WorldWideScience

Sample records for self-pumped phase conjugation

  1. Self-pumped optical phase conjugation and light oscillation in Fe doped KNbO 3

    Science.gov (United States)

    Medrano, C.; Ingold, M.; Günter, P.

    1990-07-01

    We report different experiments on self-pumped phase conjugation in iron doped KNbO 3 crystals at room temperature. Self-pumped phase conjugate reflectivities of a linear cavity, an external ring mirror and a configuration where no external optical elements are required have been measured. Using the passive ring resonator a reflectivity of 30% of a self-pumped phase conjugate mirror has been measured at room temperature. In the configuration requiring no external optical elements besides the KNbO 3 crystal a reflectivity of 12% has been measured. In degenerate four-wave mixing phase conjugate reflectivities of up to 270% have been observed in the diffusion recording mode.

  2. Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier

    International Nuclear Information System (INIS)

    Sillard, Pierre

    1998-01-01

    The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr

  3. Self-pumped phase conjugation in InP:Fe using band-edge resonance and temperature stabilization - Theory and experiments

    Science.gov (United States)

    Millerd, James E.; Garmire, Elsa M.; Klein, Marvin B.

    1992-01-01

    Data showing nonlinear resonantly enhanced photorefractive response at high modulation depths in InP:Fe are presented. A simple empirical model is used to describe the behavior. Next the impact of these large-signal effects, as well as linear absorption, on the self-pumped phase-conjugate mirror is examined. Predicted performance is compared to actual measurements of a ring self-pumped phase-conjugate mirror using InP. The performance of the double-pumped phase-conjugate mirror is also examined experimentally and compared with the performance of the ring mirror.

  4. Preliminary training of a self-pumped loop phase-conjugate mirror based on a photorefractive crystal

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2006-01-01

    It is shown by the example of a loop self-pumped phase-conjugate (SPPC) mirror based on a photorefractive crystal (PRC) BaTiO 3 that formation of a phase-conjugate (PC) wave in a SPPC mirror can be considerably accelerated by using a preliminary training of the mirror. For this purpose, it is necessary to direct preliminary an auxiliary (training) optical field on the SPPC mirror, which contains some information on the properties of the input signal whose wave front will be conjugated later. This procedure provides the writing of static refractive-index gratings in the PRC already at the training stage. The presence of these gratings ensures a much more rapid (by 6-20 times) production of volume refractive-index gratings required for the efficient conjugation of the signal radiation. Several variants of static and dynamic SPPC mirror training procedures are simulated and their efficiencies are compared. (nonlinear optical phenomena)

  5. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects

    International Nuclear Information System (INIS)

    Fisher, R.A.; Suydam, B.R.; Yevick, D.

    1983-01-01

    We show that the temporal distortion and spectral broadening of a pulse generated by the combined effects of group-velocity dispersion and self-phase modulation is removed by reflection of a cw-pumped, broadband, unity-reflecting Kerr-like optical phase conjugator followed by retraversal of the nonlinear medium. We also examine numerically the effects of finite linear loss in the material, of nonunity conjugate reflectivity, and of finite conjugator thickness

  6. Pump induced normal mode splittings in phase conjugation in a Kerr ...

    Indian Academy of Sciences (India)

    Abstract. Phase conjugation in a Kerr nonlinear waveguide is studied with counter-propagating normally incident pumps and a probe beam at an arbitrary angle of incidence. Detailed numerical results for the specular and phase conjugated reflectivities are obtained with full account of pump depletion. For sufficient ...

  7. Application of optical phase conjugation to plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Jahoda, F.C.; Anderson, B.T.; Forman, P.R.; Weber, P.G.

    1985-01-01

    Several possibilities for plasma diagnostics provided by optical phase conjugation and, in particular, self-pumped phase conjugation in barium titanate (BaTiO 3 ) are discussed. These include placing a plasma within a dye laser cavity equipped with a phase conjugate mirror for intracavity absorption measurements, time differential refractometry with high spatial resolution, and simplified real-time holographic interferometry. The principles of phase conjugation with particular reference to photorefractive media and the special advantages of self-pumped phase conjugation are reviewed prior to the discussion of the applications. Distinctions are made in the applications between those for which photorefractive conjugators are essential and those for which they only offer experimental simplification relative to other types of phase conjugators

  8. Suppressing self-induced frequency scanning of a phase conjugate diode laser array with using counterbalance dispersion

    DEFF Research Database (Denmark)

    Løbel, M.; Petersen, P.M.; Johansen, P.M.

    1998-01-01

    Experimental results show that angular dispersion strongly influences the self-induced frequency scanning of a multimode broad-area diode laser array coupled to a photorefractive self-pumped phase conjugate mirror. Prisms or a dispersive grating placed in the external cavity opposing the material...

  9. Investigation into self-pumped and mutually pumped phase conjugation with beams entering the negative c face of doped (K0.5Na0.5)0.2(Sr0.75 Ba0.25)0.9Nb2O6 crystals

    International Nuclear Information System (INIS)

    Zhang, J.; Liu, H.; Jia, W.

    1997-01-01

    We investigated some novel geometries of self-pumped phase conjugation (SPPC) and mutually pumped phase conjugation (MPPC), relying on total internal reflection both from the a face and from corners, with beams entering the negative c face of doped (K 0.5 Na 0.5 ) 0.2 (Sr 0.75 Ba 0.25 ) 0.9 Nb 2 O 6 crystals. The different situations for internal light paths and their direct transformation at the same incident wavelength were observed. Similarities and differences between SPPC and MPPC are discussed. The dynamic features of SPPC and MPPC in different situations were also observed. Three or more four-wave-mixing interaction regions were clearly observed inside the phase conjugators. The multistep interaction and its influence on the response rate and conjugation fidelity are analyzed. The large size of the samples seems necessary to ensure an optical path that is long enough for multistep bifurcation. The stability of the light channels is discussed based on the fanning effect. copyright 1997 Optical Society of America

  10. Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, Nickolai V.; Ivleva, Ludmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. N.; Zozulya, Aleksei A.

    1992-12-01

    Most photorefractive crystals, suitable for the realization of self-pumped four-wave mixing phase conjugation and mutual conjugation geometries, are characterized by the high level of fanning. In some cases it may mean that the nonlinearity of these crystals is already too large to be good and a decrease in the value of a nonlinear coupling coefficient may result in an improved performance of these geometries. This point is illustrated using geometry of a self- pumped ring mirror.

  11. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    NARCIS (Netherlands)

    Offerhaus, Herman L.; Godfried, Herman; Godfried, H.P; Witteman, W.J.

    1996-01-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200

  12. NONLINEAR OPTICAL EFFECTS: Four-wave resonant parametric interaction with signal phase conjugation in a wide-band pump field

    Science.gov (United States)

    Barashkov, M. S.; Iskanderov, N. A.

    1987-08-01

    An analysis is made of the reduction of the fluctuations introduced in the intensity of the phase conjugate wave and of the reduction in the time for establishment of quasisteady conjugation conditions and in the relaxation time of the intensity of the conjugate wave after switching on of the pump fields in the case of stochastic excitation of a transition. It is shown that, in principle, it is possible to generate a narrow-band pump-induced component of the conjugate wave spectrum.

  13. Numerical investigation of the influence of the strictive self-interaction on the quality of phase conjugation in the course of stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Kir'yanov, Yu F; Kochemasov, G G; Maslov, N V; Shestakova, I V

    1999-01-01

    The influence of the strictive self-interaction on the threshold and quality of phase conjugation in the course of stimulated Brillouin scattering (SBS) was investigated numerically in the linear approximation for steady-state linearly polarised pumping. The calculations were carried out for the three-dimensional case of a Gaussian pump beam and a beam representing a superposition of 10 x 10 Hermitian - Gaussian modes with random phases. It was found that in the case of a Gaussian beam the growth of the strictive aberrations leads to a significant reduction of the SBS threshold but has little influence on the conjugation quality. In the case of a pump beam with a divergence exceeding the diffraction limit such growth of the strictive aberrations results (on the average) in lowering the SBS threshold and in deterioration of the conjugation quality. The calculated results depend strongly on the specific phase combination of the superposed modes. (nonlinear optical phenomena)

  14. Two novel plasma diagnostic tools: fiber sensors and phase conjugation

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1985-01-01

    A rapidly developing technology (single-mode optical fiber sensors) and recent fundamental research in nonlinear optics (phase conjugation) both offer opportunities for novel plasma diagnostics. Single-mode fiber sensors can replace electrical wire probes for current and magnetic field measurements with advantages in voltage insulation requirements, electromagnetic noise immunity, much greater bandwidth, and some configuration flexibility. Faraday rotation measurements through fibers wound on the ZT-40M RFP have demonstrated quantitative results, but competing linear birefringence effects still hinder independent interpretation. Twisted fiber may solve this problem. Optical phase conjugation (in which a phase reversed copy of a laser beam is generated) allows real time distortion corrections in laser diagnostics. Self-pumped phase conjugation in BaTiO 3 improves the quality of phase conjugation imagery and greatly simplifies experimentation directed toward plasma diagnostics. Our initial applications are a) time-differential refractometry with high spatial resolution and b) intracavity absorption Zeeman spectroscopy

  15. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    Science.gov (United States)

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  16. Development of 360-W LD pumped Nd:YAG amplifier with a phase conjugation mirror

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Nagai, Toru; Yamakawa, Koichi; Kageyama, Nobuto; Miyajima, Hirofumi; Kan, Hirofumi; Yoshida, Hidetsugu; Nakatsuka, Masahiro

    2004-01-01

    We report on a high-average-power laser-diode (LD) pumped Nd:YAG master-oscillator-power-amplifier (MOPA) system with a minimum number of element for the single multi-pass zigzag-slab amplifier-stage for pumping of a high-peak and high-average power Ti:sapphire laser system. This phase conjugated system produces an average-power of 362 W at 1 kHz in a 30 ns pulse with an optical-to-optical conversion efficiency of 14%. With an external KTP doubler, this system generates 132 W of green average-output-power at 1 kHz with a conversion efficiency of 60% when pumped at a power level of 222 W. To the best of our knowledge, these results represent the highest average-output-power at both infrared and green wavelengths achieved in a single-amplifier-stage. (author)

  17. Unsteady numerical simulation for gas–liquid two-phase flow in self-priming process of centrifugal pump

    International Nuclear Information System (INIS)

    Huang, Si; Su, Xianghui; Guo, Jing; Yue, Le

    2014-01-01

    Highlights: • The transient gas–liquid two-phase flow fields in the self-priming centrifugal pump are simulated. • The self-priming time and performance are estimated. • The air void fraction and two phase distribution are obtained.· The hole on the volute plays a significant role for gas exhausting. • The frequency of the impulsive pressure basically conforms to that of the air exhausted out of the pump. - Abstract: Self-priming pumps start up without pre-irrigation, and then work as common pumps when air in the pump is exhausted. The transient gas–liquid flow at the start-up stage inside a self-priming pump is an interesting process which greatly influences performance of the pump. In this paper, a conventional vertical self-priming centrifugal pump was selected as the object. Using unsteady numerical simulation, the authors investigated the transient gas–liquid two-phase flow in the self-priming centrifugal pump during the self-priming process. The main innovation in the simulation was that a section of the suction pipe filled with air was set as the initial condition, which conformed to the actual self-priming conditions. The gas–liquid two-phase distribution, the pressure and velocity in relation to time were computed and analyzed. Flow rates of both phases with time at the pump inlet and outlet were obtained based on the simulation, which could be used to estimate the self-priming time and other performance parameters. Finally, the numerical method and results for gas–liquid two-phase flow in the self-priming pump was partly validated by the pump performance test

  18. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  19. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    Science.gov (United States)

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  20. Enhancement of phase-conjugate reflectivity using Zeeman coherence in highly degenerate molecular systems

    International Nuclear Information System (INIS)

    Mukherjee, Nandini

    2010-01-01

    A comprehensive theoretical analysis is developed for the vectorial phase conjugation using resonant four-wave mixing (FWM) in a highly degenerate rotational vibrational molecular system. The dynamic Stark shifts, saturation, and Doppler broadening are included for a realistic analysis. It is shown that the electromagnetically induced multilevel coherence controls the nonlinear wave mixing yielding interesting results for the phase conjugate (PC) reflectivity. It turns out that the efficiency of the PC reflectivity is decided by the relative phase of the Zeeman coherence and the population grating. When these two contributions are aligned in phase by a small detuning of the pump frequency, a large PC reflectivity (∼20%) is obtained with moderate pump intensity (∼500 mW/cm 2 ).

  1. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  2. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb; Yariv

    1986-07-01

    A GaA1As semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. Also reported similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  3. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb, M.; Yariv, A.

    1986-07-01

    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  4. Self-induced frequency scanning and distributed bragg reflection in semiconductor lasers with phase-conjugate feedback

    Science.gov (United States)

    Cronin-Golomb, Mark; Yariv, Amnon

    1986-07-01

    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  5. Second-law analysis of a two-phase self-pumping solar water heater

    International Nuclear Information System (INIS)

    Walker, H.A.; Davidson, J.H.

    1992-01-01

    In this paper entropy generated by operation of a two-phase self-pumping solar water heater under Solar Rating and Certification Corporation rating conditions is computed numerically in a methodology based on an exergy cascade. An order of magnitude analysis shows that entropy generation is dominated by heat transfer across temperature differences. Conversion of radiant solar energy incident on the collector to thermal energy within the collector accounts for 87.1 percent of total entropy generation. Thermal losses are responsible for 9.9 percent of total entropy generation, and heat transfer across the condenser accounts for 2.4 percent of the total entropy generation. Mixing in the tempering valve is responsible for 0.7 percent of the total entropy generation. Approximately one half of the entropy generated by thermal losses is attributable to the self-pumping process. The procedure to determine total entropy generation can be used in a parametric study to evaluate the performance of two-phase hot water heating systems relative to other solar water heating options

  6. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  7. Dynamics of a photorefractive response and competition of nonlinear processes in self-pumping double phase-conjugate mirrors

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2005-01-01

    The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO 3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described. (nonlinear optical phenomena)

  8. Optical phase conjugation

    CERN Document Server

    Fisher, Robert A

    1983-01-01

    This book appears at a time of intense activity in optical phase conjugation. We chose not to await the maturation of the field, but instead to provide this material in time to be useful in its development. We have tried very hard to elucidate and interrelate the various nonlinear phenomena which can be used for optical phase conjugation.

  9. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    Science.gov (United States)

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  10. Phase dynamics of oscillating magnetizations coupled via spin pumping

    Science.gov (United States)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  11. Degenerate four-wave mixing and phase conjugation in a collisional plasma

    International Nuclear Information System (INIS)

    Federici, J.F.; Mansfield, D.K.

    1986-06-01

    Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10μm. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed

  12. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  13. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  14. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation are ...

  15. Self/anti-self charge conjugate states in the helicity basis

    International Nuclear Information System (INIS)

    Dvoeglazov, Valeriy V.

    2013-01-01

    We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed

  16. Self-Assembly and Crystallization of Conjugated Block Copolymers

    Science.gov (United States)

    Davidson, Emily Catherine

    This dissertation demonstrates the utility of molecular design in conjugated polymers to create diblock copolymers that robustly self-assemble in the melt and confine crystallization upon cooling. This work leverages the model conjugated polymer poly(3-(2'-ethyl)hexylthiophene) (P3EHT), which features a branched side chain, resulting in a dramatically reduced melting temperature (Tm 80°C) relative to the widely-studied poly(3-hexylthiophene) (P3HT) (Tm 200°C). This reduced melting temperature permits an accessible melt phase, without requiring that the segregation strength (chiN) be dramatically increased. Thus, diblock copolymers containing P3EHT demonstrate robust diblock copolymer self-assembly in the melt over a range of compositions and morphologies. Furthermore, confined crystallization in the case of both glassy (polystyrene (PS) matrix block) and soft (polymethylacrylate (PMA) matrix block) confinement is studied, with the finding that even in soft confinement, crystallization is constrained within the diblock microdomains. This success demonstrates the strategy of leveraging molecular design to decrease the driving force for crystallization as a means to achieving robust self-assembly and confined crystallization in conjugated block copolymers. Importantly, despite the relatively flexible nature of P3EHT in the melt, the diblock copolymer phase behavior appears to be significantly impacted by the stiffness (persistence length of 3 nm) of the P3EHT chain compared to the coupled amorphous blocks (persistence length 0.7 nm). In particular, it is shown that the synthesized morphologies are dominated by a very large composition window for lamellar geometries (favored at high P3EHT volume fractions); cylindrical geometries are favored when P3EHT is the minority fraction. This asymmetry of the composition window is attributed to impact of conformational asymmetry (the difference in chain stiffness, as opposed to shape) between conjugated and amorphous blocks

  17. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  18. Phase-conjugate optical coherence tomography

    International Nuclear Information System (INIS)

    Erkmen, Baris I.; Shapiro, Jeffrey H.

    2006-01-01

    Quantum optical coherence tomography (Q-OCT) offers a factor-of-2 improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the nonclassical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT) shows that nonclassical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT

  19. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  20. Phase-conjugate interferometer to estimate refractive index and thickness of transparent plane parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana-Sanchez, R.; Rodriguez-Zurita, G.; Vazquez-Castillo, J. F. [Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    A technique to estimate the refractive index and thickness of homogeneous plane parallel dielectric plates is proposed using a phase-conjugate interferometer, in which counting of interference fringes is employed. The light beam impinges a tilted plate before it enters a phase-conjugate interferometer, and a count of the fringes passing through a given reference at the observing plane gives the phase changes as a function of tilting angle. The obtained data is fitted to a mathematical model, which leads to the determination of both refractive index and thickness simultaneously. In this letter, experimental data from two interferometers are also discussed for comparison. One with an externally-pumped phase-conjugate mirror achieved with a BSO photorefractive crystal and another one with conventional mirrors. Results show that the phase sensitivity of the phase-conjugate interferometer is not simply twice the corresponding sensitivity of the conventional version. [Spanish] Se propone una tecnica para medir indices de refraccion y espesores de placas dielectricas plano paralelas homogeneas empleando un interferometro con fase conjugada, en el cual se usa el conteo de franjas. El haz luminoso incide en una placa inclinada bajo inspeccion antes de entrar en un interferometro equipado con un espejo conjugador de fase, y se realiza un conteo de las franjas que pasan por determinada referencia en el plano de observacion, proporcionando los cambios de fase en funcion del angulo de inclinacion. Los datos obtenidos se ajustan a un modelo, el cual conduce a la determinacion, tanto del indice de refraccion como del espesor, simultaneamente. En este trabajo se discuten datos experimentales provenientes de dos interferometros para su comparacion. Uno de ellos tiene un espejo conjugador basado en un cristal BSO fotorrefractivo, mientras que el otro es una variante con espejos convencionales. Se muestra que la sensibilidad de fase del interferometro con conjugador de fase no

  1. Perfect lensing with phase-conjugating surfaces: toward practical realization

    International Nuclear Information System (INIS)

    Maslovski, Stanislav; Tretyakov, Sergei

    2012-01-01

    It is theoretically known that a pair of phase-conjugating surfaces can function as a perfect lens, focusing propagating waves and enhancing evanescent waves. However, the known experimental approaches based on thin sheets of nonlinear materials cannot fully realize the required phase conjugation boundary condition. In this paper, we show that the ideal phase-conjugating surface is, in principle, physically realizable and investigate the necessary properties of nonlinear and nonreciprocal particles which can be used to build a perfect lens system. The physical principle of the lens operation is discussed in detail and directions of possible experimental realizations are outlined. (paper)

  2. A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management

    International Nuclear Information System (INIS)

    Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping

    2016-01-01

    Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady

  3. How to construct self/anti-self charge conjugate states?

    International Nuclear Information System (INIS)

    Dvoeglazov, V V

    2014-01-01

    We construct self/anti–self charge conjugate (Majorana–like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac–like and Majorana–like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac–like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes

  4. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  5. Measuring the phase difference in network and residual voltages under the GTsN-195M pump self-starting

    International Nuclear Information System (INIS)

    Druba, V.V.; Druba, T.A.; Reznik, V.R.

    1989-01-01

    Determination of time dependence of phase difference of residual voltage on motor windings of the main circulation pumps (MCP) and voltage of power supply section under MCP self-starting under conditions of short-time breaks in electric power supply is one of the main problems to which reliability and safety of NPP operation is related. A method to measure this dependence in real conditions in case of MCP free run-out and run-out in generating mode is suggested. The method considered is used for tests of the Kalinin NPP-2 MCP-195M self-starting. Analysis of run-out curves in the case of a break in MCP power supply for 1.8 s shows that the most favourable conditions for MCP self-starting are 0.63±0.03 s after de-energizing. 2 refs.; 3 figs.; 1 tab

  6. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  7. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  8. Phase conjugation with random fields and with deterministic and random scatterers

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.

    1999-01-01

    The theory of distortion correction by phase conjugation, developed since the discovery of this phenomenon many years ago, applies to situations when the field that is conjugated is monochromatic and the medium with which it interacts is deterministic. In this Letter a generalization of the theory is presented that applies to phase conjugation of partially coherent waves interacting with either deterministic or random weakly scattering nonabsorbing media. copyright 1999 Optical Society of America

  9. Phase noise reduction by self-phase locking in semiconductor lasers using phase conjugate feedback

    DEFF Research Database (Denmark)

    Petersen, Lykke; Gliese, Ulrik Bo; Nielsen, Torben Nørskov

    1994-01-01

    noise takes a finite-low value corresponding to a state of first-order self-phase locking of the laser. As a result, the spectral shape of the laser signal does not remain Lorentzian but collapses around the carrier to a delta function with a close to carrier noise level of less than -137 d...

  10. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  11. Experimental demonstration of continuous variable cloning with phase-conjugate inputs

    DEFF Research Database (Denmark)

    Sabuncu, Metin; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We report the first experimental demonstration of continuous variable cloning of phase-conjugate coherent states as proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)]. In contrast to this proposal, the cloning transformation is accomplished using only linear optical components......, homodyne detection, and feedforward. As a result of combining phase conjugation with a joint measurement strategy, superior cloning is demonstrated with cloning fidelities reaching 89%....

  12. A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Zi-Liang, Ping; Dalsgaard, Erik

    1996-01-01

    A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....

  13. Threshold couplings of phase-conjugate mirrors with two interaction regions.

    Science.gov (United States)

    Beli, M; Petrovi, M; Sandfuchs, O; Kaiser, F

    1998-03-01

    Using the grating-action method, we determine the threshold coupling strengths of three generic examples of phase-conjugate mirrors with two interaction regions: the cat conjugator, the mutually incoherent beam coupler, and the interconnected ring mirror.

  14. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, N. V.; Zozulya, A. A.; Ivleva, Lyudmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. M.

    1992-05-01

    Most photorefractive crystals suitable for four-wave systems of phase self-conjugation and mutual conjugation have a fairly high level of light-induced scattering (fanning). This may imply that the nonlinearity of a crystal is too strong for optimal operation and a reduction in this nonlinearity would improve the characteristics. This statement is illustrated theoretically and experimentally using the geometry of a loop parametric oscillator as an example.

  15. Co-crystallization phase transformations in all π-conjugated block copolymers with different main-chain moieties.

    Science.gov (United States)

    Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An

    2014-05-21

    Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

  16. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... of polymer transistors in logic circuits(5) and active-matrix displays(4,6)....

  17. Nonlinear propagation of phase-conjugate focused sound beams in water

    Science.gov (United States)

    Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.

    2000-07-01

    Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.

  18. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  19. A numerical study on the influence of gas-liquid two phase flow on the rotary pump performances

    International Nuclear Information System (INIS)

    Miao, T C; Liu, Y Y; Zhao, F; Wang, L Q

    2013-01-01

    Rotary pump can be used in many fields because of its strong self-priming ability. Many factors may cause the medium in rotary pump system containing gas-liquid two phase. And the suction capacity of rotary pump will decrease sharply in these situations. To study the internal flow mechanism of rotary pump when transporting medium containing gas, the gas-liquid two phase flow in the rotary pump system has been simulated using VOF model under different gas fractions. And the interaction between rotary pump and the pipeline has been considered. The simulation results coincide well with the theoretical calculation results, and the distribution of the flow field match well with the Mandhane flow pattern map. The main conclusions are as follows: with the increase of gas fraction, the flow pattern in the pipeline has the following evolutionary trend (bubble – plug – slug – wavy), and the suction capacity of the pump will decrease. It is mainly because gas medium can fill the partial vacuum produced by the rotor motion easily and is easier to have backflow

  20. Degenerate four-wave mixing with the phase diffusion field

    International Nuclear Information System (INIS)

    Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.

    1993-01-01

    We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available

  1. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  2. Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier

    International Nuclear Information System (INIS)

    Kamal, Archana; Marblestone, Adam; Devoret, Michel

    2009-01-01

    We present the theory of a Josephson parametric amplifier employing two-pump sources. Our calculations are based on input-output theory, and can easily be generalized to any coupled system involving parametric interactions. We analyze the operation of the device, taking into account the feedback introduced by the reaction of the signal and noise on the pump power, and in this framework, compute the response functions of interest--signal and idler gains, internal gain of the amplifier, and self-oscillation signal amplitude. To account for this back action between signal and pump, we adopt a mean-field approach and self-consistently explore the boundary between amplification and self-oscillation. The coincidence of bifurcation and self-oscillation thresholds reveals that the origin of coherent emission of the amplifier lies in the multiwave mixing of the noise components. Incorporation of the back action leads the system to exhibit hysteresis, dependent on parameters such as temperature and detuning from resonance. Our analysis also shows that the resonance condition itself changes in the presence of back action and this can be understood in terms of the change in plasma frequency of the junction. The potential of the double-pump amplifier for quantum-limited measurements and as a squeezer is also discussed.

  3. 41 CFR 109-38.401-2 - Use of self-service pumps.

    Science.gov (United States)

    2010-07-01

    ... pumps. 109-38.401-2 Section 109-38.401-2 Public Contracts and Property Management Federal Property...-2 Use of self-service pumps. It is DOE policy that motor vehicle operators shall use self-service pumps in accordance with the provisions of 41 CFR 101-38.401-2. ...

  4. CONTROL OF LASER RADIATION PARAMETERS: Influence of feedback loop characteristics on the field structure in a phase-conjugating ring mirror

    Science.gov (United States)

    Esayan, A. A.; Zozulya, A. A.; Tikhonchuk, Vladimir T.

    1991-10-01

    An analysis is made of stimulated scattering in a ring resonator formed by a self-intersecting beam with simultaneous rotation and contraction of the beam due to feedback. Conditions for the excitation of lasing are obtained and the phase conjugation quality is determined near the lasing threshold.

  5. New heparin–indomethacin conjugate with an ester linkage: Synthesis, self aggregation and drug delivery behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan-Nan; Zheng, Bing-Na [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Lin, Jian-Tao [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Medical College, Dongguan 523808 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-01-01

    New heparin–indomethacin conjugate with an ester linkage was prepared by the carbodiimide-mediated condensation reaction, and then characterized by FTIR and {sup 1}HNMR analyses. Due to its amphiphilic character, such a conjugate could self-aggregate into spherical nanoparticles in aqueous system, as confirmed by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. By the in vitro drug release tests, the resultant conjugate nanoparticles were found to have a sustained and esterase-sensitive release behavior for conjugated indomethacin. In addition, the uptake of these conjugate nanoparticles into human nasopharyngeal carcinoma CNE1 cells was confirmed by fluorescence microscopy. - Highlights: • New heparin–indomethacin conjugate with an ester linkage was prepared. • Such a conjugate could self-aggregate into spherical nanoparticles in aqueous system. • The resultant conjugate nanoparticles exhibited an esterase-sensitive drug release behavior. • The resultant conjugate nanoparticles showed the cellular uptake ability in CNE1 cells.

  6. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  7. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  8. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  9. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  10. Pulse-width modulation for small heat pump installations - Phase 4; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 4: Erweiterung der PBM-Regler fuer Kombianlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Shafai, E. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the fourth phase of a project that investigated three types of pulse-width modulation (PWM) controllers that were developed during its first two phases. A third phase monitored the controllers when used in a simulated environment and for a real-life heat pump. The report discusses the fourth phase of the project, in which the controller was further developed and tested using the building emulation developed in the third phase. The functioning of the self-regulating controller and its use of meteorological data is described and the savings to be made in heating costs are discussed.

  11. LH2 three-phase pump control circuit description

    International Nuclear Information System (INIS)

    Pierce, W.

    1977-05-01

    A brief description and circuit drawings are given for a pump control system. The pump is used to circulate liquid hydrogen through the cell and heat exchanger of an LH 2 target. The pump is powered by three-phase 60 cycle power, and the control unit is powered from a positive and negative 24 V dc supply available in the NIM Bin. The control unit is packaged in a double-width NIM module. Drawings are given for the pump speed indicator, function generator, and power supply

  12. Phase conjugation of gap solitons: A numerical study

    Indian Academy of Sciences (India)

    We study the effect of a nearby phase-conjugate mirror (PCM) on the gap soliton of a. Kerr non-linear ... They are characterized by a sech field distribution corresponding to the ... It is a generalization of the earlier model proposed by Jose et.

  13. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  14. Self-pumping inpurity control systems for INTOR

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Smith, D.L.; Hassanein, A.M.

    1987-01-01

    Two self-pumping systems have been examined for use as the INTOR impurity control system. The systems work by trapping helium in freshly deposited metal surface layers on or near the divertor plate. A slot divertor concept using vanadium or other trapping material appears to be both feasible and mechanically simple, and offers significant advantages in cost, reduced complexity, and helium pumping efficiency for the INTOR design

  15. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  16. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  17. Synthesis of Mikto-Arm Star Peptide Conjugates.

    Science.gov (United States)

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  18. Effect of the self-pumped limiter concept on the tritium fuel cycle

    International Nuclear Information System (INIS)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept was the impurity control system for the reactor in the Tokamak Power Systems Study (TPSS). The use of a self-pumped limiter had a major impact on the design of the tritium systems of the TPSS fusion reactor. The self-pumped limiter functions by depositing the helium ash under a layer of metal (vanadium). The majority of the hydrogen species are recycled at the plasma edge; a small fraction permeates to the blanket/coolant which was lithium in TPSS. Use of the self-pumped limiter results in the elimination of the plasma processing system. Thus, the blanket tritium processing system becomes the major tritium system. The main advantages achieved for the tritium systems with a self-pumped limiter are a reduction in the capital cost of tritium processing equipment as well as a reduction in building space, a reduced tritium inventory for processing and for reserve storage, an increase in the inherent safety of the fusion plant and an improvement in economics for a fusion world economy

  19. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    NARCIS (Netherlands)

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  20. Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Dinu, M.

    2013-01-01

    We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....

  1. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    Science.gov (United States)

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  2. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  3. An analytical model for prediction of two-phase (noncondensable) flow pump performance

    International Nuclear Information System (INIS)

    Furuya, O.

    1985-01-01

    During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps

  4. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    National Research Council Canada - National Science Library

    Spring, Justin B

    2008-01-01

    ... limited, double-pass high-power amplifiers or coherent beam combination. Little modeling of such a fiber-based phase-conjugator has been done, making it difficult to make decisions about the right fiber to use...

  5. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  6. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  7. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  8. The New Phases due to Symmetry Protected Piecewise Berry Phases; Enhanced Pumping and Non-reciprocity in Trimer Lattices.

    Science.gov (United States)

    Liu, Xuele; Agarwal, G S

    2017-03-24

    Finding new phase of matter is a fundamental task in physics. Generally, various phases or states of matter (for instance solid/liquid/gas phases) have different symmetries, the phase transitions among them can be explained by Landau's symmetry breaking theory. The topological phases discovered in recent years show that different phases may have the same symmetry. The different topological phases are characterized by different integer values of the Berry phases. By studying one dimensional (1D) trimer lattices we report new phases beyond topological phases. The new phases that we find are characterized by piecewise continuous Berry phases with the discontinuity occurring at the transition point. With time-dependent changes in trimer lattices, we can generate two dimensional (2D) phases, which are characterized by the Berry phase of half period. This half-period Berry phase changes smoothly within one state of the system while changes discontinuously at the transition point. We further demonstrate the existence of adiabatic pumping for each phase and gain assisted enhanced pumping. The non reciprocity of the pumping process makes the system a good optical diode.

  9. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG).

    Science.gov (United States)

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F

    2011-04-01

    To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.

  10. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  11. Development of ANC-type empirical two-phase pump model for full size CANDU primary heat transport pump

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Huynh, H.M.

    2004-01-01

    The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)

  12. Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential

    International Nuclear Information System (INIS)

    Ikhdair, S.M.

    1992-07-01

    We develop an approach to the solution of the spinless Bethe-Salpeter equation for the different-mass case. Although the calculations are developed for spin-zero particles in any arbitrary spherically symmetric potential, the non-Coulombic effective power-law potential is used as a kernel to produce the spin-averaged bound states of the non-self-conjugate mesons. The analytical formulae are also applicable to the self-conjugate mesons in the equal-mass case. The flavor-independent case is investigated in this work. The calculations are carried out to the third-order correction of the energy series. Results are consistent with those obtained before. (author). 14 refs, 1 tab

  13. Lightweight Pump Technology for Advanced Green Monopropellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima will develop an innovative light weight self-pressurizing pump (SPP) technology to provide a constant-pressure supply of monopropellant to a spacecraft or...

  14. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  15. Solvent-dependent self-assembly and ordering in slow-drying semi-crystalline conjugated polymer solutions

    KAUST Repository

    Zhao, Kui

    2015-09-07

    The mechanistic understanding of the intrinsic molecular self-assembly of conjugated polymers is of immense importance to controlling the microstructure development in organic semiconducting thin films, with meaningful impact on charge transport and optoelectronic properties. Yet, to date the vast majority of studies have focused on the fast solution process itself, with studies of slower intrinsic molecular self-assembly in formulations lagging behind. Here we have investigated molecular self-assembly during spontaneous organization and uncovered how changes in formulation influence the microstructure, morphology and transport properties of conjugated polymer thin films. Our results suggest that the polymer-solvent interaction is the key factor for the molecular self-assembly and changes in macroscopic charge transport, which is in contrast with most solution processes, such as spin-coating and blade coating, where solvent drying kinetics dominates the aggregation and crystallization processes. Energetically favourable interactions between the polymer and its solvent are shown to cause chain expansion, resulting in a large hydrodynamic volume and few chain entanglements in solution. This provides molecular freedom for self-assembly and is shown to greatly enhance the local and long range order of the polymer, intra-chain backbone planarity and crystallite size. These improvements, in turn, are shown to endow the conjugated polymer with high carrier transport, as demonstrated by organic thin film transistors.

  16. Operation of pumps in two-phase steam-water flow

    International Nuclear Information System (INIS)

    Grison, P.; Lauro, J.F.

    1978-01-01

    Determining the two-phase flow (critical or not) through a pump is an esential element for a complete description of loss of coolant accident in a PWR reactor. This article descibes the theoretical and experimental research being done on this subject in France. The model of the pump is first described and its behaviour is examined in different possible cases, particularly that of critical flow. The analysis of the behaviour of the pump is then used to define the experimental conditions for the tests. Two test loops, EVA and EPOPEE, were built. The experimental results are then compared with the theoretical forecasts [fr

  17. Statistics of errors in fibre communication lines with a phase-modulation format and optical phase conjugation

    International Nuclear Information System (INIS)

    Shapiro, Elena G; Fedoruk, Mikhail P

    2011-01-01

    Analytical formulas are derived to approximate the probability density functions of 'zero' and 'one' bits in a linear communication channel with a binary format of optical signal phase modulation. Direct numerical simulation of the propagation of optical pulses in a communication line with optical phase conjugation is performed. The results of the numerical simulation are in good agreement with the analytical approximation. (fibreoptic communication lines)

  18. Intracavity quasi-phase-matched self-frequency conversion in a periodically poled Nd:Mg:LiNbO3 crystal

    International Nuclear Information System (INIS)

    Laptev, G D; Novikov, Aleksei A

    2001-01-01

    The theory of intracavity quasi-phase-matched self-frequency conversion in an active nonlinear periodically poled structure is developed. The processes of quasi-phase-matched self-frequency doubling, self-halving and mixing using the pump wave in a periodically poled Nd:Mg:LiNbO 3 crystal are studied. The dependences of the efficiency of nonlinear optical conversion in these processes on the reflection coefficient of the output mirror and on linear losses in the medium are investigated. (nonlinear optical phenomena)

  19. Tunable femtosecond lasers with low pump thresholds

    Science.gov (United States)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  20. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  1. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  2. Experiments of steady state head and torque of centrifugal pumps in two-phase flow

    International Nuclear Information System (INIS)

    Minato, Akihiko; Tominaga, Kenji.

    1988-01-01

    Circulation pump behavior has large effect on coolant discharge flow rate in case of reactor pipe break. Experiment of two-phase pump performance was conducted as a joint study of Japanese BWR user utilities and makers. Two-phase head and torque of three centrifugal pumps in high temperature and high pressure (around 6 MPa) steam/water were measured. Head was decreased from single-phase characteristics when gas was mixed in liquid flow in condition with normal flow and normal rotation directions. When flow rate was large enough, two-phase head was about the same as single-phase one in reversal flow conditions. Two-phase head was smoothly increased as flowing steam volumetic concentration increased when flow rate was small and flow direction was reversal. Changes of torque with gas concentration were correspondent to those of head. This suggested that changes of interaction between flow and impellers due to phase slip effected on torque which caused head differences between single- and two-phase flows. Dependence of dimensionless head and torque of three test pumps on steam concentration were almost the same as each other. (author)

  3. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    Science.gov (United States)

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.

  4. Tritium system for a tokamak reactor with a self-pumped limiter

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Sze, D.K.

    1986-01-01

    Benefits of the self-pumping system are the elimination of vacuum ducts, pumps, and penetration shielding (except for a very small startup system), and the reduction of tritium recycle and refueling. In addition, a self-pumped system may perform better and last longer than alternative systems such as a pumped limiter. The reference case here is a self-cooled lithium/vanadium blanket with a first wall/limiter. This concept combines the functions of first wall and limiter into a single first-wall structure. The wall is shaped in accordance with the outermost plasma flux surface. Trapping material is added to the plasma scrape-off or edge region where it is transported to the wall. The entire wall area is used for helium trapping. The tritium inventory, tritium permeation rate, and plasma protium concentration for the vanadium wall as a function of the number of years of operation are calculated. The tritium inventory is acceptable, the protium concentration in the plasma is acceptably small, and the tritium permeation rate is moderate. At the start of operation, it is equal to about five times the tritium burnup rate. This tritium will enter the coolant and the cost of the blanket tritium recovery system will be higher

  5. Detecting Output Pressure Change of Positive-Displacement Pump by Phase Trajectory Method

    Directory of Open Access Journals (Sweden)

    Jerzy Stojek

    2010-06-01

    Full Text Available The monitoring of hydraulic system condition change during its exploitation ran its complex problem. The main task is to identifyearly phase damage of hydraulic system elements (pumps, valves, ect. in order to take decision which can avoid hydraulic system breakdown. This paper presents the possibility of phase trajectories use in detecting output pressure change of hydraulic system causedby positive-displacement pump wear.

  6. The Gas-Phase Photophysics of Eosin Y and its Maleimide Conjugate.

    Science.gov (United States)

    Daly, Steven; Kulesza, Alexander; Knight, Geoffrey; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2016-05-26

    The use of the xanthene family of dyes as fluorescent probes in a wide range of applications has provided impetus for the studying of their photophysical properties. In particular, recent advances in gas-phase techniques such as FRET that utilize such chromophores have placed a greater importance on the characterization of these properties in the gas phase. Additionally, the use of synthetic linker chains to graft the chromophores in a site-specific manner to their target system is ubiquitous. There is, however, often limited information on how the addition of such a linker chain may affect the photophysical properties of the chromophores, which is of fundamental importance for interpretation of experimental data reliant on grafted chromophores. Here, we present data on the optical spectroscopy of different protonation states of Eosin Y, a fluorescein derivative. We compare the photophysics of Eosin Y to its maleimide conjugate, and to the thioether product of the reaction of this conjugate with cysteamine. Comparison of the mass spectra following laser irradiation shows that very different relaxation takes place upon addition of the maleimide moiety but that the photophysics of the bare chromophore are restored upon addition of cysteamine. This radical change in the photophysics is interpreted in terms of charge-transfer states, whose energy relative to the S1 ← S0 transition of the chromophore is dependent on the conjugation of the maleimide moiety. We also show that the shape of the absorption band is unchanged in the gas-phase as compared to the solution-phase, showing a maximum with a shoulder toward the blue, and examination of isotope distributions of the isolated ions show that this shoulder cannot be due to the presence of dimers. Consideration of the fluorescence emission spectrum allows a tentative assignment of the shoulder to be due to a vibrational progression with a high Franck-Condon factor.

  7. Recovery of light nonaqueous-phase liquids without groundwater pumping

    International Nuclear Information System (INIS)

    Markley, D.E.; Prince-Larsen, N.

    1995-01-01

    This paper outlines recovery of light nonaqueous-phase liquids (LNAPL) encountered in the subsurface at a remote natural gas facility. Remediation of LNAPL in the subsurface usually begins with dual pumping of LNAPL and groundwater. However, regulations required that only LNAPL be recovered. Methods were sought for recovering LNAPL from groundwater without pumping groundwater to the surface. Alternative methods of LNAPL recovery, using a variety of skimming pumps, included: LNAPL recovery from large-diameter wells; LNAPL recovery from trenches; LNAPL recovery from small-diameter wells; and vacuum-enhanced recovery of LNAPL while skimming with a belt skimmer. Based on the goals of the site owner and the costs associated with each alternative examined, the recommended method for recovering LNAPL without groundwater pumping was recovery of LNAPL while skimming with a belt skimmer. This paper discusses both the advantages and limitations of this technique

  8. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  9. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Operation of pumps in two-phase steam-water flow. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou

    1978-01-01

    Determining the two-phase flow (critical or not) through a pump is an esential element for a complete description of loss of coolant accident in a PWR reactor. This article descibes the theoretical and experimental research being done on this subject in France. The model of the pump is first described and its behaviour is examined in different possible cases, particularly that of critical flow. The analysis of the behaviour of the pump is then used to define the experimental conditions for the tests. Two test loops, EVA and EPOPEE, were built. The experimental results are then compared with the theoretical forecasts.

  11. The self-concept and conjugal loss: evidence for structural change.

    Science.gov (United States)

    Montpetit, Mignon A; Bergeman, C S; Bisconti, Toni L

    2010-08-01

    The self-concept is often considered to be a personal resource that individuals may use to cope with life stressors, but little is known about how this entity might itself change in response to profound stress. The present study examines structural change in self-concept following conjugal loss in later life. Analyses were conducted on data collected from 57 widows every 4 months over the first 2 years post-loss. The first objective was to explore the adequacy of an operational definition of the self-concept as a latent construct lying at the confluence of self-esteem, perceived environmental mastery, and optimism. Because confirmatory factor analysis (CFA) supported this theoretically based conceptualization, the second objective of the study was to model stability and change in the structure of the self-concept over the 2-year study period. Results suggested that there is both stability and change in the self-system during the adjustment to major life stress.

  12. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui-Kang [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2014-08-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior.

  13. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    International Nuclear Information System (INIS)

    Yang, Hui-Kang; Zhang, Li-Ming

    2014-01-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior

  14. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  15. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  16. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates

    Directory of Open Access Journals (Sweden)

    Xuemeng Dong

    2010-01-01

    Full Text Available Novel amphiphilic biopolymers were synthesized using hyaluronic acid (HA as a hydrophilic segment and deoxycholic acid (DOCA as a hydrophobic segment by a 1-ethyl-3-(3-dimethylaminopropyl carbodiimide mediated coupling reaction. The structural characteristics of the HA-DOCA conjugates were investigated using H1 NMR. Self-assembled nanoparticles were prepared based on HA-DOCA conjugates, and its characteristics were investigated using dynamic laser light scattering, transmission electron microscopy (TEM, and fluorescence spectroscopy. The mean diameter was about 293.5 nm with unimodal size distribution in distilled water. The TEM images revealed that the shape of HA-DOCA self-aggregates was spherical. The critical aggregation concentration (CAC was in the range of 0.025–0.056 mg/mL. The partition equilibrium constant (Kv of pyrene in self-aggregates solution was from 1.45×104 to 3.64×104. The aggregation number of DOCA groups per hydrophobic microdomain, estimated by the fluorescence quenching method using cetylpyridinium chloride, increased with increasing degree of substitution.

  17. Solvent-dependent self-assembly and ordering in slow-drying semi-crystalline conjugated polymer solutions

    KAUST Repository

    Zhao, Kui; Yu, Xinhong; Li, Ruipeng; Amassian, Aram; Han, Yanchun

    2015-01-01

    The mechanistic understanding of the intrinsic molecular self-assembly of conjugated polymers is of immense importance to controlling the microstructure development in organic semiconducting thin films, with meaningful impact on charge transport

  18. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a

  19. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  20. Impact of phase errors at the conjugate step on the propagation of intensity and phase shaped laser beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-01-01

    Full Text Available The authors investigate the phase conjugating element of a two element Fourier transform beam shaping scheme and the impact this element has on the resulting propagation. It is shown that there are stricter limitations placed on the system when...

  1. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  2. Extinction Ratio and Gain Optimization of Dual- Pump Degenerate-Idler Phase Sensitive Amplifiers

    DEFF Research Database (Denmark)

    Kang, Ning; Lund-Hansen, Toke; Seoane, Jorge

    2011-01-01

    Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed.......Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed....

  3. Effect of the self-pumped limiter concept on the tritium fuel cycle

    International Nuclear Information System (INIS)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs

  4. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tavor, John [Johns Hopkins Univ., Baltimore, MD (United States)

    2016-12-06

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are to construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.

  5. Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide

    Directory of Open Access Journals (Sweden)

    Nobuo Kimizuka

    2011-08-01

    Full Text Available Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7 via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.

  6. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  7. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    Science.gov (United States)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  8. Small heat pumps using ammonia, phase 3; Kleinwaermepumpe mit Ammoniak, Phase 3: Fluegelzellenverdichter mit Economizer und Schraubenverdichter

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, E.; Kopp, Th.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of research done in the third phase of a research project that investigated components for small heat pump systems that use ammonia as a working fluid. The report includes a summary of the findings of the first two phases of the project and goes on to describe tests done with rotary vane and scroll compressors. The aims of the project are discussed and the work done is listed chronologically. The construction and the components of the test installation are described in detail. Also, the heat pump testing facilities at the University of Applied Science in Rapperswil, Switzerland, are described. The results of the measurements made for various temperature gradients are presented in detail and commented on; also, the various types of compressor tested and other heat pump compressors are compared.

  9. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold : Base matters

    NARCIS (Netherlands)

    Valkenier, Hennie; Huisman, Everardus H.; Hal, Paul A. van; de Leeuw, Dagobert; Chiechi, Ryan C.; Hummelen, Jan C.

    2011-01-01

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases

  10. Structural properties of the self-conjugate SU(3) tensor operators

    International Nuclear Information System (INIS)

    Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.

    1977-01-01

    Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns

  11. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser

    International Nuclear Information System (INIS)

    Su Fufang; Zhang Xingyu; Wang Qingpu; Ding Shuanghong; Jia Peng; Li Shutao; Fan Shuzhen; Zhang Chen; Liu Bo

    2006-01-01

    By using Nd:YVO 4 as the gain medium and the Raman medium simultaneously, the actively Q-switched operation of the self-Raman Nd:YVO 4 laser at 1176 nm was realized. The output characteristics including the average power, pulse energy and pulse width versus the incident pump power and pulse repetition rate were investigated. At a pulse repetition rate of 20 kHz an average power up to 0.57 W was obtained with the incident pump power of 10.2 W, corresponding to a conversion efficiency of 5.6% with respect to the diode laser input power. Meanwhile, an analysis of the self-Raman Nd:YVO 4 laser was carried out by using the rate equations. The obtained theoretical results were in agreement with the experimental results on the whole

  12. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  13. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  14. Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots

    Science.gov (United States)

    Zhang, Lu; Ming, Yi; Li, Jin

    2017-11-01

    Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.

  15. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  16. Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a 2D diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Beaud, P; Frey, H M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Resonant Holographic Interferometry is a method based on the anomalous dispersion of light having a frequency close to an electronic transition of a molecule. We propose a novel single-laser, two-colour setup for recording resonant holograms and apply it to 2D species concentration measurements. The second colour is generated by optical phase-conjugation from Stimulated Brillouin scattering in a cell. Phase-Conjugate Resonant Holographic Interferometry (PCRHI) is demonstrated in a 2D NH{sub 3}/O{sub 2} flame yielding interferograms that contain information on the NH radical distribution in the flame. Experimental results are quantified by applying a numerical computation of the Voigt profiles. (author) 1 fig., 3 refs.

  17. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    International Nuclear Information System (INIS)

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  18. Self-Q-switched ytterbium-doped cladding-pumped fibre laser

    International Nuclear Information System (INIS)

    Grukh, Dmitrii A; Kurkov, Andrei S; Razdobreev, I M; Fotiadi, A A

    2002-01-01

    A self-Q-switched ytterbium-doped double-clad fibre laser is described. A samarium-doped fibre is used as a filter for protecting a pump source. A fibre coupler is employed to obtain a nonlinear feedback. The mechanism of pulse formation in the laser is considered, and the dependence of its output pulse on the coupler parameters is studied. (solitons and optical fibers)

  19. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach

    Science.gov (United States)

    Martindale, James D.; Fu, Henry C.

    2017-09-01

    This study is motivated by a microfluidic device that imparts a magnetic torque on an array of bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response to properties of the background fluid, which provides an intriguing mechanism allowing their use as an engineered element for the regulation or transport of chemicals in microscale applications. The synchronization of flagellar phase has been widely studied in biological contexts, but here we examine the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum. Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt arises and influences pumping. The mean-field methodology allows us to take into account possible phase differences through a time-averaging procedure and to model an infinite array of flagella. We find array separation distances, magnetic field strengths, and rotation frequencies that produce nontrivial self-consistent pumping solutions. For individual flagella, pumping is reversed when helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted pumping solutions become untilted nonpumping solutions when helicity or rotation is reversed.

  20. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  1. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    Science.gov (United States)

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1 H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  2. Diffuse x-ray scattering study of interfacial structure of self-assembled conjugated polymers

    International Nuclear Information System (INIS)

    Wang Jun; Park, Y.J.; Lee, K.-B.; Hong, H.; Davidov, D.

    2002-01-01

    The interfacial structures of self-assembled heterostructures through alternate deposition of conjugated and nonconjugated polymers were studied by x-ray reflectivity and nonspecular scattering. We found that the interfacial width including the effects of both interdiffusion and interfacial roughness (correlated) was mainly contributed by the latter one. The self-assembled deposition induced very small interdiffusion between layers. The lateral correlation length ξ parallel grew as a function of deposition time (or film thickness) described by a power law ξ parallel ∝t β/H and was also observed from the off-specular scattering

  3. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  4. A self-regulating valve for single-phase liquid cooling of microelectronics

    International Nuclear Information System (INIS)

    Donose, Radu; De Volder, Michaël; Peirs, Jan; Reynaerts, Dominiek

    2011-01-01

    This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h −1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature.

  5. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil, E-mail: eskil.aursand@sintef.no; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor

    2016-03-15

    A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions. - Highlights: • A multi-phase flow model for thermomagnetically pumped ferrofluid is proposed. • An implementation is validated against experiments from the literature. • Predicted thermomagnetic pumping effect agrees with experiments. • However, a very large sensitivity to heat transfer coefficient is revealed.

  6. Conjugate gradient method for phase retrieval based on the Wirtinger derivative.

    Science.gov (United States)

    Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong

    2017-05-01

    A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.

  7. Combretastatin A4/poly(L-glutamic acid-graft-PEG conjugates self-assembled to nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2018-03-01

    Full Text Available Combretastatin A4 (CA4 possesses varying ability to cause vascular disruption in tumors, while the short half-life, low water solubility and deactivation of many CA4 analogs during storage limited its antitumor efficacy and drug stability. A novel macromolecular conjugate of CA4 (CA4-PL was synthesized by covalent bonding of CA4 onto poly(L-glutamic acid-graft-polyethylene glycol (PLG-g-PEG via Yamaguchi reaction. The obtained CA4-PL was characterized by 1H NMR, GPC, and UV methods, and the properties of the nanoparticles composed of CA4-PL, including critical aggregation concentration, size and size distribution, and morphology, were investigated. CA4-PL can self-assemble to form micelle-like nanoparticles of 80~120 nm in diameter, which may have potential to improve the blood circulation period as well as the targetability of CA4, and find applications to treat various tumors when combined with traditional chemotherapy or radio therapy. Keywords: Combretastatin A4, Macromolecular conjugate, Poly(L-glutamic acid-graft-polyethylene glycol, Self-assemble, Nanoparticles

  8. Adaptive change in self-concept and well-being during conjugal loss in later life.

    Science.gov (United States)

    Montpetit, Mignon A; Bergeman, C S; Bisconti, Toni L; Rausch, Joseph R

    2006-01-01

    The present study examines the association between the self-concept and adaptation to conjugal loss; the primary aim was to explore whether those individuals high in self-esteem, environmental mastery, and optimism have more adaptive resources with which to ameliorate the detrimental sequelae of bereavement. Analyses were conducted on data collected from 58 widows every four months over a two-year period. One goal of the research was to explore the adequacy of the theoretically chosen operational definition of the self-concept; another goal was to analyze how changes in the level of self-concept components correlated with changes in levels of depression, health, and grief resolution as individuals adjusted to their losses. Analyses revealed that trajectories of depression and grief resolution were more highly related than health to changes in self-concept.

  9. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    Science.gov (United States)

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  10. Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, Nikolai [Los Alamos National Laboratory

    2008-01-01

    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).

  11. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.

    1997-01-01

    Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect...

  12. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  13. Lipid-peptide-polymer conjugates and nanoparticles thereof

    Science.gov (United States)

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... materials using self-pumped phase conjugate beam of the object beam itself as the other writing beam is proposed. Our detailed theoretical analysis shows four-fold increase in the diffraction efficiency of dynamic holograms if recorded using this geometry even in photorefractive crystal like BTO (having low optical activity) ...

  15. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    Science.gov (United States)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  16. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    Science.gov (United States)

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  17. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  18. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  19. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    OpenAIRE

    Anh Van Nguyen; Victor Deineka; Lumila Deineka; Anh Vu Thi Ngoc

    2017-01-01

    Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs) retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA) by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD) and mass spectrometric (MS) detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, ...

  20. Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature

    International Nuclear Information System (INIS)

    Oto, Akihiro; Naohara, Nobuyuki; Ishida, Masayoshi; Katsuki, Kenji; Kumazawa, Ryouji

    1995-01-01

    A sodium-immersed, self-cooled electromagnetic (EM) pump was recently studied as a prospective innovative technology to simplify a fast breeder reactor plant system. The EM pump for a primary pump, a pump type, was designed, and the structural concept and the system performance were clarified. For the flow control method, a constant voltage/frequency method was preferable from the point of view of pump performance and efficiency. The insulation life was tested on a large-scale coil at high temperature as part of the development of a large-capacity EM pump. Mechanical and electrical damage were not observed, and the insulation performance was quite good. The insulation system could also be applied to large-scale coils

  1. Assessment of guide vane self-excitation stability at small openings in pump flow

    International Nuclear Information System (INIS)

    Nennemann, B; Sallaberger, M; Henggeler, U; Gentner, C; Parkinson, E

    2012-01-01

    A parameter study of self-excited pump turbine guide vane instability at small openings using a combined CFD-1DOF approach shows that clear tendencies are difficult to obtain. Two types of boundary conditions can be used in the simulations: prescribed mass flow and prescribed pressure. Simulations with both show results that - for one specific operating condition - are consistent with a self-excited guide vane incident at a prototype pump turbine. However, over a larger range of reduced velocities, the tendencies obtained with the two boundary condition types are not always consistent. Pressure boundary conditions may be the more realistic option. Results then show that with increasing reduced velocity, guide vanes will eventually reach static instability or divergence. This may not be problematic. In contrast, passing through a zone of dynamic instability during operation should and can be avoided.

  2. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  3. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    International Nuclear Information System (INIS)

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-01-01

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result

  4. Long-distance transmission over standard fiber by use of mid-way phase conjugation

    DEFF Research Database (Denmark)

    Zhang, Xiupu; Ebskamp, Frank; Jørgensen, Bo Foged

    1995-01-01

    In this letter, we predict transmission over more than 6000 km using standard fiber with the application of mid-way phase-conjugation in a 1.55-μm, 10-Gb/s IM/DD system with in-line amplifiers for the power penalty at BER=10-9, which is less than 6 dB; the system must operate with an average powe...... into the fiber within the range of -5 to 5 dBm...

  5. Small Scroll Pump for Cryogenic Liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  6. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  7. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  8. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  9. Two-phase performance characteristics of a PWR primary pump under LOCA conditions

    International Nuclear Information System (INIS)

    Grison, P.; Lauro, J.F.

    1977-01-01

    A mathematical model, based on the Euler's theory and a limited flashing, is presented for the flow calculation through a pump working in two-phase conditions, Similarity criteria for representative experimental conditions are studied. The experimental test loop and the first experimental results are described. (author)

  10. Short locking time and low jitter phase-locked loop based on slope charge pump control

    International Nuclear Information System (INIS)

    Guo Zhongjie; Liu Youbao; Wu Longsheng; Wang Xihu; Tang Wei

    2010-01-01

    A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range. (semiconductor integrated circuits)

  11. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  12. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  13. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  14. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  15. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  16. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  17. Comparison of a wellpoint vacuum pump system to dual pump recovery system effectiveness for the extraction of light non-aqueous phase liquids

    International Nuclear Information System (INIS)

    Koll, C.S.; Palmerton, D.L. Jr.; Kunzel, R.G.

    1994-01-01

    The effectiveness of two light non-aqueous phase liquid (LNAPL) extraction systems is compared at a site in the Mid-New Jersey Atlantic Coastal Plains Region: an existing dual pump recovery system and a wellpoint vacuum pump system. Home heating oil was released to a shallow sand and gravel aquifer by a leaky underground distribution system in the early 1970s. Eight-inch-diameter dual pump recovery wells were used for the last nine years, to lower the water table and extract LNAPL at several spill sites located throughout a residential community of 1,500 homes. Several small LNAPL plumes still exist today with surface areas ranging from 400 ft 2 to over 28,000 ft 2 . LNAPL recovery peaked in 1985 using dual pump recovery systems, averaging 33 gallons per day (gpd). In 1987, four 24-inch wells were replaced by 11 8-inch-diameter recovery wells at six sites, and LNAPL recovery rates averaged 5 gpd. In recent years, the recovery of LNAPL has declined and when graphed, is asymptotic. In 1993, dual pump recovery of LNAPL averaged 0.3 gpd for all six sites

  18. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    Science.gov (United States)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  19. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.

    Science.gov (United States)

    Goel, Mahima; Jayakannan, M

    2010-10-07

    Here, we report a unique design strategy to trace the role of aromatic π-stacking and van der Waals interactions on the molecular self-organization of π-conjugated building blocks in a single system. A new series of bulky oligophenylenevinylenes (OPVs) bearing a tricyclodecanemethylene (TCD) unit in the aromatic π-core with flexible long methylene chains (n = 0-12 and 16) in the longitudinal position were designed and synthesized. The OPVs were found to be liquid crystalline, and their enthalpies of phase transitions (also entropies) showed odd-even oscillation with respect to the number of carbon atoms in alkyl chains. OPVs with an even number of methylene units in the side chains showed higher enthalpies with respect to their highly packed solid structures compared to odd-numbered ones. Polarized light microscopic analysis confirmed the formation of cholesteric liquid crystalline (LC) phases of fan shaped textures with focal conics in OPVs with 5 ≤ n ≤ 9. OPVs with longer alkyl chains (OPV-10 to OPV-12) produced a birefringence pattern consisting of dark and bright ring-banded suprastructures. The melting temperature followed a sigmoidal trend, indicating the transformation of molecular self-organization in OPVs from solid to ring-banded suprastructures via cholesteric LC intermediates. At longer alkyl chain lengths, the van der Waals interactions among the alkyl chains became predominant and translated the mesogenic effect across the lamellae; as a consequence, the lamellae underwent twisted self-organization along the radial growth direction of the spherulites to produce bright and dark bands. Scanning electron microscope (SEM) analysis of cholesteric LC and ring-banded textures strongly supported the existence of twisted lamellae in the OPVs with ring-banded textures. Variable temperature X-ray diffraction analysis confirmed the reversibility of the molecular self-organization in the solid state and also showed the existence of the higher ordered

  20. Silicon Waveguide with Lateral p-i-n Diode for Nonlinearity Compensation by On-Chip Optical Phase Conjugation

    DEFF Research Database (Denmark)

    Gajda, A.; Da Ros, Francesco; Porto da Silva, Edson

    2018-01-01

    A 1-dB Q-factor improvement through optical phase conjugation in a silicon waveguide with a lateral p-i-n diode enables BER

  1. Phase conjugation of speckle-inhomogeneous radiation in a holographic Nd:YAG laser with a short thermal hologram

    International Nuclear Information System (INIS)

    Yarovoi, V V; Kirsanov, A V

    2002-01-01

    A model of the so-called short hologram, which does not exhibit in-depth diffraction deformation of the fine speckle pattern of the recording fields, is studied. The investigation is performed by the example of a thermal hologram recorded by two speckle waves, which is the output mirror of a ring laser produced as a result of this recording. It is shown that the ability of this short hologram to select a wave conjugated to a speckle signal in the mode of the holographic laser depends both on the degree of mutual mixing of the speckles of recording beams in the hologram volume and on the effects of its saturation by the beams. The maximum accuracy of phase conjugation of speckle radiation in the holographic Nd:YAG laser achieved upon the best selection of the conjugate wave by the short thermal hologram was 93%. (nonlinear optical phenomena)

  2. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  3. Simultaneous fit of the spectra of light and heavy self-conjugate mesons

    International Nuclear Information System (INIS)

    Jena, S.N.

    1983-01-01

    It is shown that a simultaneous nonrelativistic fit of the spectra of both the light and heavy self-conjugate mesons is possible by an effective non-Coulombic power-law potential of the form V(r) = Ar/sup 0.1/+V 0 . This purely phenomenological potential is found to provide a very good account of the mass spectra and the leptonic decay widths of the rho 0 , theta, psi, and UPSILON systems in a flavor-independent manner. In spite of the smallness of the constituent quark masses involved, the nonrelativistic fit for the light mesons of rho 0 and theta systems is excellent

  4. Modern methods for the synthesis of peptide-oligonucleotide conjugates

    International Nuclear Information System (INIS)

    Zubin, Evgenii M; Oretskaya, Tat'yana S; Romanova, Elena A

    2002-01-01

    The published data on the methods of chemical solution and solid-phase synthesis of peptide-oligonucleotide conjugates are reviewed. The known methods are systematised and their advantages and disadvantages are considered. The approaches to the solution synthesis of peptide-oligonucleotide conjugates are systematised according to the type of chemical bonds between the fragments, whereas those to the solid-phase synthesis are classified according to the procedure used for the preparation of conjugates, viz., stepwise elongation of oligonucleotide and peptide chains on the same polymeric support or solid-phase condensation of two presynthesised fragments. The bibliography includes 141 references.

  5. Bis-polymer lipid-peptide conjugates and nanoparticles thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Dong, He; Shu, Jessica; Dube, Nikhil

    2018-04-24

    The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.

  6. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    CSIR Research Space (South Africa)

    Romero, J

    2012-08-01

    Full Text Available -1 Journal of Optics August 2012/ Vol. 14. No 8 Orbital angular momentum correlations with a phase- flipped Gaussian mode pump beam J Romero1,2, D Giovannini1, M G McLaren3,4, E J Galvez5, A Forbes3,4 and M J Padgett1 1 School of Physics...

  7. Low plasma edge temperatures for the self-pumped limiter

    International Nuclear Information System (INIS)

    Terry, W.K.; Brooks, J.N.

    1985-03-01

    Transport code calculations have been performed to study the operation of an INTOR-like tokamak plasma from which helium is removed by a self-pumped limiter, which traps helium, but not hydrogen, in its surface layers. To prevent saturation by helium, the surface is renewed by continuous injection of the surface material (vanadium in this study) into the scrape-off layer. The presence of the injected vanadium leads to plasma temperatures well below 50 eV in the scrape-off layer, with supplementary rf heating. Operation in this edge temperature regime is essential for the use of medium- and high-Z limiter coatings

  8. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole.

    Science.gov (United States)

    Shivhare, Kriti; Garg, Charu; Priyam, Ayushi; Gupta, Alka; Sharma, Ashwani Kumar; Kumar, Pradeep

    2018-01-01

    Molecular self-assembly of biodegradable amphiphilic polymers allows rational design of biocompatible nanomaterials for drug delivery. Use of substituted polysaccharides for such applications offers the ease of design and synthesis, and provides higher biofunctionality and biocompatibility to nanomaterials. The present work focuses on the synthesis, characterization and potential biomedical applications of self-assembled polysaccharide-based materials. We demonstrated that the synthesized amphiphilic inulin self-assembled in aqueous medium into nanostructures with average size in the range of 146-486nm and encapsulated hydrophobic therapeutic molecule, ornidazole. Hydrophophic dehydropeptide was conjugated with inulin via a biocompatible ester linkage. Dehydrophenylalanine, an unusual amino acid, was incorporated in the peptide to make it stable at a broader range of pH as well as against proteases. The resulting core-shell type of nanostructures could encapsulate ornidazole in the hydrophobic core and released it in a controlled fashion. By taking the advantage of inulin, which gets degraded in the colon by colonic bacteria, the effect of enzyme, inulinase, present in the microflora of the large intestine, on inulin-peptide degradation followed by drug release has been studied. Altogether, small peptide conjugated to inulin offers novel scaffold for the future design of nanostructures with potential applications in the field of targeted drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Self-assembled nanoparticles of modified-chitosan conjugates for the sustained release of dl-α-tocopherol

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2013-01-01

    Synthetic O6-succinylated chitosan and commercial glycol chitosan were covalently linked to dl-α-tocopheryl monoesters for controlled release of vitamin E. These conjugates formed self-assembled nanoparticles in aqueous solution with 254–496 nm mean diameters and dl-α-tocopherol contents between 27...... and 39% (w/w). The particles appeared as 40–75 nm almost spherical nanoparticles when studied by scanning and transmission electron microscopy upon drying. Drug linking to chitosan matrix was confirmed by FTIR spectroscopy and proton NMR. Conjugates were also characterized by differential scanning...... calorimetry and wide-angle X-ray diffraction. In vitro tocopherol release studies performed in water at acid pH indicated a drug release dependence on drug content, hydrated particle sizes and employed chitosan derivative. Almost constant release rates were observed the first 7 h. The obtained nanoparticles...

  10. Experimental observation of chaotic phase synchronization of a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Hui; Kuo, Chie-Tong [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Hsu, Tzu-Fang, E-mail: tfhsu@mail.npue.edu.tw [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan, ROC (China); Jan, Hengtai; Han, Shiang-Yi [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Ho, Ming-Chung, E-mail: t1603@nknucc.nknu.edu.tw [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Jiang, I-Min [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China)

    2012-03-12

    In this Letter we demonstrate the experimental observation of chaotic phase synchronization (CPS) in a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. PS transition is displayed via the stroboscopic technique. We apply the recurrence probability and correlation probability of recurrence to estimate the degree of PS. The degree of PS is studied taking into account the modulation amplitude and modulation frequency. We also propose an experimental compatible numerical simulation to reflect the fact that the Arnold tongues are experimentally and numerically exhibited in the periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. -- Highlights: ► We show chaotic phase synchronization in a pump-modulated microchip Nd:YVO{sub 4} laser. ► Phase synchronization (PS) transition is displayed via the stroboscopic technique. ► The degree of PS is studied taking into account the modulation parameters. ► The Arnold tongues are experimentally and numerically exhibited in the laser.

  11. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  12. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  13. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  14. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media

    Science.gov (United States)

    Voinovich, Peter; Merlen, Alain

    2005-12-01

    The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.

  15. Self-assembly of π-conjugated bis(terpyridine) ligands with zinc(II) ions : new metallosupramolecular materials for optoelectronic applications

    NARCIS (Netherlands)

    Winter, A.; Friebe, C.; Chiper, C.M.; Hager, M.D.; Schubert, U.S.

    2009-01-01

    A series of main-chain metallopolymers (P1-P10) was prepared by the self-assembly of rigid-linear p-conjugated bis(terpyridine) monomers (1-10) with Zn11 ions and was fully characterized. The polymerization was additionally confirmed by UV/vis titration experiments, A strong increase in viscosities

  16. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  17. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  18. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  19. Wet motor gerotor fuel pump with self-aligning bearing

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, W.A.

    1987-02-24

    A wet motor gerotor fuel pump is described for pumping fuel from a fuel source to an internal combustion engine comprising: a pump case having one end, an opposite end and a flow axis therethrough, the pump case further comprising an inlet end bore at the one end adapted to communicate with the fuel source; an inlet chamber adjacent to the inlet end bore; a motor chamber located in the opposite end of the pump case; a pump chamber interposed the motor chamber and the inlet chamber; first means for sealing the pump case, the first means for sealing located at the opposite end of the pump case; inlet housing means mounted in the pump chamber, the inlet housing means comprising an annular hub protruding into the inlet chamber. The inlet housing means further comprises a gerotor cavity about a gerotor axis located parallel to and displaced a predetermined distance in an eccentric radial direction from the flow axis.

  20. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  1. Experimental study of centrifugal pump performance under steam-water two-phase flow conditions at elevated pressures

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Barreca, S.L.; Hartlen, R.T.

    1991-01-01

    The performance of a centrifugal pump under two-phase flow conditions was studied in a closed loop. System voids of increasing magnitude were attained by draining water from the loop in steps. The operating temperature/pressure were varied from 110 degrees C/0.15 MPa to 260 degrees C/4.7 MPa. Only tests in the first quadrant were conducted. In this paper the head-flow characteristics and pump head degradation data are presented and discussed

  2. Class, Kinship Density, and Conjugal Role Segregation.

    Science.gov (United States)

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  3. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    Science.gov (United States)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  4. Self-organizing maps applied to two-phase flow on natural circulation loop studies

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo F.; Cunha, Kelly de P.; Andrade, Delvonei A.; Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Rocha, Marcelo da S.; Masotti, Paulo H.F.; Mesquita, Roberto N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)

  5. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  6. Conjugated material self-assembly : towards supramolecular electronics

    NARCIS (Netherlands)

    Leclère, P.E.L.G.; Surin, M.; Cavallini, M.; Jonkheijm, P.; Henze, O.; Schenning, A.P.H.J.; Biscarini, F.; Grimsdale, A.C.; Feast, W.J.; Meijer, E.W.; Müllen, K.; Brédas, J.L.; Lazzaroni, R.

    2004-01-01

    Properties of organic electronic materials in solid-state are determined as individual molecules and molecular assembly. It is essential to optimize conjugated materials to control performance of molecular assembly that constitute electronic devices such as light-emitting diodes and solar cells, and

  7. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  8. Application of heat-balance integral method to conjugate thermal explosion

    Directory of Open Access Journals (Sweden)

    Novozhilov Vasily

    2009-01-01

    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  9. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  10. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    International Nuclear Information System (INIS)

    Robb, Kevin R.; Jain, Prashant K.; Hazelwood, Thomas J.

    2016-01-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  11. 46 CFR 181.300 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD... EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be..., the minimum capacity of the fire pump must be 189 liters (50 gallons) per minute at a pressure of not...

  12. 46 CFR 118.300 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On a..., the fire pump must be capable of delivering a single hose stream from the highest hydrant, through the...

  13. Comparison of Separation of Seed Oil Triglycerides Containing Isomeric Conjugated Octadecatrienoic Acid Moieties by Reversed-Phase HPLC

    Directory of Open Access Journals (Sweden)

    Anh Van Nguyen

    2017-12-01

    Full Text Available Relative retention analysis and increment approach were applied for the comparison of triglycerides (TGs retention of a broad set of plant seed oils with isomeric conjugated octadecatrienoic acids (CLnA by reversed-phase HPLC for “propanol-2-acetonitrile” mobile phases and Kromasil 100-5C18 stationary phase with diode array detection (DAD and mass spectrometric (MS detection. The subjects of investigation were TGs of seed oils: Calendula officinalis, Catalpa ovata, Jacaranda mimosifolia, Centranthus ruber, Momordica charantia, Trichosanthes anguina, Punica granatum, Thladiantha dubia, Valeriana officinalis, and Vernicia montana. It was found that a sequence of elution of TGs of the same types is the same without any inversions for full range of mobile phase compositions: punicic (C18:39Z11E13Z < jacaric (C18:38Z10E12Z < catalpic (C18:39E11E13Z < α-eleostearic (C18:39Z11E13E < calendic (C18:38E10E12Z < β-eleostearic (C18:39E11E13E < all-E calendic (C18:38E10E12E acids. TGs and fatty acid compositions were calculated for all oil samples. Regularities of solute retentions as a function of isomeric conjugated octadecatrienoic acid moiety structure are discussed. Thus, it was proven that it is possible to differentiate TGs of complex composition with moieties of all natural CLnA by retention control accomplished by electronic spectra comparison, even though there are only three types of electronic-vibration spectra for seven isomeric CLnA.

  14. Measuring $CP$ violation and mixing in charm with inclusive self-conjugate multibody decay modes

    CERN Document Server

    Malde, S.; Wilkinson, G.

    2015-05-28

    Time-dependent studies of inclusive charm decays to multibody self-conjugate final states can be used to determine the indirect $CP$-violating observable $A_\\Gamma$ and the mixing observable $y_{CP}$, provided that the fractional $CP$-even content of the final state, $F_+$, is known. This approach can yield significantly improved sensitivity compared with the conventional method that relies on decays to $CP$ eigenstates. In particular, $D \\to \\pi^+\\pi^-\\pi^0$ appears to be an especially powerful channel, given its relatively large branching fraction and the high value of $F_+$ that has recently been measured at charm threshold.

  15. Metallic Contact Formation for Molecular Electronics : Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols

    NARCIS (Netherlands)

    Boer, Bert de; Frank, Martin M.; Chabal, Yves J.; Jiang, Weirong; Garfunkel, Eric; Bao, Zhenan

    2004-01-01

    We present grazing-incidence Fourier transform infrared and AFM data of Au, Al, and Ti vapor-deposited onto self-assembled monolayers (SAMs) of conjugated mono- and dithiols. SAMs of 4,4'''-dimercapto-p-quaterphenyl, 4,4''-dimercapto-p-terphenyl, and 4,4'-dimercapto-p-biphenyl have reactive thiols

  16. Self-organization comprehensive real-time state evaluation model for oil pump unit on the basis of operating condition classification and recognition

    Science.gov (United States)

    Liang, Wei; Yu, Xuchao; Zhang, Laibin; Lu, Wenqing

    2018-05-01

    In oil transmission station, the operating condition (OC) of an oil pump unit sometimes switches accordingly, which will lead to changes in operating parameters. If not taking the switching of OCs into consideration while performing a state evaluation on the pump unit, the accuracy of evaluation would be largely influenced. Hence, in this paper, a self-organization Comprehensive Real-Time State Evaluation Model (self-organization CRTSEM) is proposed based on OC classification and recognition. However, the underlying model CRTSEM is built through incorporating the advantages of Gaussian Mixture Model (GMM) and Fuzzy Comprehensive Evaluation Model (FCEM) first. That is to say, independent state models are established for every state characteristic parameter according to their distribution types (i.e. the Gaussian distribution and logistic regression distribution). Meanwhile, Analytic Hierarchy Process (AHP) is utilized to calculate the weights of state characteristic parameters. Then, the OC classification is determined by the types of oil delivery tasks, and CRTSEMs of different standard OCs are built to constitute the CRTSEM matrix. On the other side, the OC recognition is realized by a self-organization model that is established on the basis of Back Propagation (BP) model. After the self-organization CRTSEM is derived through integration, real-time monitoring data can be inputted for OC recognition. At the end, the current state of the pump unit can be evaluated by using the right CRTSEM. The case study manifests that the proposed self-organization CRTSEM can provide reasonable and accurate state evaluation results for the pump unit. Besides, the assumption that the switching of OCs will influence the results of state evaluation is also verified.

  17. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  18. Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.

    Science.gov (United States)

    Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U

    2015-08-01

    Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.

  19. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines.

    Science.gov (United States)

    Datta, Dhrubajyoti; Tiwari, Omshanker; Ganesh, Krishna N

    2018-02-15

    During the last two decades, the molecular self-assembly of the short peptide diphenylalanine (Phe-Phe) motif has attracted increasing focus due to its unique morphological structure and utility for potential applications in biomaterial chemistry, sensors and bioelectronics. Due to the ease of their synthetic modifications and a plethora of available experimental tools, the self-assembly of free and protected diphenylalanine scaffolds (H-Phe-Phe-OH, Boc-Phe-Phe-OH and Boc-Phe-Phe-OMe) has unfurled interesting tubular, vesicular or fibrillar morphologies. Developing on this theme, here we attempt to examine the effect of structure and properties (hydrophobic and H-bonding) modifying the functional C-terminus conjugated substituents on Boc-Phe-Phe on its self-assembly process. The consequent self-sorting due to H-bonding, van der Waals force and π-π interactions, generates monodisperse nano-vesicles from these peptides characterized via their SEM, HRTEM, AFM pictures and DLS experiments. The stability of these vesicles to different external stimuli such as pH and temperature, encapsulation of fluorescent probes inside the vesicles and their release by external trigger are reported. The results point to a new direction in the study and applications of the Phe-Phe motif to rationally engineer new functional nano-architectures.

  20. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  1. Hydraulic properties from pumping tests data of aquifers in Azare ...

    African Journals Online (AJOL)

    Pumping test data from twelve boreholes in Azare area were analysed to determine the hydraulic properties of the aquifers, and the availability of water to meet the conjugate demands of the increasing population. The values of the aquifer constants obtained from the Cooper-Jacob's non-equilibrium graphical method were ...

  2. Amphotericin B-conjugated polypeptide hydrogels as a novel innovative strategy for fungal infections

    Science.gov (United States)

    Shu, Chang; Li, Tengfei; Yang, Wen; Li, Duo; Ji, Shunli; Ding, Li

    2018-03-01

    The present work is focused on the design and development of novel amphotericin B (AmB)-conjugated biocompatible and biodegradable polypeptide hydrogels to improve the antifungal activity. Using three kinds of promoting self-assembly groups (2-naphthalene acetic acid (Nap), naproxen (Npx) and dexamethasone (Dex)) and polypeptide sequence (Phe-Phe-Asp-Lys-Tyr, FFDKY), we successfully synthesized the Nap-FFDK(AmB)Y gels, Npx-FFDK(AmB)Y gels and Dex-FFDK(AmB)Y gels. The AmB-conjugated hydrogelators are highly soluble in different aqueous solutions. The cryo-transmission electron microscopy and scanning electron microscopy micrographs of hydrogels afford nanofibres with a width of 20-50 nm. Powder X-ray diffraction analyses demonstrate that the crystalline structures of the AmB and Dex are changed into amorphous structures after the formation of hydrogels. Circular dichroism spectra of the solution of blank carriers and the corresponding drug deliveries further help elucidate the molecular arrangement in gel phase, indicating the existence of turn features. The in vitro drug releases suggest that the AmB-conjugated hydrogels are suitable as drug-controlled release vehicles for hydrophobic drugs. The antifungal effect of AmB-conjugated hydrogels significantly exhibits the antifungal activity against Candida albicans. The results of the present study indicated that the AmB-conjugated hydrogels are suitable carriers for poorly water soluble drugs and for enhancement of therapeutic efficacy of antifungal drugs.

  3. Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang S.; Kuzmin, Andrey; Prasad, Paras N. [The Institute for Lasers, Photonics and Biophotonics, State University of New York, Buffalo, NY (United States)

    2016-12-15

    The threshold, temporal behavior, and conversion efficiency of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SBS) in three liquids (benzene, hexane, and dimethyl sulfoxide) and two crystals (calcite and barium nitrate) have been investigated under three largely different spectral linewidth conditions. Pumped with 532-nm and nanosecond duration laser pulses of ≤ 0.01 cm{sup -1} linewidth, only SBS can be generated in all tested liquids with a high nonlinear reflectivity. However when the pump spectral linewidth is ∝0.07 cm{sup -1} or ∝0.8 cm{sup -1}, both SBS and SRS can be observed in benzene while only SRS can be generated in dimethyl sulfoxide; in all these cases SRS is the dominant contribution to the stimulated scattering but the efficiency values are drastically decreased due to the self-termination behavior of SRS in liquids, which arises from the thermal self-defocusing of both pump beam and SRS beam owing to Stokes-shift related opto-heating effect. In contrast, for SRS process in the two crystals, the thermal self-defocusing influence is negligible benefitting from their much greater thermal conductivity, and a higher conversion efficiency of SRS generation can be retained under all three pump conditions. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  5. FIX-II. Loca-blowdown heat transfer and pump trip experiments. Summary report of phase 1: Design of experiments

    International Nuclear Information System (INIS)

    Waaranperae, Y.; Nilsson, L.; Gustafsson, P.Aa.; Jonsson, N.O.

    1979-06-01

    FIX-II is a loss of coolant blowdown heat transfer experiment, performed under contract for The Swedish Nuclear Power Inspectorate, SKI. The purpose of the experiments is to provide measurements from simulations of a pipe rupture on an external recirculation line in a Swedish BWR. Pump trips in BWRs with internal recirculation pumps will also be simulated. The existing FIX-loop at the Thermal Engineering Laboratory of Studsvik Energiteknik AB will be modified and used for the experiments. Components are included to simulate the steam dome, downcomer, two recirculation lines with one pump each, lower plenum, core (36-rod full length bundle), control rod guide tubes, core bypass, upper plenum and steam separators. The results of the first phase of the project are reported here. The following tasks are included in Phase 1: reactor reference analysis, scaling calculations of the FIX loop, development of fuel rod simulators, design of test section and test loop layout and proposal for test program. Further details of the work and results obtained for the different sub-projects are published in a number ofdetailed reports. (author)

  6. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    Science.gov (United States)

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14 C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  8. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  9. Centrifugal Pump Monitoring and Determination of Pump Characteristic Curves Using Experimental and Analytical Solutions

    Directory of Open Access Journals (Sweden)

    Marius Stan

    2018-02-01

    Full Text Available Centrifugal pumps are widely used in the industry, especially in the oil and gas sector for fluids transport. Classically, these are designed to transfer single phase fluids (e.g., water at high flow rates and relatively low pressures when compared with other pump types. As part of their constructive feature, centrifugal pumps rely on seals to prevent air entrapment into the rotor during its normal operation. Although this is a constructive feature, water should pass through the pump inlet even when the inlet manifold is damaged. Modern pumps are integrated in pumping units which consist of a drive (normally electric motor, a transmission (when needed, an electronic package (for monitoring and control, and the pump itself. The unit also has intake and outlet manifolds equipped with valves. Modern systems also include electronic components to measure and monitor pump working parameters such as pressure, temperature, etc. Equipment monitoring devices (vibration sensors, microphones are installed on modern pumping units to help users evaluate the state of the machinery and detect deviations from the normal working condition. This paper addresses the influence of air-water two-phase mixture on the characteristic curve of a centrifugal pump; pump vibration in operation at various flow rates under these conditions; the possibilities of using the results of experimental investigations in the numerical simulations for design and training purposes, and the possibility of using vibration and sound analysis to detect changes in the equipment working condition. Conclusions show that vibration analysis provides accurate information about the pump’s functional state and the pumping process. Moreover, the acoustic emission also enables the evaluation of the pump status, but needs further improvements to better capture and isolate the usable sounds from the environment.

  10. Spinning-Scroll Pump for Cryogenic Feed System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an efficient, compact, lightweight, reliable, electric-driven, cryogenic spinning scroll pump (CSSP) capable of pumping liquid methane or oxygen at...

  11. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    Science.gov (United States)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  12. Isovector pairing in self-conjugate nuclei in a formalism of quartets

    International Nuclear Information System (INIS)

    Sambataro, M; Sandulescu, N

    2014-01-01

    The isovector proton-neutron pairing in self-conjugate nuclei is treated in a formalism of quartets. Quartets are four-body correlated structures built from two neutrons and two protons coupled to total isospin T = 0. The ground state of the isovector pairing Hamiltonian is described as a product of quartets. We review both the case in which the quartets are constrained to be all identical and the case in which they are allowed to be distinct from one another. The quality of the two approaches is tested by making comparisons with exact shell model calculations for N = Z nuclei with valence nucleons outside the 16 O, 40 Ca, and 100 Sn cores. We consider both spherical and axially deformed mean fields. Both approaches are found to be very accurate. In the applications to a deformed mean field, in particular, the formalism with distinct quartets gives rise to results which are basically exact

  13. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  14. Non-self-conjugate mesons in a potential model with vacuum-polarization corrections

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    We present a unified approach to the study of non-self-conjugate mesons including both light and heavy mesons in the framework of the vacuum-polarization-corrected flavor-independent potential. We have found that the quark-confining potential in the form of an almost equal admixture of vector and scalar parts successfully explains the S-wave hyperfine levels of the observed light and heavy mesons. Finally we calculate the electromagnetic mass differences of the heavy-quark mesons and obtain (K-bar* 0 -K* - )=3.79 MeV, (K-bar 0 -K - )=6 MeV, (D* + /sub c/-D* 0 /sub c/)=2.4 MeV, (D + /sub c/-D 0 /sub c/)=5.8 MeV, (D* 0 /sub b/-D* - /sub b/)=3.547 MeV, and (D 0 /sub b/-D - /sub b/)=3.558 MeV

  15. Site-Selective Conjugation of Native Proteins with DNA

    DEFF Research Database (Denmark)

    Trads, Julie Brender; Tørring, Thomas; Gothelf, Kurt Vesterager

    2017-01-01

    Conjugation of DNA to proteins is increasingly used in academia and industry to provide proteins with tags for identification or handles for hybridization to other DNA strands. Assay technologies such as immuno-PCR and proximity ligation and the imaging technology DNA-PAINT require DNA-protein....... The introduction of a bioorthogonal handle at a specific position of a protein by recombinant techniques provides an excellent approach to site-specific conjugation, but for many laboratories and for applications where several proteins are to be labeled, the expression of recombinant proteins may be cumbersome...... conjugates. In DNA nanotechnology, the DNA handle is exploited to precisely position proteins by self-assembly. For these applications, site-selective conjugation is almost always desired because fully functional proteins are required to maintain the specificity of antibodies and the activity of enzymes...

  16. A low jitter supply regulated charge pump PLL with self-calibration

    International Nuclear Information System (INIS)

    Chen Min; Li Zhichao; Xiao Jingbo; Chen Jie; Liu Yuntao

    2016-01-01

    This paper describes a ring oscillator based low jitter charge pump PLL with supply regulation and digital calibration. In order to combat power supply noise, a low drop output voltage regulator is implemented. The VCO gain is tunable by using the 4 bit control self-calibration technique. So that the optimal VCO gain is automatically selected and the process/temperature variation is compensated. Fabricated in the 0.13 μm CMOS process, the PLL achieves a frequency range of 100–400 MHz and occupies a 190 × 200 μm 2 area. The measured RMS jitter is 5.36 ps at a 400 MHz operating frequency. (paper)

  17. Accidents and Incidents Related to Intravenous Drug Administration: A Pre-Post Study Following Implementation of Smart Pumps in a Teaching Hospital.

    Science.gov (United States)

    Guérin, Aurélie; Tourel, Julien; Delage, Emmanuelle; Duval, Stéphanie; David, Marie-Johanne; Lebel, Denis; Bussières, Jean-François

    2015-08-01

    Smart pumps are expected to prevent and reduce medication errors. The implementation of smart pumps requires a significant effort and collaboration of physicians, nurses, pharmacists, and other stakeholders. The main objective of this study was to evaluate the impact of new smart pumps on reported drug-related accidents and incidents (AIs). This is a descriptive retrospective pre-post study conducted at a women's and pediatric hospital with 500 beds. A strong multidisciplinary team (nurse, pharmacist, pharmacy resident, physician, biomedical technician, information technology technician, patient safety officer, manager) was involved in the planning, implementation, and monitoring technology implementation. A total of 1045 smart pumps were implemented in 2011 in our hospital. The reported number of AIs related to intravenous drug administration (AIIV) before and after the implementation of 1045 smart pumps were collected. A total of 2911 AI events related to medications, devices, and equipment were self-reported by clinical staff in the pre-phase (Y0), 3523 in the post-phase (Y1), and 2788 in the post-phase (Y2). The total AIIV increased from 1432 in Y0 to 1834 in Y1 and decreased to 1389 in Y2. We observed no risk reduction associated with the implementation of smart pumps in a 500 bed mother-child hospital. Further studies are required to explore the details of the potential risk reduction associated with the use of smart pumps.

  18. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schanze, Kirk S [University of Florida

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  19. Specific bile acid radioimmunoassays for separate determinations of unconjugated cholic acid, conjugated cholic acid and conjugated deoxycholic acid in serum and their clinical application

    International Nuclear Information System (INIS)

    Matern, S.; Gerok, W.

    1977-01-01

    Specific radioimmunoassays for separate determinations of serum unconjugated cholic, conjugated cholic and conjugated deoxycholic acids have been developed. Prior to the radioimmunoassay, extraction of serum bile acids was performed with Amberlite XAD-2. Unconjugated cholic acid was separated from glyco- and taurocholic acids by thin-layer chromatography. At 50% displacement of bound labeled glyco[ 3 H]cholic acid using antiserum obtained after immunization with cholic acid-bovine serum albumin-conjugate the cross-reactivity of taurocholic acid was 100%, cholic acid 80%, glycochenodeoxycholic acid 10%, chenodeoxycholic acid 7%, conjugated deoxycholic acid 3%, and conjugated lithocholic acid 3 H]cholic acid was linear on a logit-log plot from 5 to 80 pmol of unlabeled glycocholic acid. Fasting serum conjugated cholic acid in healthy subjects was 0.68 +- 0.34 μmol/l. Unconjugated cholic acid was determined by a solid phase radioimmunoassay using the cholic acid antibody chemically bound to Sepharose. The displacement curve of [ 3 H]cholic acid in the solid phase radioimmunoassay was linear on a logit-log plot from 5 to 200 pmol of unlabeled cholic acid. The coefficient of variation between samples was 5%. Fasting serum conjugated deoxycholic acid concentrations in 10 healthy subjects ranged from 0.18 to 0.92 μmol/l determined by a radioimmunoassay using antiserum obtained after immunization with deoxycholic acid-bovine serum albumin-conjugate. The clinical application of these bile acid radioimmunoassays is shown by an 'oral cholate tolerance test' as a sensitive indicator of liver function and by an 'oral cholyglycine tolerance test' as a useful test for bile acid absorption. (orig.) [de

  20. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    Science.gov (United States)

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analytical characterization of polymer-drug conjugates

    International Nuclear Information System (INIS)

    Rizzo, V.; Gigli, M.; Pinciroli, V.

    1998-01-01

    A few polymeric conjugates of antitumor drugs have been recently developed in view of possible therapeutic advantages: solubilization of sparingly soluble drugs in water, improvement of therapeutic index, organ targeting through a second chemical species bound to the same polymeric chain. In this article it's described the analytical approach used in the characterization of the conjugates for chemical identity, purity and strength of the contained active ingredient. The techniques are: high field NMR and size exclusion chromatography with non-aqueous mobile phase for identity; selective hydrolysis and HPLC for strength and purity. A complete and reliable picture is thus obtained both for qualitative and for quantitative aspects. This is an important step forward in the direction of further development and marketing of polymer-drug conjugates [it

  2. Comparative study of diode-pumping self-injection and injection-locking Tm:YAG lasers

    International Nuclear Information System (INIS)

    Wu, C T; Chen, F; Ju, Y L; Wang, Y Z

    2013-01-01

    A comparative study of the laser characteristics of self-injection and injection-locking Tm:YAG lasers is given in this paper. At a pump energy of 145 mJ and Q-switched repetition rate of 100 Hz, an output energy of 2.39 mJ was obtained for an injection-locking Tm:YAG laser, with a pulse width of 403.2 ns and a pulse building-up time of 2.12 μs. Under the same conditions, the output energy, pulse width and pulse build-up time for a self-injection Tm:YAG laser were 2.21 mJ, 407.0 ns and 3.95 μs, respectively. The threshold of the Q-switched injection-locking Tm:YAG laser was much lower than that of the self-injection laser, and the pulse width was narrower and the pulse build-up time shorter. Additionally, the output spectrum was much purer for the injection-locking laser. (paper)

  3. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  4. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  5. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    Science.gov (United States)

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  6. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  7. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  8. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  9. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    Science.gov (United States)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  10. JET contributions to the workshop on the new phase for JET: the pumped divertor proposal

    International Nuclear Information System (INIS)

    1989-09-01

    Contributions to the Workshop consist of 13 papers on the new phase of operation of JET, including an outline of the objectives of the study of impurity control and the operating domain relative to the next generation of tokamaks. Studies are presented on the pumped divertor proposed for JET, diagnostic measurements required, and the performance expectations in the new configuration. (U.K.)

  11. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  12. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Science.gov (United States)

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  13. Phase multistability of self-modulated oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.

    2002-01-01

    The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... nonlinearity and a biologically motivated model of nephron autoregulation are presented....

  14. Droplet generating device for droplet-based μTAS using electro-conjugate fluid

    Science.gov (United States)

    Iijima, Y.; Takemura, K.; Edamura, K.

    2017-05-01

    Droplet-based μTAS, which carries out biochemical inspection and synthesis by handling samples as droplets on a single chip, has been attracting attentions in recent years. Although miniaturization of a chip is progressed, there are some problems in miniaturization of a whole system because of the necessity to connect syringe pumps to the chip. Thus, this study aims to realize a novel droplets generating device for droplet-based μTAS using electro-conjugate fluid (ECF). The ECF is a dielectric liquid generating a powerful flow when subjected to high DC voltage. The ECF flow generation allows us to realize a tiny hydraulic power source. Using the ECF flow, we can develop a droplet generating device for droplet-based μTAS by placing minute electrode pairs in flow channels. The device contains two channels filled with the ECF, which are dispersed and continuous phases meeting at a T-junction. When a sample in the dispersed phase is injected by the ECF flow to the continuous phase at T-junction, droplets are generated by shearing force between the two phases. We conducted droplet generating experiment and confirmed that droplets are successfully generated when the flow rate of the continuous phase is between 90 and 360 mm3 s-1, and the flow rate of the dispersed phase is between 10 and 40 mm3 s-1. We also confirmed that the droplet diameter and the droplet production rate are controllable by tuning the applied voltage to the electrode pairs.

  15. Improvements relating to electromagnetic pumps

    International Nuclear Information System (INIS)

    Davidson, D.F.

    1975-01-01

    Reference is made to electromagnetic pumps suitable for use in pumping molten Na, and particularly to annular linear induction pumps that may for example be used to pump molten Na at temperatures up to 650 0 in situations where it is not possible to provide cooling. Previous designs of such pumps have employed disk-shaped coils around the outside of the annulus, the coils being energised from a three-phase power supply to produce a travelling radial field. The pump system described obviates the necessity for joints between the coils. It also allows the use of all types of high temperature insultation, simplified manufacture, and enables the windings to be located on the inside of the annulus. Full constructional details are given. (U.K.)

  16. Synthesis, characterization and the release kinetics of antiproliferative agents from polyamidoamine conjugates

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2015-01-01

    Full Text Available Polyamidoamine conjugates containing curcumin and bisphosphonate were synthesized via a one-pot aqueous phase Michael addition reaction. In the design of the conjugate, bisphosphonate formed an integral part of the polymer carrier backbone. Curcumin...

  17. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  18. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  19. Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger

    International Nuclear Information System (INIS)

    Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric

    2017-01-01

    Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.

  20. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion.

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-08-04

    The Na(+)/K(+)-pump maintains the physiological K(+) and Na(+) electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle.

  1. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  2. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  3. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Science.gov (United States)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  4. Theory of fidelity measure in degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Bochove, E.J.

    1983-01-01

    Phase-conjugate beam fidelity is studied in degenerate four-wave mixing with spatially varying pump beams. The analysis includes the effects of probe depletion, diffracting non-linear phase variation focussing, and finally that of losses. Relatively simple algebraic expressions are found for the phase conjugate reflectivity for the cases of collinear and near-collinear beam gemetries. It is found that by focussing the probe beam into the mixing medium, the fraction of energy in the phase conjugate beam which was transferred to other modes, may typically be reduced by one order of magnitude. (Author) [pt

  5. Evaluation of self-interaction parameters from binary phase diagrams

    International Nuclear Information System (INIS)

    Ellison, T.L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams

  6. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  7. 200-ZP-1 phase II and III IRM groundwater pump and treat site safety plan

    International Nuclear Information System (INIS)

    St. John, C.H.

    1996-07-01

    This safety plan covers operations, maintenance, and support activities related to the 200-ZP-1 Phase II and III Ground Water Pump- and-Treat Facility. The purpose of the facility is to extract carbon tetrachloride contaminated groundwater underlying the ZP-1 Operable Unit; separate the contaminant from the groundwater; and reintroduce the treated water to the aquifer. An air stripping methodology is employed to convert volatile organics to a vapor phase for absorption onto granular activated carbon. The automated process incorporates a variety of process and safety features that shut down the process system in the event that process or safety parameters are exceeded or compromised

  8. Risk-constrained dynamic self-scheduling of a pumped-storage plant in the energy and ancillary service markets

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, M. Parsa; Haghifam, M.R.; Yousefi, G.R.

    2009-01-01

    This work addresses a new framework for self-scheduling of an individual price-taker pumped-storage plant in a day-ahead (DA) market. The goal is achieving the best trade-off between the expected profit and the risks when the plant participates in DA energy, spinning reserve and regulation markets. In this paper, a set of uncertainties including price forecasting errors and also the uncertainty of power delivery requests in the ancillary service markets are contemplated. Considering these uncertainties, a new approach is proposed which is called dynamic self-scheduling (DSS). This risk-constrained dynamic self-scheduling problem is therefore formulated and solved as a mixed integer programming (MIP) problem. Numerical results for a case study are discussed. (author)

  9. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  10. Effect of Groundwater Pumping on Seawater Intrusion in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    M.M. Sherif

    2002-06-01

    Full Text Available Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta.

  11. Self-assembling peptide-based building blocks in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji; Schnorenberg, Mathew R.; Barrett, John C.; LaBelle, James L.; Tirrell, Matthew

    2017-02-01

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.

  12. Anomalous phase behavior and apparent anharmonicity of the pump-probe signal in a two-dimensional harmonic potential system

    International Nuclear Information System (INIS)

    Taneichi, T.; Kobayashi, T.

    2007-01-01

    Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal

  13. Conjugal intimacy, gender and modernity in contemporary China.

    Science.gov (United States)

    Liu, Jieyu; Bell, Eona; Zhang, Jiayu

    2017-12-15

    The new generation of modernity theorists have forecast the democratization of gender relations within intimate relationships in late-modern times. Chinese society has undergone rapid and dramatic changes in its unique trajectory of political, social and economic reform. Using China as an example of a region which has been largely ignored in contemporary social theory, this article enters the debate to contest the extent to which conjugal relationships are democratized in line with modernity. We further test the assertion that modern marriages are characterized by increased self-disclosure and communication between partners. Data from a national survey on Chinese families is analysed in relation to the level of self-disclosure between husbands and wives; gender division of housework; household decision-making; and home ownership. We highlight the impact of gender, cohort and location (urban, rural or migrant) on experiences of modernity and draw attention to the material, social and cultural factors which continue to shape conjugal relations in contemporary Chinese society. Based on our findings, we contest the argument that disclosing intimacy between intimate partners is a defining characteristic of modern relationships, and suggest that other social factors may condition degrees of self-disclosure in marriage. Similarly, we question the extent to which heterosexual conjugal equality is attained: the cultural practices and values of patrilineal family organization, together with material circumstances, continue to influence marital relations in China. © London School of Economics and Political Science 2017.

  14. Information properties of a hologram of mutually conjugate waves

    International Nuclear Information System (INIS)

    Rubanov, A.S.; Serebryakova, L.M.

    1995-01-01

    A theoretical study of information properties of a correlation response to a fragment of an image of a thin referenceless hologram of mutually conjugate waves that is recorded with a phase-conjugating (PC) mirror is reported. It is shown that this hologram reconstructs a full image in reflected light and can be used as an associative storage device and as a selective PC mirror. 7 refs., 1 fig

  15. Self-regulation following prostatectomy : Phase-specific self-efficacy beliefs in implementing pelvic-floor exercise

    OpenAIRE

    Burkert, Silke; Knoll, Nina; Scholz, Urte; Roigas, Jan; Gralla, Oliver

    2012-01-01

    Beliefs in one's ability to perform a task or behaviour successfully are described as self-efficacy beliefs (Bandura, 1977). Since individuals have to deal with differing demands during a behaviour-change process, they form phase-specific self-efficacy beliefs directed at these respective challenges. The present study, based on the Health Action Process Approach (Schwarzer, 2001), examines the theoretical differentiation, relative importance, and differential effects of four phase-specific se...

  16. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

    Science.gov (United States)

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-03

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, "common frequency point" is proposed as a tool to regulate protein complex related diseases in the future.

  17. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  18. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    Science.gov (United States)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  19. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  20. A size exclusion-reversed phase two dimensional-liquid chromatography methodology for stability and small molecule related species in antibody drug conjugates.

    Science.gov (United States)

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Zhang, Kelly; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2015-05-08

    Antibody drug conjugates (ADCs) are complex therapeutic agents combining the specific targeting properties of antibodies and highly potent cytotoxic small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. One unique critical quality attribute of ADCs is the content of unconjugated small molecule drug present from either incomplete conjugation or degradation of the ADC. In this work, size exclusion chromatography (SEC) was coupled with reversed-phase (RP) HPLC in an online 2-dimensional chromatography format for identification and quantitation of unconjugated small molecule drugs and related small molecule impurities in ADC samples directly without sample preparation. The SEC method in the 1st dimension not only separated the small molecule impurities from the intact ADC, but also provided information about the size variants (monomer, dimer, aggregates, etc.) of the ADC. The small molecule peak from the SEC was trapped and sent to a RP-HPLC in the 2nd dimension to further separate and quantify the different small molecule impurities present in the ADC sample. This SEC-RP 2D-LC method demonstrated excellent precision (%RSDmolecule degradation products and aggregation of the conjugate were observed in the stability samples and the degradation pathways of the ADC were investigated. This 2D-LC method offers a powerful tool for ADC characterization and provides valuable information for conjugation and formulation development. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenjian; Donohoo-Vallett, Paul J.; Zhou, Jiawang; Bragg, Arthur E., E-mail: artbragg@jhu.edu [Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 (United States)

    2014-07-28

    A combination of transient absorption (TAS) and femtosecond stimulated Raman (FSRS) spectroscopies were used to interrogate the photo-induced nuclear relaxation dynamics of poly(3-cyclohexyl,4-methylthiophene) (PCMT). The large difference in inter-ring dihedral angles of ground and excited-state PCMT make it an ideal candidate for studying large-amplitude vibrational relaxation associated with exciton trapping. Spectral shifting in the S{sub 1} TA spectra on sub-ps timescales (110 ± 20 and 800 ± 100 fs) is similar to spectroscopic signatures of excited-state relaxation observed with related photoexcited conjugated polymers and which have been attributed to exciton localization and a combination of resonant energy transfer and torsional relaxation, respectively. Measurements made with both techniques reveal fast PCMT S{sub 1} decay and triplet formation (τ{sub S1} = 25–32 ps), which is similar to the excited-state dynamics of short oligothiophenes and highly twisted polyconjugated molecules. On ultrafast timescales FSRS of S{sub 1} PCMT offers a new perspective on the nuclear dynamics that underlie localization of excitons in photoexcited conjugated polymers: Spectral dynamics in the C=C stretching region (1400–1600 cm{sup −1}) include a red-shift of the in-phase C=C stretching frequency, as well as a change in the relative intensity of in-phase and out-of-phase stretch intensities on a timescale of ∼100 fs. Both changes indicate an ultrafast vibrational distortion that increases the conjugation length in the region of the localized excitation and are consistent with exciton self-localization or trapping. Wavelength-dependent excited-state FSRS measurements further demonstrate that the C=C stretching frequency provides a useful spectroscopic handle for interrogating the degree of delocalization in excited conjugated polymers given the selectivity achieved via resonance enhancement.

  2. Time Evolution of the Excimer State of a Conjugated Polymer Laser

    Directory of Open Access Journals (Sweden)

    Wafa Musa Mujamammi

    2017-11-01

    Full Text Available An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl (PFO, under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm to obtain the amplified spontaneous emission (ASE spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored.

  3. Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies

    Directory of Open Access Journals (Sweden)

    Artur Jabłoński

    2017-11-01

    Full Text Available Fluorescent pyrene–linker–nucleobase (nucleobase = thymine, adenine conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene–C(OCH2CH2–thymine (2 conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base–base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA10–T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

  4. Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil

    OpenAIRE

    Kinami, Tomohisa; Horii, Naoto; Narayan, Bhaskar; Arato, Shingo; Hosokawa, Masashi; Miyashita, Kazuo; Negishi, Hironori; Ikuina, Junichi; Noda, Ryuji; Shirasawa, Seiichi

    2007-01-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of conjugated linoleic acids (CLA) and conjugated linolenic acids (CLN). Methyl esters prepared from purified lipid fractions of soybean oil were analyzed using an HPLC system equipped with photodiode-array detector to detect peaks having maximum absorption around 233 and 275 nm. These peaks were concentrated by AgNO3-silicic acid column chromatography and reversed-phase HPLC. The structural analysis, o...

  5. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  6. A self-resetting spiking phase-change neuron

    Science.gov (United States)

    Cobley, R. A.; Hayat, H.; Wright, C. D.

    2018-05-01

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  7. A self-resetting spiking phase-change neuron.

    Science.gov (United States)

    Cobley, R A; Hayat, H; Wright, C D

    2018-05-11

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  8. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  9. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  10. Black hole in a waveguide: Hawking radiation or self-phase modulation?

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2015-01-01

    Recently it was suggested that Hawking radiation may be observed in a nonlinear electromagnetic waveguide upon propagation of an optical pulse. We show that the spectral characteristics of the Hawking effect in such a waveguide are indistinguishable from the well-known effect of frequency broadening of an optical pulse due to self-phase modulation. Furthermore, we derive an estimate on the critical optical power at which Hawking effect is dominated by the self-phase modulation. It appears that optical experiments reported so far are clearly dominated by self-phase modulation. (paper)

  11. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  12. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.

    2004-01-01

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-μm-diameter electrode situated 10 μm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  13. Self-Calibrating, Variable-Flow Pumping System

    Science.gov (United States)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  14. Tritium system for a tokamak reactor with a self-pumped limiter

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Sze, D.K.

    1986-01-01

    The self-pumping concept was proposed as a means of simplifying the impurity control system in a fusion reactor. The idea is to remove helium in-situ by trapping in freshly deposited metal surface layers of a limiter or divertor. Trapping material is added to the plasma scrape-off or edge region where it is transported to the wall. Some of the key issues for this concept are the tritium inventory in the trapping material and the permeation of protium and recycling of tritium. These quantities are shown to be acceptable for the reference design. The tritium issues for a helium-cooled solid breeder reactor design with vanadium alloy as a structural material are also examined. Models are presented for tritium permeation and inventory calculation for structure materials with the effect of a thin layer of coating material

  15. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  16. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode

    Science.gov (United States)

    Löbl, Matthias C.; Söllner, Immo; Javadi, Alisa; Pregnolato, Tommaso; Schott, Rüdiger; Midolo, Leonardo; Kuhlmann, Andreas V.; Stobbe, Søren; Wieck, Andreas D.; Lodahl, Peter; Ludwig, Arne; Warburton, Richard J.

    2017-10-01

    We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5 -nm -thin diode structure. The quantum dots are just 88 nm from the top GaAs surface. We design and realize a p -i -n -i -n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2 μ eV , just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5 T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots—highly coherent single-photon generation, ultrafast optical spin manipulation—in the thin diodes required in quantum nanophotonics and nanophononics applications.

  17. Integration between electric heat pump and PV system to increase self-consumption of an office application

    Directory of Open Access Journals (Sweden)

    Roselli Carlo

    2017-01-01

    Full Text Available The paper examines a solar electric driven heat pump serving an office building located in southern Italy. To satisfy space heating and cooling demand a heat pump activated by electric energy available from solar photovoltaic plant is here considered. In order to improve the self-consumption of electricity available from photovoltaic system different configurations were considered introducing an electric storage and an electric vehicle. Dynamic simulations to evaluate energy performance of the system varying photovoltaic peak power (4.5–7.5 kW have been carried out. The proposed system achieves a fossil fuel primary energy saving up to about 96% in comparison to the reference conventional system based on a natural gas fired boiler, an electric chiller and the national electric grid. The results show that fossil fuel primary energy saving is higher when there are no storage battery and electric vehicle.

  18. Radial compressor for a two-stage heat pump. Phase 2; Compresseur radial pour pompe a chaleur bi-etagee. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J.; Favrat, D. [Federal Institute of Technology (EPFL), Industrial Energy Systems Laboratory (LENI), Lausanne (Switzerland); Molyneaux, A. [Ofttech SA, Lausanne (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the results of the second phase of a project carried out at the Federal Institute of Technology in Lausanne, Switzerland, that involved the development of a two-stage heat pump that could replace conventional sources of domestic heating such as oil or gas-fired boilers. This report deals with the construction of a single-stage system to test the basic functions, aerodynamic bearings, drive and compressor and thus prove the correctness of the concept of the system. The results of the tests made are presented and discussed.

  19. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  20. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  1. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  2. Parametric amplification and cascaded-nonlinearity processes in common atomic system.

    Science.gov (United States)

    Zheng, Huaibin; Zhang, Xun; Zhang, Zhaoyang; Tian, Yaling; Chen, Haixia; Li, Changbiao; Zhang, Yanpeng

    2013-01-01

    For the first time, we study the parametric amplification process of multi-wave mixing (PA-MWM) signal and cascaded-nonlinearity process (CNP) in sodium vapors both theoretically and experimentally, based on a conventional phase-conjugate MWM and a self-diffraction four-wave mixing (SD-FWM) processes, which are pumped by laser or amplified spontaneous emission (ASE), respectively. For laser pumping case, SD-FWM process serves as a quantum linear amplifier (a CNP) out (inside) of the resonant absorption region. While for ASE case, only the CNP occurs and the output linewidth is much narrower than that of the MWM signal due to the second selected effect of its electromagnetically induced transparency window. In addition, the phase-sensitive amplifying process seeded by two MWM processes is discussed for the first time. Theoretical fittings agree well with the experiment. The investigations have important potential applications in quantum communication.

  3. Solid-phase based synthesis of ureidopyrimidinone-peptide conjugates for supramolecular biomaterials

    NARCIS (Netherlands)

    Feijter, de I.; Goor, O.J.G.M.; Hendrikse, S.I.S.; Comellas Aragones, M.; Sontjens, S.H.M.; Zaccaria, S.; Fransen, P.P.K.H.; Peeters, J.W.; Milroy, L.G.; Dankers, P.Y.W.

    2015-01-01

    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the

  4. Causes and proposed resolutions of high vibration in NWTF transfer pumps

    International Nuclear Information System (INIS)

    Trawinski, B.J.

    1993-01-01

    This Technical Report is intended to communicate the findings from the latest phase of New Waste Transfer Facility (NWTF) transfer pump testing. These tests have identified causes for the high pump vibrations that have been observed during previous phases of transfer pump startup testing, and have led to recommendations for resolving the vibration problem. The paper describes the problem, the test methodology, observations, and recommend actions to correct the vibration problem

  5. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    Science.gov (United States)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  6. Effect of TiO2 on conjugative transfer of RP4 plasmid

    International Nuclear Information System (INIS)

    Qian Di; Zhang Buchang; Yang Dong; Chen Zhaoli; Jin Min; Qiu Zhigang; Li Junwen

    2013-01-01

    Objective: To explore the effect and law of nano-titanium dioxide on the conjugative transfer of RP4 plasmid. Methods: Mating was conducted between Escherichia coli HB101 (RP4) and E. coli K12Rif in saline without stirring under certain conditions and the donor per recipient ratio was 1:1 constantly. The selective LB agar medium plates containing appropriate antibiotics were used to count the number of transconjugants and the conjugative transfer frequency. Results: Nano-titanium dioxide could promote the conjugative transfer of RP4. The nano-titanium dioxide concentration, bacterial concentration, mating temperature and mating time could affect the conjugative transfer of RP4. Conclusion: Nano-titanium dioxide can promote plasmid conjugal transfer in the liquid phase under certain conditions, which may pose a potential hazard to environmental and human health. (authors)

  7. Safety and preliminary immunogenicity of Cuban pneumococcal conjugate vaccine candidate in healthy children: a randomized phase I clinical trial.

    Science.gov (United States)

    Dotres, Carlos P; Puga, Rinaldo; Ricardo, Yariset; Broño, Carmen R; Paredes, Beatriz; Echemendía, Vladimir; Rosell, Sandra; González, Nadezhda; García-Rivera, Dagmar; Valdés, Yury; Goldblatt, David; Vérez-Bencomo, Vicente

    2014-09-15

    A new heptavalent conjugate vaccine (PCV7-TT) is under development in Cuba. PCV7-TT contains 2 μg of serotypes 1, 5, 14, 18C, 19F, 23F and 4 μg of 6B, each one conjugated to tetanus toxoid (TT). This vaccine was designed with the serotypes that cause most invasive pneumococcal diseases (IPD) worldwide. In the present study, we investigated the safety and explored the immunogenicity of PCV7-TT during a controlled, randomized and double blind clinical trial phase I in 4-5-year-old children. PCV7-TT was well tolerated and as safe as Synflorix used as control vaccine. Following a single-dose vaccination, all individual serotypes included in PCV7-TT induced statistically significant increase of IgG GMC and OPA GMT. These are the first clinical results of PCV7-TT in children and they pave the way toward next clinical trials in children and infants. This clinical trial was published in the Cuban Public Register of Clinical Trials with code RPCEC00000173. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  9. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  10. 40 CFR 63.176 - Quality improvement program for pumps.

    Science.gov (United States)

    2010-07-01

    ... type (e.g., piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Quality improvement program for pumps... improvement program for pumps. (a) In Phase III, if, on a 6-month rolling average, the greater of either 10...

  11. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis.

    Science.gov (United States)

    Adamo, Michael; Sun, Guoyong; Qiu, Difei; Valente, Joseph; Lan, Wenkui; Song, Hangtian; Bolgar, Mark; Katiyar, Amit; Krishnamurthy, Girija

    2017-01-20

    Antibody drug conjugates or ADCs are currently being evaluated for their effectiveness as targeted chemotherapeutic agents across the pharmaceutical industry. Due to the complexity arising from the choice of antibody, drug and linker; analytical methods for release and stability testing are required to provide a detailed understanding of both the antibody and the drug during manufacturing and storage. The ADC analyzed in this work consists of a tubulysin drug analogue that is randomly conjugated to lysine residues in a human IgG1 antibody. The drug is attached to the lysine residue through a peptidic, hydrolytically stable, cathepsin B cleavable linker. The random lysine conjugation produces a heterogeneous mixture of conjugated species with a variable drug-to-antibody ratio (DAR), therefore, the average amount of drug attached to the antibody is a critical parameter that needs to be monitored. In this work we have developed a universal method for determining DAR in ADCs that employ a cathepsin B cleavable linker. The ADC is first cleaved at the hinge region and then mildly reduced prior to treatment with the cathepsin B enzyme to release the drug from the antibody fragments. This pre-treatment allows the cathepsin B enzyme unrestricted access to the cleavage sites and ensures optimal conditions for the cathepsin B to cleave all the drug from the ADC molecule. The cleaved drug is then separated from the protein components by reversed phase high performance liquid chromatography (RP-HPLC) and quantitated using UV absorbance. This method affords superior cleavage efficiency to other methods that only employ a cathepsin digestion step as confirmed by mass spectrometry analysis. This method was shown to be accurate and precise for the quantitation of the DAR for two different random lysine conjugated ADC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Benefits of smart pumps for automated changeovers of vasoactive drug infusion pumps: a quasi-experimental study.

    Science.gov (United States)

    Cour, M; Hernu, R; Bénet, T; Robert, J M; Regad, D; Chabert, B; Malatray, A; Conrozier, S; Serra, P; Lassaigne, M; Vanhems, P; Argaud, L

    2013-11-01

    Manual changeover of vasoactive drug infusion pumps (CVIP) frequently lead to haemodynamic instability. Some of the newest smart pumps allow automated CVIP. The aim of this study was to compare automated CVIP with manual 'Quick Change' relays. We performed a prospective, quasi-experimental study, in a university-affiliated intensive care unit (ICU). All adult patients receiving continuous i.v. infusion of vasoactive drugs were included. CVIP were successively performed manually (Phase 1) and automatically (Phase 2) during two 6-month periods. The primary endpoint was the frequency of haemodynamic incidents related to the relays, which were defined as variations of mean arterial pressure >15 mm Hg or heart rate >15 bpm. The secondary endpoints were the nursing time dedicated to relays and the number of interruptions in care because of CVIP. A multivariate mixed effects logistic regression was fitted for analytic analysis. We studied 1329 relays (Phase 1: 681, Phase 2: 648) from 133 patients (Phase 1: 63, Phase 2: 70). Incidents related to CVIP decreased from 137 (20%) in Phase 1 to 73 (11%) in Phase 2 (Ppumps in limiting the frequency of haemodynamic incidents related to relays and in reducing the nursing workload.

  13. Initial conceptual design study of self-critical nuclear pumped laser systems

    Science.gov (United States)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  14. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.

    Science.gov (United States)

    Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan

    2015-12-16

    To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.

  15. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  16. Two-wavelength, passive self-injection-controlled operation of diode-pumped cw Yb-doped crystal lasers.

    Science.gov (United States)

    Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin

    2003-09-20

    We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.

  17. Infrared-x-ray pump-probe spectroscopy of the NO molecule

    International Nuclear Information System (INIS)

    Guimaraes, F.F.; Felicissimo, V.C.; Kimberg, V.; Gel'mukhanov, F.; Aagren, H.; Cesar, A.

    2005-01-01

    Two color infrared-x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation

  18. Infrared x-ray pump-probe spectroscopy of the NO molecule

    Science.gov (United States)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  19. Microelectromechanical pump utilizing porous silicon

    Science.gov (United States)

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  20. Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography.

    Science.gov (United States)

    Yang, Qiang; Vogel, Curtis R; Ellerbroek, Brent L

    2006-07-20

    By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty.

  1. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  2. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  3. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.

    Science.gov (United States)

    Dey, Soma; Sreenivasan, K

    2014-01-01

    Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  5. Conjugate Etalon Spectral Imager (CESI) & Scanning Etalon Methane Mapper (SEMM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conjugate Etalon Spectral Imaging (CESI) concept enables the development of miniature instruments with high spectral resolution, suitable for LEO missions aboard...

  6. [Relationship between family variables and conjugal adjustment].

    Science.gov (United States)

    Jiménez-Picón, Nerea; Lima-Rodríguez, Joaquín-Salvador; Lima-Serrano, Marta

    2018-04-01

    To determine whether family variables, such as type of relationship, years of marriage, existence of offspring, number of members of family, stage of family life cycle, transition between stages, perceived social support, and/or stressful life events are related to conjugal adjustment. A cross-sectional and correlational study using questionnaires. Primary care and hospital units of selected centres in the province of Seville, Spain. Consecutive stratified sampling by quotas of 369 heterosexual couples over 18years of age, who maintained a relationship, with or without children, living in Seville. A self-report questionnaire for the sociodemographic variables, and the abbreviated version of the Dyadic Adjustment Scale, Questionnaire MOS Perceived Social Support, and Social Readjustment Rating Scale, were used. Descriptive and inferential statistics were performed with correlation analysis and multivariate regression. Statistically significant associations were found between conjugal adjustment and marriage years (r=-10: Pfamily life cycle (F=2.65; Pfamily life cycle stage (mature-aged stage) on conjugal adjustment (R2=.21; F=9.9; df=356; Prelationship. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. Identification of three new phase II metabolites of a designer drug methylone formed in rats by N-demethylation followed by conjugation with dicarboxylic acids.

    Science.gov (United States)

    Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš

    2018-06-01

    1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.

  8. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per minute...

  9. Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

    International Nuclear Information System (INIS)

    Watabe, Kazuo; Polynkin, Pavel; Mansuripur, Masud

    2005-01-01

    A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications

  10. Self-optimizing control of air-source heat pump with multivariable extremum seeking

    International Nuclear Information System (INIS)

    Dong, Liujia; Li, Yaoyu; Mu, Baojie; Xiao, Yan

    2015-01-01

    The air-source heat pump (ASHP) is widely adopted for cooling and heating of residential and commercial buildings. The performance of ASHP can be controlled by several operating variables, such as compressor capacity, condenser fan speed, evaporator fan speed and suction superheat. In practice, the system characteristics can be varied significantly by the variations in ambient condition, operation setpoint, internal thermal load and equipment degradation, which makes it difficult to obtain accurate plant models. As consequence, the model based control strategies for ASHP could limit the achievable energy efficiency. Model-free self-optimizing control strategies are thus more preferable. In this study, a multi-input extremum seeking control (ESC) scheme is proposed for both heating and cooling operation of ASHP. The zone temperature is assumed to be regulated by the compressor capacity, while the expansion valve opening is used to regulate the suction superheat at the given setpoint. The total power consumption of the compressor, the condenser fan and the evaporator fan is measured as input to the ESC, while the ESC controls the evaporator fan speed, the condenser fan speed and the suction superheat setpoint. The proposed scheme is evaluated with a Modelica based dynamic simulation model of ASHP under both cooling and heating modes of operation. Simulation results show the effectiveness of the proposed scheme to achieve the maximum achievable efficiency in a nearly model-free manner. - Highlights: • Multi-input ESC. • Air-source heat pump. • Cooling and heating. • Modelica based model

  11. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  12. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  13. A model of annular linear induction pumps

    Energy Technology Data Exchange (ETDEWEB)

    Momozaki, Yoichi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-27

    The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply.  From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.

  14. A novel optic bistable device with very low threshold intensity using photorefractive films

    Science.gov (United States)

    Wang, Sean X.; Sun, Yuankun; Trivedi, Sudhir B.; Li, Guifang

    1994-08-01

    Brimrose Corporation of America reports the successful completion of the SBIR Phase I research in low-threshold intensity optical bistable devices using photorefractive nonlinearity. A thin photorefractive film optical bistable device was proposed in the Phase I proposal. The feasibility of this device was theoretically investigated. The theoretical feasibility study formulates the materials requirements in such a kind of configuration for Phase II research. In addition, we have proposed and investigated another configuration of optical bistable devices that do not require advanced photorefractive materials, namely, the self-pumped phase conjugator. We have successfully demonstrated a low-threshold optical bistable operation in a KNSBN:CU crystal. To the best of our knowledge, the threshold of 650 mW/sq. cm is the lowest of its kind to be achieved so far.

  15. Theory of terahertz pumping of chemical environments in the condensed phase

    International Nuclear Information System (INIS)

    Mishra, Pankaj Kumar

    2015-12-01

    Newly emerged light-sources allow to generate fully synchronized, ultrashort and highly intense light pulses. With these light pulses, it is possible to initiate a process by a pump pulse and follow the dynamics via probe pulse in the femtosecond timescale. These pump-probe experiments play an important role for studying the chemical and biological processes in real time. Such techniques are also used to generate temperature-jump (T-jump) in ultrashort timescale to study the very fast kinetics of fundamental steps in chemical processes. Because of its biological and chemical relevance, T-jump experiments on liquid water have gained a lot of attention. Rather than acting as a passive environment, the dynamics of water during chemical and biological processes play a fundamental role in the solvation and stabilization of reaction intermediates. To target the O-H stretching mode of water with an infrared (IR) laser is a widely used mechanism to generate the T-jump in nanosecond to femtosecond timescales. With these techniques, T-jump has been limited only to few 10s of K so far. In this thesis, a new mechanism is investigated to generate T-jump up to few 100s of K in sub-ps timescale. The main portion of this thesis concentrates on the response of liquid water to sub-cycle THz pump pulses spectrally centered at 100 cm -1 (∝3 THz). The THz pump pulse with intensity of 5 x 10 12 W/cm 2 transfers a large amount of energy to inter- and intramolecular vibrations of water in sub-ps timescale. After the pump pulse, water reaches to a quasiequilibrium state, which is a gas-like hot liquid. The large energy gain in water causes significant structural modifications and vibrational shifting, which can be probed by timeresolved coherent x-ray scattering and time-resolved IR spectroscopy, respectively. Here, the interaction of THz pulse with water molecules is investigated from clusters to bulk water. We find it to be mainly described via the interaction of electric field with

  16. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  17. Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model

    DEFF Research Database (Denmark)

    Sobolev, A.; Pankratov, A.; Mygind, Jesper

    2006-01-01

    We have numerically investigated the dynamics of a long Josephson junction (flux-flow oscillator) biased by a DC current in the presence of magnetic field. The study is performed in the frame of the modified sine-Gordon model, which includes the surface losses, RC-load at both FFO ends and the self-pumping...... effect. In our model the dumping parameter depends both on the spatial coordinate and the amplitude of the AC voltage. In order to find the DC FFO voltage the damping parameter has to be calculated by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model...

  18. A Novel Phase-Locking-Free Phase Sensitive Amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2016-01-01

    We propose a scheme for phase regeneration of optical binary phase-shift keying (BPSK) data signals based on phase sensitive amplification without active phase-locking. A delay interferometer (DI) is used to convert a BPSK signal impaired by noise to an amplitude modulated signal followed by cross......-locked pumps. As a result, active phase-stabilization is avoided. A proof-of-principle experiment is carried out with a dual-pump degenerate phase sensitive amplifier (PSA), demonstrating regeneration for a 10 Gb/s non-return-to-zero differential BPSK (NRZ-DPSK) data signal degraded by a sinusoidal phase...

  19. Jet pumps hydrdynamics for application on BWRS

    International Nuclear Information System (INIS)

    Girardi, G.; Pitimada, D.

    1979-01-01

    An analysis of single-phase jet-pump hydrodynamics is carried out by this paper with special regard to the applications on cooling water recirculation in the boiling water reactors (BWR). Firstly, in order to asses on efficiency of jet pumps, several theories regarding the hydrodynamic of these machines are also investigated. The results of the above theories are critically analysed and compared regarding to water-jet-pump design, to operational performance curves and to section limits. Some general criteria in jet-pump design are introduced and values of geometric and kinematic parameters are suggested together with losses coefficients which are all concerned with the ''high ratio'' type jet pump of this typical application. Finally, the experimental test program following the sim of this research is briefly described

  20. Putzmeister pumps for Tchernobyl

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Self-propelling concrete pumps are briefly described in this article, they comprise a 52-meter boom, a radiation protection, remote control, videocameras. Several units were ordered by the Soviet Union. The truck cabin is protected against radiation by a 10 millimeter thick shield in lead. 3 photographs [fr

  1. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    International Nuclear Information System (INIS)

    Perkins, Alan; Hopper, Melanie; Murray, Andrea; Frier, Malcolm; Bishop, Mike

    2002-01-01

    The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C 595 (gG3) which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radio immuno conjugates of the C 595 antibody have been produced with high radiolabelling efficiency and immuno reactivity using Tc-99 m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun. (author)

  2. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  3. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  4. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  5. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  6. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  7. A short-term rating method for heat pump heating systems; phase 5: test of the fault diagnosis systems; Kurztestmethode fuer Waermepumpenanlagen; Phase 5: Test der Fehlerdiagnosesysteme

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, D.; Esfandiar, S.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the testing phase of a project that developed systems for the operational monitoring and optimisation of heat pump installations along with a diagnosis system for faults. The heat pump is considered as a sub-system. The report describes two monitoring systems and a simulation model that are used to monitor the state of the heat pump both during commissioning as well as during operation. The aim is also to detect faults as early as possible during the whole of the operational life of the installation. A state-orientated approach is propagated as being cheaper than fixed service intervals or repairing after breakdown and standstill. The development of the two monitoring systems called 'HeatWatch' and 'FuzzyWatch' is described. The effort needed for the parametrisation and training of these systems is discussed. The testing of the systems on two test beds using real-life measured values for a single-family home and further simulation data is described and the results listed. The authors state that the monitoring systems can also be used for refrigeration and air-conditioning systems.

  8. Emulsifying properties of maillard conjugates produced from sodium caseinate and locust bean gum

    Directory of Open Access Journals (Sweden)

    F. A. Perrechil

    2014-06-01

    Full Text Available Emulsifying properties of sodium caseinate -locust bean gum Maillard conjugates produced at different temperatures (54 - 96 ºC, protein/polysaccharide ratios (0.3 - 1.0 and reaction times (1 - 24 hours were evaluated. Conjugate formation was confirmed by formation of color and high molecular weight fractions and the decrease of the αs- and β-casein bands. The emulsions stabilized by Maillard conjugates showed good stability. The mean droplet diameter (d32 tended to decrease with the increase of incubation time and temperature, except at extreme conditions (24 hours and 90 ºC or 96 ºC when the partial degradation of the conjugates was probably favored, resulting in phase separation of emulsions. The emulsion viscosity decreased with the increase in the protein/polysaccharide ratio and with the degradation of the conjugates. The conditions used in the experimental design made the optimization of the conjugate production viable, which showed greater emulsifier properties than the pure protein under acid conditions.

  9. A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets

    International Nuclear Information System (INIS)

    Varkani, Ali Karimi; Daraeepour, Ali; Monsef, Hassan

    2011-01-01

    Highlights: → A strategy for integrated operation of wind and pumped-storage plants is proposed. → Participation of both plants in energy and ancillary service markets is modeled. → The uncertainty of wind production is modeled by a novel probabilistic function. → The proposed strategy is tested on a real case in the Spanish electricity market. -- Abstract: Competitive structure of power markets causes various challenges for wind resources to participate in these markets. Indeed, production uncertainty is the main cause of their low income. Thus, they are usually supported by system operators, which is in contrast with the competitive paradigm of power markets. In this paper, a new strategy for increasing the profits of wind resources is proposed. In the suggested strategy, a Generation Company (GenCo), who owns both wind and pumped-storage plants, self-schedules the integrated operation of them regarding the uncertainty of wind power generation. For presenting an integrated self-schedule and obtaining a real added value of the strategy, participation of the GenCo in energy and ancillary service markets is modeled. The self-scheduling strategy is based on stochastic programming techniques. Outputs of the problem include generation offers in day-ahead energy market and ancillary service markets, including spinning and regulation reserve markets. A Neural Network (NN) based technique is used for modeling the uncertainty of wind power production. The proposed strategy is tested on a real wind farm in mainland, Spain. Moreover, added value of the strategy is presented in different conditions of the market.

  10. Self-Calibrating Vector Helium Magnetometer (SVHM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes proposed development of a conceptual design for a Self-Calibrating Vector Helium Magnetometer (SVHM) for design and fabrication...

  11. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Rzeppa, S; Heinrich, G; Hemmersbach, P

    2015-01-01

    Improvements in doping analysis can be effected by speeding up analysis time and extending the detection time. Therefore, direct detection of phase II conjugates of doping agents, especially anabolic androgenic steroids (AAS), is proposed. Besides direct detection of conjugates with glucuronic acid, the analysis of sulfate conjugates, which are usually not part of the routine doping control analysis, can be of high interest. Sulfate conjugates of methandienone and methyltestosterone metabolites have already been identified as long-term metabolites. This study presents the synthesis of sulfate conjugates of six commonly used AAS and their metabolites: trenbolone, nandrolone, boldenone, methenolone, mesterolone, and drostanolone. In the following these sulfate conjugates were used for development of a fast and easy analysis method based on sample preparation using solid phase extraction with a mixed-mode sorbent and detection by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Validation demonstrated the suitability of the method with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). In addition, suitability has been proven by successful detection of the synthesized sulfate conjugates in excretion urines and routine doping control samples. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Campaign for A-rated circulator pumps - a proven strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lueders, Christian; Wilke, Goeran (The Danish Electricity Saving Trust (Denmark)); Dam Wied, Martin (Wormslev - NRGi Raadgivning A/S (Denmark))

    2009-07-01

    1.2 million households in Denmark have a central heating circulator pump. An estimated 800,000 pumps installed are old and inefficient. Potential savings per year of 400 GWh and 200,000 tons of CO{sub 2} can be achieved by replacing these obsolete pumps. However, many consumers and installers have neither an opinion about, nor play an active role in choosing a circulator pump. This paper documents how it is possible to promote the wider use of A-rated circulator pumps via an offensive campaign strategy to get both consumers and installers to participate actively in the choice of pump, thereby increasing the market share of A-rated pumps sold. The campaign is based on a broadly-based push-pull strategy which aims to influence both consumers and suppliers simultaneously. The strategy consists of the following elements: Involvement of the supply side via voluntary agreements with producers, wholesalers, installers, and their trade organisations; Partnerships with installers in order to secure fixed price installations for A-rated pumps; Influencing consumers through magazine advertisements and TV commercials. The market share for A-rated circulator pumps in Denmark grew from 15-60% in the period January 2006 to the end of October 2008. In a new phase, the strategy is switching the focus to OEM and boiler producers, and producers of heat exchangers for district and underfloor heating systems. The aim of the current phase was for A pumps to have accounted for 60% of the Danish market by the end of 2008

  13. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  14. Phase separation of self-propelled ballistic particles

    Science.gov (United States)

    Bruss, Isaac R.; Glotzer, Sharon C.

    2018-04-01

    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  15. Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors

    Science.gov (United States)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew

    We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.

  16. Experimental investigations on a common centrifugal pump operating under gas entrainment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer, Thomas, E-mail: thomas.schaefer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Neumann, Martin [Technische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering (Germany); Bieberle, André [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Technische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering (Germany)

    2017-05-15

    Highlights: • The pump performance has been evaluated for several gas entrainment conditions. • The gas entraining flow regime has a large impact on the pump performance. • High-resolution gamma-ray computed tomography (HireCT) has been applied. • Gas holdup inside the operating impeller has been visualized and quantified. • Gas holdup profiles along selected streamlines have been calculated. - Abstract: This paper presents an experimental study on the effects of additional gas entrainment in centrifugal pumps designed for conveying liquid phases only. The pump performance has been evaluated for several gas entrainment conditions, and for various operational settings of the pump, such as its alignment and the rotational speed of the impeller. As a main performance indicator the impact of entrained gas on the hydraulic power of the pump has been analyzed using experimental data. Additionally, high-resolution gamma-ray computed tomography (HireCT) operated in time-averaged rotation-synchronized scanning mode has been applied to quantify local phase fraction distributions inside the rapidly rotating pump impeller. Based on these quantitative tomographic measurements, gas holdup profiles along selected streamlines have been calculated and gas accumulation areas inside the impeller chambers have been visualized. Thus, various internally accumulated gas holdup patterns have been identified and, eventually, associated with characteristic pump performance behaviors. Moreover, the tomographic measuring method allowed an enhanced gas holdup analysis in specified pump compartments. As a result, the related specific gas and liquid phase holdup profiles have been evaluated.

  17. Experimental investigations on a common centrifugal pump operating under gas entrainment conditions

    International Nuclear Information System (INIS)

    Schäfer, Thomas; Neumann, Martin; Bieberle, André; Hampel, Uwe

    2017-01-01

    Highlights: • The pump performance has been evaluated for several gas entrainment conditions. • The gas entraining flow regime has a large impact on the pump performance. • High-resolution gamma-ray computed tomography (HireCT) has been applied. • Gas holdup inside the operating impeller has been visualized and quantified. • Gas holdup profiles along selected streamlines have been calculated. - Abstract: This paper presents an experimental study on the effects of additional gas entrainment in centrifugal pumps designed for conveying liquid phases only. The pump performance has been evaluated for several gas entrainment conditions, and for various operational settings of the pump, such as its alignment and the rotational speed of the impeller. As a main performance indicator the impact of entrained gas on the hydraulic power of the pump has been analyzed using experimental data. Additionally, high-resolution gamma-ray computed tomography (HireCT) operated in time-averaged rotation-synchronized scanning mode has been applied to quantify local phase fraction distributions inside the rapidly rotating pump impeller. Based on these quantitative tomographic measurements, gas holdup profiles along selected streamlines have been calculated and gas accumulation areas inside the impeller chambers have been visualized. Thus, various internally accumulated gas holdup patterns have been identified and, eventually, associated with characteristic pump performance behaviors. Moreover, the tomographic measuring method allowed an enhanced gas holdup analysis in specified pump compartments. As a result, the related specific gas and liquid phase holdup profiles have been evaluated.

  18. Spatial modification of laser beam under the influence of Λ-type strong pump

    International Nuclear Information System (INIS)

    Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

    1999-01-01

    The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

  19. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.

    Science.gov (United States)

    Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi

    2009-06-01

    This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.

  20. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Science.gov (United States)

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  1. Set-up of a pump as turbine use in micro-pumped hydro energy storage: a case of study in Froyennes Belgium

    Science.gov (United States)

    Morabito, A.; Steimes, J.; Bontems, O.; Zohbi, G. Al; Hendrick, P.

    2017-04-01

    Its maturity makes pumped hydro energy storage (PHES) the most used technology in energy storage. Micro-hydro plants (electricity production such as wind and solar power. This paper presents the design of a micro-PHES developed in Froyennes, Belgium, using a pump as turbine (PaT) coupled with a variable frequency driver (VFD). The methods adopted for the selection of the most suitable pump for pumping and reverse mode are compared and discussed. Controlling and monitoring the PaT performances represent a compulsory design phase in the analysis feasibility of PaT coupled with VFD in micro PHES plant. This study aims at answering technical research aspects of µ-PHES site used with reversible pumps.

  2. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  3. Variable speed drives for pumps used in intensive pond culture systems

    Science.gov (United States)

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  4. A highly reliable cryogenic mixing pump with no mechanical moving parts

    Science.gov (United States)

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  5. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  6. Women experiencing the intergenerationality of conjugal violence

    Directory of Open Access Journals (Sweden)

    Gilvânia Patrícia do Nascimento Paixão

    2015-10-01

    Full Text Available Objective: to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence.Method: qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011.Results: the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence.Conclusion: investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon.

  7. Pseudo-self-organized topological phases in glassy selenides for IR photonics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Institute of Materials of Scientific Research Company ' ' Carat' ' 202, Stryjska str., 79031 Lviv (Ukraine); Institute of Physics of Jan Dlugosz University 13/15, al. Armii Krajowej, 42201 Czestochowa (Poland); Golovchak, R. [Lviv Institute of Materials of Scientific Research Company ' ' Carat' ' 202, Stryjska str., 79031 Lviv (Ukraine)

    2011-09-15

    Network-forming cluster approach is applied to As-Se and Ge-Se glasses to justify their tendency to self-organization. It is shown that reversibility windows determined by temperature-modulated differential scanning calorimetry using short-term aged or as-prepared samples do not necessary coincide with self-organized phase in these materials. The obtained results testify also pseudo-self-organization phenomenon in Ge-Se glasses: over-constrained outrigger raft structural units built of two edge- and four corner-shared tetrahedra are interconnected via optimally-constrained {identical_to}Ge-Se-Se-Ge{identical_to} bridges within the range of compositions identified previously as self-organized phase by temperature modulated differential scanning calorimetry technique. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Twisting Anderson pseudospins with light: Quench dynamics in terahertz-pumped BCS superconductors

    Science.gov (United States)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew S.

    2017-03-01

    We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013), 10.1103/PhysRevLett.111.057002], an intense monocycle THz pulse with center frequency ω ≃Δ was injected into a superconductor with BCS gap Δ ; the subsequent postpump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs (amplitude) mode Δ (t ) . We validate this picture in a two-dimensional BCS model with a combination of exact numerics and the Lax reduction method, and we compute the nonequilibrium phase diagram as a function of the pump intensity. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the x y plane. We show that more intense pump pulses can induce a far-from-equilibrium phase of gapless superconductivity ("phase I"), originally predicted in the context of interaction quenches in ultracold atoms. We show that the THz pump method can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction (tied to the integrability of the BCS Hamiltonian) provides a general quantitative tool for computing coherent BCS dynamics. We also calculate the Mattis-Bardeen optical conductivity for the nonequilibrium states discussed here.

  9. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  10. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    measuring the DOPO CEO frequency phase noise. The DOPO would be a self-locked comb source if it fully inherits the pump comb coherence. This enables measuring the CEO frequency phase noise of the unlocked DOPO comb to be compared with the pump phase noise quantitatively. In the second part of the dissertation, the intensity noise of a soliton mode-locked laser is studied. The soliton is a pulse with perfect balance of dispersion and nonlinearity so it can propagate without any change of its spectral and temporal shape. In this project, an all-fiber Er soliton laser will be build. Due to the perturbation of cavity elements such as segmental gain and loss, the soliton generate dispersive wave that co-propagates inside the cavity. Notably the dispersive wave with the same phase shift of the soliton can interfere with the soliton and produce spectral peaks known as Kelly sidebands. In this work, the spectrally resolved intensity noise coupling in the soliton laser is studied. The results reveal that most of the intensity noise from the pump is couple to the Kelly sidebands while the soliton is much quieter in terms of intensity noise. In the last part of the dissertation, the 3D wave packets generation and measurement system are introduced. A SLM-based pulse shaper and beam shaper are used to generate special 3D optical wave packets from a mode-locked fiber laser. The programmable SLM enables generation of varies beam and pulse shapes. In particular, the so called wave bullets are generated with combination of diffraction free Bessel beams and dispersion free Airy pulses. To measure the 3D wave packets, a cross-correlation interferometer is demonstrated to have the capacity to reconstruct the full 3D intensity profiles of the complex wave packets.

  11. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  12. Ti-Catalyzed Hydroamination for the Synthesis of Amine-Containing π-Conjugated Materials.

    Science.gov (United States)

    Hao, Han; Thompson, Kyle A; Hudson, Zachary M; Schafer, Laurel L

    2018-04-11

    A series of conjugated enamines were prepared by Ti catalyzed anti-Markovnikov hydroamination. The synthetic route is efficient with yields of up to 94 % and the 100 % atom efficiency of the reaction means that these products are easily isolated and purified. Due to the extended conjugated system, the enamine tautomers were observed exclusively in both solid and solution phases, as determined by X-ray crystallography and NMR spectroscopy. These new conjugated molecules, with N incorporated into the backbone, show interesting photophysical properties including photo-luminescent quantum yields of up to 0.26. Notably, through the incorporation of B to give a donor-acceptor π-conjugated system, a redshift of approximately 100 nm is observed for the emission maximum along with the anticipated solvatochromic shifts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Utilizing scalar electromagnetics to tap vacuum energy

    International Nuclear Information System (INIS)

    Sweet, F.; Bearden, T.E.

    1991-01-01

    Based on E.T. Whittaker's previously unnoticed 1903-1904 papers which established a hidden bidirectional EM wave structure in a standing forcefield free scalar potential, a method of directly engineering the ambient potential of the vacuum has been developed and realized experimentally. Adding Whittaker's engineerable hidden variable theory to classical electromagnetic, quantum mechanics, and general relativity produces supersets of each discipline. These supersets are joined by the common Whittaker subset, producing a unified field theory that is engineerable and tested. By treating the nucleus of the atom as a pumped phase conjugate mirror, several working model energy units have been produced which excite and organize the local vacuum, increase the local virtual photon flux between local vacuum and nucleus, establish coherent self-oscillations between the local excited vacuum and the affected nuclei, utilized the self-oscillating standing wave for self-pumping of the nuclei/mirrors, introduce a very tiny signal wave to the mirrors, and output into an external load circuit a powerful, amplified, time-reversed phase conjugate replica wave at 60 Hertz frequency and nominal 120 volt sine wave power. Several models have been built, ranging from 6 watts early on to one of 5 kilowatts. Both closed battery-less systems with damped positive feedback and open loop systems with battery-powered input have been successfully built. Open loop power gains of from 5 x 10 4 to 1.5 x 10 6 have been achieved. Antigravity experiments have also been successfully conducted where the weight of the unit was reduced by 90% in controlled experiments, with a signal wave input of 175 microwatts and an output of 1 kilowatt. The basic theory of the device is briefly explained and experimental results presented

  14. Self-consolidating concrete, applications for slip-form paving : phase II.

    Science.gov (United States)

    2011-05-01

    The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction and make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TP...

  15. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  16. Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Page, Zachariah A. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Liu, Feng [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Russell, Thomas P. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Emrick, Todd [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA

    2014-01-01

    Ionic liquids (ILs) were utilized for the rapid air-stable Suzuki polymerization of polar zwitterionic thiophene monomers, precluding the need for volatile organic solvents, phosphine ligands and phase transfer catalysts typically used in conjugated polymer synthesis.

  17. High vacuum portable pumping station suitable for accelerator use

    International Nuclear Information System (INIS)

    Stattel, P.; Briggs, J.; DeBoer, W.; Skelton, R.

    1985-01-01

    The need for a Portable Pump Station for Ultra High Vacuum use became apparent when the ''Isabelle'' collider was first being designed. A Portable Pump Station had to be developed which contained the following features: maneuverability, compact size, rugged, self protected against various failures, capable of running unattended, and capable of reaching 10 -9 torr. The Pump Station that was developed and other variations are the subject of this paper. Emphasis will be on the Isabelle and HITL versions. 1 ref., 2 figs., 1 tab

  18. Metal additive manufacturing of a high-pressure micro-pump

    NARCIS (Netherlands)

    Wits, Wessel Willems; Weitkamp, Sander J.; van Es, J.; van Es, Johannes

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed

  19. 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor

    International Nuclear Information System (INIS)

    Lane, Stephanie R.; Veerendra, Bhadrasetty; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Jurisson, Silvia S.; Smith, Charles J.

    2008-01-01

    Introduction: Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99m Tc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. Methods: In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [ 99m Tc(H 2 O) 3 (CO) 3 ] + . The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy ( 1 H and 13 C). DTMA was conjugated to H 2 N-(X)-BBN(7-14)NH 2 , where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH 2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. Results: The new conjugates were radiolabeled with [ 99m Tc(H 2 O) 3 (CO) 3 ] + produced via Isolink radiolabeling kits to produce [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. Conclusions: [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes

  20. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae.

    Science.gov (United States)

    Slipski, Carmine J; Zhanel, George G; Bay, Denice C

    2018-02-01

    Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.

  1. Construction and testing of a double acting bellows liquid helium pump

    International Nuclear Information System (INIS)

    Burns, W.A.; Green, M.A.; Ross, R.R.; Van Slyke, H.

    1980-05-01

    The double acting reciprocating bellows liquid helium pump built and tested at the Lawrence Berkeley Laboratory is described. The pump is capable of delivering 50 gs -1 of liquid helium to supply the two-phase cooling sytem for a large superconducting magnet. The pump is driven by a torque motor at room temperature; the reciprocating motion is transmitted to the pump through a shaft which operates between room temperature and 4 0 K. The design details of this liquid helium pump are presented. The helium pump has operated in a helium bath and in pumped forced flow helium circuits. The results of these experimental tests are presented in this report

  2. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  3. [The profile of female victims of conjugal violence].

    Science.gov (United States)

    Vasseur, Philippe

    2004-12-18

    To define the profile of female victims of conjugal violence examined in the Legal Medicine emergency unit of the Hotel-Dieu hospital in Paris. A self-administered questionnaire with 15 questions was distributed to 100 victims. The 100 victims replied: 86 cases of violence took place usually in the home, 78 episodes of violence were multiple and complaints were rarely lodged after the first episodes. Mental and sexual violence were severe and unrecognized. Eighty women interviewed suffered from mental violence. In 43 cases, alcohol played a determining role in the onset of such violence. Female victims of conjugal violence do not have a specific profile. The law of silence persists, but the increase in the number of complaints from North African and African women is encouraging for the future.

  4. A circuit scheme to control current surge for RFID-NVM pumps

    Energy Technology Data Exchange (ETDEWEB)

    Li Ming; Kang Jinfeng; Wang Yangyuan [Institute of Microelectronics, Peking University, Beijing 100871 (China); Yang Liwu, E-mail: prettynecess@163.co [Semiconductor Manufacturing International Corporation, Shanghai 201203 (China)

    2010-02-15

    This paper presents a new circuit scheme to control the current surge in the boosting phase of an radio frequency idenfication-nonvolative memory pump. By introducing a circuit block consisting of a current reference and a current mirror, the new circuit scheme can keep the period-average current of the pump constantly below the desired level, for example, 2.5 {mu}A. Therefore, it can prevent the rectified supply of the RFID tag IC from collapsing in the boosting phase of the pump. The presented scheme could effectively reduce the voltage drop on the rectified supply from more than 50% to even zero, but could cost less area. Moreover, an analytical expression to calculate the boosting time of a pump in the new scheme is developed. (semiconductor integrated circuits)

  5. A circuit scheme to control current surge for RFID-NVM pumps

    International Nuclear Information System (INIS)

    Li Ming; Kang Jinfeng; Wang Yangyuan; Yang Liwu

    2010-01-01

    This paper presents a new circuit scheme to control the current surge in the boosting phase of an radio frequency idenfication-nonvolative memory pump. By introducing a circuit block consisting of a current reference and a current mirror, the new circuit scheme can keep the period-average current of the pump constantly below the desired level, for example, 2.5 μA. Therefore, it can prevent the rectified supply of the RFID tag IC from collapsing in the boosting phase of the pump. The presented scheme could effectively reduce the voltage drop on the rectified supply from more than 50% to even zero, but could cost less area. Moreover, an analytical expression to calculate the boosting time of a pump in the new scheme is developed. (semiconductor integrated circuits)

  6. Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Galili, Michael; Dalgaard, Kjeld

    2014-01-01

    We propose simultaneous decomposition of the two quadratures of an optical data signal to different outputs of a PBS by degenerate four-wave mixing with orthogonal pumps. The scheme is demonstrated by QPSK to 2×BPSK modulation format conversion with BER<10−9.......We propose simultaneous decomposition of the two quadratures of an optical data signal to different outputs of a PBS by degenerate four-wave mixing with orthogonal pumps. The scheme is demonstrated by QPSK to 2×BPSK modulation format conversion with BER−9....

  7. Internal structures of self-organized relaxed states and self-similar decay phase

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1992-03-01

    A thought analysis on relaxation due to nonlinear processes is presented to lead to a set of general thoughts applicable to general nonlinear dynamical systems for finding out internal structures of the self-organized relaxed state without using 'invariant'. Three applications of the set of general thoughts to energy relaxations in resistive MHD plasmas, incompressible viscous fluids, and incompressible viscous MHD fluids are shown to lead to the internal structures of the self-organized relaxed states. It is shown that all of the relaxed states in these three dynamical systems are followed by self-similar decay phase without significant change of the spatial structure. The well known relaxed state of ∇ x B = ±λ B is shown to be derived generally in the low β plasma limit. (author)

  8. [Morphine self-administration by rats using a pneumatic syringe].

    Science.gov (United States)

    Akiyama, Y; Takayama, S

    1988-06-01

    An apparatus for drug self-administration by rats using a pneumatic syringe was developed by Weeks. A microliter syringe operated by a pneumatic cylinder supplies an accurate volume of drug solution within one second. When coefficient of variation of infusion volume was compared among pneumatic syringe, infusion pump, and peristaltic pump, pneumatic syringe showed higher accuracy in infusion volume than the other two pumps. Since the infusion speed by a pneumatic syringe is very rapid (less than one second per infusion), the effect of infusion speed on reinforcing property of morphine was investigated. When rats self-administered 0.1, 0.3, 1.0, and 3.0 mg/kg/infusion of morphine by pneumatic syringes, the patterns of self-infusion were more stable, the number of self-infusions and the amount self-administered were larger, and a dose-response relationship was clearer in comparison with those self-infused the same doses of morphine for 5.6 seconds by infusion pumps or peristaltic pumps.

  9. Runaway electron damage to the Tore Supra Phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Nygren, R.; Lutz, T.; Walsh, D.; Martin, G.; Chatelier, M.; Loarer, T.; Guilhem, D.

    1996-01-01

    Operation of the Phase III outboard pump limiter (OPL) in Tore Supra in 1994 was terminated prematurely when runaway electrons during the current decay following a disruption pierced leading edge tube on the electron side and caused a water leak. The location, about 20 mm outside the last closed flux surface during normal operation, and the infrared (IR) images of the limiter indicate that the runaways moved in large outward steps, i.e. tens of millimeters, in one toroidal revolution. For plasma (runaway) currents in the range of 155 to 250 kA, the drift orbits open to the outside. Basic trajectory computations suggest that such motion is possible under the conditions present for this experiment. Activation measurements made on sections of the tube to indicate the area of local damage are presented here. An understanding of this event may provide important guidance regarding the potential damage from runaways in future tokamaks

  10. Modeling and Performance of a Self-Excited Two-Phase Reluctance ...

    African Journals Online (AJOL)

    A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...

  11. Electrocentrifugal pumping; Bombeo electrocentrifugo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perez, Guillermo; Medellin Otero, Hector [Instituto Mexicano del Peroleo (Mexico)

    1996-07-01

    The exploitation of isolated oil deposits, in losing their own energy, enter a phase of secondary recovery. One of the technologies of new development in Mexico is the one of electrocentrifugal pumping , which consists of introducing the motor-pump as an integral part of the production pipe down to the well bottom and pumping directly up to central complexes, from where it is sent inland. In the present paper is intended to explain what this type of secondary recovery consists of. [Spanish] La explotacion de yacimientos aislados de petroleo, al perder su energia propia, entran en una fase de recuperacion secundaria. Una de las tecnologias de nuevo desarrollo en Mexico es la de bombeo electrocentrifugo, la cual consiste en introducir la motobomba como parte integral de la tuberia de produccion hasta el fondo del pozo y bombearlo directamente hasta los complejos centrales, de donde se envia a tierra. En el presente trabajo se pretende explicar en que consiste este tipo de recuperacion secundaria.

  12. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  13. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  14. Photovoltaic cells made from conjugated polymers infiltrated into ordered nanoporous hosts

    Science.gov (United States)

    Coakley, Kevin M.

    Semiconducting (conjugated) polymers have several properties which make them ideal candidates for use in low-cost photovoltaic (PV) cells, including their typically high (105 cm-1) optical absorption coefficients, their ability to be cast from solution using a variety of wet-processing techniques, and the ability to tune their band gap. While most approaches for making conjugated polymer-based PV cells involve randomly intermixing the polymers with electron acceptors that act as sites for exciton dissociation, we have sought to obtain a more optimized morphology of the blended materials through a self-assembly technique. In the first half of this dissertation, we describe our preliminary attempts to make PV cells from conjugated polymers infiltrated into a self-assembled mesoporous titanic (TiO 2) electron acceptor that is ordered on the nanometer length scale. We first present a procedure for fabricating films of mesoporous TiO 2 and then show how its pores can be filled with a conjugated polymer, regioregular poly(3-hexylthiophene) (P3HT). In these films we have achieved precise control of the morphology of the two materials that has not yet been achieved elsewhere. However, as discussed subsequently, the photovoltaic performance of these films has not yet reached the level achieved by other types of conjugated polymer-based PV cells, with a maximum achieved power efficiency of approximately 0.45%. In the second half of this dissertation, we embark on a more fundamental study of the materials requirements for efficient polymer photovoltaics, including models that show how the maximum achievable power efficiency is limited by energy loss during forward electron transfer, and how the maximum achievable photocurrent is limited by the limiting carrier mobility and back electron transfer. Our modeling suggests that, for a back recombination time constant of 1 mus, a limiting carrier mobility of 10-3--10 -2 cm2/Vs is required in order to achieve a large photocurrent

  15. Safety and reliability of a multiphase pump system (MPA). Phase 1b; Sicherheit und Zuverlaessigkeit eines Mehrphasen-Pumpen Systems (MPA). Phase 1b

    Energy Technology Data Exchange (ETDEWEB)

    Wuersig, G.; Woehren, N.

    2001-07-01

    Since October 1997 Germanischer Lloyd, Johann Heinrich Bornemann GmbH (JHB) and other partners are working together to develop a multiphase pumping unit for sub sea application. Key component of the system is the twin screw pump developed by JHB. A very long running time between possible maintenance work is required due to the application of the system in very deep water. The research work reported are basics for the development of a real time condition monitoring system which currently is developed by Germanischer Lloyd within the scope of the next phase of the project. The following tasks have been part of Germanischer Lloyd work in MTK 616: (a) Evaluation of the mechanical system structure by use of a 3-dimentional coupled finite element model (Section 6.) of the pump. (b) First experiments on a test pump at JHB in Obernkirchen (Section 7.). (c) Systematic evaluation of possible failure modes (Section 8.1) to define the safety relevant modes and for the technical interpretation of system behaviour. (d) Evaluation of the fluid dynamic system behaviour (Section 8.2) as basis for the planned development of the simulation model which will be part of the condition monitoring system. The results are the scientific and technical bases for the work in the running project supported by BMBF under identification number MTK 623. (orig.) [German] Seit Oktober 1997 arbeitet der Germanische Lloyd zusammen mit der Firma Johann Heinrich Bornemann GmbH (JHB) und anderen Partnern an der Entwicklung von unter Wasser einsetzbaren Systemen zur Foerderung von Oel/Gas/Feststoff-Gemischen. Zentrales Element ist dabei die von JHB entwickelte Schraubenspindelpumpe mit sehr langen wartungsfreien Laufzeiten. Die Arbeiten, ueber die hier berichtet wird, sind Voraussetzung fuer die Entwicklung eines Systems zur Zustandsbeurteilung in einem anschliessenden Projekt und umfassen: (a) Mechanische konstruktionsbegleitende Stukturanalyse (vgl. Abschnitt 6) der Pumpe mit Hilfe von gekoppelten

  16. Self-phase modulation of laser light in laser produced plasma

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.

    1975-02-01

    A spectrum broadening due to the self-phase modulation of a laser light was observed in the laser produced deuterium and hydrogen plasma. Qualitative treatments of the density modulation due to the self-focusing process and the modulational instability were discussed. The theoretical estimation of spectrum broadening fairly accorded with the experimental results. (auth.)

  17. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  18. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    International Nuclear Information System (INIS)

    Hadley, S.W.; Wilbur, D.S.

    1990-01-01

    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate

  19. Study of brushless fuel pump (improvement of pump and motor parts). 2nd Report. Blushless dendo fuel pump no kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mine, K; Takada, S; Tatematsu, M; Takeuchi, H [Aisan Industry Co. Ltd., Aichi (Japan)

    1992-10-01

    A methanol use electrically driven fuel pump was developed as reported in the present report. Mixed fuel of gasoline with alcohol can be handled by a brushless fuel pump which was proposed and improved as reported. The flow rate performance was heightened to 25g/sec by heightening in output power of motor, while the high temperature performance was 17% heightened against the conventional ratio of lowering in flow rate by heightening in vapor jet capacity. Against the corrosiveness of methanol, an in-tank type was applied to the pump, and all its electrically conductive and other mechanical parts were made to be both anti-corrosive and anti-abrasive. It is structurally of a two-stage series turbine type of non-volume form. A sensor method was applied to the motor by confining the miniaturized control circuit of brushless motor in the motor so that the transistor is controlled against the heightening in temperature. The motor is a three-phase half-wave driving motor. Also developed was a fuel supply system which is useful for the mixed fuel covering a range of 100% methanol through 100% gasoline. The present pump is dimensionally interchangeable with the conventional gasoline use one. Its operational life is more than 10000 hours. 3 refs., 17 figs., 1 tab.

  20. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, George P. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Glaven, Richard H. [Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, VA 22308 (United States); Algar, W. Russ [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); College of Science, George Mason University, Fairfax, VA 22030 (United States); Susumu, Kimihiro [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Sotera Defense Solutions, Annapolis Junction, MD 20701 (United States); Stewart, Michael H. [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Medintz, Igor L. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Goldman, Ellen R., E-mail: ellen.goldman@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States)

    2013-07-05

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.

  1. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    International Nuclear Information System (INIS)

    Anderson, George P.; Glaven, Richard H.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Medintz, Igor L.; Goldman, Ellen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format

  2. From MIPS to Vicsek: A comprehensive phase diagram for self-propelled rods

    Science.gov (United States)

    Shi, Xiaqing

    Self-propelled rods interacting by volume exclusion is one of the simplest active matter systems. Despite years of effort, no comprehensive picture of their phase diagram is available. Furthermore, results on explicit rods are so far largely disconnected from those obtained on the relatively better understood cases of motility induced phase separation (MIPS) of (usually) isotropic active particles, and from our current knowledge of Vicsek-style aligning point particles. In this talk, I will present a complete phase diagram of a generic model of self-propelled rods and show how it is connected to both MIPS and Vicsek worlds.

  3. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    Science.gov (United States)

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  4. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  5. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  6. Modelling the effect of nonplanarity on charge transport along conjugated polymer chains

    International Nuclear Information System (INIS)

    Correia, Helena M.G.; Ramos, Marta M.D.

    2007-01-01

    Conjugated polymers show interesting properties that make them appropriated for nanoelectronics. Several studies of poly(p-phenylene vinylene) (PPV) have suggested that each polymer chain consists of several planar segments, with conjugation length of nanoscale dimension, linked by twists or kinks. A pronounced twist between two planar segments in a PPV chain not only causes loss of main-chain conjugation but it may also alter electron and hole mobility along the chain, which has further implications for the percolation of charge through the polymer film. We used self-consistent quantum molecular dynamics calculations to provide information on the electric field needed to move the injected charges (either electrons or holes) along the planar segments of PPV and to cross the twist between two planar segments perpendicular to each other. Field-dependent charge mobility was also estimated for conjugated segments of various lengths. Our results suggest that electrons can cross the twist between adjacent planar segments for lower applied electric fields than holes if there is no more than one electronic charge (electron or hole) on the PPV chain, otherwise similar fields are needed

  7. A Magnetocaloric Pump for Lab-On-Chip Technology: Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.J.

    2004-04-05

    A magnetocaloric pump provides a simple means of pumping fluid using only external thermal and magnetic fields. The principle, which can be traced back to the early work of Rosensweig, is straightforward. Magnetic materials tend to lose their magnetization as the temperature approaches the material's Curie point. Exposing a column of magnetic fluid to a uniform magnetic field coincident with a temperature gradient produces a pressure gradient in the magnetic fluid. As the fluid heats up, it loses its attraction to the magnetic field and is displaced by cooler fluid. The impact of such a phenomenon is obvious: fluid propulsion with no moving mechanical parts. Until recently, limitations in the magnetic and thermal properties of conventional materials severely limited practical operating pressure gradients. However, recent advancements in the design of metal substituted magnetite enable fine control over both the magnetic and thermal properties of magnetic nanoparticles, a key element in colloidal based magnetic fluids (ferrofluids). This manuscript begins with a basic description of the process and previous limitations due to material properties. This is followed by a review of existing methods of synthesizing magnetic nanoparticles as well as an introduction to a new approach based on thermophilic metal-reducing bacteria. We compare two compounds and show, experimentally, significant variation in specific magnetic and thermal properties. We develop the constitutive thermal, magnetic, and fluid dynamic equations associated with magnetocaloric pump and validate our finite element model with a series of experiments. Preliminary results show a good match between the model and experiment as well as approximately an order of magnitude increase in the fluid flow rate over conventional magnetite based ferrofluids operating below 80 C. Finally, as a practical demonstration, we describe a novel application of this technology: pumping fluids at the &apos

  8. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  9. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...

  10. Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.

    1997-01-01

    We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...

  11. Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model

    International Nuclear Information System (INIS)

    Sobolev, A.S.; Pankratov, A.L.; Mygind, J.

    2006-01-01

    We have numerically investigated the dynamics of a long Josephson junction (flux-flow oscillator) biased by a DC current in the presence of magnetic field. The study is performed in the frame of the modified sine-Gordon model, which includes the surface losses, RC-load at both FFO ends and the self-pumping effect. In our model the dumping parameter depends both on the spatial coordinate and the amplitude of the AC voltage. In order to find the DC FFO voltage the damping parameter has to be calculated by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model, which accounts for the presence of the superconducting gap, gives better qualitative agreement with experimental results compare to the conventional sine-Gordon model

  12. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  13. Two-phase flow phenomena in broken recirculation line of BWR

    International Nuclear Information System (INIS)

    Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.

    1986-01-01

    When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)

  14. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  15. Entanglement of conjugated polymer chains influences molecular self-assembly and carrier transport

    KAUST Repository

    Zhao, Kui; Khan, Hadayat Ullah; Li, Ruipeng; Su, Yisong; Amassian, Aram

    2013-01-01

    The influence of polymer entanglement on the self-assembly, molecular packing structure, and microstructure of low-Mw (lightly entangled) and high-Mw (highly entangled) poly (3-hexylthiophene) (P3HT), and the carrier transport in thin-film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self-assembly of well-ordered and highly textured fibrils at the solid-liquid interface. In low-Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high-Mw P3HT solutions increases carrier mobility up to ≈20-fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high-Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low-Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport. Conjugated polymer chains of poly(3-hexylthiophene) (P3HT) are gradually disentangled in solution and trends in carrier transport mechanisms in organic thin film transistors for low- and high-molecular weight P3HT are investigated. While intrachain and interchain ordering within ordered domains are the key bottlenecks to charge transport in high-Mw P3HT films, the limited interconnectivity of ordered

  16. Entanglement of conjugated polymer chains influences molecular self-assembly and carrier transport

    KAUST Repository

    Zhao, Kui

    2013-06-26

    The influence of polymer entanglement on the self-assembly, molecular packing structure, and microstructure of low-Mw (lightly entangled) and high-Mw (highly entangled) poly (3-hexylthiophene) (P3HT), and the carrier transport in thin-film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self-assembly of well-ordered and highly textured fibrils at the solid-liquid interface. In low-Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high-Mw P3HT solutions increases carrier mobility up to ≈20-fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high-Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low-Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport. Conjugated polymer chains of poly(3-hexylthiophene) (P3HT) are gradually disentangled in solution and trends in carrier transport mechanisms in organic thin film transistors for low- and high-molecular weight P3HT are investigated. While intrachain and interchain ordering within ordered domains are the key bottlenecks to charge transport in high-Mw P3HT films, the limited interconnectivity of ordered

  17. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin

    International Nuclear Information System (INIS)

    Li Lei; Gao Fuping; Tang Hongbo; Ba, Yonggang; Li Ruifeng; Li Xuemin; Liu Lingrong; Wang Yinsong; Zhang Qiqing

    2010-01-01

    The purpose of this study was to develop nanoparticles made of cholesterol-conjugated carboxymethyl curdlan (CCMC) entrapping epirubicin (EPB) and establish their in vitro and in vivo potential. CCMC was synthesized and characterized by Fourier transform infrared spectra (FT-IR) and proton nuclear magnetic resonance spectra ( 1 H NMR). The degrees of substitution (DS) of the cholesterol moiety were 2.3, 3.5 and 6.4, respectively. EPB-loaded CCMC-3.5 nanoparticles were prepared by the remote loading method. The physicochemical characteristics, drug loading efficiency and drug release kinetics of EPB-loaded CCMC-3.5 nanoparticles were characterized. The in vitro release profiles revealed that EPB release was sensitive to the pH as well as the drug loading contents. The cellular cytotoxicity and cellular uptake were accessed by using human cervical carcinoma (HeLa) cells. The EPB-loaded CCMC-3.5 nanoparticles were found to be more cytotoxic and have a broader distribution within the cells than the free EPB. The in vivo pharmacokinetics and biodistribution were investigated after intravenous injection in rats. Promisingly, a 4.0-fold increase in the mean residence time (MRT), a 4.31-fold increase in the half-life time and a 6.69-fold increase in the area under the curve (AUC 0→∞ ) of EPB were achieved for the EPB-loaded CCMC-3.5 self-assembled nanoparticles compared with the free EPB. The drug level was significantly increased in liver at 24 and 72 h; however, it decreased in heart at 8 and 24 h compared with the free EPB. The in vivo anti-tumor study indicated that the EPB-loaded CCMC-3.5 self-assembled nanoparticles showed greater anti-tumor efficacy than the free EPB. Taken together, the novel CCMC self-assembled nanoparticles might have potential application as anti-cancer drug carriers in a drug delivery system due to good results in vitro and in vivo.

  18. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    International Nuclear Information System (INIS)

    Langley, Jason; Potter, William; Phipps, Corey; Zhao Qun; Huang Feng

    2011-01-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature. (note)

  19. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch.

    Science.gov (United States)

    Jadhav, Swati B; Singhal, Rekha S

    2013-10-15

    Two enzymes, α-amylase and glucoamylase have been individually and co-conjugated to pectin by covalent binding. Both the enzyme systems showed better thermal and pH stability over the free enzyme system with the complete retention of original activities. Mixture of individually conjugated enzymes showed lower inactivation rate constant with longer half life than the co-conjugated enzyme system. Individually conjugated enzymes showed an increase of 56.48 kJ/mole and 38.22 kJ/mole in activation energy for denaturation than the free enzymes and co-conjugated enzymes, respectively. Km as well as Vmax of individually and co-conjugated enzymes was found to be higher than the free enzymes. SDS-polyacrylamide gel electrophoresis confirmed the formation of conjugate and co-conjugate as evident by increased molecular weight. Both the enzyme systems were used for starch hydrolysis where individually conjugated enzymes showed highest release of glucose at 60 °C and pH 5.0 as compared to free and co-conjugated enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  1. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  2. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  3. Cooling devices and methods for use with electric submersible pumps

    Science.gov (United States)

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  4. Novel High Pressure Pump-on-a-Chip Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  5. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  6. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    Directory of Open Access Journals (Sweden)

    Anja Henning-Knechtel

    2016-07-01

    Full Text Available DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.

  7. Quantum pumping induced by disorder in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jihong [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Huaiming, E-mail: hmguo@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)

    2016-07-01

    The topological property in one dimension is protected by symmetry. Based on a concrete model, we study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the one dimensional topological phase. A stable quantum pumping can be constructed within the topological model. It is shown that an integer charge is pumped across a periodic chain in a cyclic process. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals. - Highlights: • We study the effect of disorder preserving or breaking the symmetry. • We show that an integer charge is pumped across a periodic chain in a cyclic process. • Not only the quantum pumping is stable to on-site disorder, but also can be induced by it.

  8. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  9. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a passive nonlinear birefringent photonic crystal fiber

    Science.gov (United States)

    Mahmood, Tanvir

    Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE

  10. Effects of menstrual cycle phase on cocaine self-administration in rhesus macaques.

    Science.gov (United States)

    Cooper, Ziva D; Foltin, Richard W; Evans, Suzette M

    2013-01-01

    Epidemiological findings suggest that men and women vary in their pattern of cocaine use resulting in differences in cocaine dependence and relapse rates. Preclinical laboratory studies have demonstrated that female rodents are indeed more sensitive to cocaine's reinforcing effects than males, with estrous cycle stage as a key determinant of this effect. The current study sought to extend these findings to normally cycling female rhesus macaques, a species that shares a nearly identical menstrual cycle to humans. Dose-dependent intravenous cocaine self-administration (0.0125, 0.0250, and 0.0500 mg/kg/infusion) using a progressive-ratio schedule of reinforcement was determined across the menstrual cycle. The menstrual cycle was divided into 5 discrete phases - menses, follicular, periovulatory, luteal, and late luteal phases - verified by the onset of menses and plasma levels of estradiol and progesterone. Dependent variables including number of infusions self-administered per session, progressive ratio breakpoint, and cocaine intake were analyzed according to cocaine dose and menstrual cycle phase. Analysis of plasma hormone levels verified phase-dependent fluctuations of estradiol and progesterone, with estrogen levels peaking during the periovulatory phase, and progesterone peaking during the luteal phase. Progressive ratio breakpoint, infusions self-administered, and cocaine intake did not consistently vary based on menstrual cycle phase. These findings demonstrate that under the current experimental parameters, the reinforcing effects of cocaine did not vary across the menstrual cycle in a systematic fashion in normally cycling rhesus macaques. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    International Nuclear Information System (INIS)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente; Blakeney, Ernest W.; Kanz, Mary F.; Dugas, Tammy R.

    2008-01-01

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objective was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [ 14 C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [ 14 C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased

  12. Electromagnetic linear pump for liquid-metal service

    International Nuclear Information System (INIS)

    Meisner, J.

    Electromagnetic pumps are not noted for their efficiency - values on the order of 15% are not unusual. However, the Energy Systems Group of Rockwell International, under contract to the Department of Energy, has recently designed, built, and tested for the Clinch River Breeder Reactor Program (CRBRP) a pump that has a peak efficiency of 40%. This outstanding efficiency was obtained by optimizing the hydraulic and electrical properties of the pumping section early in the design phase. These performance features were proven in a highly successful series of tests at flow rates up to 800 gal/min and temperatures up to 1130 0 F. This article discusses the design in detail and presents some of the test results

  13. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  14. Partition calculation for zero-order and conjugate image removal in digital in-line holography.

    Science.gov (United States)

    Ma, Lihong; Wang, Hui; Li, Yong; Jin, Hongzhen

    2012-01-16

    Conventional digital in-line holography requires at least two phase-shifting holograms to reconstruct an original object without zero-order and conjugate image noise. We present a novel approach in which only one in-line hologram and two intensity values (namely the object wave intensity and the reference wave intensity) are required. First, by subtracting the two intensity values the zero-order diffraction can be completely eliminated. Then, an algorithm, called partition calculation, is proposed to numerically remove the conjugate image. A preliminary experimental result is given to confirm the proposed method. The method can simplify the procedure of phase-shifting digital holography and improve the practical feasibility for digital in-line holography.

  15. Installation and initial operation of the DIII-D advanced divertor cryocondensation pump

    International Nuclear Information System (INIS)

    Smith, J.P.; Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Hyatt, A.W.; Laughon, G.J.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Sevier, D.L.; Stambaugh, R.D.; Menon, M.M.

    1993-10-01

    Phase two of a divertor cryocondensation pump, the Advanced Divertor Program, is now installed in the DIII-D tokamak at General Atomics and complements the phase one biasable ring electrode. The installation consists of a 10 m long cryocondensation pump located in the divertor baffle chamber to study plasma density control by pumping of the divertor. The design is a toroidally electrically continuous liquid helium-cooled panel with 1 m 2 of pumping surface. The helium panel is single point grounded to the nitrogen shield to minimize eddy currents. The nitrogen shield is toroidally continuous and grounded to the vacuum vessel in 24 locations to prevent voltage potentials from building up between the pump and vacuum vessel wall. A radiation/particle shield surrounds the nitrogen-cooled surface to minimize the heat load and prevent water molecules condensed on the nitrogen surface from being released by impact of energetic particles. Large currents (>5000 A) are driven in the helium and nitrogen panels during ohmic coil ramp up and during disruptions. The pump is designed to accommodate both the thermal and mechanical loads due to these currents. A feedthrough for the cryogens allows for both radial and vertical motion of the pump with respect to the vacuum vessel. Thermal performance measured on a prototype verified the analytical model and thermal design of the pump. Characterization tests of the installed pump show the pumping speed in deuterium is 42,000 ell/sec for a pressure of 5 mTorr. Induction heating of the pump (at 300 W) resulted in no degradation of pumping speed. Plasma operations with the cryopump show a 60% lower density in H-mode

  16. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  17. Self-Nulling Beam Combiner Using No External Phase Inverter

    Science.gov (United States)

    Bloemhof, Eric E.

    2010-01-01

    A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.

  18. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    International Nuclear Information System (INIS)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2014-01-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by 1 H and 31 P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior

  19. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  20. PEG conjugates in clinical development or use as anticancer agents: an overview.

    Science.gov (United States)

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  1. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  2. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses.

    Science.gov (United States)

    Major, Matthew J; Caldwell, Ryan; Fatone, Stefania

    2015-12-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels.

  3. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  4. Synthesis of nucleotide–amino acid conjugates designed for photo-CIDNP experiments by a phosphotriester approach

    Directory of Open Access Journals (Sweden)

    Tatyana V. Abramova

    2013-12-01

    Full Text Available Conjugates of 2’-deoxyguanosine, L-tryptophan and benzophenone designed to study pathways of fast radical reactions by the photo Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP method were obtained by the phosphotriester block liquid phase synthesis. The phosphotriester approach to the oligonucleotide synthesis was shown to be a versatile and economic strategy for preparing the required amount of high quality samples of nucleotide–amino acid conjugates.

  5. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  6. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  7. Optimised deconjugation of androgenic steroid conjugates in bovine urine

    DEFF Research Database (Denmark)

    Pedersen, Mikael; Frandsen, Henrik Lauritz; Andersen, Jens Hinge

    2017-01-01

    and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested......After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase...... with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid...

  8. Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Chasar, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Amos, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-02-03

    The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits during August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: a) Supplemental mini-split heat pump (MSHP) (6 homes); b) Ducted and space coupled Heat Pump Water Heater (8 homes); c) Exterior insulation finish system (EIFS) (1 homes); d) Window retrofit (3 homes); e) Smart thermostat (21 homes: 19 NESTs; 2 Lyrics); f) Heat pump clothes dryer (8 homes); g) Variable speed pool pump (5 homes).

  9. Improvement to liquid metal pumps

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    This invention concerns the coolant pumps of nuclear reactors. It resolves the problems of structures which have to withstand high temperatures, the difficulties in keeping the multiple bearings of the shaft aligned, the excessive fluid flows, the risks of scoring and seizing-up by self welding, the need for narrow machining tolerances and the difficulties of access for inspection and repairs [fr

  10. Synchronization modulation of Na/K pumps on Xenopus oocytes

    Science.gov (United States)

    Liang, Pengfei; Mast, Jason; Chen, Wei

    We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.

  11. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  12. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  13. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    OpenAIRE

    Qiang Fu; Fan Zhang; Rongsheng Zhu; Xiuli Wang

    2016-01-01

    The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction st...

  14. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  15. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  16. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  17. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-04-01

    Full Text Available The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction state, while it decreases sharply at the high gas volume fraction state and then decreases with the increasing gas quantity. There is an obvious asymmetric blade vapor density on the blade suction side under each cavitation state. The cavities can be weakened obviously by increasing the inlet gas volume fraction within a certain range. It has little influence on the internal unsteady flow of the mixed-flow pump when the gas volume fraction is less than 10%, but the pump starts to operate with a great unsteady characteristic when the inlet gas volume fraction increases to 15%.

  18. Conjugate gradient optimization programs for shuttle reentry

    Science.gov (United States)

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.

    1972-01-01

    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  19. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  20. The elimination of pump depletion in laser-plasma beat-wave accelerators

    International Nuclear Information System (INIS)

    Ma Jinxiu; Xu Zhizhan

    1988-01-01

    The pump depletion is a severe problem which hinders the laser-plasma beat-wave accelerator concept from being practical. Starting with the weak relativistic equation of beat-wave excitation of electron plasma waves, the authors have derived the condition for eliminating the pump depletion in the fame moving with the light pulse for arbitrary pulse shapes. It is shown that the depletion can be eliminated by a phase jump of π at the center of the pump pulse and by the appropriated choice of initial plasma density detuning. The numerical calculation have yielded the dependence of the initial detuning on the pump intensity for square pump pulses, and have supported the methods used in this paper

  1. Operating experience with a high capacity helium pump under supercritical conditions

    International Nuclear Information System (INIS)

    Lehmann, W.; Minges, J.

    1984-01-01

    This chapter discusses the development and testing of a high-capacity piston pump to provide forced cooling for large superconducting magnets. The pump is a three cylinder, vertically arranged single-acting piston pump equipped with a frequency controlled three-phase geared motor operating at room temperature. The pump is capable of delivering up to 150 g/s at a maximum speed of 310 rpm and under the inlet conditions of 4 bar/4.5 K. No decline was noticed in delivery head and efficiencies during more than 560 hours of operation. It is concluded that the pump satisfies all requirements for circulating large mass flows across great pressure differences as needed (e.g. in fusion magnet design)

  2. Up-converter nanophosphor Y2O2S:Er,Yb aminofunctionalized containing or not spherical silica conjugated with BSA

    International Nuclear Information System (INIS)

    Gelamos, Joao Paulo; Laranja, Marlon Larry; Alvino, Karla Cristina Lombardi; Camacho, Sabrina Alessio; Pires, Ana Maria

    2009-01-01

    This work reports on the study of the nanophosphor Y 2 O 2 S:Er(2%),Yb(1%) obtained from polymeric resin to be evaluated as fluorescent label with suitable features to conjugate with bio-molecules for bioassay up-converting phosphor technology (UPT) application. A conjugation protocol between bovine serum albumin (BSA) and the aminofunctionalized nanophosphor containing or not spherical silica was established. UV-vis results indicated an effective conjugation between nanophosphor particles and the protein. Up-conversion measurements under 980 nm excitation performed for samples before and after aminofunctionalization showed that nanophosphor particles luminescence features keep unchanged in all cases. All results suggest that the adapted protocol is feasible to provide a nanoparticle-protein effective conjugation preserving nanophosphor optical features. The presence of spherical silica can be considered advantageous to increase conjugation efficiency. Therefore, the developed procedure is applicable for future conjugations between the chosen nanophosphor and the streptavidin protein that takes part in the well known self-recognition system avidin-biotin.

  3. Evaluation of the performance of elastomeric pumps in practice: are we under-delivering on chemotherapy treatments?

    Science.gov (United States)

    Salman, Dahlia; Biliune, Jurga; Kayyali, Reem; Ashton, Jane; Brown, Peter; McCarthy, Tim; Vikman, Elin; Barton, Stephen; Swinden, Julian; Nabhani-Gebara, Shereen

    2017-12-01

    Elastomeric pumps are widely used to facilitate ambulatory chemotherapy, and studies have shown that they are safe and well received by patients. Despite these advantages, their end of infusion time can fluctuate significantly. The aim of this research was to observe the performance of these pumps in real practice and to evaluate patients' satisfaction. This was a two-phase study conducted at three cancer units over 6 months. Phase-1 was an observational study recording the status of pumps at the scheduled disconnection time and noting remaining volume of infusion. Phase-2 was a survey of patients and their perception/satisfaction. Ethical approval was granted. A total of 92 cases were observed covering 50 cases disconnected at hospital and 42 disconnected at home. The infusion in 40% of hospital disconnection cases was slow, with patients arriving at hospital with unfinished pumps; 58% of these had an estimated remaining volume which exceeded 10 mL with 35% exceeded 20 mL. In 73% of these cases, and regardless of the remaining volume, the patient was disconnected and the pump was discarded. The performance of pumps varied, which affected nurse workload and patients' waiting-times. A smart system is an option to monitor the performance of pumps and to predict their accuracy.

  4. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    International Nuclear Information System (INIS)

    Cao, L; Wang, Z W; Luo, Y Y; Liu, M

    2013-01-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased

  5. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Souma, Satofumi; Ogawa, Matsuto

    2014-01-01

    We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated

  7. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul Pratap [Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Sharma, Gunjan [Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Sonali [Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Singh, Sanjay [Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005 (India); Patne, Shashikant C.U. [Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Pandey, Bajarangprasad L. [Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Koch, Biplob, E-mail: kochbiplob@gmail.com [Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Muthu, Madaswamy S., E-mail: muthubits@rediffmail.com [Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005 (India); Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India)

    2016-10-01

    The aim of this study was to develop multi-walled carbon nanotubes (MWCNT) which were covalently conjugated with transferrin by carbodiimide chemistry and loaded with docetaxel as a model drug for effective treatment of lung cancer in comparison with the commercial docetaxel injection (Docel™). D-Alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used as amphiphilic surfactant to improve the aqueous dispersity and biocompatibility of MWCNT. Human lung cancer cells (A549 cells) were employed as an in-vitro model to access cellular uptake, cytotoxicity, cellular apoptosis, cell cycle analysis, and reactive oxygen species (ROS) of the docetaxel/coumarin-6 loaded MWCNT. The cellular uptake results of transferrin conjugated MWCNT showed higher efficiency in comparison with free C6. The IC{sub 50} values demonstrated that the transferrin conjugated MWCNT could be 136-fold more efficient than Docel™ after 24 h treatment with the A549 cells. Flow cytometry analysis confirmed that cancerous cells appeared significantly (P < 0.05) in the sub-G1 phase for transferrin conjugated MWCNT in comparison with Docel™. Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™. - Highlights: • It shows the development of transferrin conjugated MWCNT formulation of DTX for the effective treatment of lung cancer. • Evaluated the cellular uptake, cytotoxicity, cellular apoptosis, cell cycle, and ROS level of the DTX/C6 loaded MWCNT. • The IC{sub 50} values demonstrated that the transferrin conjugated MWCNT could be 136-fold more effective than Docel™. • Safety of the DTX formulations were studied by the measurements of ALP, LDH and total protein count levels in BAL fluid. • Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™ in lung cancer delivery.

  8. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery

    International Nuclear Information System (INIS)

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Patne, Shashikant C.U.; Pandey, Bajarangprasad L.; Koch, Biplob; Muthu, Madaswamy S.

    2016-01-01

    The aim of this study was to develop multi-walled carbon nanotubes (MWCNT) which were covalently conjugated with transferrin by carbodiimide chemistry and loaded with docetaxel as a model drug for effective treatment of lung cancer in comparison with the commercial docetaxel injection (Docel™). D-Alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used as amphiphilic surfactant to improve the aqueous dispersity and biocompatibility of MWCNT. Human lung cancer cells (A549 cells) were employed as an in-vitro model to access cellular uptake, cytotoxicity, cellular apoptosis, cell cycle analysis, and reactive oxygen species (ROS) of the docetaxel/coumarin-6 loaded MWCNT. The cellular uptake results of transferrin conjugated MWCNT showed higher efficiency in comparison with free C6. The IC_5_0 values demonstrated that the transferrin conjugated MWCNT could be 136-fold more efficient than Docel™ after 24 h treatment with the A549 cells. Flow cytometry analysis confirmed that cancerous cells appeared significantly (P < 0.05) in the sub-G1 phase for transferrin conjugated MWCNT in comparison with Docel™. Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™. - Highlights: • It shows the development of transferrin conjugated MWCNT formulation of DTX for the effective treatment of lung cancer. • Evaluated the cellular uptake, cytotoxicity, cellular apoptosis, cell cycle, and ROS level of the DTX/C6 loaded MWCNT. • The IC_5_0 values demonstrated that the transferrin conjugated MWCNT could be 136-fold more effective than Docel™. • Safety of the DTX formulations were studied by the measurements of ALP, LDH and total protein count levels in BAL fluid. • Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™ in lung cancer delivery.

  9. Cretaceous to Recent Asymetrical Subsidence of South American and West African Conjugate Margins

    Science.gov (United States)

    Kenning, J.; Mann, P.

    2017-12-01

    Two divergent interpretations have been proposed for South American rifted-passive margins: the "mirror hypothesis" proposes that the rifted margins form symmetrically from pure shear of the lithosphere while upper-plate-lower plate models propose that the rifted margins form asymmetrically by simple shear. Models based on seismic reflection and refraction imaging and comparison of conjugate, rifted margins generally invoke a hybrid stretching process involving elements of both end member processes along with the effects of mantle plumes active during the rift and passive margin phases. We use subsidence histories of 14, 1-7 km-deep exploration wells located on South American and West African conjugate pairs now separated by the South Atlantic Ocean, applying long-term subsidence to reveal the symmetry or asymmetry of the underlying, conjugate, rift processes. Conjugate pairs characterize the rifted margin over a distance of 3500 km and include: Colorado-South Orange, Punta Del Este-North Orange, South Pelotas-Lüderitz and the North Pelotas-Walvis Basins. Of the four conjugate pairs, more rapid subsidence on the South American plate is consistently observed with greater initial rift and syn-rift subsidence rates of >60m/Ma (compared to 100 m/Ma are observed offshore South Africa between approximately 120-80 Ma, compatible with onset of the post-rift thermal sag phase. During this period the majority of burial is completed and rates remain low at Argentina/Uruguay displays more gradual subsidence throughout the Cretaceous, consistently averaging a moderate 15-30m/Ma. By the end of this stage there is a subsequent increase to 25-60 m/Ma within the last 20 Ma, interpreted to reflect lithospheric loading due to increased sedimentation rates during the Cenozoic. This increase in subsidence rate is not seen in the African conjugate section where the majority of sediments bypassed the highly aggraded Cretaceous shelf. Initially greater on the Brazilian margin compared to

  10. Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2)

    NARCIS (Netherlands)

    Seitz, S.; Kretz-Rommel, A.; Oude Elferink, R. P.; Boelsterli, U. A.

    1998-01-01

    Previous work demonstrates that the reactive acyl glucuronide of the nonsteroidal antiinflammatory drug diclofenac forms selective protein adducts in the liver, which may play a causal role in the pathogenesis of diclofenac-associated liver toxicity. Because glucuronide conjugates can be exported

  11. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism

    Science.gov (United States)

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  12. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  13. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients.

    Science.gov (United States)

    Chen, Weitian; Sica, Christopher T; Meyer, Craig H

    2008-11-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.

  14. Cascade and intermittency model for turbulent compressible self-gravitating matter and self-binding phase-space density fluctuations

    International Nuclear Information System (INIS)

    Biglari, H.; Diamond, P.H.

    1988-01-01

    A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy

  15. Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure

    National Research Council Canada - National Science Library

    Wang, Yi-Zun

    2002-01-01

    A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...

  16. [Optimizing synthesis of conjugates of superoxide dismutase and catalase with aldehyde dextrans in surfactant microemulsions in heptane].

    Science.gov (United States)

    Eremin, A N; Metelitsa, D I

    1997-01-01

    Stable microemulsions in heptane retaining considerable amounts of the polar phase were obtained by using Aerosol OT (AOT), Triton X-45, and catalase. Conjugates of superoxide dismutase (SOD) and catalase with aldehyde dextrans (AD) were synthesized in surfactant microemulsions in heptane. Effects of the reaction duration, the microemulsion polar phase volume, and concentrations of enzymes and modifiers on the properties of these conjugates were studied. The catalytic properties of conjugates depended on the nature of the surfactants used to stabilize the microemulsions, the initial concentration of protein in the reaction mixture, and the enzyme: modifier ratio. The degree of modification of the enzymes and the stabilities of their conjugates during isolation from microemulsions by a water-acetone solution depended on the concentration of the AD used. The catalytic properties of the conjugates synthesized were compared, and their stabilities in the presence of H2O2 were described. We suggested a simple method of transformation of whole kinetic curves of H2O2 conversion in coordinates 1/ln([H2O2]0/[H2O2]t - 1/t for simultaneous measurement of the constant of the catalase inactivation rate by H2O2 (Cin, S-1) and the rate constant of the catalase complex 1 interaction with the second H2O2 molecule (C2, M-1 S-1). This method was tested experimentally. Values C2 and Cin for catalase and its conjugates with ADs were compared, and these results were discussed.

  17. A Magnetocaloric Pump for Lab-On-A-Chip Technology: Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2004-05-08

    A magnetocaloric pump provides a simple means of pumping fluid using only external thermal and magnetic fields. The principle, which can be traced back to the early work of Rosensweig, is straightforward. Magnetic materials tend to lose their magnetization as the temperature approaches the material's Curie point. Exposing a column of magnetic fluid to a uniform magnetic field coincident with a temperature gradient produces a pressure gradient in the magnetic fluid. As the fluid heats up, it loses its attraction to the magnetic field and is displaced by cooler fluid. The impact of such a phenomenon is obvious: fluid propulsion with no moving mechanical parts. Until recently, limitations in the magnetic and thermal properties of conventional materials severely limited practical operating pressure gradients. However, recent advancements in the design of metal substituted magnetite enable fine control over both the magnetic and thermal properties of magnetic nanoparticles, a key element in colloidal based magnetic fluids (ferrofluids). This manuscript begins with a basic description of the process and previous limitations due to material properties. This is followed by a review of existing methods of synthesizing magnetic nanoparticles as well as an introduction to a new approach based on thermophilic metal-reducing bacteria. We compare two compounds and show, experimentally, significant variation in specific magnetic and thermal properties. We develop the constitutive thermal, magnetic, and fluid dynamic equations associated with magnetocaloric pump and validate our finite element model with a series of experiments. Preliminary results show a good match between the model and experiment as well as approximately an order of magnitude increase in the fluid flow rate over conventional magnetite based ferrofluids operating below 80 C. Finally, as a practical demonstration, we describe a novel application of this technology: pumping fluids at the &apos

  18. Drug-conjugated PLA-PEG-PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation.

    Science.gov (United States)

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2017-12-01

    A conjugate of the antihypertensive drug, lisinopril, with triblock poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) copolymer was synthesized by the reaction of PLA-PEG-PLA copolymer with lisinopril in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugated copolymer was characterized in vitro by hydrogen nuclear magnetic resonance (HNMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) techniques. Then, the lisinopril conjugated PLA-PEG-PLA were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the micelles formed by the lisinopril-conjugated PLA-PEG-PLA have spherical structure with the average size of 162 nm. The release behavior of conjugated copolymer, micelles and micelles physically loaded by lisinopril were compared in different media. In vitro release study showed that in contrast to physically loaded micelles, the release rate of micelles consisted of the conjugated copolymer was dependent on pH of media where it was higher at lower pH compared to the neutral medium. Another feature of the conjugated micelles was their more sustained release profile compared to the lisinopril-conjugated copolymer and physically loaded micelles.

  19. Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems

    International Nuclear Information System (INIS)

    Qiao Yao-Jun; Liu Xue-Jun; Ji Yue-Feng

    2011-01-01

    Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing (COOFDM) system are post-compensated for by a new method of fiber nonlinearity post-compensation (FNPC). The FNPC located before the CO-OFDM receiver includes an optical phase conjugation (OPC) unit and a subsequent 80-km-high nonlinear fiber (HNLF) as a fiber nonlinearity compensator. The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier. The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient. Simulation results show that the nonlinear threshold (NLT) (for Q > 10 dB) can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single-channel 40-Gb/s CO-OFDM system with periodic dispersion maps. In the 50-GHz channel spacing wavelength-division-multiplexing system, the NLT increases by 1.1 dB, equating to a 0.7 dB improvement for the maximum Q factor. (fundamental areas of phenomenology(including applications))

  20. Four-quadrant characteristics of Psb-VVER pumps

    International Nuclear Information System (INIS)

    Lipatov, I.A.; Elkin, I.V.; Antonova, A.I.; Dremin, G.I.; Kapustin, A.V.; Nikonov, S.M.; Rovnov, A.A.; Gudkov, V.I.

    2005-01-01

    This paper represents description of determination of Tunis-1620 pump head and torque characteristics of the integral thermophysical test facility Psb-Ver, obtained for single-phase coolant. Test procedure and main results obtained are described in the paper. (author)

  1. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui; Khan, Hadayat Ullah; Li, Ruipeng; Hu, Hanlin; Amassian, Aram

    2016-01-01

    and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining

  2. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  3. Self-Powered Magnetothermal Fluid Pump, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to successfully manage thermal loads is increasingly a primary design constraint for many emerging engineered systems. Systems ranging from military...

  4. Self-Powered Magnetothermal Fluid Pump, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in the capabilities of electronics have enabled high power density devices. However, even in light of advances in electronics efficiency figures, the...

  5. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  6. Validated design of the ITER main vacuum pumping systems

    International Nuclear Information System (INIS)

    Day, Chr.; Antipenkov, A.; Dremel, M.; Haas, H.; Hauer, V.; Mack, A.; Boissin, J.-C.; Class, G.; Murdoch, D.K.; Wykes, M.

    2005-01-01

    Forschungszentrum Karlsruhe is developing the ITER high vacuum cryogenic pumping systems (torus, cryostat, NBI) as well as the corresponding mechanical roughing pump trains. All force-cooled big cryopumps incorporate similar design of charcoal coated cryopanels cooled to 5 K with supercritical helium. A model of the torus exhaust cryopump was comprehensively characterised in the TIMO testbed at Forschungszentrum. This paper discusses the vacuum performance results of the model pump and outlines how these data were incorporated in a sound design of the whole ITER torus exhaust pumping system. To do this, the dedicated software package ITERVAC was developed which is able to describe gas flow in viscous, transitional and molecular flow regimes as needed for the gas coming through the divertor slots and along the pump ducts into the cryopumps. The entrance section between the divertor cassettes and each pumping duct was identified to be the bottleneck of the gas flow. The interrelation of achievable throughputs as a function of the divertor pressure and the cryopump pumping speed is discussed. The system design is completed by assessment of the NBI cryopump system and integrating performance curves for the roughing pump trains needed during the regeneration phases of the cryopumps. (author)

  7. Neutral transport and helium pumping of ITER

    International Nuclear Information System (INIS)

    Ruzic, D.N.

    1990-08-01

    A 2-D Monte-Carlo simulation of the neutral atom densities in the divertor, divertor throat and pump duct of ITER was made using the DEGAS code. Plasma conditions in the scrape-off layer and region near the separatrix were modeled using the B2 plasma transport code. Wall reflection coefficients including the effect of realistic surface roughness were determined by using the fractal TRIM code. The DEGAS and B2 coupling was iterated until a consistent recycling was predicted. Results were obtained for a helium and a deuterium/tritium mixture on 7 different ITER divertor throat geometries for both the physics phase reference base case and a technology phase case. The geometry with a larger structure on the midplane-side of the throat opening closing the divertor throat and a divertor plate which maintains a steep slope well into the throat removed helium 1.5 times better than the reference geometry for the physics phase case and 2.2 times better for the technology phase case. At the same time the helium to hydrogen pumping ratio shows a factor of 2.34 ± .41 enhancement over the ratio of helium to hydrogen incident on the divertor plate in the physics phase and an improvement of 1.61 ± .31 in the technology phase. If the helium flux profile on the divertor plate is moved outward by 20 cm with respect to the D/T flux profile for this particular geometry, the enhancement increases to 4.36 ± .90 in the physics phase and 5.10 ± .92 in the technology phase

  8. Influence of dispersion of nonlinearity on coherent supercontinuum generation bandwidth in photonic crystal fibers pumped at 2 μm

    DEFF Research Database (Denmark)

    Klimczak, Mariusz; Siwicki, Bartlomiej; Zhou, Binbin

    2017-01-01

    Sources of spectrally broadband and coherent light are necessary for frequency metrology and ultrashort pulse generation. Near-infrared (NIR) wavelengths are practical for such devices because of the emergence of robust and reasonably priced femtosecond lasers operating in this part of spectrum...... lasers as pump sources, exceeding the 2400 nm barrier has proved a challenge. ANDi SC requires strong nonlinear response of the optical material, since self-phase modulation (SPM) and optical wave breaking (OWB) mediated four-wave mixing (FWM) are almost exclusively shaping the ANDi SC pulses. Flatness...

  9. Real-time observation of fluctuations in a driven-dissipative quantum many-body system undergoing a phase transition

    Science.gov (United States)

    Donner, Tobias

    2015-03-01

    A Bose-Einstein condensate whose motional degrees of freedom are coupled to a high-finesse optical cavity via a transverse pump beam constitutes a dissipative quantum many-body system with long range interactions. These interactions can induce a structural phase transition from a flat to a density-modulated state. The transverse pump field simultaneously represents a probe of the atomic density via cavity- enhanced Bragg scattering. By spectrally analyzing the light field leaking out of the cavity, we measure non-destructively the dynamic structure factor of the fluctuating atomic density while the system undergoes the phase transition. An observed asymmetry in the dynamic structure factor is attributed to the coupling to dissipative baths. Critical exponents for both sides of the phase transition can be extracted from the data. We further discuss our progress in adding strong short-range interactions to this system, in order to explore Bose-Hubbard physics with cavity-mediated long-range interactions and self-organization in lower dimensions.

  10. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides.

    Science.gov (United States)

    Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O

    2018-05-18

    π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

  11. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  12. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    International Nuclear Information System (INIS)

    Smetanin, S N; Ivleva, L I; Jelínek, M Jr; Kubeček, V; Jelínková, H; Shurygin, A S

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO 4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO 4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device. (letter)

  13. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    International Nuclear Information System (INIS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-01-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ (3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the

  14. Effect of absorbed pump power on the quality of output beam from ...

    Indian Academy of Sciences (India)

    Monolithic laser; thermal lens; diode pumping; spherical aberration; M2 ... the thermal lens as a function of the absorbed pump power towards the degradation of .... abs r4 -•••. (6) where the first term a0 is a constant phase shift and its value is ...

  15. Primary pump vibration under accident conditions

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Currie, T.C.

    1984-06-01

    This report presents the results of an international survey on the subject of vibration in nuclear primary coolant pumps due to two-phase flow, accident conditions. The literature search also revealed few Canadian references other than those of Ontario Hydro. Ontario Hydro's work has been extensive. Confidence in the mechanical integrity of the pumpsets is good, given the extent of the testing. However, conclusions with respect to piping integrity and thermal-hydraulic performance are difficult to determine due to the inexact geometry of the piping and the difficulties in estimating fluid conditions at the pump. The tests help to understand the phenomena and provide background information for analysis, but should be applied with caution to plant analyses. Much of the discussion in the report relates to pump head instability. This is perceived to be the most important flow regime causing vibration, as attested by the emphasis of the reviewed literature. A method for quantitative assessment of the forcing functions acting on the pump-piping system due to void generation and collapse is recommended. A relatively fundamental analytical approach is proposed, supplemented by reduced scale testing in the latter stages. 151 refs

  16. A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Sabahi, Mehran; Hosseini, Seyed Hossein

    2017-01-01

    This paper proposes a new single-phase transformerless photovoltaic (PV) inverter for grid-tied PV systems. The topology is derived from the concept of a charge pump circuit in order to eliminate the leakage current. It is composed of four power switches, two diodes, two capacitors, and an LCL...... resonant control strategy is used to control the injected current. The main benefits of the proposed inverter are: the neutral of the grid is directly connected to the negative terminal of the PV panel, so the leakage current is eliminated; its compact size; low cost; the used dc voltage of the proposed...... are presented. Experimental results are presented to confirm both the theoretical analysis and the concept of the proposed inverter. The obtained results clearly validate the performance of the proposed inverter and its practical application in grid-tied PV systems....

  17. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  18. Phased Retrofits in Existing Homes In Florida Phase I: Shallow and Deep Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Sutherland, K. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Chasar, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Montemurno, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Amos, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-02-04

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and single measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.

  19. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov

    2016-01-01

    ± 4036 pg/mL, P = 0.03) compared to the low dose dexamethasone. The high dose dexamethasone dose decreased the spleen weight (421 ± 11 mg vs 465 ± 12 mg, P any other group. CONCLUSION: Low-dose anti-CD163-dexamethasone conjugate effectively decreased...

  20. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.