the orbital {ital M}1 excitations, at both low and high energies, obtained from a rotationally invariant quasiparticle random-phase approximation, represent the fragmented scissors mode. The high-energy {ital M}1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors model is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and {ital B}({ital M}1){lt}0.25{mu}{sub {ital N}}{sup 2} for single transitions in this region. The ({ital e},{ital e}{prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for {ital E}2 than for {ital M}1 excitations even at backward angles.

  1. Filamentation as primitive growth mode?

    Science.gov (United States)

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.

  2. Developing Network Location Model in Uncertainty Mode (Robust Mode

    Directory of Open Access Journals (Sweden)

    AMINI Mousa

    2013-01-01

    Full Text Available In this research, facility location problem - network design under uncertainty robust mode has been discussed. In this regard a model will be developed, so that the uncertainty in parameters such as demand and problem’s various costs considered. Facility location- network design, unlike classical facility location models, which are assumed that network structure is pre-defined and specified- will also decide on the structure of the network. This has been in many actual applications such as road network, communication systems and etc and finding facility location and main network designing simultaneously has deemed important and the need for simultaneous design and optimization models to meet the mentioned items is felt. Different approaches have been developed in the uncertainty optimization literature. Amongst them, robust and stochastic optimizations are well- known. To deal with uncertainty and problem modeling, in this research robust optimization approach have been used. In addition, by using generated random samples, the proposed model has been tested and computational analysis is presented for various parameters.

  3. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern.

    Science.gov (United States)

    Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph

    2014-12-15

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

  4. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    Science.gov (United States)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  5. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  6. Effect of survey mode on response patterns

    DEFF Research Database (Denmark)

    Christensen, Anne Illemann; Ekholm, Ola; Glümer, Charlotte

    2014-01-01

    .7%). Marital status, ethnic background and highest completed education were associated with non-response in both modes. Furthermore, sex and age were associated with non-response in the self-administered mode. No significant mode effects were observed for indicators related to use of health services...... administrative registers and linked to survey data at individual level. Multiple logistic regression analyses were used to examine the effect of survey mode on response patterns. RESULTS: The non-response rate was higher in the self-administered survey (37.9%) than in the face-to-face interview survey (23......, but significant mode effects were observed for indicators related to self-reported health-related quality of life, health behaviour, social relations and morbidity (long-standing illness). CONCLUSIONS: The same factors were generally associated with non-response in both modes. Indicators based on factual...

  7. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    -Kleinmann analysis, taking into account the full description of the multi-mode field inside the nonlinear crystal in a type I phase-maching condition. The good agreement between experiments and theory shows that the effect is well understood and that we have reliable models required for the design of novel photonics......Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique...... for the conversion of transverse electric modes of the second harmonic output. For a given TEMn0 pump mode the output mode can be altered continuously by adjusting the laser wavelength, the focusing of the pump or the temperature of the nonlinear medium. We make quantitative comparisons with a generalized Boyd...

  8. Semiconductor laser with longitudinal-mode selection

    Science.gov (United States)

    Masloboev, Iu. P.; Poltoratskii, E. A.; Suris, R. A.; Shtofich, S. V.

    1980-06-01

    A new method for longitudinal-mode selection in a semiconductor laser is proposed, based on the conversion of such modes into higher-order transverse modes which can subsequently be filtered out. The key element of this design is an interference cell that is based on an active waveguide, consisting of two branches of different length. If this interference cell is placed between the mirrors of a resonator, and if the emission in higher-order modes is suppressed by some device, the new type of laser with longitudinal-mode selection results. Such a laser would emit in a single mode over a broad range of pump currents, and could be used as an exceptionally good light source for integrated optics and high-speed fiber-optics communications.

  9. Deep Space Mission Emergency Mode Downlink

    Science.gov (United States)

    Kantak, Anil V.

    2008-01-01

    This paper investigates telecommunications between a deep space mission satellite and the ground station during an emergency mode. Once emergency is detected, spacecraft is put into a safe mode, i.e., antenna to be used for emergency mode communications is pointed towards the sun and use total available power to transmit. There are many parameters affecting communications in this mode and these should be properly balanced to produce desired results. This paper explores the effectiveness of spacecraft antenna gain pattern in the emergency mode with respect to positions of the spacecraft, earth, Sun Earth Probe (SEP) angle at the receiving antenna, and the range of the spacecraft with respect to the ground station. The paper also provides parabolic reflector antenna diameter that should be used for emergency mode as a function of the satellite to sun range in the solar system.

  10. Laser modes with helical wave fronts

    Science.gov (United States)

    Harris, M.; Hill, C. A.; Tapster, P. R.; Vaughan, J. M.

    1994-04-01

    We report the operation of an argon-ion laser in pure (single-frequency) ``doughnut'' modes of order m=1, 2, and 3. The phase discontinuity at the center of these modes leads to striking two-beam interference patterns that clearly demonstrate the existence of a helical cophasal surface (wave front). The doughnut mode with m=1 (usually called TEM*01) displays a forking interference fringe pattern characteristic of a pure single helix. The m=2 mode shows a pattern with four extra prongs, establishing that the cophasal surface is a two-start or double helix; the m=3 mode is a triple helix with a six-extra-pronged pattern. Each pure doughnut mode is shown to have two possible states corresponding to output wave fronts of opposite helicity.

  11. Mode propagation and attenuation in lined ducts

    CERN Document Server

    BI, Wenping

    2014-01-01

    Optimal impedance for each mode is an important concept in an infinitely long duct lined with uniform absorption material. However it is not valid for finite length linings. This is because that the modes in lined ducts are not power-orthogonal; the total sound power is not equal to the sum of the sound power of each mode; cross-power terms may play important roles. In this paper, we study sound propagation and attenuation in an infinite rigid duct lined with a finite length of lining impedance. The lining impedance may be axial segments and circumferentially non-uniform. We propose two new physical quantities Kp and S to describe the self-overlap of the left eigenfunction and right eigenfunction of one mode and the normalized overlap between modes, respectively. The two new physical quantities describe totally the mode behaviors in lined ducts.

  12. Jurassic climate mode governed by ocean gateway

    OpenAIRE

    Korte, Christoph; Hesselbo, Stephen P.; Ullmann, Clemens Vinzenz; Dietl, Gerd; Ruhl, Micha; Schweigert, Guenter; Thibault, Nicolas

    2015-01-01

    The Jurassic (?201?145?Myr ago) was long considered a warm ?greenhouse' period; more recently cool, even ?icehouse' episodes have been postulated. However, the mechanisms governing transition between so-called Warm Modes and Cool Modes are poorly known. Here we present a new large high-quality oxygen-isotope dataset from an interval that includes previously suggested mode transitions. Our results show an especially abrupt earliest Middle Jurassic (?174?Ma) mid-latitude cooling of seawater by ...

  13. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  14. Few Mode Multicore Photonic Lantern Multiplexer

    Science.gov (United States)

    2016-01-01

    Zahoora@knights.ucf.edu Abstract: We demonstrate an all-fiber multi-mode, multi-core photonic lantern mode multiplexer for SDM applications ...into a structured capillary consisting of 7 low refractive index fluorine doped capillaries. The device efficiently excites the first three modes (LP01...outer diameter of 125μm. A structured preform consisting of 7 fluorine doped capillaries with Δn=- 9×10-3 and 2 mm outer diameter was used to

  15. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  16. Suspensions with reduced violin string modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  17. Sliding mode control for synchronous electric drives

    CERN Document Server

    Ryvkin, Sergey E

    2011-01-01

    This volume presents the theory of control systems with sliding mode applied to electrical motors and power converters. It demonstrates the methodology of control design and the original algorithms of control and observation. Practically all semiconductor devices are used in power converters, that feed electrical motors, as power switches. A switching mode offers myriad attractive, inherent properties from a control viewpoint, especially a sliding mode. Sliding mode control supplies high dynamics to systems, invariability of systems to changes of their parameters and of exterior loads in combi

  18. Strip-slot direct mode coupler.

    Science.gov (United States)

    Han, Kyunghun; Kim, Sangsik; Wirth, Justin; Teng, Min; Xuan, Yi; Niu, Ben; Qi, Minghao

    2016-03-21

    We present a direct strip-slot waveguide mode coupler without any auxiliary structures. Contrary to popular belief, an apparent mode mismatch between strip and slot waveguide does not deteriorate conversion efficiency. Separated electric and magnetic field distributions in a slot waveguide lead to highly efficient modal coupling in the direct strip-slot coupler and result in high conversion efficiency. Accurate experimental characterization shows that the direct strip-slot waveguide mode coupler is capable of up to 96% conversion efficiency with a broad bandwidth. Being simplest and of high efficiency, the direct strip-slot waveguide mode coupler can encourage potential applications of slot waveguides.

  19. Multi-mode bosonic Gaussian channels

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, F; Giovannetti, V [NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Eisert, J [Institute for Mathematical Sciences, Imperial College London, London SW7 2PE (United Kingdom); Holevo, A S [Steklov Mathematical Institute, Gubkina 8, 119991 Moscow (Russian Federation)], E-mail: filippo.caruso@sns.it

    2008-08-15

    A complete analysis of multi-mode bosonic Gaussian channels (BGCs) is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode BGCs and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. This allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.

  20. Multi-mode bosonic Gaussian channels

    Science.gov (United States)

    Caruso, F.; Eisert, J.; Giovannetti, V.; Holevo, A. S.

    2008-08-01

    A complete analysis of multi-mode bosonic Gaussian channels (BGCs) is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode BGCs and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. This allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.

  1. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K.D. [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  2. Majorana Zero Modes in Graphene

    Directory of Open Access Journals (Sweden)

    P. San-Jose

    2015-12-01

    Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  3. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  4. Intermodal Nonlinear Effects between Full Vectorial Modes in Few Moded Fiber

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We experimentally investigate intermodal nonlinear mixing, such as Raman and four wave mixing. This is obtained by pumping in the fundamental mode, or either of the two full vectorial modes, TM01 and TE01 in a specialty designed few moded fiber.......We experimentally investigate intermodal nonlinear mixing, such as Raman and four wave mixing. This is obtained by pumping in the fundamental mode, or either of the two full vectorial modes, TM01 and TE01 in a specialty designed few moded fiber....

  5. A new design of a directional coupler for high order mode multiplexing in few mode fibers

    Science.gov (United States)

    Trichili, Abderrahmen; Ben Salem, Amine; Cherif, Rim; Zghal, Mourad; Forbes, Andrew

    2014-05-01

    We propose a new and versatile design of a directional coupler able to generate and multiplex high order modes in few mode fibers. The designed device can selectively generate five high order modes and multiplex them in a few mode fiber with an overall insertion loss not exceeding 3dB at the telecommunication wavelength λ = 1550 nm. The mode dependent loss is found to be weakly dependent to the wavelength. The proposed device is very promising for high order mode multiplexing and suitable for high bit-rate optical communication systems.

  6. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  7. Interaction of Lamb modes with an inclusion.

    Science.gov (United States)

    Shkerdin, G; Glorieux, C

    2013-01-01

    The interaction of Lamb modes propagating in a steel plate containing a thin inclusion is analyzed for cases where the inclusion material has elastic parameters similar to the ones of the plate, and where the inclusion is in perfect mechanical contact with the surrounding plate material. A modal decomposition method is used to calculate the conversion of an incident Lamb mode to other modes. Hence, the influence of the type of incident mode, of the location and geometry of the inclusion, and of the elastic parameters of the inclusion and plate material on the mode conversion coefficients is analyzed. Besides the expected increase of the conversion efficiency with increasing cross section of the inclusion, it is found that due to reasons of symmetry, the presence of an inclusion leads to an efficient conversion of an incident S0 mode into reflected and transmitted A0 modes, unless the inclusion is located very close to the plate center. On the other hand, the conversion efficiency of an incident A0 mode into a reflected A0 mode is found to be strongly dependent on the depth of the inclusion, this conversion even disappearing for some location depths. For the cases studied, the inclusion location dependence of the mode conversion seems to be correlated with the normal profile of the longitudinal normal stress component σ(yy)(y). As intuitively expected, the mode conversion efficiency increases with the mismatch of an acoustic impedance like factor between the uniform plate and the inclusion region. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  9. Statistical dynamo theory: Mode excitation.

    Science.gov (United States)

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  10. Switchable dual-mode all-fiber laser with few-mode fiber Bragg grating

    Science.gov (United States)

    Jin, Wenxing; Qi, Yanhui; Yang, Yuguang; Jiang, Youchao; Wu, Yue; Xu, Yao; Yao, Shuzhi; Jian, Shuisheng

    2017-09-01

    We propose a new approach to realize switchable mode operation in a few-mode erbium-doped fiber laser. The ring fiber laser structure is constructed with a core-offset splicing between single-mode fiber and dual-mode fiber. Stable operating on the fundamental mode laser and second-order mode laser individually or simultaneously is realized by appropriately adjusting the state of the polarization controller and bending status of the few-mode fiber Bragg grating. The narrow 3 dB linewidth less than 0.02 nm and high optical signal to noise ratio more than 42 dB are obtained for both modes in either separate laser or simultaneous laser operating conditions.

  11. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc......An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond......-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows...

  12. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler

    Science.gov (United States)

    Huang, Ping; Cai, Yu; Wang, Jie; Wan, Hongdan; Zhang, Zuxing; Zhang, Lin

    2017-10-01

    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is based on a nonlinear polarization rotation effect in fiber, and the multiwavelength operation is contributed to by an in-line birefringence fiber filter with periodic multiple passbands, formed by incorporating a section of polarization maintaining fiber into the laser cavity with a fiber polarizer. Furthermore, by using a home-made mode selective coupler, which acts as both a mode converter from fundamental mode to higher-order mode and an output coupler, multiwavelength mode-locked cylindrical vector beams have been obtained. This may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  13. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler.

    Science.gov (United States)

    Wan, Hongdan; Wang, Jie; Zhang, Zuxing; Cai, Yu; Sun, Bin; Zhang, Lin

    2017-05-15

    We propose and demonstrate an all-fiber passively mode-locked laser with a figure-8 cavity, which generates pulsed cylindrical vector beam output based on a mode selective coupler (MSC). The MSC made of a two mode fiber and a standard single mode fiber is used as both the intracavity transverse mode converter and mode splitter with a low insertion loss of about 0.65 dB. The slope efficiency of the fiber laser is > 3%. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity which are measured to be > 94%. The laser operates at 1556.3 nm with a spectral bandwidth of 3.2 nm. The mode-locked pulses have duration of 17 ns and a repetition rate of 0.66 MHz.

  14. Direct experimental measurement of single-mode and mode-hopping dynamics in frequency swept lasers.

    Science.gov (United States)

    Butler, T P; Goulding, D; Kelleher, B; O'Shaughnessy, B; Slepneva, S; Hegarty, S P; Huyet, G

    2017-10-30

    A time-resolved study is presented of the single-mode and mode-switching dynamics observed in swept source vertical cavity surfing emitting lasers and swept wavelength short external cavity lasers. A self-delayed interferometric technique is used to experimentally measure the phase and intensity of these frequency swept lasers, allowing direct examination of the modal dynamics. Visualisation of the instantaneous optical spectrum reveals mode-hop free single mode lasing in the case of the vertical cavity laser, with a tuning rate of 6.3 GHz/ns. More complex mode-switching behaviour occurs in the external cavity laser, with the mode-hopping dynamics found to be dominated by the deterministic movement of the spectral filter. Evidence of transient multi-mode operation and mode-pulling is also presented.

  15. Broadband Radiation Modes: Estimation and Active Control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality.

  16. A New Age of Constructivism: "Mode Neutral"

    Science.gov (United States)

    Reed, Peter; Smith, Brian; Sherratt, Cathy

    2008-01-01

    This article presents work in progress exploring social constructivism within Mode Neutral, and how various conditions impact upon the student experience. Mode Neutral's three dimensions--curriculum design, the role of the tutor and communication for learning--are affected by the conditions that can vary in any given context. The authors realise…

  17. Performance optimization aspects of common mode chokes

    NARCIS (Netherlands)

    Roc'h, A.; Bergsma, J.G.; Bergsma, H.; Zhao, D.; Ferreira, B.; Leferink, Frank Bernardus Johannes

    2007-01-01

    Optimization aspects of common mode chokes are presented. These are based on a behavioral model for common mode chokes and its sensitivity study. Results are used to show the influence of the designable parameters on the final performance of the choke placed in a circuit.

  18. A stable snow-atmosphere coupled mode

    Science.gov (United States)

    Zhao, Liang; Zhu, Yuxiang; Liu, Haiwen; Liu, Zhongfang; Liu, Yanju; Li, Xiuping; Chen, Zhou

    2016-10-01

    Snow is both an important lower boundary forcing of the atmosphere and a response to atmospheric forcing in the extratropics. It is still unclear whether a stable snow-atmosphere coupled mode exists in the extratropics, like the ENSO in the tropics. Using Sliding Correlation analysis over Any Window, the present study quantitatively evaluates the stability of coupling relationships between the major modes of winter snow over the Northern Hemisphere and the winter atmospheric Arctic Oscillation (AO), the Antarctic Oscillation (AAO) and the Siberian High over the period 1872-2010, and discusses their possible relationships for different seasons. Results show that the first mode of the winter snow cover fraction and the winter AO together constitute a stable snow-atmosphere coupled mode, the SNAO. The coupled mode is stronger during recent decades than before. The snow anomaly over Europe is one key factor of the SNAO mode due to the high stability there, and the polar vortex anomaly in the atmosphere is its other key factor. The continuity of signals in the SNAO between autumn and winter is weaker than that between winter and spring. The second winter snow mode is generally stably correlated with the winter AAO and was more stable before the 1970s. The AAO signal with boreal snow has a strong continuity in seasonal transition. Generally, through these coupled modes, snow and atmosphere can interact in the same season or between different seasons: autumn snow can influence the winter atmosphere; the winter atmosphere can influence spring snow.

  19. Using Sliding Modes in Control Theory

    Directory of Open Access Journals (Sweden)

    Renata Wagnerová

    2008-03-01

    Full Text Available The paper deals with sliding modes control design. The described control algorithms were applied to position control of the levitating systems in magnetic field. The designed control algorithms were verified by using computer simulations. The results achieved confirm suitable technical means and synthesis by using sliding modes for nonlinear control tasks.

  20. Innovation of University Teaching Faculty Management Mode

    Science.gov (United States)

    Han, Yuzheng; Wang, Boyu

    2015-01-01

    With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…

  1. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    ... in the presence of dust charge fluctuations. We find that the charge variability of the grain reduces the growth rate of radiative mode only for fluctuation wavelength smaller or of the order of the Debye length and this reduction is not very large. Far from the Debye sphere, radiative mode can damp due to thermal conduction ...

  2. Spatial Extent of Random Laser Modes

    NARCIS (Netherlands)

    van der Molen, K.L.; Tjerkstra, R.W.; Mosk, Allard; Lagendijk, Aart

    2007-01-01

    We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast.

  3. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  4. A Southern Ocean mode of multidecadal variability

    NARCIS (Netherlands)

    Le Bars, D.|info:eu-repo/dai/nl/326165150; Viebahn, J. P.; Dijkstra, H. A.|info:eu-repo/dai/nl/073504467

    2016-01-01

    A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40-50 year. The peak-to-peak difference in the global ocean heat content within a

  5. Modes of evolution mainly among marine invertebrates

    NARCIS (Netherlands)

    Mac Gillavry, H.J.

    1968-01-01

    Three modes of evolution are distinguished: 1. evolutionary radiation, 2. opportunistic adaptation, 3. sustained change. Material evidence of evolution is almost non-existent in the first mode, very slight in the second. Opportunistic adaptation is characteristic of the sublittoral benthos;

  6. EMISAR single pass topographic SAR interferometer modes

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Woelders, Kim

    1996-01-01

    The Danish Center for Remote Sensing (DCRS) has augmented its dual-frequency polarimetric synthetic aperture radar system (EMISAR) with single pass across-track interferometric (XTI) modes. This paper describes the system configuration, specifications and the operating modes. Analysis of data...

  7. Measurement equivalence in mixed mode surveys

    NARCIS (Netherlands)

    Hox, Joop|info:eu-repo/dai/nl/073351431; de Leeuw, Edith|info:eu-repo/dai/nl/073351385; Zijlmans, Eva

    2015-01-01

    Surveys increasingly use mixed mode data collection (e.g., combining face-to-face and web) because this controls costs and helps to maintain good response rates. However, a combination of different survey modes in one study, be it cross-sectional or longitudinal, can lead to different kinds of

  8. Line-mode browser development days

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.

  9. Free-Boundary Resistive Modes in Tokamaks

    NARCIS (Netherlands)

    Huysmans, G. T. A.; Goedbloed, J. P.; Kerner, W.

    1993-01-01

    There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma-vacuum boundary conditions

  10. New Insights into Modes of GPCR Activation.

    Science.gov (United States)

    Wang, Wenjing; Qiao, Yuhui; Li, Zijian

    2018-01-30

    In classical G-protein-coupled receptor (GPCR) activation, GPCRs couple to a variety of heterotrimeric G proteins on the membrane and then activate downstream signaling pathways. More recently, GPCRs have been found to couple to different effector proteins, including different G protein subtypes and regulatory proteins, such as arrestins. Some novel modes of GPCR activation have been proposed to explain their complex behaviors. In this review, we summarize the main novel modes of GPCR activation, including biased activation, intracellular activation, dimerization activation, transactivation, and biphasic activation. In addition, we also discuss the relationship among the five modes to show the complex picture of GPCR activation. The complex activation modes regulate precisely GPCR downstream signaling, including physiological and pathological signaling. Thus, there is the potential to develop GPCR precision drugs that target precise GPCR activation modes to accurately strengthen their beneficial functions and block specific pathological processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Continuous variable entanglement between frequency modes

    Science.gov (United States)

    Glöckl, O.; Andersen, U. L.; Leuchs, G.

    2006-08-01

    The pairwise production of photons in nonlinear optical processes ensures entanglement to occur between two photons. E.g. when the Kerr effect is exploited, the photons are produced in different frequency modes, which are symmetric with respect to the pump frequency. Since these photons are produced into the same spatial mode, the quadrature entanglement can be witnessed only by the use of a frequency selective device which transforms the adjacent frequency modes into two different spatial modes. We use a Mach-Zehnder interferometer with a large path length difference to separate symmetric frequency modes located 10.25 MHz from the carrier. We measure correlations of the quadrature components of 1.6 +/- 0.1dB below the shot noise in the amplitude and 1.4 +/- 0.1dB in the phase.

  12. Nanophotonic modal dichroism: mode-multiplexed modulators.

    Science.gov (United States)

    Das, Susobhan; Fardad, Shima; Kim, Inki; Rho, Junsuk; Hui, Rongqing; Salandrino, Alessandro

    2016-09-15

    As the diffraction limit is approached, device miniaturization to integrate more functionality per area becomes more and more challenging. Here we propose a strategy to increase the functionality-per-area by exploiting the modal properties of a waveguide system. With such an approach the design of a mode-multiplexed nanophotonic modulator relying on the mode-selective absorption of a patterned indium-tin-oxide (ITO) is proposed. Full-wave simulations of a device operating at the telecom wavelength of 1550 nm show that two modes can be independently modulated, while maintaining performances in line with conventional single-mode ITO modulators reported in the recent literature. The proposed design principles can pave the way to a class of mode-multiplexed compact photonic devices able to effectively multiply the functionality-per-area in integrated photonic systems.

  13. Quantum interference between transverse spatial waveguide modes.

    Science.gov (United States)

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-20

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  14. Transportation Modes Classification Using Sensors on Smartphones

    Directory of Open Access Journals (Sweden)

    Shih-Hau Fang

    2016-08-01

    Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  15. Experimental demonstration of intermodal nonlinear effects between full vectorial modes in a few moded fiber

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Kristensen, Poul; Ramachandran, Siddharth

    2013-01-01

    We experimentally investigate intermodal nonlinear interactions, such as Raman scattering and four wave mixing. The fiber used is a specially designed few moded fiber, which splits the degeneracy of the first mode group, leading to stable propagation of the two full vectorial modes, TM01 and TE01...

  16. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode coupl...

  17. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...

  18. Optical modes in a rectangular resonator with properties of both Gaussian and Fourier modes

    NARCIS (Netherlands)

    Gronenborn, S.; Schwarz, T.; Pekarski, P.; Miller, M.; Moench, H.; Loosen, Peter

    2013-01-01

    We present the optical modes of a resonator with a large Fresnel number in one direction and a small Fresnel number in the other direction. The modes show properties of both the well-known Gaussian modesand the modes of the Fourier type which have been observed in laserswith a large Fresnel number.

  19. Informed Design of Mixed-Mode Surveys : Evaluating mode effects on measurement and selection error

    NARCIS (Netherlands)

    Klausch, Thomas

    2014-01-01

    “Mixed-mode designs” are innovative types of surveys which combine more than one mode of administration in the same project, such as surveys administered partly on the web (online), on paper, by telephone, or face-to-face. Mixed-mode designs have become increasingly popular in international survey

  20. Frequency doubling perimetry screening mode compared to the full-threshold mode

    NARCIS (Netherlands)

    Stoutenbeek, R; Heeg, GP; Jansonius, NM

    2004-01-01

    The diagnostic performance of the frequency doubling perimetry (FDT) C20-1 screening mode was compared to that of the C20 full-threshold mode. For the number of defects p <1% in the total deviation plot, both modes appeared to perform similarly in terms of sensitivity, specificity, and area under

  1. Fluxon modes in stacked Josephson junctions: The role of linear modes

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig

    2004-01-01

    Plasma modes in stacked Josephson junctions are easily understood analytically from a linearization of the coupled sine-Gordon equation describing the system. We demonstrate here by numerical methods that the analytically derived symmetries of the plasma modes are carried over to the fluxon modes....... Using this fact we are, with a few exceptions, able to predict and construct a full family of Josephson fluxon modes without using numerical methods. The nature of the locking mechanism needed to create the technologically important in-phase fluxon modes is discussed....

  2. Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

    DEFF Research Database (Denmark)

    Großmann, Malte; Thomaschewski, Martin; Klick, Alwin

    2018-01-01

    identifying a crossover from single-mode to multi-mode waveguiding as a function of excitation wavelength λ and DLSSPW cross section. Experiment and simulations yield, furthermore, indications for the formation of a surface plasmon-polariton cavity mode in the close vicinity of the waveguides.......Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and allow...

  3. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  4. Experimental verification of microbending theory using mode coupling to discrete cladding modes

    DEFF Research Database (Denmark)

    Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.

    1989-01-01

    a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum......The existence of discrete cladding modes in single-mode fibers is illustrated by inducing periodically repeated microbends along the fiber axis and performing spectral measurements of the loss are performed. In order to explain the results of the measurements, it is necessary to apply...

  5. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  6. Measurement and preparation using two probe modes

    Science.gov (United States)

    Törmä, P.; Stenholm, S.; Jex, I.

    1995-12-01

    We consider the simultaneous measurement of two conjugate variables by coupling the system of interest to two independent probe modes. Our model consists of linearly coupled boson modes that can be realized by quantum optical fields in the rotating-wave approximation. We approach the setup both as a device to extract observable information and to prepare an emerging quantum state. The initial states of the probe modes and the coupling are utilized to optimize the operation in the various regimes. In contrast to the Arthurs and Kelly ideal scheme [Bell. Syst. Tech. J. 44, 725 (1965)], our more realistic coupling does not allow perfect operation but the ideal situations can be approximated closely. We discuss the conditions for maximum information transfer to the probe modes, information extraction with minimum disturbance of the system mode, and optimal state preparation for subsequent measurements. The minimum disturbance operation can be made to approximate a nondemolition measurement, especially when the information is carried in one quadrature component only. In the preparation mode, we find that the recording accuracy of the probe signals plays an essential role. We restrict the discussion to the first and second moments only, but the method can easily be generalized to any situation. Choosing all modes to be in squeezed coherent states originally, we can carry out analytical considerations; other cases can be treated numerically. The results are presented and discussed in detail as the paradigm of a class of realizable measurements.

  7. Large Mode Area Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal

    2004-01-01

    . The work presented in this thesis deals with the optical properties of large-mode area PCFs for which the mode-field diameter, typically, is an order of magnitude larger than the free-space optical wavelength. Special emphasis is put on the description of relevant mechanisms of attenuation in these fibers....... This includes design guidelines for optimising the robustness of single-mode fibers and expressions for predicting the mode-field diameter and dispersion properties for a given choice of structural parameters. Microdeformation induced attenuation is addressed and shown to play a critical role for the limitation....... As a result of fabrication optimisation, a single-mode fiber with an effective area of 130 m2 and attenuation of 0.48 dB/km at the 1550 nm wavelength is reported. Based on the general consideration of the introducing chapters, 5 different examples of large-mode area PCFs are presented. The first is a large-mode...

  8. Tensor B mode and stochastic Faraday mixing

    CERN Document Server

    Giovannini, Massimo

    2014-01-01

    This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...

  9. CMB delensing beyond the B modes

    Science.gov (United States)

    Green, Daniel; Meyers, Joel; van Engelen, Alexander

    2017-12-01

    Gravitational lensing by large-scale structure significantly impacts observations of the cosmic microwave background (CMB): it smooths the acoustic peaks in temperature and E-mode polarization power spectra, correlating previously uncorrelated modes; and it converts E-mode polarization into B-mode polarization. The act of measuring and removing the effect of lensing from CMB maps, or delensing, has been well studied in the context of B modes, but little attention has been given to the delensing of the temperature and E modes. In this paper, we model the expected delensed T and E power spectra to all orders in the lensing potential, demonstrating the sharpening of the acoustic peaks and a significant reduction in lens-induced power spectrum covariances. We then perform cosmological forecasts, demonstrating that delensing will yield improved sensitivity to parameters with upcoming surveys. We highlight the breaking of the degeneracy between the effective number of neutrino species and primordial helium fraction as a concrete application. We also show that delensing increases cosmological information as long as the measured lensing reconstruction is included in the analysis. We conclude that with future data, delensing will be crucial not only for primordial B-mode science but for a range of other observables as well.

  10. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  11. Damping of toroidal ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)

  12. Self-mode-locking semiconductor disk laser.

    Science.gov (United States)

    Gaafar, Mahmoud; Richter, Philipp; Keskin, Hakan; Möller, Christoph; Wichmann, Matthias; Stolz, Wolfgang; Rahimi-Iman, Arash; Koch, Martin

    2014-11-17

    The development of mode-locked semiconductor disk lasers received striking attention in the last 14 years and there is still a vast potential of such pulsed lasers to be explored and exploited. While for more than one decade pulsed operation was strongly linked to the employment of a saturable absorber, self-mode-locking emerged recently as an effective and novel technique in this field - giving prospect to a reduced complexity and improved cost-efficiency of such lasers. In this work, we highlight recent achievements regarding self-mode-locked semiconductor devices. It is worth to note, that although nonlinear effects in the active medium are expected to give rise to self-mode-locking, this has to be investigated with care in future experiments. However, there is a controversy whether results presented with respect to self-mode-locking truly show mode-locking. Such concerns are addressed in this work and we provide a clear evidence of mode-locking in a saturable-absorber-free device. By using a BBO crystal outside the cavity, green light originating from second-harmonic generation using the out-coupled laser beam is demonstrated. In addition, long-time-span pulse trains as well as radiofrequency-spectra measurements are presented for our sub-ps pulses at 500 MHz repetition rate which indicate the stable pulse operation of our device. Furthermore, a long-time-span autocorrelation trace is introduced which clearly shows absence of a pedestal or double pulses. Eventually, a beam-profile measurement reveals the excellent beam quality of our device with an M-square factor of less than 1.1 for both axes, showing that self-mode-locking can be achieved for the fundamental transverse mode.

  13. Multi-channel mode converter based on a modal interferometer in a two-mode fiber.

    Science.gov (United States)

    Yin, Guolu; Wang, Changle; Zhao, Yunhe; Jiang, Biqiang; Zhu, Tao; Wang, Yiping; Zhang, Lin

    2017-10-01

    In this Letter, we propose a multi-channel mode converter with the concept of a modal interferometer in a two-mode fiber (TMF). Two lateral stress points in a TMF function as in-line fiber mode couplers to construct the modal interferometer, and both transmission spectra and near-field patterns confirm that the LP 01 mode is successfully converted into an LP 11 mode at the multiple channels. The measured mode conversion efficiency almost completely follows the theoretical tendency. Finally, the mode conversion is realized at 20 channels in the C+L wavelength band with conversion efficiency up to 99.5% and insertion loss as low as 0.6 dB. Furthermore, the channel spacing can be freely tailored by adjusting the distance between two stress points.

  14. Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber.

    Science.gov (United States)

    Kong, Lingchao; Leng, Jinyong; Zhou, Pu; Jiang, Zongfu

    2017-09-18

    We propose a model to calculate the thermally induced mode loss evolution in the coiled ytterbium doped large mode area (LMA) fiber. The mode loss evolution in the coiled conventional step index LMA 20/400 fiber is investigated. Meanwhile, a model of fiber amplifier considering thermally induced mode loss evolution is established. The higher order mode (HOM) suppression between a co-pumping scheme and counter-pumping scheme under the heat load are compared. The simulation shows that the HOM loss decreases quasi-exponentially with the heat load and the bending radius of the ytterbium doped fiber (YDF) should be optimized according to the heat load to achieve effectively single mode operation. Besides, the counter-pumping fiber amplifier shows much better HOM suppression than the co-pumping fiber amplifier. The results in this paper will provide guidance in the design of novel ytterbium doped LMA fiber and the optimization of the high power single mode fiber amplifier.

  15. Plasmon modes of nanosphere trimers and quadrumers.

    Science.gov (United States)

    Brandl, Daniel W; Mirin, Nikolay A; Nordlander, Peter

    2006-06-29

    Using the plasmon hybridization method, we investigate the plasmon frequencies and optical absorption spectra of symmetric configurations of nanosphere trimers and quadrumers. Plasmon hybridization allows us to express the fundamental plasmon modes of these multinanosphere systems as linear combinations of the plasmons of individual nanospheres in a manner analogous to molecular orbital theory. We show how group theory may be used to interpret the plasmon modes of each multiparticle system as specific structure-dependent symmetric combinations of the plasmon modes of the individual nanoparticles. We compare the optical absorption spectra calculated using plasmon hybridization with the spectra obtained using finite difference time domain simulations.

  16. Entry Mode and Performance of Nordic Firms

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2015-01-01

    This study investigates whether the relationship between mode of international market entry and non-location bound international experience is weaker for firms that are large or have a high foreign to total sales ratio, labeled multinational experience. Empirical evidence based on 250 foreign...... market entries made by Norwegian, Danish and Swedish firms suggests that the association between equity mode choice and non-location bound international experience diminishes in the presence of higher levels of multinational experience. Furthermore, firms whose entry mode choice is predicted by the model...

  17. Critical slowing down of topological modes

    CERN Document Server

    Del Debbio, L; Vicari, E; Debbio, Luigi Del; Manca, Gian Mario; Vicari, Ettore

    2004-01-01

    We investigate the critical slowing down of the topological modes using local updating algorithms in lattice 2-d CP^(N-1) models. We show that the topological modes experience a critical slowing down that is much more severe than the one of the quasi-Gaussian modes relevant to the magnetic susceptibility, which is characterized by $\\tau_{\\rm mag} \\sim \\xi^z$ with $z\\approx 2$. We argue that this may be a general feature of Monte Carlo simulations of lattice theories with non-trivial topological properties, such as QCD, as also suggested by recent Monte Carlo simulations of 4-d SU(N) lattice gauge theories.

  18. Teaching Modes for Manchu Language and Culture

    Directory of Open Access Journals (Sweden)

    Zhao Aping

    2009-10-01

    Full Text Available The paper is concerned with the combination of Manchu language teaching with culture teaching in two aspects, from which the basic teaching modes can be concluded. First, on the theoretical level, the author states the combined learning mode of ethnic language and culture learning in connection with the multi-cultural interactive mode, and analyzes its theoretic foundation. Second, on the practical level, the paper introduces some of the effective language and culture teaching methods, such as culture lectures, culture discussions, culture investigations, culture comparisons and culture research.

  19. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  20. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions...... in the modelling of coupled torsion and distortion. However, if the distortional displacement modes are chosen as those which decouple the differential equations as in non proportionally damped modal dynamic analysis then it may be possible to use exact shape functions and perform analysis on a reduced problem....... In the recently developed generalized beam theory (GBT) the natural distortional displacement modes are determined on the basis of a quadratic eigenvalue problem. However, as in linear modal dynamic analysis of proportionally damped structures this problem has been solved approximately using linear eigenvalue...

  1. Nanofabricated Optomechanical Whispering Gallery Mode Resonators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong interest in whispering gallery mode resonators (WGMR) for use in chip-scale photonic devices is motivated by their high optical quality, mechanical simplicity...

  2. Optimized polaritonic modes in whispering gallery microcavities

    Science.gov (United States)

    Hu, Tao; Xie, Wei; Wu, Lin; Wang, Yafeng; Zhang, Long; Chen, Zhanghai

    2017-08-01

    We study both theoretically and experimentally the quality factor characteristic and the optimized polaritonic modes in a whispering gallery microcavity. The quality factors (Q-factors) of the resonant modes are determined by two main factors, i.e., the so called cavity loss and media loss. These two factors determine the final Q-factor and spontaneously lead to an optimized wavelength range for polariton modes. By using finite element analysis (FEA), we present the numerical simulation of resonant frequencies, field distributions and quality factors of the TE polarized whispering gallery modes (WGMs), which agree well with the experimental results. The control of optimized resonance in polaritonic system will be very useful for the development of semiconductor lasers with low threshold.

  3. Whispering-gallery-mode-based seismometer

    Science.gov (United States)

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  4. Curbing - The Metallic Mode In-Between

    DEFF Research Database (Denmark)

    Aaen, Mathias; McGlashan, Julian; Sadolin, Cathrine

    2017-01-01

    recording of EGG and acoustic signals using Speech Studio. Images were analyzed based on consensus agreement. Statistical analysis of acoustic, LTAS, and EGG parameters was undertaken using Student paired t tests. Results The reduced metallic singing mode Curbing has an identifiable laryngeal gesture....... Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second......Objectives This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum...

  5. Engineered circuit QED with dense resonant modes

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel; Wilhelm, Frank [Universitaet des Saarlandes, Saarbruecken (Germany)

    2013-07-01

    Meta-materials are systems engineered at a wavelength smaller than the radiation considered but larger than the atomic scale; they gain their properties from their structure. Of notable interest are left-handed meta-materials. They exhibit negative permittivity and permeability. On chip quantum optics routinely use right-handed transmission lines, made of a microwave strip-line, as information mediators. In this work, we discuss the properties of a left-handed/right-handed hybrid transmission line. The resulting mode structure presents a mode pile-up at a lower cut-off frequency. Placing a qubit near the hybrid line results in strong to ultra-strong coupling to a quasi-continuum of modes. This system generates strongly entangled multi-mode states and also serves as quantum simulator for a spin-boson model with a sub-sub-ohmic density of states.

  6. Mode-locked silicon evanescent lasers

    National Research Council Canada - National Science Library

    Brian R. Koch; Alexander W. Fang; Oded Cohen; John E. Bowers

    2007-01-01

    .... The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution...

  7. Cohesive mixed mode fracture modelling and experiments

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes

    2008-01-01

    . An experimental set-up for the assessment of mixed mode interfacial fracture properties is presented, applying a bi-material specimen, half steel and half concrete, with an inclined interface and under uniaxial load. Loading the inclined steel–concrete interface under different angles produces load–crack opening......A nonlinear mixed mode model originally developed by Wernersson [Wernersson H. Fracture characterization of wood adhesive joints. Report TVSM-1006, Lund University, Division of Structural Mechanics; 1994], based on nonlinear fracture mechanics, is discussed and applied to model interfacial cracking...... in a steel–concrete interface. The model is based on the principles of Hillerborgs fictitious crack model, however, the Mode I softening description is modified taking into account the influence of shear. The model couples normal and shear stresses for a given combination of Mode I and II fracture...

  8. Superconducting metamaterial resonators: analysis of mode structure

    Science.gov (United States)

    Wang, Haozhi; Hutchings, Matthew; Indrajeet, Sagar; Rouxinol, Francisco; Lahaye, Matthew; Plourde, B. L. T.; Taketani, Bruno G.; Wilhelm, Frank K.; Zhuravel, Alexander; Ustinov, Alexey

    Metamaterial transmission line resonators fabricated from superconducting thin films exhibit novel mode spectra that can be used for multi-mode experiments with superconducting qubits. For certain configurations of the circuit elements, these structures have a dispersion relation that is a falling function of wavenumber, leading to a high density of narrow modes in the typical frequency range of transmon qubits. We present Laser Scanning Microscope images of the microwave current distribution while driving the various metamaterial resonances and we compare these with numerical simulations of the microwave behavior of these structures, including the effects of stray reactances in the circuit elements. We demonstrate that the wavelength of the metamaterial modes in fact grows with increasing frequency, characteristic of a left-handed system.

  9. Rotary Mode Core Sample System availability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  10. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  11. Mode conversion in magneto photonic crystal fibre

    Science.gov (United States)

    otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.

  12. Curbing - The Metallic Mode In-Between

    DEFF Research Database (Denmark)

    Aaen, Mathias; McGlashan, Julian; Sadolin, Cathrine

    2017-01-01

    Objectives This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum...... recording of EGG and acoustic signals using Speech Studio. Images were analyzed based on consensus agreement. Statistical analysis of acoustic, LTAS, and EGG parameters was undertaken using Student paired t tests. Results The reduced metallic singing mode Curbing has an identifiable laryngeal gesture....... Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second...

  13. Mode III effects on interface delamination

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, J.W.

    2008-01-01

    For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution, examples of material configurations are discussed where...... mode III has an effect. Subsequently, the focus is on crack growth along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due...... to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I, II and III crack growth resistance curves...

  14. Mode specificity in unimolecular reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waite, B.A.

    1982-07-01

    Theoretical studies on mode specificity in unimolecular reaction dynamics are presented, based on essentially exact quantum mechanical methods, a semi-classical multichannel branching model, and classical trajectory methods. The principal aim is to discover the relevant factors governing whether a unimolecular system exhibits mode specificity in its individual state rate constants, i.e., whether quasi-degenerate metastable states decay with significantly different rates. Model studies of two nonlinearly coupled oscillators (one of which can dissociate) demonstrate the effects of various features of potential energy surfaces on the character of the rates (e.g., degeneracy of modes, reaction path curvature, frequency modulation, etc.). These results and those obtained for the Henon-Heiles potential energy surface indicate and apparent absence of correlation between the quasi-periodic/ergodic motion of classical mechanics and the mode specific/statistical behavior of the unimolecular rate constants.

  15. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  16. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  17. Normal modes of a small gamelan gong.

    Science.gov (United States)

    Perrin, Robert; Elford, Daniel P; Chalmers, Luke; Swallowe, Gerry M; Moore, Thomas R; Hamdan, Sinin; Halkon, Benjamin J

    2014-10-01

    Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. A finite-element model has been constructed and its predictions for normal modes compared with experimental results obtained using electronic speckle pattern interferometry. Agreement was reasonable in view of the lack of precision in the manufacture of the instrument. The results agree with expectations for an axially symmetric system subject to small symmetry breaking. The extent to which the results obey Chladni's law is discussed. Comparison with vibrational and acoustical spectra enabled the identification of the small number of modes responsible for the sound output when played normally. Evidence of non-linear behavior was found, mainly in the form of subharmonics of true modes. Experiments using scanning laser Doppler vibrometry gave satisfactory agreement with the other methods.

  18. Development of Mode Conversion Waveguides at KIT

    Directory of Open Access Journals (Sweden)

    Jin Jianbo

    2015-01-01

    Full Text Available The development of mode conversion waveguides (launchers for high power gyrotrons has gone through three stages at KIT. Formerly, harmonically deformed launchers have been used in the series gyrotrons developed for the stellarator W7-X. In 2009, a numerical method for the analysis and synthesis of mirror-line launchers was developed at KIT. Such a launcher with adapted mode-converting mirrors for a 2 MW TE34,19-mode, 170GHz coaxial-cavity gyrotron has been designed and tested, and also a mirror-line launcher for the 1MW EU ITER gyrotron has been designed. Recently, based on the Helmholtz-Kirchhoff integral theorem, a novel numerical method for the synthesis of hybrid-type gyrotron launchers has been developed. As an example, TE32,9 mode launchers operating at 170GHz that have been designed using the three different methods are being compared.

  19. Evaluation of bipartite entanglement between two optical multi-mode systems using mode translation symmetry

    Science.gov (United States)

    Wu, Jun-Yi; Hofmann, Holger F.

    2017-10-01

    Optical multi-mode systems provide large scale Hilbert spaces that can be accessed and controlled using single photon sources, linear optics and photon detection. Here, we consider the bipartite entanglement generated by coherently distributing M photons in M modes to two separate locations, where linear optics and photon detection is used to verify the non-classical correlations between the two M-mode systems. We show that the entangled state is symmetric under mode shift operations performed in the two systems and use this symmetry to derive correlations between photon number distributions detected after a discrete Fourier transform (DFT) of the modes. The experimentally observable correlations can be explained by a simple and intuitive rule that relates the sum of the output mode indices to the eigenvalue of the input state under the mode shift operation. Since the photon number operators after the DFT do not commute with the initial photon number operators, entanglement is necessary to achieve strong correlations in both the initial mode photon numbers and the photon numbers observed after the DFT. We can therefore derive entanglement witnesses based on the experimentally observable correlations in both photon number distributions, providing a practical criterion for the evaluation of large scale entanglement in optical multi-mode systems. Our method thus demonstrates how non-classical signatures in large scale optical quantum circuits can be accessed experimentally by choosing an appropriate combination of modes in which to detect the photon number distributions that characterize the quantum coherences of the state.

  20. On the connection between mode II and mode III effective thresholds in metals

    Directory of Open Access Journals (Sweden)

    Tomáš Vojtek

    2017-07-01

    Full Text Available . Closure-free long cracks under the remote mode III loading grow in a more complicated way than those under the remote mode II. For bcc metals, a coplanar in-plane spreading of tongues driven by the local mode II loading components at crack-front asperities prevails while twisting of crack-front segments to mode I, often leading to factory-roof morphology, is typical for other materials. In bcc metals, therefore, the formulation of a quantitative relationship connecting effective thresholds in modes II and III demands to calculate the local mode II components of stress intensity factors at typical asperities of a crack front loaded in the remote mode III. Therefore, a numerical model of a serrated crack front was created and the results were compared with experimentally determined ratio of mode II and III effective thresholds for the ARMCO iron. Although the calculated crack-front roughness needs an experimental verification, the preliminary results indicate that the model can provide a quantitative explanation of the experimentally observed ratio of mode II and mode III effective thresholds in bcc metals.

  1. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  2. Vibration mode shape control by prestressing

    Science.gov (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.

    1992-01-01

    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  3. Mixed Mode cohesive law with interface dilatation

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    Experimental investigations of adhesive joints and fibre composites have shown that under Mode II cracking, the fracture process induces a displacement normal to the fracture plane. This effect can be attributed e.g. to roughness of the fracture surface under dominating tangential crack face disp...... is implemented in the commercial finite element program Abaqus. The model is validated and tested against experimental results under various mode mixities. © 2013 Elsevier Ltd. All rights reserved....

  4. Forerunning mode transition in a continuous waveguide

    OpenAIRE

    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady

    2014-01-01

    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  5. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    OpenAIRE

    Yesil, A.; Kacar, F.

    2013-01-01

    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...

  6. Orifice Blocks Heat Pipe in Reverse Mode

    Science.gov (United States)

    Alario, J. P.

    1982-01-01

    High forward-mode conductance is combined with rapid reverse-mode shutoff in a heat pipe originally developed to cool spacecraft payloads. A narrow orifice within the pipe "chokes off" the evaporator if heat sink becomes warmer than source. During normal operation, with source warmer than sink, orifice has little effect. Design is simpler and more compact than other thermal-diode heat pipes and requires no special materials, forgings, or unusual construction techniques.

  7. Entry modes of European firms in Vietnam

    OpenAIRE

    Daniel Simonet

    2012-01-01

    Purpose: The purpose of the paper is to explore the entry modes of EU firms setting up operations in Vietnam. Design/methodology/approach: we use a case study approach on Haymarket, Cadbury, Creative Education, Fairchild, Aventis and Artemisinin and Farming International using interviews from managerial professionals in Vietnam. Findings: Despite the fact that Vietnam has been opening up for more than 20 years, licensing is the preferred entry mode because of the risks involved in ventur...

  8. Segmented Liner to Control Mode Scattering

    Science.gov (United States)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  9. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  10. Thin layer Characterization by ZGV Lamb modes

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S1-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S1-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  11. Newer nonconventional modes of mechanical ventilation

    OpenAIRE

    Preet Mohinder Singh; Anuradha Borle; Anjan Trikha

    2014-01-01

    The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. ...

  12. Mode resolved density of atmospheric aerosol particles

    Directory of Open Access Journals (Sweden)

    P. Aalto

    2008-09-01

    Full Text Available In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm3 (average 1.5 g/cm3 and for Aitken mode from 0.4 to 2 g/cm3 (average 0.97 g/cm3. As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm3 and for grown 30 nm particles 0.5–1 g/cm3. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest.

  13. Kink fluctuation asymptotics and zero modes

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A.A. [Universidad de Salamanca, Departamento de Matematica Aplicada and IUFFyM, Salamanca (Spain); Guilarte, J.M. [Universidad de Salamanca, Departamento de Fisica Fundamental and IUFFyM, Salamanca (Spain)

    2012-10-15

    In this paper we propose a refinement of the heat-kernel/zeta function treatment of kink quantum fluctuations in scalar field theory, further analyzing the existence and implications of a zero-energy fluctuation mode. Improved understanding of the interplay between zero modes and the kink heat-kernel expansion delivers asymptotic estimations of one-loop kink mass shifts with remarkably higher precision than previously obtained by means of the standard Gilkey-DeWitt heat-kernel expansion. (orig.)

  14. Enhanced Sleep Mode MAC Control for EPON

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler.......This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler....

  15. Particle Distribution Modification by Low Amplitude Modes

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  16. Higher-order mode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2001-04-01

    Full Text Available Traditional photocathode rf gun design is based around the use of TM_{0,1,0}-mode cavities. This is typically done in the interest of obtaining the highest possible gradient per unit supplied rf power and for historical reasons. In a multicell, aperture-coupled photoinjector, however, the gun as a whole is produced from strongly coupled cavities oscillating in a π mode. This design requires very careful preparation and tuning, as the field balance and resonant frequencies are easily disturbed. Side-coupled designs are often avoided because of the dipole modes introduced into the cavity fields. This paper proposes the use of a single higher-order mode rf cavity in order to generate the desired on-axis fields. It is shown that the field experienced by a beam in a higher-order mode rf gun is initially very similar to traditional 1.5- or 2.5-cell π-mode gun fields, and projected performance in terms of beam quality is also comparable. The new design has the advantages of much greater ease of fabrication, immunity from coupled-cell effects, and simpler tuning procedures. Because of the gun geometry, the possibility also exists for improved temperature stabilization and cooling for high duty-cycle applications.

  17. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  18. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication.

    Science.gov (United States)

    Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew

    2017-10-15

    There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.

  19. Broadband high-order mode pass filter based on mode conversion.

    Science.gov (United States)

    Ahmmed, Kazi Tanvir; Chan, Hau Ping; Li, Binghui

    2017-09-15

    We report a unique concept to implement a high-order mode pass filter using mode converters. Our proposed design method implements a high-order mode pass filter of any order, uses different mode converters available, and applies to a variety of planar lightwave circuit material platforms. We fabricate a broadband fundamental mode filter device using a Mach-Zehnder interferometer and Y-junctions to demonstrate our idea. The performance of the fabricated device is demonstrated experimentally in the wavelength range of 1.530-1.565 μm (C-band). This filter exhibits a simulated extinction ratio of 37 dB with an excess loss of 0.52 dB for the first-order mode transmission.

  20. Vector mode conversion based on an asymmetric fiber Bragg grating in few-mode fibers.

    Science.gov (United States)

    Mi, Yuean; Li, Haisu; Ren, Guobin

    2017-09-01

    We propose a vector mode conversion approach based on asymmetric fiber Bragg gratings (AFBGs) written in step-index fiber and vortex fiber, respectively. The mode coupling properties of AFBGs are numerically investigated. Compared to step-index fiber, the large mode separation in the vortex fiber is beneficial to extracting the desired vector mode at specific wavelengths. In addition, the polarization of incident light and the attenuation coefficient of index change distribution of the AFBG play critical roles in the mode coupling process. The proposed AFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for orbital angular momentum multiplexing and fiber lasers with vortex beam output.

  1. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings.

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Sima, Chaotan

    2015-04-20

    We experimentally demonstrate mode conversion by exploiting optical reflection of tilted few-mode fiber Bragg grating (FM-FBG). Mode conversions from LP(01) mode to higher symmetric and asymmetric modes are achieved, and more than 99.5% conversion efficiency from LP(01) to LP(11) mode is obtained using a 1.6°-tilted FM-FBG. Influences of the weakly tilted FM-FBG parameters on the property of mode conversion is analyzed and discussed. A simultaneous mode conversion and demultiplexing scheme for 4-mode × 3-wavelength multiplexing transmission is proposed and the modal crosstalk is analyzed based on the transmission spectra of the tilted FM-FBGs. The proposed approach shows potential applications in mode and wavelength division multiplexing communication systems.

  2. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator.

    Science.gov (United States)

    Wang, Yue; Zhang, Kun; Zhou, Song; Wu, Yi-Hui; Chi, Ming-Bo; Hao, Peng

    2016-04-15

    Whispering-gallery-mode (WGM) optical resonators are ideal systems for achieving electromagnetically induced transparency-like phenomenon. Here, we experimentally demonstrate that one or more transparent windows can be achieved with coupled-mode induced transparency (CMIT) in a single bottle WGM resonator due to the bottle's dense mode spectra and tunable resonant frequencies. This device offers an approach for multi-channel all-optical switching devices and sensitivity-enhanced WGM-based sensors.

  3. Frequency regularities of acoustic modes and multi-colour mode identification in rapidly rotating stars

    Science.gov (United States)

    Reese, D. R.; Lignières, F.; Ballot, J.; Dupret, M.-A.; Barban, C.; van't Veer-Menneret, C.; MacGregor, K. B.

    2017-05-01

    Context. Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. This has motivated recent work on calculating realistic multi-colour mode visibilities in this type of star. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscillation spectra that are based on these new theoretical predictions. Methods: We investigate the auto-correlation function and Fourier transform of theoretically calculated frequency spectra, in which modes are selected according to their visibilities. Given that intrinsic mode amplitudes are determined by non-linear saturation and cannot currently be theoretically predicted, we experimented with various ad-hoc prescriptions for setting the mode amplitudes, including using random values. Furthermore, we analyse the ratios between mode amplitudes observed in different photometric bands to see up to what extent they can identify modes. Results: When non-random intrinsic mode amplitudes are used, our results show that it is possible to extract a mean value for the large frequency separation or half its value and, sometimes, twice the rotation rate, from the auto-correlation of the frequency spectra. Furthermore, the Fourier transforms are mostly sensitive to the large frequency separation or half its value. The combination of the two methods may therefore measure and distinguish the two types of separations. When the intrinsic mode amplitudes include random factors, which seems more representative of real stars, the results are far less favourable. It is only when the large separation or half its value coincides with twice the rotation rate, that it might be possible to detect the signature of a frequency regularity. We also find that amplitude ratios are a good way of grouping together modes with similar characteristics. By analysing the frequencies of these groups, it is possible to constrain mode identification, as

  4. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  5. An interpretative phenomenological analysis of schema modes in a ...

    African Journals Online (AJOL)

    An interpretative phenomenological analysis of schema modes in a single case of anorexia nervosa: Part 2. Coping modes, healthy adult mode, superordinate themes, and implications for research and practice.

  6. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  7. High-order mode based dispersion compensating modules using spatial mode conversion

    Science.gov (United States)

    Tur, M.; Menashe, D.; Japha, Y.; Danziger, Y.

    High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ~1 dB, and typical extinction ratio to other modes less than -20 dB.TheHOMFitself can provide high negative dispersion [typically in the range of 400-600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF R ® fiber, with Insertion loss mode transformers and fiber coupling within the HOMF. MPI values of < -36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.

  8. Large-mode-area single-polarization single-mode photonic crystal fiber: design and analysis.

    Science.gov (United States)

    Kumar, Ajeet; Saini, Than Singh; Naik, Kishor Dinkar; Sinha, Ravindra Kumar

    2016-07-01

    A rectangular core photonic crystal fiber structure has been presented and analyzed for single-polarization single-mode operation. Single-polarization is obtained with asymmetric design and by introducing different loss for x-polarization and y-polarization of fundamental modes. Single-polarization single-mode operation of the proposed photonic crystal fiber is investigated in detail by using a full vector finite element method with an anisotropic perfectly matched layer. The variations of the confinement loss and effective mode area of x-polarization and y-polarization of fundamental modes have been simulated by varying the structural parameters of the proposed photonic crystal fiber. At the optimized parameters, confinement loss and effective mode area is obtained as 0.94 dB/m and 60.67  μm2 for y-polarization as well as 26.67 dB/m and 67.23  μm2 for x-polarization of fundamental modes, respectively, at 1.55 μm. Therefore simulation results confirmed that, 0.75 m length of fiber will be sufficient to get a y-polarized fundamental mode with an effective mode area as large as 60.67  μm2.

  9. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [ORNL; Wang, Jy-An John [ORNL; Bertelsen, Williams D. [Gougeon Brothers, Inc.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples were tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.

  10. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  11. All-fiber Raman Probe using Higher Order Modes

    DEFF Research Database (Denmark)

    Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....

  12. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.

    2013-01-01

    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  13. Modes of exercise training for intermittent claudication.

    Science.gov (United States)

    Lauret, Gert Jan; Fakhry, Farzin; Fokkenrood, Hugo J P; Hunink, M G Myriam; Teijink, Joep A W; Spronk, Sandra

    2014-07-04

    According to international guidelines and literature, all patients with intermittent claudication should receive an initial treatment of cardiovascular risk modification, lifestyle coaching, and supervised exercise therapy. In most studies, supervised exercise therapy consists of treadmill or track walking. However, alternative modes of exercise therapy have been described and yielded similar results to walking. Therefore, the following question remains: Which exercise mode gives the most beneficial results? To assess the effects of different modes of supervised exercise therapy on the maximum walking distance (MWD) of patients with intermittent claudication. To assess the effects of different modes of supervised exercise therapy on pain-free walking distance (PFWD) and health-related quality of life scores (HR-QoL) of patients with intermittent claudication. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Cochrane Peripheral Vascular Diseases Group Specialised Register (July 2013); CENTRAL (2013, Issue 6), in The Cochrane Lib rary; and clinical trials databases. The authors searched the MEDLINE (1946 to July 2013) and Embase (1973 to July 2013) databases and reviewed the reference lists of identified articles to detect other relevant citations. Randomised controlled trials of studies comparing alternative modes of exercise training or combinations of exercise modes with a control group of supervised walking exercise in patients with clinically determined intermittent claudication. The supervised walking programme needed to be supervised at least twice a week for a consecutive six weeks of training. Two authors independently selected studies, extracted data, and assessed the risk of bias for each study. Because of different treadmill test protocols to assess the maximum or pain-free walking distance, we converted all distances or walking times to total metabolic equivalents (METs) using the American College of Sports Medicine

  14. Dancing bunches as Van Kampen modes

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution function

  15. Characteristics of Resonantly-Guided Modes in Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yasuo Ohtera

    2014-11-01

    Full Text Available Modal characteristics of resonantly-guided modes (RGMs in microstructured fibers were investigated through numerical simulation. The modes of interest are supported in a class of fibers consisting of a circularly arranged periodic array of high index rods embedded in a low index cladding. Light is confined and guided by the guided-mode resonance (GMR that the rod array exhibit. According to the numerical analysis we clarified that duplicated transverse modes having the same radial mode number for TM and TE modes were supported. Also the existence and detailed mode profiles of hybrid modes were confirmed.

  16. Fiber-guided modes conversion using superposed helical gratings

    Science.gov (United States)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  17. Excitation Mechanisms for Jovian Seismic Modes

    Science.gov (United States)

    Markham, Stephen; Stevenson, David J.

    2017-10-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes were much larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints of Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. Finally we suggest a predicted power spectrum for frequencies which have not yet been observed based on our findings, and supply some commentary on potential applications to Juno, Saturn, and future missions to Uranus and Neptune.

  18. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  19. Jurassic climate mode governed by ocean gateway.

    Science.gov (United States)

    Korte, Christoph; Hesselbo, Stephen P; Ullmann, Clemens V; Dietl, Gerd; Ruhl, Micha; Schweigert, Günter; Thibault, Nicolas

    2015-12-11

    The Jurassic (∼201-145 Myr ago) was long considered a warm 'greenhouse' period; more recently cool, even 'icehouse' episodes have been postulated. However, the mechanisms governing transition between so-called Warm Modes and Cool Modes are poorly known. Here we present a new large high-quality oxygen-isotope dataset from an interval that includes previously suggested mode transitions. Our results show an especially abrupt earliest Middle Jurassic (∼174 Ma) mid-latitude cooling of seawater by as much as 10 °C in the north-south Laurasian Seaway, a marine passage that connected the equatorial Tethys Ocean to the Boreal Sea. Coincidence in timing with large-scale regional lithospheric updoming of the North Sea region is striking, and we hypothesize that northward oceanic heat transport was impeded by uplift, triggering Cool Mode conditions more widely. This extreme climate-mode transition provides a counter-example to other Mesozoic transitions linked to quantitative change in atmospheric greenhouse gas content.

  20. Whispering gallery modes in deformed hexagonal resonators

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Marius; Dietrich, Christof P. [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2012-05-15

    Optical resonances in polygonal resonators are due to whispering gallery modes (WGM). We investigate WGM in regular and deformed hexagonal ZnO microwire resonators. Four types of geometries are investigated: regular hexagonal and dodecagonal cross sections, hexagonal cross section elongated for one pair of facets and hexagonal cross section deformed by bending (uniaxial stress). Experimental data on mode energies and angular dispersion are correlated with model calculations and Poincare surfaces of section. Hexagonal ({phi} = 60 ), square ({phi} = 45 ), triangular ({phi} = 30 ), and Fabry-Perot modes ({phi} = 0 ) are observed in the various investigated geometries, {phi} being the angle of incidence at the facets with respect to the normal direction. Hexagonal WGMs (green, 6-WGM), triangular (red, 3-WGM), and double-triangular (blue, D3-WGM) rays in regular hexagons, elongated hexagons and hexagons deformed by bending. Triangular WGMs are stable modes in all three resonators. Hexagonal modes are not stable in the bent hexagon. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Floating phenomenon and mode of color appearance

    Science.gov (United States)

    Aoki, Hironobu; Shinoda, Hiroyuki; Ikeda, Mitsuo

    2002-06-01

    We found an interesting phenomenon concerning the motion perception and the mode of color appearance. We suppose you are holding a stiff sheet of picture and move it laterally to and fro in front of the eye. Though the picture and all items in it move physically altogether with your hand, your perception is not always so. But when the picture that is a figure appears light-source color mode and a background of object color, a figure appears to slip on a background. We call this a 'floating phenomenon.' We predicted the occurrence of floating phenomenon depends on whether the color is perceived to belong to an object or not. To examine the relation between the floating phenomenon and the mode of color appearance, we measured the luminance threshold of floating phenomenon and the transition luminance between two color modes by constant stimulus method to use a mondrian. Our results show the floating never occurred when the target appeared as object color mode. The floating phenomenon may be caused by the separation of the light-source color from an object or week-belonging.

  2. Financial Performance of Entry Mode Decisions

    DEFF Research Database (Denmark)

    Boyd, Britta; Dyhr Ulrich, Anna Marie; Hollensen, Svend

    2012-01-01

    Based on a survey of 170 Danish SMEs the paper examines influences on entry mode choices and the financial outcome of these decisions. The main research objectives are divided into two steps: Step 1: To determine the factors influencing the choice of foreign entry modes by Danish companies. Step ...... and implications are provided for companies willing to invest more into foreign markets in order to achieve a higher degree of control and better financial results.......Based on a survey of 170 Danish SMEs the paper examines influences on entry mode choices and the financial outcome of these decisions. The main research objectives are divided into two steps: Step 1: To determine the factors influencing the choice of foreign entry modes by Danish companies. Step 2......: To determine the relationship between the choice of entry mode and export performance, measured in terms of financial outcome. Drawing from transaction cost theory the authors develop and test a model where different factors affect the level of control chosen by the parent company. This study contributes...

  3. Mode conversion in magneto photonic crystal fibre

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, Hamza, E-mail: otmanih@yahoo.fr [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Bouchemat, Mohamed [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Hocini, Abdesselam [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Département d' Electronique, Faculté de Technologie, Université de M’sila, BP 166, Route Ichebilia, M’sila 28000 (Algeria); Boumaza, Touraya; Benmerkhi, Ahlem [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria)

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  4. A-mode and B-mode ultrasound measurement of fat thickness: a cadaver validation study.

    Science.gov (United States)

    Wagner, Dale R; Thompson, Brennan J; Anderson, D Andy; Schwartz, Sarah

    2018-02-01

    With technological advances, there has been a resurgence in ultrasound as a method to measure subcutaneous fat thickness. Despite the increased interest in this methodology, research comparing A-mode and B-mode ultrasound devices is lacking. Subcutaneous fat thickness measured by a low resolution (2.5 MHz) A-mode ultrasound and a high resolution (12 MHz) B-mode ultrasound were compared to the actual fat thickness in dissected cadavers. Subcutaneous fat thickness of six cadavers was measured at the abdomen, thigh, triceps, and calf (plus chest for males and suprailiac for females) with both ultrasound devices before the cadavers were dissected and site-specific thickness was measured. Correlations between both ultrasounds and the dissected measurement exceeded 0.90 at all sites with a few exceptions. At the abdomen, the relationship between the ultrasounds was 0.76, and the B-mode and dissected measurement was also 0.76. The correlation between dissection and A-mode was 0.75 for the suprailiac site, but it was not possible to discern the separation of tissue at this site when using the B-mode device. There were no significant differences (P > 0.05) between the devices and the dissected measurement at any of the six sites. The mean difference in fat thickness between A-mode and B-mode was mode and B-mode ultrasound are equally capable of providing measurements of subcutaneous fat thickness with an accuracy of <1 mm at most sites.

  5. Standard solar model. II - g-modes

    Science.gov (United States)

    Guenther, D. B.; Demarque, P.; Pinsonneault, M. H.; Kim, Y.-C.

    1992-01-01

    The paper presents the g-mode oscillation for a set of modern solar models. Each solar model is based on a single modification or improvement to the physics of a reference solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The error in the predicted g-mode periods associated with the uncertainties in the model physics is predicted and the specific sensitivities of the g-mode periods and their period spacings to the different model structures are described. In addition, these models are compared to a sample of published observations. A remarkably good agreement is found between the 'best' solar model and the observations of Hill and Gu (1990).

  6. Modes of convergence for term graph rewriting

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Term graph rewriting provides a simple mechanism to finitely represent restricted forms of infinitary term rewriting. The correspondence between infinitary term rewriting and term graph rewriting has been studied to some extent. However, this endeavour is impaired by the lack of an appropriate...... counterpart of infinitary rewriting on the side of term graphs. We aim to fill this gap by devising two modes of convergence based on a partial order respectively a metric on term graphs. The thus obtained structures generalise corresponding modes of convergence that are usually studied in infinitary term...... rewriting. We argue that this yields a common framework in which both term rewriting and term graph rewriting can be studied. In order to substantiate our claim, we compare convergence on term graphs and on terms. In particular, we show that the modes of convergence on term graphs are conservative...

  7. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  8. Default mode contributions to automated information processing.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Stamatakis, Emmanuel A

    2017-11-28

    Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such "autopilot" behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based "autopilot role" for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.

  9. Double Flight-Modes Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2013-01-01

    Full Text Available Getting inspiration from the real birds in flight, we propose a new particle swarm optimization algorithm that we call the double flight modes particle swarm optimization (DMPSO in this paper. In the DMPSO, each bird (particle can use both rotational flight mode and nonrotational flight mode to fly, while it is searching for food in its search space. There is a King in the swarm of birds, and the King controls each bird’s flight behavior in accordance with certain rules all the time. Experiments were conducted on benchmark functions such as Schwefel, Rastrigin, Ackley, Step, Griewank, and Sphere. The experimental results show that the DMPSO not only has marked advantage of global convergence property but also can effectively avoid the premature convergence problem and has good performance in solving the complex and high-dimensional optimization problems.

  10. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  11. Mode Selection in Compressible Active Flow Networks

    Science.gov (United States)

    Forrow, Aden; Woodhouse, Francis G.; Dunkel, Jörn

    2017-07-01

    Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.

  12. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  13. Sparsity-promoting dynamic mode decomposition

    Science.gov (United States)

    Jovanović, Mihailo R.; Schmid, Peter J.; Nichols, Joseph W.

    2014-02-01

    Dynamic mode decomposition (DMD) represents an effective means for capturing the essential features of numerically or experimentally generated flow fields. In order to achieve a desirable tradeoff between the quality of approximation and the number of modes that are used to approximate the given fields, we develop a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced by regularizing the least-squares deviation between the matrix of snapshots and the linear combination of DMD modes with an additional term that penalizes the ℓ1-norm of the vector of DMD amplitudes. The globally optimal solution of the resulting regularized convex optimization problem is computed using the alternating direction method of multipliers, an algorithm well-suited for large problems. Several examples of flow fields resulting from numerical simulations and physical experiments are used to illustrate the effectiveness of the developed method.

  14. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  15. Mode demultiplexer using angularly multiplexed volume holograms.

    Science.gov (United States)

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  16. New English Teaching Mode in Colleges

    Directory of Open Access Journals (Sweden)

    Yanmei Song

    2014-05-01

    Full Text Available In recent years, increasing use of the Internet has changed English teaching methods. In this study, we constitute and propagate one new English teaching mode in colleges. It is three-dimensional which comprises online class, regular class and extracurricular activities. Its three prominent feathers include highlighting the studentsཿ important position; highlighting English comprehensive application and autonomous learning ability and extending computer network autonomous learning. Furthermore, five general implementing processes are included. Through feedback questionnaire and average marks comparison, we found that this mode improved the efficiency of experiment classes. It is hoped that this new mode would be able to assist more teachers to improve their teaching efficiency and more English learners to improve their learning efficiency.

  17. Single transverse mode selectively oxidized vertical cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; GEIB,KENT M.; BRIGGS,RONALD D.; ALLERMAN,ANDREW A.; HINDI,JANA JO

    2000-04-26

    Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

  18. Efficient multi-mode to single-mode coupling in a photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.; Nielsen, Martin D.

    2009-01-01

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or “photonic lantern”, first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient...

  19. Multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.

    2010-01-01

    Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 d...

  20. High order vector mode coupling mechanism based on mode matching method

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Li, Muqiao; Li, Jiong; Xu, Shanhui; Yang, Zhongmin

    2017-06-01

    The high order vector mode (HOVM) coupling mechanism is investigated based on the mode matching method (MMM). In the case of strong HOVM coupling where the weakly guiding approximation fails, conventional coupling analysis methods become invalid due to the asynchronous coupling feature of the horizontal and vertical polarization components of HOVM. The MMM, which uses the interference of the local eigenmodes instead of the assumptive modes to simulate the light propagation, is adopted as a more efficient analysis method for investigating HOVM coupling processes, especially for strong coupling situations. The rules of the optimal coupling length, coupling efficiency, and mode purity in microfiber directional coupler are firstly quantitatively analyzed and summarized. Different from the specific input modes, some special new modes would be excited at the output through the strong HOVM coupling process. The analysis of HOVM coupling mechanism based on MMM could provide precise and accurate design guidance for HOVM directional coupler and mode converter, which are believed to be fundamental devices for multi-mode communication applications.

  1. Foreign direct investment mode choice : entry and establishment modes in transition economies

    NARCIS (Netherlands)

    Dikova, Desislava; van Witteloostuijn, Arien

    2007-01-01

    In this study, we bridge two streams of foreign direct investment literature, specifically studies on establishment mode choice (i.e., the choice between an acquisition and a greenfield establishment) and studies on entry mode choice (i.e., the choice between a wholly owned outlet and a subsidiary

  2. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  3. R modes and neutron star recycling scenario

    Science.gov (United States)

    Chugunov, A. I.; Gusakov, M. E.; Kantor, E. M.

    2017-06-01

    To put new constraints on the r-mode instability window, we analyse the formation of millisecond pulsars (MSPs) within the recycling scenario, making use of three sets of observations: (a) X-ray observations of neutron stars (NSs) in low-mass X-ray binaries; (b) timing of MSPs and (c) X-ray and UV observations of MSPs. As shown in previous works, r-mode dissipation by shear viscosity is not sufficient to explain observational set (a), and enhanced r-mode dissipation at the redshifted internal temperatures T ∞ ˜ 108 K is required to stabilize the observed NSs. Here, we argue that models with enhanced bulk viscosity can hardly lead to a self-consistent explanation of observational set (a) due to strong neutrino emission, which is typical for these models (unrealistically powerful energy source is required to keep NSs at the observed temperatures.). We also demonstrate that the observational set (b), combined with the theory of internal heating and NS cooling, provides evidence of enhanced r-mode dissipation at low temperatures, T ∞ ˜ 2 × 107 K. Observational set (c) allows us to set an upper limit on the internal temperatures of MSPs, T ∞ Recycling scenario can produce MSPs at these temperatures only if r-mode instability is suppressed in the whole MSP spin frequency range (ν ≲ 750 Hz) at temperatures 2 × 107 ≲ T ∞ ≲ 3 × 107 K, providing thus a new constraint on the r-mode instability window. These observational constraints are analysed in more details in application to the resonance uplift scenario of Gusakov et al.

  4. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    Science.gov (United States)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-01-01

    Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398

  5. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, Jenny-Ann

    2003-06-01

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  6. Pulse growth dynamics in laser mode locking

    Science.gov (United States)

    Popov, Mark; Gat, Omri

    2018-01-01

    We analyze theoretically and numerically the nonlinear process of pulse formation in mode-locked lasers, starting from a perturbation of a continuous wave. Focusing on weak-to-moderate dispersion systems, we show that pulse growth is initially slow, dominated by a cascade of energy from low to high axial modes, followed by fast strongly nonlinear growth, and finally relaxation to the stable pulse wave form. The pulse grows initially by condensing a fixed amount of energy into a decreasing time interval, with peak power growing toward a finite-time singularity that is checked when the gain bandwidth is saturated by the pulse.

  7. 12 Mode, MIMO-Free OAM Transmission

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK.......Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK....

  8. Drift Mode Calculations in Nonaxisymmetric Geometry

    Energy Technology Data Exchange (ETDEWEB)

    G. Rewoldt; L.-P. Ku; W.A. Cooper; W.M. Tang

    1999-07-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.

  9. Mode damping in a commensurate monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter; Hansen, Flemming Yssing

    1997-01-01

    The normal modes of a commensurate monolayer solid may be damped by mixing with elastic waves of the substrate. This was shown by Hall, Mills, and Black [Phys. Rev. B 32, 4932 (1985)], for perpendicular adsorbate vibrations in the presence of an isotropic elastic medium. That work is generalized...... anisotropy of the elastic behavior of the graphite leads to quite different wave-vector dependence of the damping for modes polarized perpendicular and parallel to the substrate. A phenomenological extension of the elasticity theory of the graphite to include bond-bending energies improves the description...

  10. Surface Modes of Coherent Spinodal Decomposition

    Science.gov (United States)

    Tang, Ming; Karma, Alain

    2012-06-01

    We use linear stability theory and numerical simulations to show that spontaneous phase separation in elastically coherent solids is fundamentally altered by the presence of free surfaces. Because of misfit stress relaxation near surfaces, phase separation is mediated by unique surface modes of spinodal decomposition that have faster kinetics than bulk modes and are unstable even when spinodal decomposition is suppressed in the bulk. Consequently, in the presence of free surfaces, the limit of metastability of supersaturated solid solutions of crystalline materials is shifted from the coherent to chemical spinodal.

  11. Physical models of polarization mode dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Menyuk, C.R.; Wai, P.K.A. [Univ. of Maryland, Baltimore, MD (United States)

    1995-12-31

    The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.

  12. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  13. IPS guidestar selection for stellar mode (ASTRO)

    Science.gov (United States)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  14. Mode-locking in coupled map lattices

    CERN Document Server

    Carretero-González, R; Vivaldi, F

    1997-01-01

    We study propagation of pulses along one-way coupled map lattices, which originate from the transition between two superstable states of the local map. The velocity of the pulses exhibits a staircase-like behaviour as the coupling parameter is varied. For a piece-wise linear local map, we prove that the velocity of the wave has a Devil's staircase dependence on the coupling parameter. A wave travelling with rational velocity is found to be stable to parametric perturbations in a manner akin to rational mode-locking for circle maps. We provide evidence that mode-locking is also present for a broader range of maps and couplings.

  15. Second Order Mode Selective Phase-Matching

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Bachor, Hans. A-

    2006-01-01

    We exploit second order (χ(2)) nonlinear optical phase matching for the selection of individual high order transverse modes. The ratio between the generated components can be adjusted continuously via changes in the phase-matching condition. ©2007 Optical Society of America......We exploit second order (χ(2)) nonlinear optical phase matching for the selection of individual high order transverse modes. The ratio between the generated components can be adjusted continuously via changes in the phase-matching condition. ©2007 Optical Society of America...

  16. Gaussian mode selection with intracavity diffractive optics

    CSIR Research Space (South Africa)

    Litvin, IA

    2009-10-01

    Full Text Available in Optics Letters: Title:   Gaussian mode selection with intra–cavity diffractive optics Authors:   Andrew Forbes and Igor Litvin Accepted:   3 September 2009 Posted:   9 September 2009 Doc. ID:   113692 OSA Published by 1 Gaussian mode selection... with intra–cavity diffractive optics Igor A. Litvin1,2 and Andrew Forbes1,3 1CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 2Laser Research Institute, University of Stellenbosch, Stellenbosch 7602, South Africa 3School of Physics...

  17. Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR.

    Science.gov (United States)

    Nakazawa, Masataka; Yoshida, Masato; Hirooka, Toshihiko

    2014-12-15

    We describe the nondestructive measurement of mode coupling along a few-mode fiber using a synchronous multi-channel optical time-domain reflectometer (OTDR). By installing a few-mode fiber (FMF) coupler made with a phase mask method, we excite the LP01 mode in an FMF under the test as an input mode, and then we detect backward Rayleigh scattered LP11a or LP11b modes, which were generated as a result of the mode coupling through the coupler. The mode coupling distribution between the LP01 and LP11a,b modes along the test FMF was successfully measured with a 10-m spatial resolution by obtaining the ratio between the backscattered LP01 mode and LP11a or LP11b. The value of the mode coupling obtained with the present method agreed well with that obtained with the conventional transmission method.

  18. All-fiber-based selective mode multiplexer and demultiplexer for weakly-coupled mode-division multiplexed systems

    Science.gov (United States)

    Igarashi, Koji; Park, Kyung Jun; Tsuritani, Takahiro; Morita, Itsuro; Kim, Byoung Yoon

    2018-02-01

    We show all-fiber-based selective mode multiplexers and demultiplexers for weakly-coupled mode-division multiplexed systems. We fabricate a set of six-mode multiplexer and demultiplexer based on fiber mode selective couplers, and experimentally evaluate the performance for the six-mode dual-polarization (DP) quadrature phase shift keying (QPSK) optical signals. In the mode multiplexer and demultiplexer, the mode couplings between the lower three modes and the higher three modes are suppressed to be less than -20 dB, which enables us to apply partial 6 ×6 MIMO equalizers even for the six-mode demultiplexing. For the six-mode DP-QPSK signals, the penalty of optical signal-to-noise ratio by replacing the full 12 ×12MIMO to the partial 6 ×6 MIMO is suppressed by less than 1 dB.

  19. Cross-correlated imaging of distributed mode filtering rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....

  20. Mode repulsion of ultrasonic guided waves in rails

    CSIR Research Space (South Africa)

    Loveday, Philip W

    2018-03-01

    Full Text Available mode repulsion and mode crossing which can be difficult to distinguish. Eigenvalue derivatives, with respect to the wavenumber, are used to investigate these regions. A term causing repulsion between two modes is identified and a condition for two modes...