WorldWideScience

Sample records for self-powered ultra-low power

  1. Energy Harvesting for Self-Powered, Ultra-Low Power Microsystems With a Focus on Vibration-Based Electromechanical Conversion

    Science.gov (United States)

    2009-09-01

    capacitor responsible for charge. Figure 25. Half Bridge Power Harvester with Leakage Resistance [From 70] The resistor accounts for the voltage...REV PAP, 1996. [63] M. Umeda, K. Nakamura, and S. Ueha, “Energy storage characteristics of a piezo - generator using impact induced vibration...Japanese journal of applied physics, vol. 36, pp. 3146–3151, 1997. [64] M. Kimura, “ Piezo -electricity generation device,” U.S. Patent 812070, September

  2. Ultra low power full adder topologies

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Mahmoodi, Hamid

    In this paper several low power full adder topologies are presented. The main idea of these circuits is based on the sense energy recovery full adder (SERF) design and the GDI (gate diffusion input) technique. These subthreshold circuits are employed for ultra low power applications. While the pr...... the proposed circuits have some area overhead that is negligible, they have at least 62% less power dissipation when compared with existing designs. In this paper, 65 nm standard models are used for simulations....

  3. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  4. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Passe, J.; Petitcolas, H.; Verdant, R.

    1975-01-01

    The self-powered neutron detectors (SPND) enable to measure continuously high fluxes of thermal neutrons. They are particularly suitable for power reactor cores because of their robustness. Description of two kinds of SPND's characterized by the electrical current production way is given here: the first SPND's which present a V, Ag or Rh emitter are sensitive enough but they offer a few minute delay time: the second SPND's which are depending on the gamma activation have a short delay time. The emitter is made of Co or Pt. In any case, the signal is linear with reaction rates. Finally, the applications are briefly repeated here: irradiation facility monitor in research reactors, and flux map and space instability control in power reactors [fr

  5. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  6. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  7. Self-powered flux detectors

    International Nuclear Information System (INIS)

    Shields, R.B.

    1983-02-01

    This bibliography attempts to cover the published literature on the class of radiation detectors most often referred to as 'self-powered'. For this purpose, self-powered detectors are defined as those that have two or more conducting electrodes separated by solid insulation and that generate a signal current without an external power source. Primary sensitivity is unrestricted, but it is usually to neutrons or gamma-rays. The main application is in the core of a nuclear reactor. All relevant facets of the subject are covered including: theory, experiment, development, design, manufacture, instrumentation and application. In addition to the usual reference information, various other designations are included where available, such as CONF-and abstract serial numbers. Where possible, a summary of the content is given with emphasis on specific results and conclusions. Indexing is by author and subject

  8. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  9. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1976-01-01

    A self-powered neutron detector is detailed wherein a thin conductive layer of low neutron cross section, high density material is disposed about an emitter core of material which spontaneously emits radiation on neutron capture. The high density material is absorptive of beta radiation emitted by decay of the emitter core activation product, but is substantially transmissive to the high average energy prompt electrons emitted by the emitter core material. (author)

  10. Design of ultra-low power impulse radios

    CERN Document Server

    Apsel, Alyssa; Dokania, Rajeev

    2014-01-01

    This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead.  This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs.  Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.   • Enables detailed understanding of the design space for ultra-low power radio; • Provides detailed discussion and examples of the design of a practical low power ...

  11. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    Science.gov (United States)

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1974-01-01

    The invention relates a self-powered neutron detector comprising an emitting body, an insulating material surrounding said body, and a conducting outer cover, a power conductor connected to the emitting body and passing through the insulating material permitting to insert an ammeter between said emitting body and said cover. The invention is characterized in that said emitting body is surrounded by a thin conducting layer of small cross section for neutrons made of high density material said material being capable of absorbing the beta-radiations due to the degradation of the emitting body activating product, while transmitting the fast electrons of high average energy emitted by said emitting body. This can be applied to safety control devices required to provide a quick answer [fr

  13. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  14. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  15. Ultra-low-power short-range radios

    CERN Document Server

    Chandrakasan, Anantha

    2015-01-01

    This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:.

  16. Nanogenerators for Self-Powered Gas Sensing

    Science.gov (United States)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  17. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  18. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  19. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  20. Optimization of ultra-low-power CMOS transistors

    International Nuclear Information System (INIS)

    Stockinger, M.

    2000-01-01

    Ultra-low-power CMOS integrated circuits have constantly gained importance due to the fast growing portable electronics market. High-performance applications like mobile telephones ask for high-speed computations and low stand-by power consumption to increase the actual operating time. This means that transistors with low leakage currents and high drive currents have to be provided. Common fabrication methods will soon reach their limits if the on-chip feature size of CMOS technology continues to shrink at this very fast rate. New device architectures will help to keep track with the roadmap of the semiconductor industry. Especially doping profiles offer much freedom for performance improvements as they determine the 'inner functioning' of a transistor. In this work automated doping profile optimization is performed on MOS transistors within the TCAD framework SIESTA. The doping between and under the source/drain wells is discretized on an orthogonal optimization grid facilitating almost arbitrary two-dimensional shapes. A linear optimizer issued to find the optimum doping profile by variation of the doping parameters utilizing numerical device simulations with MINIMOS-NT. Gaussian functions are used in further optimization runs to make the doping profiles smooth. Two device generations are considered, one with 0.25 μm, the other with 0.1 μm gate length. The device geometries and source/drain doping profiles are kept fixed during optimization and supply voltages are chosen suitable for ultra-low-power purposes. In a first optimization study the drive current of NMOS transistors is maximized while keeping the leakage current below a limit of 1 pA/μm. This results in peaking channel doping devices (PCD) with narrow doping peaks placed asymmetrically in the channel. Drive current improvements of 45 % and 71 % for the 0.25 μm and 0.1 μm devices, respectively, are achieved compared to uniformly doped devices. The PCD device is studied in detail and explanations for

  1. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-03-01

    Full Text Available An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT-based power management system (PMS is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  2. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    Science.gov (United States)

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  3. Ultra low-power integrated circuit design for wireless neural interfaces

    CERN Document Server

    Holleman, Jeremy; Otis, Brian

    2014-01-01

    Presenting results from real prototype systems, this volume provides an overview of ultra low-power integrated circuits and systems for neural signal processing and wireless communication. Topics include analog, radio, and signal processing theory and design for ultra low-power circuits.

  4. Self-Powered Sun Sensor Microsystems

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.

    2009-01-01

    An analog sun sensor has been designed based on shade profile proportional to the angle of incidence of incoming light projected onto a 2×2 array of photodiodes. This concept enables an autonomous self-powered optical system with two the main functions (electrical power generation for the amplifier

  5. Self powered pacers and stimulators

    International Nuclear Information System (INIS)

    Rasor, N.S.; Spickler, J.W.

    1976-01-01

    A simulator device is described for insertion in a living body, having particular advantage for intracardiac use comprising a housing having a body formed for transvenous or transarterial insertion, electrode means at the outer surface of said body, means included in said housing defining a pulsing circuit electrically connected with said electrode means and means for activating said pulsing circuit embodied in said housing, said activating means being free of physical connection with an outside power source and dependent for its function on the living body in which it is inserted

  6. Self-powered neutron flux detector assembly

    International Nuclear Information System (INIS)

    Allan, C.J.; McIntyre, I.L.

    1980-01-01

    A self-powered neutron flux detector has both the central emitter electrode and its surrounding collector electrode made of inconel 600. The lead cables may also be made of inconel. Other nickel alloys, or iron, nickel, titamium, chromium, zirconium or their alloys may also be used for the electrodes

  7. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  8. A new self-powered flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.

    1979-11-01

    It has been found that an Inconel-Inconel coaxial cable can be used as a fast-responding, neutron, self-powered flux detector if the core wire is sufficiently large. Test results obtained with such a detector, having a core wire approximately 1.5 mm in diameter, are presented. Other materials suitable for use as an emitter material, in such a relatively large diameter detector, also are included. (auth)

  9. Self-powered neutron flux detector

    International Nuclear Information System (INIS)

    Kroon, J.

    1979-01-01

    A self-powered neutron flux detector having an emitter electrode, at least a major portion of which is, 95 Mo encased in a tubular collector electrode and separated therefrom by dielectric material. The 95 Mo emitter electrode has experimentally shown a 98% prompt response, is primarily sensitive to neutron flux, has adequate sensitivity and has low burn up. Preferably the emitter electrode is molybdenum which has been enriched 75% to 99% by weight with 95 Mo

  10. Self-powered detectors sensitivity determination

    International Nuclear Information System (INIS)

    Surkov, V.; Soares, A.J.

    1994-01-01

    The determination of the initial sensitivity of Self Powered Detectors (SPDs) was performed. Measurements of thermal, epithermal and to gamma flux sensitivities were made with Vanadium, Cobalt, Rhodium, Silver and Platinum SPDs and, when possible, the values are compared with the ones from the existing literature. The determination of neutron sensitivity was realized using the IEA-R1 Reactor from IPEN. The thermal and epithermal neutron flux were determined with bare and Cadmium covered activation foils. (GOLD). (author)

  11. Self-Powered Electrochemical Lactate Biosensing

    Directory of Open Access Journals (Sweden)

    Ankit Baingane

    2017-10-01

    Full Text Available This work presents the development and characterization of a self-powered electrochemical lactate biosensor for real-time monitoring of lactic acid. The bioanode and biocathode were modified with D-lactate dehydrogenase (D-LDH and bilirubin oxidase (BOD, respectively, to facilitate the oxidation and reduction of lactic acid and molecular oxygen. The bioelectrodes were arranged in a parallel configuration to construct the biofuel cell. This biofuel cell’s current–voltage characteristic was analyzed in the presence of various lactic acid concentrations over a range of 1–25 mM. An open circuit voltage of 395.3 mV and a short circuit current density of 418.8 µA/cm² were obtained when operating in 25 mM lactic acid. Additionally, a 10 pF capacitor was integrated via a charge pump circuit to the biofuel cell to realize the self-powered lactate biosensor with a footprint of 1.4 cm × 2 cm. The charge pump enabled the boosting of the biofuel cell voltage in bursts of 1.2–1.8 V via the capacitor. By observing the burst frequency of a 10 pF capacitor, the exact concentration of lactic acid was deduced. As a self-powered lactate sensor, a linear dynamic range of 1–100 mM lactic acid was observed under physiologic conditions (37 °C, pH 7.4 and the sensor exhibited an excellent sensitivity of 125.88 Hz/mM-cm2. This electrochemical lactate biosensor has the potential to be used for the real-time monitoring of lactic acid level in biological fluids.

  12. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    Science.gov (United States)

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  13. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    was proposed for lower power applications with Ioff=10pA/μm and VDD=0.5V. In this project, the optimized structure shows great potential in both Lg...AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  14. An ultra-low-power CMOS temperature sensor for RFID applications

    International Nuclear Information System (INIS)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao

    2009-01-01

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-μm CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 μA and 1.8 V for continuous operation and achieves an accuracy of ±0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  15. An ultra-low-power CMOS temperature sensor for RFID applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao, E-mail: yanna@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-04-15

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-mum CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 muA and 1.8 V for continuous operation and achieves an accuracy of +-0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  16. Channel coding study for ultra-low power wireless design of autonomous sensor works

    NARCIS (Netherlands)

    Zhang, P.; Huang, Li; Willems, F.M.J.

    2011-01-01

    Ultra-low power wireless design is highly demanded for building up autonomous wireless sensor networks (WSNs) for many application areas. To keep certain quality of service with limited power budget, channel coding techniques can be applied to maintain the robustness and reliability of WSNs. In this

  17. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  18. Self-powered detectors for power reactors: an overview

    International Nuclear Information System (INIS)

    Ma, J.

    2006-01-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  19. Self-powered detectors for power reactors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J. [Univ. of Western Ontario, Dept. of Mechanical and Materials Engineering, London, Ontario (Canada)]. E-mail: jma64@uwo.ca

    2006-07-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  20. Experiences of ultra-low-crud high-nickel control in Onagawa nuclear power station

    International Nuclear Information System (INIS)

    Saito, M.; Goto, Y.; Shinomiya, T.; Sato, M.; Yamazaki, K.; Hirasawa, H.; Yotsuyanagi, T.

    2002-01-01

    We have adopted various countermeasures for worker dose reduction to plants in Onagawa Nuclear Power Station. ''Ni/Fe ratio control'' has been adopted to Unit 1, and ''ultra-low-crud high-nickel control'' has been adopted to Unit 2 and 3, along with other countermeasures like wide utilization of low Co materials, for the purpose of dose rate reduction of primary recirculation piping which is thought to be one of the main exposure sources. In this paper, we describe, first, the reason and background that ultra-low-crud high-nickel control has been adopted to Unit 2, and, second, water chemistry of Unit 2 up to the 5. cycle under ultra-low-crud high-nickel control compared to that of Unit 1 under Ni/Fe ratio control. Following those, we show brief analysis of the fuel crud of Unit 2 and water chemistry of Unit 3 only at the startup stage. (authors)

  1. Energy scavenging sensors for ultra-low power sensor networks

    Science.gov (United States)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  2. Reconfigurable Ultra-Low Power Miniaturized EVA Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EVA radio is an important integral part of lunar missions and beyond. To minimize power consumption and mass of an EVA radio, innovative solutions are needed for the...

  3. An Electronic System for Ultra-low Power Hearing Implants

    Science.gov (United States)

    2013-02-15

    Battery Charger Circuit ," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No.2, pp. 131-137,2011. [6] K. H. Wee, L. Turicchia, and R...analyzers [1], [2], useful in several hearing systems. 4) We have designed and built a lithium-ion battery -recharging circuit that exploits a novel analog...lab and the use of intelligent low-power filters and circuits have been successful in reducing noise exposure while improving speech intelligibility

  4. Wake-up receiver based ultra-low-power WBAN

    CERN Document Server

    Lont, Maarten; Roermund, Arthur van

    2014-01-01

    This book presents the cross-layer design and optimization of wake-up receivers for wireless body area networks (WBAN), with an emphasis on low-power circuit design. This includes the analysis of medium access control (MAC) protocols, mixer-first receiver design, and implications of receiver impairments on wideband frequency-shift-keying (FSK) receivers. Readers will learn how the overall power consumption is reduced by exploiting the characteristics of body area networks. Theoretical models presented are validated with two different receiver implementations, in 90nm and 40nm CMOS technology.   • Provides an overview of wireless body area network design from the network layer to the circuit implementation, and an overview of the cross-layer design trade-offs; • Discusses design at both the network or MAC-layer and circuit-level, with an emphasis on circuit design; • Covers the design of low-power frequency shift keying (FSK) wake-up-receivers; • Validates theory presented with two different recei...

  5. An ultra low-power off-line APDM-based switchmode power supply with very high conversion efficiency

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2001-01-01

    This article describes the results from the research work on design of a ultra low power off-line power supply with very high conversion efficiency. The input voltage is 230 VAC nominal and output voltage is 5 VDC. By ultra low power levels, an output power level in the area ranging from 50 m......W and up to 1000 mW is meant. The small power supply is intended for use as a standby power supply in mains operated equipment, which requires a small amount of power in standby mode....

  6. Ultra-Low Power Memory Design in Scaled Technology Nodes

    DEFF Research Database (Denmark)

    Zeinali, Behzad

    that the proposed SRAM reduces access time and leakage current by 40% and 20%, respectively, compared to the standard 8T-SRAM cell without any degradation in read and write margins. The second solution is an asymmetric Schottky barrier device, which can mitigate the read–write conflict of the 6T-SRAM cell in scaled...... technology nodes i.e. sub-50 nm. The 6T-SRAM designed based on the proposed device shows 18% leakage reduction and 54%, 6.6% and 3.1X improvement in read margin, write margin and write time, respectively, compared to the conventional 6T-SRAM cell. To address the standby power issue of SRAMs in scaled...... technology nodes, this thesis also investigates emerging non-volatile spintronics memories. In this respect, STT-MRAMs and SOT-MRAMs are studied and their design challenges are explored. To improve the read performance of STT-MRAMs, a novel non-destructive self-reference sensing scheme is proposed enabling...

  7. Hybrid NEMS-CMOS Architectures for Ultra Low Power Smart Systems : Architectures for Ultra Low Power Smart Systems

    NARCIS (Netherlands)

    Enachescu, M.

    2016-01-01

    The availability of inexpensive and powerful processors provides the means for the computation ecosystem to change its fundamental paradigm towards the Internet of Things (IoT) where ubiquitous nanosystems add intelligence to every object that surrounds us. The new trend for most of those systems is

  8. Security Implications for Ultra-Low Power Configurable SoC FPAA Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jennifer Hasler

    2018-06-01

    Full Text Available We discuss the impact of physical computing techniques to classifying network security issues for ultra-low power networked IoT devices. Physical computing approaches enable at least a factor of 1000 improvement in computational energy efficiency empowering a new generation of local computational structures for embedded IoT devices. These techniques offer computational capability to address network security concerns. This paper begins the discussion of security opportunities for, and issues using, FPAA devices for small embedded IoT platforms. These FPAAs enable devices often utilized for low-power context aware computation. Embedded FPAA devices have both positive Security attributes, as well as potential vulnerabilities. FPAA devices can be part of the resulting secure computation, such as implementing unique functions. FPAA devices can be used investigate security of analog/mixed signal capabilities. The paper concludes with summarizing key improvements for secure ultra-low power embedded FPAA devices.

  9. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-04-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new required features to the portable devices industry. For example, wireless sensor networks are in urgent need of self-sustainable, easy-to-deploy, mobile platforms, wirelessly interconnected and accessible through a cloud computing system. The objective of my doctoral work is to develop integration strategies to effectively fabricate mechanically flexible, energy-independent systems, which could empower sensor networks for a great variety of new exciting applications. The first module, flexible electronics, can be achieved through several techniques and materials. Our main focus is to bring mechanical flexibility to the state-of-the-art high performing silicon-based electronics, with billions of ultra-low power, nano-sized transistors. Therefore, we have developed a low-cost batch fabrication process to transform standard, rigid, mono-crystalline silicon (100) wafer with devices, into a thin (5-20 m), mechanically flexible, optically semi-transparent silicon fabric. Recycling of the remaining wafer is possible, enabling generation of multiple fabrics to ensure lowcost and optimal utilization of the whole substrate. We have shown mono, amorphous and poly-crystalline silicon and silicon dioxide fabrics, featuring industry’s most advanced high-/metal-gate based capacitors and transistors. The second module consists on the development of efficient energy scavenging systems. First, we have identified an innovative and relatively young technology, which can address at the same time two of the main concerns of human kind: water and energy. Microbial fuel cells (MFC) are capable of producing energy out the metabolism of bacteria while treating wastewater. We have developed two micro-liter MFC designs, one with carbon

  10. Transient response of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Boeck, H.; Gebureck, P.; Stegemann, D.

    The behaviour of self-powered neutron detectors with Co, Er, Hf and Pt emitters was investigated during reactor square wave and pulse operation. The detector's response was compared with the current of an excore ionization chamber. Characteristical deviations from linearity were observed with all detectors at fast reactor periods. The exact cause of these deviations is not yet fully understood but several possibilities for the nonlinear behaviour of self-powered neutron detectors are outlined. (author)

  11. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  12. Ultra-Low Power Sensor System for Disaster Event Detection in Metro Tunnel Systems

    Directory of Open Access Journals (Sweden)

    Jonah VINCKE

    2017-05-01

    Full Text Available In this extended paper, the concept for an ultra-low power wireless sensor network (WSN for underground tunnel systems is presented highlighting the chosen sensors. Its objectives are the detection of emergency events either from natural disasters, such as flooding or fire, or from terrorist attacks using explosives. Earlier works have demonstrated that the power consumption for the communication can be reduced such that the data acquisition (i.e. sensor sub-system becomes the most significant energy consumer. By using ultra-low power components for the smoke detector, a hydrostatic pressure sensor for water ingress detection and a passive acoustic emission sensor for explosion detection, all considered threats are covered while the energy consumption can be kept very low in relation to the data acquisition. In addition to 1 the sensor system is integrated into a sensor board. The total average power consumption for operating the sensor sub-system is measured to be 35.9 µW for lower and 7.8 µW for upper nodes.

  13. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    Science.gov (United States)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  14. Design of an ultra-low-power digital processor for passive UHF RFID tags

    Energy Technology Data Exchange (ETDEWEB)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan, E-mail: wanggen_shi@163.co [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Institute of Microelectronics, Xidian University, Xi' an 710071 (China)

    2009-04-15

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 mum process of Chartered Semiconductor.

  15. Design of an ultra-low-power digital processor for passive UHF RFID tags

    International Nuclear Information System (INIS)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan

    2009-01-01

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 μm process of Chartered Semiconductor.

  16. Research Update: Nanogenerators for self-powered autonomous wireless sensors

    Science.gov (United States)

    Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo

    2017-07-01

    Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.

  17. An ultra-low-power RF transceiver for WBANs in medical applications

    International Nuclear Information System (INIS)

    Zhang Qi; Wu Nanjian; Kuang Xiaofei

    2011-01-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm 2 . The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  18. An ultra-low-power RF transceiver for WBANs in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qi; Wu Nanjian [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Kuang Xiaofei, E-mail: nanjian@semi.ac.cn [College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2011-06-15

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 {mu}m CMOS process. Its core area is 1.6 mm{sup 2}. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 {mu}A current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  19. Ultra-Low-Power Design and Hardware Security Using Emerging Technologies for Internet of Things

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Yuan

    2017-09-01

    Full Text Available In this review article for Internet of Things (IoT applications, important low-power design techniques for digital and mixed-signal analog–digital converter (ADC circuits are presented. Emerging low voltage logic devices and non-volatile memories (NVMs beyond CMOS are illustrated. In addition, energy-constrained hardware security issues are reviewed. Specifically, light-weight encryption-based correlational power analysis, successive approximation register (SAR ADC security using tunnel field effect transistors (FETs, logic obfuscation using silicon nanowire FETs, and all-spin logic devices are highlighted. Furthermore, a novel ultra-low power design using bio-inspired neuromorphic computing and spiking neural network security are discussed.

  20. A Self-Powered Insole for Human Motion Recognition

    Directory of Open Access Journals (Sweden)

    Yingzhou Han

    2016-09-01

    Full Text Available Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy silica gel film separated by a flexible piezoelectric foil stave, which has higher performance compared with conventional piezoelectric harvesters with cantilever structure. The energy harvesting insole is capable of driving some common electronics by scavenging energy from human walking. Moreover, it can be used to recognize human motion as the waveforms it generates change when people are in different locomotion modes. It is demonstrated that different types of human motion such as walking and running are clearly classified by the insole without any external power source. This work not only expands the applications of piezoelectric energy harvesters for wearable power supplies and self-powered sensors, but also provides possible approaches for wearable self-powered human motion monitoring that is of great importance in many fields such as rehabilitation and sports science.

  1. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  2. Ultra-Low Power Consuming Direct Radiation Sensors Based on Floating Gate Structures

    Directory of Open Access Journals (Sweden)

    Evgeny Pikhay

    2017-07-01

    Full Text Available In this paper, we report on ultra-low power consuming single poly floating gate direct radiation sensors. The developed devices are intended for total ionizing dose (TID measurements and fabricated in a standard CMOS process flow. Sensor design and operation is discussed in detail. Original array sensors were suggested and fabricated that allowed high statistical significance of the radiation measurements and radiation imaging functions. Single sensors and array sensors were analyzed in combination with the specially developed test structures. This allowed insight into the physics of sensor operations and exclusion of the phenomena related to material degradation under irradiation in the interpretation of the measurement results. Response of the developed sensors to various sources of ionizing radiation (Gamma, X-ray, UV, energetic ions was investigated. The optimal design of sensor for implementation in dosimetry systems was suggested. The roadmap for future improvement of sensor performance is suggested.

  3. Ultra Low-Power Acoustic Detector Applicable in Ambient Assistance Living Systems

    Directory of Open Access Journals (Sweden)

    Iliev I.

    2009-12-01

    Full Text Available Ambient Assisted Living (AAL includes methods, concepts, systems, devices as well as services, which provide unobtrusive support for daily life based on the context and situation of the assisted person. The technologies applied for AAL are user-centric, i.e. oriented towards the needs and capabilities of the particular user. They are also integrated into the immediate personal environment of the user. As a consequence, the technology is adapting to the user rather than the other way around. The in-house monitoring of elderly or disabled people (hard of hearing, deaf, with limited movement ability, using intelligent sensors is a very desirable service that may potentially increase the user's autonomy and independence while minimizing the risks of living alone. The described ultra low-power acoustic detector allows upgrade of the presented warning systems. It features long-term autonomy and possibility to use it as an element of the wireless personal area network (WPAN.

  4. Self-powered wireless disposable sensor for welfare application.

    Science.gov (United States)

    Douseki, Takakuni; Tanaka, Ami

    2013-01-01

    A self-powered urinary incontinence sensor consisting of a flexible urine-activated battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The flexible urine-activated battery is embedded in a disposal diaper and makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit supplies the power to a wireless transmitter. A 315-MHz-band wireless transmitter performs low-power operation. To verify the effectiveness of the circuit scheme, we fabricated a prototype sensor system. When 80 cc of urine is poured onto the diaper, the battery outputs a voltage of 1 V; and the sensor can transmit an ID signal over a distance of 5 m.

  5. Self-Powered WSN for Distributed Data Center Monitoring

    Directory of Open Access Journals (Sweden)

    Davide Brunelli

    2016-01-01

    Full Text Available Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  6. Paper-based supercapacitors for self-powered nanosystems.

    Science.gov (United States)

    Yuan, Longyan; Xiao, Xu; Ding, Tianpeng; Zhong, Junwen; Zhang, Xianghui; Shen, Yue; Hu, Bin; Huang, Yunhui; Zhou, Jun; Wang, Zhong Lin

    2012-05-14

    Energy storage on paper: paper-based, all-solid-state, and flexible supercapacitors were fabricated, which can be charged by a piezoelectric generator or solar cells and then discharged to power a strain sensor or a blue-light-emitting diode, demonstrating its efficient energy management in self-powered nanosystems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of high sensitivity transimpedance amplifier module for self powered neutron detectors

    International Nuclear Information System (INIS)

    Khan, T.K.; Tamboli, P.K.; Antony, J.; Balasubramanian, R.; Agilandaeswari, K.; Pramanik, M.

    2010-01-01

    This paper describes design and development of a Transimpedance Amplifier for amplification of very low current from in core Self Powered Neutron Detectors (SPND). Measurement of neutron flux is very important for operation, control and protection of Nuclear Power Plant (NPP). SPND is used to measure Reactor incore flux/power. Based on sensitivity of emitter material used in SPND, pitch length and neutron flux (power level); the current output from SPND varies from few pA to few μA. The described amplifier is suitable to use for this current range. The amplifier provides a very high gain using a resistive T network feedback topology. The amplifier is designed in two stages using ultra low bias current FET OPAMPs. Design of Transimpedance amplifier is carefully done to include ultra low input bias current, low offset voltage and noise. The amplifier has in built test facility for calibration and on line test facility for measurement of insulation resistance (IR). The amplifier module has on board isolated DC-DC converter circuit complying MIL/STD/461C/D which generate isolated +/-15V and +12V supply to provide parameter to parameter ground isolation and independence among each module/signal.The output from the amplifier is 0V to 6V for 0 to 150%FP. The design is simulated in computer and amplifier used at TAPS-3 was modified as per new design and has been tested at TAPS-3 site. The amplifier performed satisfactorily. The results showed that the IR measurement technique adopted in the design can tolerate lower IR of SPND in existing design. (author)

  8. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  9. Self-powered integrated systems-on-chip (energy chip)

    Science.gov (United States)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  10. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    OpenAIRE

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit ...

  11. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    Directory of Open Access Journals (Sweden)

    Mauro Serpelloni

    2009-02-01

    Full Text Available Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  12. Passive and self-powered autonomous sensors for remote measurements.

    Science.gov (United States)

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  13. A Wireless Self-Powered Urinary Incontinence Sensor System

    Science.gov (United States)

    Tanaka, Ami; Utsunomiya, Fumiyasu; Douseki, Takakuni

    A self-powered urinary incontinence sensor system consisting of a urine-activated coin battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The urine-activated battery makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit and a 1-V surface acoustic wave (SAW) oscillator reduce the power dissipation of a wireless transmitter. The SAW oscillator quickly responds to the on-off control of the power supply, which is suitable for intermittent operation. To verify the effectiveness of the circuit scheme, the authors fabricated a prototype sensor system. When the volume of urine is 0.2 ml, the battery outputs a voltage of over 1.3 V; and the sensor system can transmit signals over a distance of 5 m.

  14. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    Science.gov (United States)

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.

  15. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    Science.gov (United States)

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  16. Improved cable compensation technique for self powered neutron detectors

    International Nuclear Information System (INIS)

    Nieuwenhove, R. van

    1996-01-01

    Measurements with cobalt self powered neutron detectors on the BR2 reactor have revealed that the currents induced by external gamma radiation can be of the same order as the neutron induced signal and that the gamma induced current on the emitter and the compensator wires are not symmetric. In this case, the standard detection electronic setup leads to erroneous results. It is shown that a slightly modified electronic setup, in which this asymmetry is compensated for, can nevertheless allow to obtain correct neutron flux measurements. Measures to reduce the influence of external gamma radiation in general will also be discussed. (orig.)

  17. Self-powered neutron detector of high sensitivity

    International Nuclear Information System (INIS)

    Brixy, H.; Spillekothen, H.G.; Benninghofen, G.; Serafin, N.

    1983-01-01

    A self-powered neutron detector is proposed, consisting of three concentrically arranged electrically conducting tubes; where the central one forms the emitter and the inner and outer ones form the collector and where the tubes are electrically insulated from each other by insulating material. The emitter consists of a material with a high absorption cross-section for thermal neutrons, particularly of gadolinium, and is provided with an auxiliary emitter layer on the inside or the outside. With suitable dimensions and material, the auxiliary emitter layer increases the yield of electrons. (orig./HP) [de

  18. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  19. Measurement of neutron sensitivity of self powered neutron detectors

    International Nuclear Information System (INIS)

    Mahant, A.K.; Yeshuraja, V.; Ghodke, Shobha

    2005-01-01

    Self powered neutron detectors (SPNDs ) will form the part of Reactor Instrumentation in the upcoming 500 MWe power reactors. ECIL has developed Vanadium and Cobalt SPNDs for NPCIL to be used in regulation and protection channels. Experimental determination of neutron sensitivity of the vanadium and cobalt Self Powered Neutron Detectors (SPNDs) was carried out in A-l location of Apsara reactor at BARC. The measurements involved determination of total detector signal, its various components and the thermal neutron flux at the detector location. The paper describes the experimental techniques used to measure various parameters required to evaluate the neutron sensitivity of the SPNDs and also the parameters required to ascertain the integrity of SPNDs. Neutron flux measurement was done by gold foil irradiation technique. The predominant signal component from the vanadium SPND is Ib the current due to activation of the vanadium emitter, it forms about 85% of the total signal. The other components I n,γ due to the capture gamma rays of 52 V and I externalγ produced by the external reactor gamma rays contribute about 10% and 5% respectively to the total signal. Whereas in the cobalt SPND the main signal component is due to the capture gamma rays of 60 Co and accounts for about the 95% of the total signal. Remaining 5% signal is due to external reactor gamma rays. (author)

  20. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  1. Back End of Line Nanorelays for Ultra-low Power Monolithic Integrated NEMS-CMOS Circuits

    KAUST Repository

    Lechuga Aranda, Jesus Javier

    2016-05-01

    Since the introduction of Complementary-Metal-Oxide-Semiconductor (CMOS) technology, the chip industry has enjoyed many benefits of transistor feature size scaling, including higher speed and device density and improved energy efficiency. However, in the recent years, the IC designers have encountered a few roadblocks, namely reaching the physical limits of scaling and also increased device leakage which has resulted in a slow-down of supply voltage and power density scaling. Therefore, there has been an extensive hunt for alternative circuit architectures and switching devices that can alleviate or eliminate the current crisis in the semiconductor industry. The Nano-Electro-Mechanical (NEM) relay is a promising alternative switch that offers zero leakage and abrupt turn-on behaviour. Even though these devices are intrinsically slower than CMOS transistors, new circuit design techniques tailored for the electromechanical properties of such devices can be leveraged to design medium performance, ultra-low power integrated circuits. In this thesis, we deal with a new generation of such devices that is built in the back end of line (BEOL) CMOS process and is an ideal option for full integration with current CMOS transistor technology. Simulation and verification at the circuit and system level is a critical step in the design flow of microelectronic circuits, and this is especially important for new technologies that lack the standard design infrastructure and well-known verification platforms. Although most of the physical and electrical properties of NEM structures can be simulated using standard electronic automation software, there is no report of a reliable behavioural model for NEMS switches that enable large circuit simulations. In this work, we present an optimised model of a BEOL nano relay that encompasses all the electromechanical characteristics of the device and is robust and lightweight enough for VLSI applications that require simulation of thousands of

  2. Printed Self-Powered Miniature Air Sampling Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Birmingham

    2017-07-01

    Full Text Available The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE hazardous materials and relay the results. To address these issues, we have developed a self-powered 3-D chip architecture that processes air to produce concentrated size- sorted particle (and vapor samples that could be integrated with on-chip nanoelectronic detectors for the discovery of weapons of mass destruction (WMD. The unique air movement approach is composed of a nanoscale energy harvester that provides electricity to a printed ion-drag pump to push air through coated-microstructured arrays. The self-powered microstructured array air sampler was designed using computational fluid dynamics (CFD modeling to collect particles from 1-10 microns at greater than 99.9999 % efficiency with less than 100 Pascal [Pa] pressure drop at a specified air flow rate. Surprisingly, even at minimum air flow rates below specifications, these CFD predictions were matched by experimental results gathered in a Government aerosol chamber. The microstructured array engineered filter equaled the collection capability of a membrane or a high efficiency particle air (HEPA filter at a fraction of the filter pressure drop.

  3. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  4. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, William H. Sr.

    1998-01-01

    Self-powered neutron detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors worldwide. This paper describes the basic properties of these radiation sensors including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs, which are being effectively, used in in-core instrumentation systems for pressurized water, heavy water and graphite moderated light water reactors. Also examples are shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurized water and heavy water reactors worldwide. (author)

  5. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    Science.gov (United States)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  6. Passive (self-powered) fiber-optic sensors

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Falter, D.D.; Todd, R.A.; Simpson, M.L.; Mihalczo, J.T.

    1992-01-01

    ORNL is developing new group of fiber-optic sensors for characterizing physical aspects such as ambient temperature. These sensors exploit the inherent property of thermographic materials that the lifetime and/or intensity of the emitted fluorescence decreases with increasing temperature. Unlike current fluorescent temperature sensors that use a light source for excitation, these sensors are totally passive (self-powered) and use either an embedded or external radiation source. A proof-of-principle temperature sensor was developed, based on this concept, using a well-known thermographic material, magnesium fluorogermanate. Experimental results showed that the radiation-induced fluorescence resulted in an intensity change but no significant decay rate change with increasing temperature

  7. Construction of a self-powered neutron detector prototype

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.; Correa, R.F.

    1986-01-01

    Description and testing of a self-powered neutron detector and related current measurement electronics, in construction at Centro de Desenvolviemnto da Tecnologia Nuclear (CDTN), are presented. The cylindrical detector has a 9-wires cobalt emitter, Inconel 600 tubing collector and sinterized alumina electrical insulation. The bifilar signal cable is plugged to the detector through a SHV connector. Preliminary testing has giving information about dielectrical properties of the set and impurities of the materials (by means of activation analysis). The main tests, done in a 100 KW Triga Reactor, allowed the verification of the detector response to the neutron flux, the stability and reproducibility of this response, and also the evaluation of sensitivity to gamma radiation. The detector performance is considered good. (Author) [pt

  8. Kalman filtering of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kantrowitz, M.L.

    1992-01-01

    Pressurized water reactors employ a wide variety of in-core detectors to determine the neutronic behavior within the core. Among the detectors used are rhodium and vanadium self-powered detectors (SPDs), which are very accurate, but respond slowly to changes in neutron flux. This paper describes a new dynamic compensation algorithm, based on Kalman filtering, which converts delayed-responding rhodium and vanadium SPDs into prompt-responding detectors by reconstructing the dynamic flux signal sensed by the detectors from the prompt and delayed components. This conversion offers the possibility of utilizing current fixed in-core detector systems based on these delayed-responding detectors for core control and/or core protection functions without the need for fixed in-core detectors which are prompt-responding. As a result, the capabilities of current fixed in-core detector systems could be expanded significantly without a major hardware investment

  9. Kalman filtering for rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kantrowitz, M.L.

    1988-01-01

    Rhodium self-powered neutron detectors are utilized in many pressurized water reactors to determine the neutronic behavior within the core. In order to compensate for the inherent time delay associated with the response of these detectors, a dynamic compensation algorithm is currently used in Combustion Engineering plants to reconstruct the dynamic flux signal which is being sensed by the rhodium detectors. This paper describes a new dynamic compensation algorithm, based on Kalman filtering, which improves on the noise gain and response time characteristics of the algorithm currently used, and offers the possibility of utilizing the proven rhodium detector based fixed in-core detector system as an integral part of advanced core control and/or protection systems

  10. Measurement with self-powered cobalt and cadmium detectors

    International Nuclear Information System (INIS)

    Azzoni, A.

    The principle of function is described and the characteristics are given of self-powered cobalt and cadmium neutron detectors. Requirements are summed up for the material used for these detectors, and the specific properties of used detectors are given. The calibration of developed self-powered detectors was carried out using the L 54 CESNEF reactor channels with a maximum output of 40 kW and a neutron flux of 10 10 to 10 12 n.cm -2 s -1 . The absolute measurement of neutron flux and gamma radiation doses in the channel were carried out at an output of 10 kW. The objective of calibration measurements with cadmium and cobalt detectors was to ascertain the promptness of detector response, to determine their sensitivity to neutrons and to gamma radiation, the effects of radiation on the material of the detectors and the contribution thereof on the resulting signal. Inside the CART irradiation channel of the ESSOR reactor three such detectors were used for the measurement of neutron flux and its fluctuations effected by coolant density fluctuations. The behaviour of the detectors was studied in a high neutron flux (10 14 n.cm -2 s -1 ) and at long-term irradiation. It was found that cobalt detectors may be used to advantage for measuring the neutron flux if prompt response is required. The high sensitivity to gamma radiation does, however, limit their uses. Cadmium detectors are sensitive to the neutron flux (currents of several mA with a neutron flux of approximately 10 14 n.cm -2 s -1 ) while response to gamma radiation is considerably limited. These detectors are advantageous for short-term use, such as neutron flux mapping and measuring fluctuations. (B.S.)

  11. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  12. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  13. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  14. Sensitivity Calculation of Vanadium Self-Powered Neutron Detector

    International Nuclear Information System (INIS)

    Cha, Kyoon Ho

    2011-01-01

    Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the rhodium SPND has been used in many nuclear power plants. The lifetime of rhodium is too short (about 3∼5 years) to operate the nuclear power plant economically. The vanadium (V) SPND is also primarily sensitive to neutrons like rhodium, but is a somewhat slower reaction time as that of a rhodium SPND. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. For this reason, a vanadium SPND has been being developed to replace the rhodium SPND which is used in OPR1000. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina (Al 2 O 3 ) insulator with a cylindrical geometry. An MCNP-X code was used to simulate some factors (neutron self shielding factor and electron escape probability from the emitter) necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND

  15. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    Science.gov (United States)

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  16. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Alexander J. Casson

    2015-12-01

    Full Text Available Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g m C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram and EEG (electroencephalogram signals recorded from humans.

  17. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Science.gov (United States)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  18. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Energy Technology Data Exchange (ETDEWEB)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Beigne, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble (France)

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  19. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    International Nuclear Information System (INIS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-01-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes

  20. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  1. Convective flow reversal in self-powered enzyme micropumps.

    Science.gov (United States)

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δself-powered fluidic devices.

  2. Energy harvesting for self-powered aerostructure actuation

    Science.gov (United States)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  3. Health physics aspects in disposal of self powered neutron detectors

    International Nuclear Information System (INIS)

    Deokar, D.V.; Tibrewala, S.K.; Singh, K.K.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    Self Powered Neutron Detectors (SPNDs) are being used in reactor core for neutron flux measurement at Nuclear Power Plants. After their useful life, SPNDs are replaced and are disposed off in Tile holes. The Cobalt SPNDs having activity in the range of 35 to 160 TBq were encompassed in carbon steel canister. The canister having dose 25 to 50 Sv/h at 1 meter were transported in shielded flask for disposal in specially designed Tile hole at Solid Waste Management Facility (SWMF) at Tarapur. To keep personal exposures As Low As Reasonably Achievable (ALARA) the disposal operation was carried out remotely from a shielded cabin placed at a distance of 50 meter from the disposal site. During the disposal radiation measurements were carried out remotely by installing radiations monitors at a distance of 10 m, 25 m, and 50 m from the Tile hole. Estimations of radiation levels were carried out before jobs were taken up. Disposal of 70 numbers of Cobalt SPNDs was carried out by implementing ALARA. The decrease in collective dose is achieved due to improved operational practices, mock-up trials, effective monitoring program and safety compliance at various stages of operation

  4. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  5. Design and fabrication of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Garcia Garcia, Florencio.

    1979-01-01

    Self powered neutron detectors are becoming more and more popular in reactor instrumentation. A fast response detector of this type was made at the Reactor Division, La Reina Nuclear Center in Santiago. Cobalt wire was the emitter, teflon the insulator and a stainless steel tubing was the collector. The overall dimensions of the detector are 6 mms diameter and 700 mms length. The irradiation tests, carried out at the Center's 5 Mw research reactor showed a very reasonably linear relation between current supplied by the detector and thermal neutron flux, over a range extending from 10 10 to 10 13 n/cm 2 x seg. These tests also showed a good agreement between calculated and measured current. The models used for the calculation of current are fully explained and they include some improvements over those that have been published recently. An important conclusion for the case of the cobalt detectors is that the wire's diameter must be at least 1 mm. in order to have a neutron induced current bigger than the parasitic components generated by indirect processes. Calculations for other emitters such as vanadium, silver and rhodum are also included. (EC)

  6. Self-powered in-core detectors of cobalt type

    International Nuclear Information System (INIS)

    Jonsson, Georg

    1975-01-01

    Testing and development of self-powered neutron detectors with a cobalt emitter is described. Long term irradiation at 400 deg C is expected to indicate insulation quality, change in calibration and 60 Co build-up. Dynamic tests to investigate possible transient effects due to temperature changes are being performed on a number of detectors up to about 600 deg C. A long term irradiation at low temperature has been terminated after 4.5 years. On completion, neutron dose was estimated to be 5.6 x 10 21 nvt and the 60 Co background was 9.3 % of the full flux signal. A recently introduced long term test is expected to provide data on instability effects due to 61 Co. For a BWR in-core detector installation, the main advantage of cobalt detectors, apart from the small size, appears to be long life. Development work is being done on detectors with vanadium-cobalt emitters, electronic separation of fast and delayed signals and reduction of gamma sensitivity. (O.T.)

  7. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

    KAUST Repository

    Leung, Siu; Ho, Kang-Ting; Kung, Po-Kai; Hsiao, Vincent K. S.; Alshareef, Husam N.; Wang, Zhong Lin; He, Jr-Hau

    2018-01-01

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3

  8. Self-powered neutron and γ-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.

    1983-01-01

    According to the invention there is provided a self-powered neutron and γ-ray flux detector, comprising: a) an emitter core wire; b) an emitter outer layer around the core wire and of different metal thereto; c) a metal collector around the emitter core wire and the emitter outer layer; and d) dielectric insulation electrically insulating the emitter core wire and the emitter outer layer from the metal collector. The improvement comprises: a) the overall diameter of the emitter core wire and the emitter outer layer is at least of the order of 0.4 mm in diameter; b) the emitter outer layer covers only of the order of l0 percent of the order of 90 percent of the emitter core wire surface area and comprises at least one band around the emitter core wire and is of a thickness in the range of the order 0.02 mm to of the order of 0.07 mm; and c) the metal of the emitter core wire, the metal of the emitter outer layer, the metal of the metal collector, the overall diameter of the emitter core wire and the emitter outer layer and the surface area of the emitter core wire that is covered by the emitter outer layer are selected so that the detector has a prompt fraction in the range of the order of 90 percent to of the order of 96 percent and has a dynamic response which substantially matches the dynamic response of the power in the fuel of the nuclear reactor in which the detector is to be used

  9. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  10. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    Science.gov (United States)

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  11. Initial absolute calibration factors for some neutron sensitive self-powered detectors

    International Nuclear Information System (INIS)

    Kroon, J.

    1975-01-01

    Self-powered flux detectors have found extensive use as monitoring devices in PWR (Pressurized Water Reactor) cores and CANDU (Canada Deuterium Uranium) type power reactors. The detectors measure fuel power distributions and indicate trip parameters for reactor control and safety requirements. Both applications demand accurate absolute initial calibration factors. Experimental results obtained in calibrating some neutron sensitive self-powered detectors is presented. (author)

  12. Threshold self-powered gamma detector for use as a nuclear reactor power monitor

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1977-01-01

    A study of a threshold self-powered gamma detector for use as a nuclear reactor power monitor was conducted. Measurements were performed to ascertain whether certain detector material arrangements could be used to obtain significant discrimination against low energy gammas. Results indicating agreement between detector response and reactor power output are presented. Evidence of rejection of low energy gammas by the detector is presented. The simplicity of construction and ruggedness of the detector are also discussed

  13. Rhodium self-powered neutron detector's lifetime for korean standard nuclear power plants

    International Nuclear Information System (INIS)

    Yoo, Choon Sung; Kim, Byoung Chul; Park, Jong Ho; Fero, Arnold H.; Anderson, S. L.

    2005-01-01

    A method to estimate the relative sensitivity of a self-powered rhodium detector for an upcoming cycle is developed by combining the rhodium depletion data from a nuclear design with the site measurement data. This method can be used both by nuclear power plant designers and by site staffs of Korean standard nuclear power plants for determining which rhodium detectors should be replaced during overhauls

  14. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  15. Design and Analysis of Double-Gate MOSFETs for Ultra-Low Power Radio Frequency Identification (RFID: Device and Circuit Co-Design

    Directory of Open Access Journals (Sweden)

    Tony T. Kim

    2011-07-01

    Full Text Available Recently, double-gate MOSFETs (DGMOSFETs have been shown to be more optimal for ultra-low power circuit design due to the improved subthreshold slope and the reduced leakage current compared to bulk CMOS. However, DGMOSFETs for subthreshold circuit design have not been much explored in comparison to those for strong inversion-based design. In this paper, various configurations of DGMOSFETs, such as tied/independent gates and symmetric/asymmetric gate oxide thickness are explored for ultra-low power and high efficient radio frequency identification (RFID design. Comparison of bulk CMOS with DGMOSFETs has been conducted in ultra-low power subthreshold digital logic design and rectifier design, emphasizing the scope of the nano-scale DGMOSFET technology for future ultra-low power systems. The DGMOSFET-based subthreshold logic improves energy efficiency by more than 40% compared to the bulk CMOS-based logic at 32 nm. Among the various DGMOSFET configurations for RFID rectifiers, symmetric tied-gate DGMOSFET has the best power conversion efficiency and the lowest power consumption.

  16. Innovative Self-Powered and Self-Contained Sensor Array for Separation Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a self-contained, self-powered, robust flight test sensor array for the determination of separation. The proposed system uses off the...

  17. Ultra-low power circuits based on tunnel FETs for energy harvesting applications

    OpenAIRE

    Cavalheiro, David

    2017-01-01

    There has been a tremendous evolution in integrated circuit technology in the past decades. With the scaling of complementary metal-oxide-semiconductor (CMOS) transistors, faster, less power consuming and more complex chips per unit area have made possible electronic gadgets to evolve to what we see today. The increasing demand in electronic portability imposes low power consumption as a key metric to analog and digital circuit design. While dynamic power consumption decreases quadraticall...

  18. Architectures/Algorithms/Tools for Ultra-Low Power, Compact EVA Digital Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The EVA digital radio imposes tight constraints on power consumption, latency, throughput, form factor, reconfigurability, single event upset and fault tolerance,...

  19. Environmental effects on the response of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Lynch, G.F.; Shields, R.B.; Joslin, C.W.

    1976-01-01

    Self-powered flux detectors are playing an increasingly important role in the control and safety systems of CANDU-type reactors. In this paper we report on recent experiments to determine how local reactor conditions affect the output signals from self-powered detectors with vanadium, platinum and cobalt emitters. The results are interpreted in terms of variations in the local neutron, γ-ray and electron fluxes. (author)

  20. Ultra low-power biomedical signal processing : An analog wavelet filter approach for pacemakers

    NARCIS (Netherlands)

    Pavlík Haddad, S.A.

    2006-01-01

    The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly

  1. Ultra-Low-Power Analog-to-Digital Converters for Medical Applications

    OpenAIRE

    Zhang, Dai

    2014-01-01

    Biomedical systems are commonly attached to or implanted into human bodies, and powered by harvested energy or small batteries. In these systems, analog-to-digital converters (ADCs) are key components as the interface between the analog world and the digital domain. Conversion of the low frequency bioelectric signals does not require high speed, but ultralow- power operation. This combined with the required conversion accuracy makes the design of such ADCs a major challenge. Among prevalent A...

  2. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    Science.gov (United States)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.

  3. A novel self-powered wireless temperature sensor based on thermoelectric generators

    International Nuclear Information System (INIS)

    Shi, Yongming; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Zhu, Wei; Ye, Huihong

    2014-01-01

    Highlights: • A self-powered temperature sensor, based on thermoelectric generator, is presented. • This novel sensor can operate without any batteries or other power sources. • This sensor combines signal sensing and power supplying together. • The measurement error is 0.5 K during the sensor operating period. • This sensor can detect temperature fluctuation situations such as fire disaster. - Abstract: A novel self-powered wireless temperature sensor has been designed and presented for solving the power supply problem of temperature sensors. This sensor can autonomously measure temperature under positive temperature fluctuation situations. The self-powered characteristic, realized by using four thermoelectric generators, enables the sensor to operate without any batteries or other power sources. In order to obtain these features, attentions are not only focused on the method to combine signal sensing and power generating together, but also on the method to improve measurement accuracy. Experimental results confirm that this novel sensor has excellent measurement accuracy. The measured performance is consistent with the calculated characteristics. For typical application, this self-powered temperature sensor can detect fire before it develops to flashover state. And the maximum detection distance grows with the growth of burning rate. All the results indicate this innovative sensor is a promising self-powered device which can be used to measure temperature value in positive temperature fluctuation situations

  4. Design and implementation of an ultra-low power passive UHF RFID tag

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Xin'an; Liu Shan; Zong Hongqiang; Huang Jinfeng; Yang Xin; Feng Xiaoxing; Ge Binjie

    2012-01-01

    This paper presents a fully integrated passive UHF RFID tag chip complying with the ISO18000-6B protocol. The tag chip includes an RF/analog front-end, a baseband processor, and a 512-bit EEPROM memory. To improve power conversion efficiency, a Schottky barrier diode based rectifier is adopted. A novel voltage reference using the peaking current source is discussed in detail, which can meet the low-power, low-voltage requirement while retaining circuit simplicity. Most of the analog blocks are designed to work under sub-1 V to reduce power consumption, and several practical methods are used to further reduce the power consumption of the baseband processor. The whole tag chip is implemented in a TSMC 0.18 μm CMOS process with a die size of 800 × 800 μm 2 . Measurement results show that the total power consumption of the tag chip is only 7.4 μW with a sensitivity of −12 dBm. (semiconductor integrated circuits)

  5. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    International Nuclear Information System (INIS)

    Jang, Byung Chul; Kim, Jong Yun; Koo, Beom Jun; Yang, Sang Yoon; Choi, Sung-Yool; Seong, Hyejeong; Im, Sung Gap; Kim, Sung Kyu

    2015-01-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices. (paper)

  6. Ultra-low power transmitter for encoding non-MR signals in Magnetic Resonance (MR) recordings

    DEFF Research Database (Denmark)

    Petersen, Jan Raagaard; Pedersen, Jan Ole; Zhurbenko, Vitaliy

    collection of data from non-MRI sensors. The transmitter consumes only 1.3mW while transmitting 2.7µW at 120MHz with high frequency stability. The presented design is useful in low power applications requiring high frequency stability and is intended for wireless transmission of non-MR signal recordings......Advancing Magnetic Resonance Imaging (MRI) technology requires integration of the MRI scanners with sensors and systems for monitoring various non-MRI signals. In this paper, we present design and integration of a low power AM radio transmitter into a 3T MRI scanner, which can be used for efficient...

  7. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.

    Science.gov (United States)

    Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R

    2015-01-07

    We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.

  8. Back End of Line Nanorelays for Ultra-low Power Monolithic Integrated NEMS-CMOS Circuits

    KAUST Repository

    Lechuga Aranda, Jesus Javier

    2016-01-01

    , in the recent years, the IC designers have encountered a few roadblocks, namely reaching the physical limits of scaling and also increased device leakage which has resulted in a slow-down of supply voltage and power density scaling. Therefore, there has been

  9. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev

    2016-10-01

    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

  10. Ultra low power CMOS-based sensor for on-body radiation dose measurements

    KAUST Repository

    Arsalan, Muhammad

    2012-03-01

    For the first time, a dosimeter employing two floating gate radiation field effect transistors (FGRADFET) and operating at mere 0.1 V is presented. The novel dosimeter requires no power during irradiation and consumes only 1 μ Wduring readout. Besides the low power operation, structural changes at the device level have enhanced the sensitivity of the dosimeter considerably as compared to previous designs. The dosimeter is integrated with a wireless transmitter chip, thus eliminating all unwanted communication and power cables. It has been realized monolithically in DALSA\\'s 0.8 μ m complementary metal-oxide-semiconductor process and characterized with X-ray and γ-ray sources. A maximum sensitivity of 5 mV/rad for X-rays and 1.1 mV/rad for gamma;-rays have been achieved in measurements. Due to its small size, low-power, and wireless operation, the design is highly suitable for miniaturized, wearable, and battery operated dosimeters intended for radiotherapy and space applications. © 2012 IEEE.

  11. Ultra low power CMOS-based sensor for on-body radiation dose measurements

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Shams, Maitham; Tarr, Nathan Garry; Roy, Langis

    2012-01-01

    For the first time, a dosimeter employing two floating gate radiation field effect transistors (FGRADFET) and operating at mere 0.1 V is presented. The novel dosimeter requires no power during irradiation and consumes only 1 μ Wduring readout. Besides the low power operation, structural changes at the device level have enhanced the sensitivity of the dosimeter considerably as compared to previous designs. The dosimeter is integrated with a wireless transmitter chip, thus eliminating all unwanted communication and power cables. It has been realized monolithically in DALSA's 0.8 μ m complementary metal-oxide-semiconductor process and characterized with X-ray and γ-ray sources. A maximum sensitivity of 5 mV/rad for X-rays and 1.1 mV/rad for gamma;-rays have been achieved in measurements. Due to its small size, low-power, and wireless operation, the design is highly suitable for miniaturized, wearable, and battery operated dosimeters intended for radiotherapy and space applications. © 2012 IEEE.

  12. Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator

    DEFF Research Database (Denmark)

    Henriksson, Jonas; Villanueva Torrijo, Luis Guillermo; Brugger, Juergen

    2012-01-01

    Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence...... of H 2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H 2 safety sensors......, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production. © 2012 The Royal Society of Chemistry....

  13. Ultra-low power photoplethysmograhy SpO2 measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barriuso Medrano, C.; Calpe Maravilla, J.; Millan Navarro, C.

    2016-07-01

    Photoplethysmograph(y (PPG) is widely used to obtain vital signs such as the peripheral capillary oxygen saturation or the heart rate (HR) non-invasively in real time. These techniques require a great amount of power in order to obtain reliable data, and its use is limited to mains powered devices. For this reason it is of great importance to find methods and algorithms that reduce its current consumption. Three techniques to optimize current consumption when obtaining PPG signals are proposed in this study. Each of them takes advantage of the fact that to obtain these vital signs we only need the peaks of the PPG signal, which means that we may change the accuracy of the acquisition depending on the position within the pulse. The current consumption can be reduced by 55% in the sensor and 62% in the microcontroller. (Author)

  14. Ultra low-power biomedical signal processing: An analog wavelet filter approach for pacemakers

    OpenAIRE

    Pavlík Haddad, S.A.

    2006-01-01

    The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and other...

  15. An ultra-low power wireless sensor network for bicycle torque performance measurements.

    Science.gov (United States)

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2015-05-21

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  16. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.

    Science.gov (United States)

    Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S

    2012-06-01

    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.

  17. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    Science.gov (United States)

    Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod

    2015-01-01

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728

  18. An ultra-low-power pulse oximeter implemented with an energy-efficient transimpedance amplifier.

    Science.gov (United States)

    Tavakoli, M; Turicchia, L; Sarpeshkar, R

    2010-02-01

    Pulse oximeters are ubiquitous in modern medicine to noninvasively measure the percentage of oxygenated hemoglobin in a patient's blood by comparing the transmission characteristics of red and infrared light-emitting diode light through the patient's finger with a photoreceptor. We present an analog single-chip pulse oximeter with 4.8-mW total power dissipation, which is an order of magnitude below our measurements on commercial implementations. The majority of this power reduction is due to the use of a novel logarithmic transimpedance amplifier with inherent contrast sensitivity, distributed amplification, unilateralization, and automatic loop gain control. The transimpedance amplifier, together with a photodiode current source, form a high-performance photoreceptor with characteristics similar to those found in nature, which allows LED power to be reduced. Therefore, our oximeter is well suited for portable medical applications, such as continuous home-care monitoring for elderly or chronic patients, emergency patient transport, remote soldier monitoring, and wireless medical sensing. Furthermore, our design obviates the need for an A-to-D and digital signal processor and leads to a small single-chip solution. We outline how extensions of our work could lead to submilliwatt oximeters.

  19. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    Directory of Open Access Journals (Sweden)

    Sadik K. Gharghan

    2015-05-01

    Full Text Available In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2, and the second experiment used the Advanced and Adaptive Network Technology (ANT protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome. The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  20. Ultra Low Power, Radiation Tolerant UHF Radio Technologies for In Situ Communication Applications

    Science.gov (United States)

    Lay, N. E.

    2001-01-01

    For future deep space missions, significant reductions in the mass and power requirements for short-range telecommunication systems will be critical in enabling a wide variety of new mission concepts. These possibilities include penetrators, gliders, miniature rovers, and sensor networks. Under joint funding from NASA's Cross Enterprise and JPL's Telecommunications and Mission technology programs, recent development activity has focused on the design of ultralow mass and power transceiver systems and subsystems suitable for operation in a flight environment. For these efforts, the functionality of the transceiver has been targeted towards a specific Mars communications scenario. However, the overall architecture is well suited to any short or medium range application where a remote probe will aperiodically communicate with a base station, possibly an orbiter, for the eventual purpose of relaying science information back to Earth. In 2001, these sponsors have been augmented with collaborative expertise and funding from JPL's Center for Integrated Space Microsystems in order to migrate existing concepts and designs to a System on a Chip (SOAC) solution. Additional information is contained in the original extended abstract.

  1. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    Science.gov (United States)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  2. A CMOS self-powered front-end architecture for subcutaneous event-detector devices

    CERN Document Server

    Colomer-Farrarons, Jordi

    2011-01-01

    A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices presents the conception and prototype realization of a Self-Powered architecture for subcutaneous detector devices. The architecture is designed to work as a true/false (event detector) or threshold level alarm of some substances, ions, etc. that are detected through a three-electrodes amperometric BioSensor approach. The device is conceived as a Low-Power subcutaneous implantable application powered by an inductive link, one emitter antenna at the external side of the skin and the receiver antenna under the ski

  3. Ultra-low power thin film transistors with gate oxide formed by nitric acid oxidation method

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kim, W. B.; Matsumoto, T.

    2011-01-01

    We have developed a low temperature fabrication method of SiO 2 /Si structure by use of nitric acid, i.e., nitric acid oxidation of Si (NAOS) method, and applied it to thin film transistors (TFT). A silicon dioxide (SiO 2 ) layer formed by the NAOS method at room temperature possesses 1.8 nm thickness, and its leakage current density is as low as that of thermally grown SiO 2 layer with the same thickness formed at ∼900 deg C. The fabricated TFTs possess an ultra-thin NAOS SiO 2 /CVD SiO 2 stack gate dielectric structure. The ultrathin NAOS SiO 2 layer effectively blocks a gate leakage current, and thus, the thickness of the gate oxide layer can be decreased from 80 to 20 nm. The thin gate oxide layer enables to decrease the operation voltage to 2 V (cf. the conventional operation voltage of TFTs with 80 nm gate oxide: 12 V) because of the low threshold voltages, i.e., -0.5 V for P-ch TFTs and 0.5 V for N-ch TFTs, and thus the consumed power decreases to 1/36 of that of the conventional TFTs. The drain current increases rapidly with the gate voltage, and the sub-threshold voltage is ∼80 mV/dec. The low sub-threshold swing is attributable to the thin gate oxide thickness and low interface state density of the NAOS SiO 2 layer. (authors)

  4. Design and fabrication of self-powered micro-harvesters rotating and vibrated micro-power systems

    CERN Document Server

    Pan, C T; Lin, Liwei; Chen, Ying-Chung

    2013-01-01

    Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with

  5. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

    KAUST Repository

    Leung, Siu

    2018-01-10

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH3 NH3 PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW-1 cm-2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.

  6. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity.

    Science.gov (United States)

    Leung, Siu-Fung; Ho, Kang-Ting; Kung, Po-Kai; Hsiao, Vincent K S; Alshareef, Husam N; Wang, Zhong Lin; He, Jr-Hau

    2018-02-01

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH 3 NH 3 PBI 3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH 3 NH 3 PBI 3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 10 13 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW -1 cm -2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    Science.gov (United States)

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  8. SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Raymond A. DeCarlo; Lefteri H. Tsoukalas

    2016-04-01

    Design and technical advancements in sensing, processing, and wireless communication capabilities of small, portable devices known as wireless sensor nodes (WSNs) have drawn extensive research attention and are vastly applied in science and engineering applications. The WSNs are typically powered by a chemical battery source that has a load dependent finite lifetime. Most applications, including the nuclear industry applications, require WSNs to operate for an extended period of time beginning with their deployment. To ensure longevity, it is important to develop self-powered WSNs. The benefit of self-powered WSNs goes far beyond the cost savings of removing the need for cable installation and maintenance. Self-powered WSNs will potentially offer significant expansion in remote monitoring of nuclear facilities, and provide important data on plant equipment and component status during normal operation, as well as in case of abnormal operation, station blackouts or post-accident evaluation. Advancements in power harvesting technologies enable electric energy generation from many sources, including kinetic, thermal, and radiated energy. For the ongoing research at Idaho National Laboratory, a solid-state thermoelectric-based technology, the thermoelectric generator (TEG), is used to convert thermal energy to power a WSN. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other

  9. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  10. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    Todt, W.H.; Playfoot, K.C.

    1979-01-01

    Disclosed is a self-powered in-core neutron detector assembly in which a plurality of longitudinally extending self-powered detectors have neutron responsive active portions spaced along a longitudinal path. A low neutron absorptive extension extends from the active portions of the spaced active portions of the detectors in symmetrical longitudinal relationship with the spaced active detector portions of each succeeding detector. The detector extension terminates with the detector assembly to provide a uniform perturbation characteristic over the entire assembly length

  11. Sensitivity change of rhodium self -powered detectors with burn-up

    International Nuclear Information System (INIS)

    Girgis, R.; Akimov, I.S.; Hamouda, I.

    1976-01-01

    The scope of the present paper is to obtain the calculation formulae to evaluate the rate of sensitivity change of the neutron self-powered detectors with burn-up. A code written in FORTRAN 4 was developed to be operational on the IBM-1130 computer. It has been established in the case of rhodium detectors that neglecting the β-particle absorption in the calculations leads to the underestimation of the detector sensitivity decrease up to 40%. The derived formulae can be used for other self-powered detectors. (author)

  12. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-01-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new

  13. Self-Powered Magnetothermal Fluid Pump, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in the capabilities of electronics have enabled high power density devices. However, even in light of advances in electronics efficiency figures, the...

  14. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  15. Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing.

    Science.gov (United States)

    Wang, Yanhu; Zhang, Lina; Cui, Kang; Xu, Caixia; Li, Hao; Liu, Hong; Yu, Jinghua

    2018-02-15

    One solar-driven electrochromic photoelectrochemical fuel cell (PFC) with highly efficient energy conversion and storage is easily constructed to achieve quantitative self-powered sensing. Layered bismuth oxyiodide-zinc oxide nanorod arrays (ZnO@BiOI NRA) with a core/shell p-n heterostructure are fabricated as the photoanode with electrochromic Prussian blue (PB) as the cathode. The core/shell p-n heterostructure for the ZnO@BiOI photoanode can effectively boost the photoelectrochemical (PEC) performance through the improvement of photon absorption and charge carrier separation. The optimal assembled PFC yields an open-circuit voltage (V OC ) of 0.48 V with the maximum power output density (P max ) as high as 155 μW cm -2 upon illumination. Benefitting from the interactive color-changing behavior of PB, the cathode not only exhibits cathodic catalytic activity in the PFC but also serves as an electrochromic display for self-powered sensing. The as-constructed PFC possesses multiple readable signal output nanochannels through the maximum power output density (P max ) of the PFC or the color change of PB. Meanwhile, the dual-signal-output makes the as-constructed self-powered sensor highly available in various operations demands with the enhanced reliability. With the advantages of high efficiency of PFCs, unique assay ability, and broad environmental suitability, the constructed self-powered platform shows broad application prospects as an integrated smart analytical device.

  16. Self powered platinum flux detector application for shutdown system

    International Nuclear Information System (INIS)

    Su Guoquan

    2005-01-01

    This article introduce Neutron Flux Detector application in Candu Power Plant, including: design purpose, location in the site, dynamic compensation, differential compensation, detector assembly pressurized with high pure helium etc. And shielding grounding improvement is suggested because of detector signal and setpoint signal noise. (authors)

  17. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Science.gov (United States)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  18. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao [Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Zhuo; Ou-Yang, Wei, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  19. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    International Nuclear Information System (INIS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-01-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm 2 , which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics

  20. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    Science.gov (United States)

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems

    Directory of Open Access Journals (Sweden)

    Jan Kokert

    2018-01-01

    Full Text Available In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion.

  2. Analysis of output currents of self-powered detectors polarized by an external potential

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K; Glowacki, S

    1980-01-01

    During measurement of self-powered detector current the electrical potential is induced between the emitter and collector caused by the input resistivity of measuring device. The detector current dependence on the emitter potential has been analyzed. The experimental results confirm the theoretical model of electronic processes within the insulator and also give the requirements that measuring device should fulfil.

  3. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    1981-01-01

    An in-core neutron detector assembly consisting of a number of longitudinally extending self-powered detectors is described. The uniform mechanical structures and materials are placed symmetrically at each active detector portion thus ensuring that local perturbation factors are uniform. (U.K.)

  4. Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    KAUST Repository

    Rojas, Jhonathan Prieto

    2010-01-01

    In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.

  5. A novel high-performance self-powered ultraviolet photodetector: Concept, analytical modeling and analysis

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new MSM-UV-photodetector (PD) based on dual wide band-gap material (DM) engineering aspect is proposed to achieve high-performance self-powered device. Comprehensive analytical models for the proposed sensor photocurrent and the device properties are developed incorporating the impact of DM aspect on the device photoelectrical behavior. The obtained results are validated with the numerical data using commercial TCAD software. Our investigation demonstrates that the adopted design amendment modulates the electric field in the device, which provides the possibility to drive appropriate photo-generated carriers without an external applied voltage. This phenomenon suggests achieving the dual role of effective carriers' separation and an efficient reduce of the dark current. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to achieve improved photoelectric behavior at zero bias that can ensure favorable self-powered MSM-based UV-PD. It is found that the proposed design methodology has succeeded in identifying the optimized design that offers a self-powered device with high-responsivity (98 mA/W) and superior ION/IOFF ratio (480 dB). These results make the optimized MSM-UV-DM-PD suitable for providing low cost self-powered devices for high-performance optical communication and monitoring applications.

  6. Use of FET in automatic scanning of measurements using thermocouples and self-powered neutron detectors

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1977-01-01

    Advantages lying in using FET switches in the relays of multiplexing systems are shown with two examples of application. Their performance as regard fast reliable operation are used in temperature measurement scanning inside nuclear reactors. As for current measurements using self-powered neutron detectors, the weak leakage currents of said switches ( [fr

  7. On-power verification of the dynamic response of self-powered in-core detectors

    International Nuclear Information System (INIS)

    Serdula, K.; Beaudet, M.

    1996-01-01

    Self-powered in-core detectors are used for on-line safety and regulation purposes in CANDU reactors. Such applications require use of detectors whose response is primarily prompt to changes in flux. In-service verification of the detectors' response is required to ensure significant degradation in performance has not occurred during long-term operation. Changes in the detector characteristics occur due to nuclear interactions and failures. Present verification requires significant station resources and disrupts power production. Use of the 'noise' in the detector signal is being investigated as an alternative to assess the dynamic response of the detectors during long-term operation. Measurements of reference 'signatures' were obtained from replacement shutdown system detectors. Results show 'noise' measurements are a promising alternative to the current verification method. Identification of changes in the detector response function assist in accurate diagnosis and prognosis of changes in detector signals due to process changes. (author)

  8. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.

    Science.gov (United States)

    Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin

    2016-07-26

    Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.

  9. An Active Capacitor with Self-Power and Internal Feedback Control Signals

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This paper proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. A control strategy that does not require any external feedback...... signal is proposed and a self-power scheme for gate drivers and the controller is applied to achieve the two-terminal active capacitor. The concept, control method, self-power scheme, efficiency, and impedance characteristics of the active capacitor are presented. A case study of the proposed active...... capacitor for a capacitive DC-link application is discussed. The results reveal a significantly lower overall energy storage of passive elements and a reduced cost to fulfill a specific reliability target, compared to a passive capacitor solution. Proof-of-concept experimental results are given to verify...

  10. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    International Nuclear Information System (INIS)

    Strindehag, O.

    1971-11-01

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  11. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1971-11-15

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  12. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez-Solino

    2018-01-01

    Full Text Available With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  13. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    Science.gov (United States)

    Gonzalez-Solino, Carla; Lorenzo, Mirella Di

    2018-01-01

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors. PMID:29382147

  14. Dynamical model of computation of the rhodium self-powered neutron detector current

    International Nuclear Information System (INIS)

    Erben, O.; Slovacek, M.; Zerola, L.

    1992-01-01

    A model is presented for the calculation of the rhodium self-powered neutron detector current in dependence on the neutron flux density during reactor core transients. The total signal consists of a beta emission, prompt, and gamma component and a background signal. The model has been verified by means of experimental data obtained during measurements on the LVR-15 research reactor and at the Dukovany nuclear power plant. (author) 9 figs., 21 refs

  15. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics.

    Science.gov (United States)

    Gonzalez-Solino, Carla; Lorenzo, Mirella Di

    2018-01-29

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  16. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    OpenAIRE

    Carla Gonzalez-Solino; Mirella Di Lorenzo

    2018-01-01

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  17. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  18. Research on self-powered detectors for gamma-ray monitoring

    International Nuclear Information System (INIS)

    Cho, S.W.; Lee, Y.J.

    1984-01-01

    Self-powered neutron detectors are used extensively in power reactors both for flux mapping and for power control and over-power protection, because of their small size, ruggedness and simplicity. But they have a few disadvantages such as high burn-up rate and background signal produced by the gamma-rays from the reactor itself. In order to overcome these disadvantages and to achieve a better understanding of gamma-ray effects of self-power detectors, a new type of self-powered detectors was designed and fabricated by the author,and experiments have carried out in the 10kCi sup(60)Co gamma irradiation facility in Korea Advanced Energy Research Institute. The configuration of the new type detectors is not of coaxial type but of paralled plate in order to obtain directional effects of gamma-ray incidence. Detector materials and dimensions are so chosen that the output current signal is large enough to be detected using some commercial measuring divice even at low dose rate and the contribution of the lead cable to the total signal is negligibly small. The results are 1)sensitivity is depended primarily on the materials of the insulator, 2)output signal has a good linearity to gamma dose rate, 3) response of detectors is prompt, but not perfect, 4) critical thickness for satusation of the output current is thinner than the range of photoelectron in the materials. (Author)

  19. Research on self-powered detectors for gamma-ray monitoring

    International Nuclear Information System (INIS)

    Cho, S.W.

    1983-01-01

    Self-powered neutron detectors are used extensively in power reactors both for flux mapping and for power control and over-power protection, because of their small size, ruggedness and simplicity. But they have a few disadvantages such as high burn-up rate and background signal produced by the gamma-rays from the reactor itself. In order to overcome these disadvantages and to achieve a better understanding of gamma-ray effects of self-powered detectors, a new type of self-powered detectors was designed and fabricated by the author, and experiments have been carried out in the 10kCi sup(60)Co gamma irradiation facility in Korea Advanced Energy Research Institute. The configuration of the new type detectors is not of coaxial type but of paralled plate in order to obtain directional effects of gamma-ray incidence. Detector materials and dimensions are so chosen that the output current signal is large enough to be detected using some commercial measuring divice even at low dose rate and the contribution of the lead cable to the totel signal is negligibly small. The results are 1) sensitivity is depended primarily on the materials of the insulator, 2) output signal has a good linearity to gamma dose rate, 3) response of detectors is prompt, but not perfect, 4) critical thickness for satusation of the output current is thinner than the range of photoelectron in the materials. (Author) πT

  20. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoheng Ding

    2018-05-01

    Full Text Available The triboelectric nanogenerator (TENG and its application as a sensor is a popular research subject. There is demand for self-powered, flexible sensors with high sensitivity and high power-output for the next generation of consumer electronics. In this study, a 300 mm × 300 mm carbon nanotube (CNT-doped porous PDMS film was successfully fabricated wherein the CNT influenced the micropore structure. A self-powered TENG tactile sensor was established according to triboelectric theory. The CNT-doped porous TENG showed a voltage output seven times higher than undoped porous TENG and 16 times higher than TENG with pure PDMS, respectively. The TENG successfully acquired human motion signals, breath signals, and heartbeat signals during a sleep monitoring experiment. The results presented here may provide an effective approach for fabricating large-scale and low-cost flexible TENG sensors.

  1. Development of measuring system with self-powered neutron detectors for the LR-0 reactor

    International Nuclear Information System (INIS)

    Erben, O.; Horinek, K.; Szasz, Z.

    1989-01-01

    A measuring channel with self-powered detectors was developed for measuring neutron fluxs density in the reactor core. The measuring channel consists of a measuring probe with standard self-powered detectors of Soviet make, a signal pathway, a current/voltage converter and a measuring and recording unit. Neutron flux density in the LR-0 reactor core reaches a maximum of 10 13 m -2 s -1 . Experiments using the channel were carried out both in steady-state operation and after emergency shutdown of the reactor, this from power levels of 2,096 W and 1,830 W. The results of the experiments are tabulated and briefly analyzed. (Z.M.). 4 figs., 3 tabs., 5 refs

  2. Recent advances in self-powered flux detector development for CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.; Drewell, N.H.; Hall, D.S.

    1983-01-01

    The characteristics of self-powered flux detectors used in CANDU reactors are reviewed. Detectors with emitters of vanadium, platinum, platinum-clad Inconel and Inconel are used. Data on dynamic response, relative neutron and gamma-ray sensitivities, and burnout, obtained both from experiments and from the Monte Carlo code ICARES, are presented. Since the response of a detector depends on the relative magnitudes of the various current-producing mechanisms, the operating principles of self-powered detectors are briefly reviewed. Current research programmes are discussed. These include modifying the design of the platinum-clad Inconel detector in order to match its dynamic response to that of the fuel power and developing a prompt-responding flux-mapping detector. (author)

  3. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  4. Novel design of a self powered and self sensing magneto-rheological damper

    International Nuclear Information System (INIS)

    Ferdaus, Mohammad Meftahul; Rashid, M M; Bhuiyan, M M I; Muthalif, Asan Gani Bin Abdul; Hasan, M R

    2013-01-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered and self sensing MR damper is theoretically calculated and evaluated in the frequency domain

  5. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  6. Investigation of the response of improved self-powered neutron detectors

    International Nuclear Information System (INIS)

    Erk, S.

    1982-01-01

    The self-powered neutron detectors have been successfully employed for the most important parameters both for neutron flux and flux fluence determination. Their preference for such measurements due to their simplicity, convenience in use, rigidity, voluminal smallness and low price. However, self-powered neutron detectors depend on the type used, can only follow the neutron flux changes with a certain delay when they are compared to fission chambers which are thought to be the best detectors. In this thesis, a system has been proposed and considered carefully in order to speed up the response time, in another word, to correct the detector response to a level very near to fission chamber performance, a circuitry has been realized in the frame of principles so forth and applied to the experiments carried out in the TR-1 Reactor. Their positive results are presented. (author)

  7. Compact self-powered synchronous energy extraction circuit design with enhanced performance

    Science.gov (United States)

    Liu, Weiqun; Zhao, Caiyou; Badel, Adrien; Formosa, Fabien; Zhu, Qiao; Hu, Guangdi

    2018-04-01

    Synchronous switching circuit is viewed as an effective solution of enhancing the generator’s performance and providing better adaptability for load variations. A critical issue for these synchronous switching circuits is the self-powered realization. In contrast with other methods, the electronic breaker possesses the advantage of simplicity and reliability. However, beside the energy consumption of the electronic breakers, the parasitic capacitance decreases the available piezoelectric voltage. In this technical note, a new compact design of the self-powered switching circuit using electronic breaker is proposed. The envelope diodes are excluded and only a single envelope capacitor is used. The parasitic capacitance is reduced to half with boosted performance while the components are reduced with cost saved.

  8. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

    KAUST Repository

    Chen, Jun

    2017-10-10

    Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.

  9. A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications.

    Science.gov (United States)

    Chandrasekhar, Arunkumar; Alluri, Nagamalleswara Rao; Sudhakaran, M S P; Mok, Young Sun; Kim, Sang-Jae

    2017-07-20

    A Smart Mobile Pouch Triboelectric Nanogenerator (SMP-TENG) is introduced as a promising eco-friendly approach for scavenging biomechanical energy for powering next generation intelligent devices and smart phones. This is a cost-effective and robust method for harvesting energy from human motion, by utilizing worn fabrics as a contact material. The SMP-TENG is capable of harvesting energy in two operational modes: lateral sliding and vertical contact and separation. Moreover, the SMP-TENG can also act as a self-powered emergency flashlight and self-powered pedometer during normal human motion. A wireless power transmission setup integrated with SMP-TENG is demonstrated. This upgrades the traditional energy harvesting device into a self-powered wireless power transfer SMP-TENG. The wirelessly transferred power can be used to charge a Li-ion battery and light LEDs. The SMP-TENG opens a wide range of opportunities in the field of self-powered devices and low maintenance energy harvesting systems for portable and wearable electronic gadgets.

  10. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  11. Fiber-based all-solid-state flexible supercapacitors for self-powered systems.

    Science.gov (United States)

    Xiao, Xu; Li, Tianqi; Yang, Peihua; Gao, Yuan; Jin, Huanyu; Ni, Weijian; Zhan, Wenhui; Zhang, Xianghui; Cao, Yuanzhi; Zhong, Junwen; Gong, Li; Yen, Wen-Chun; Mai, Wenjie; Chen, Jian; Huo, Kaifu; Chueh, Yu-Lun; Wang, Zhong Lin; Zhou, Jun

    2012-10-23

    All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.

  12. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors

    KAUST Repository

    Yang, Pokang

    2015-01-27

    Discovering renewable and sustainable power sources is indispensable for the development of green electronics and sensor networks. In this paper, we present origami triboelectric nanogenerators (TENGs) using paper as the starting material, with a high degree of flexibility, light weight, low cost, and recyclability. Slinky- and doodlebug-shaped TENGs can be easily fabricated by properly folding printer papers. The as-fabricated TENGs are capable of harvesting ambient mechanical energy from various kinds of human motions, such as stretching, lifting, and twisting. The generated electric outputs have been used to directly light-up commercial LEDs. In addition, the as-fabricated TENGs can also serve as self-powered pressure sensors.

  13. Self-powered remotely controlled machines and tools for safety improvement in mining

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaeva, G. [University of Newcastle, Callaghan, NSW (Australia)

    2005-07-01

    This paper addresses the problem of meeting the safety requirements of mining industry for implementation of control and monitoring equipment without external wiring. Local power generation and accumulation combined with remote control and wireless data transmission are suggested as an appropriate way to make the implementation of such device safe and convenient, which in its turn would facilitate their wider application for automation and safety improvement. A rope shovel dipper trip system is discussed in detail as an example of a self-powered remotely-controlled system. Other possible applications of the concept are also identified, such as Armoured Face Conveyor (AFC) and water jet drilling operation monitoring. 5 refs., 6 figs.

  14. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    OpenAIRE

    Kim Myong-Seop; Park Byung-Gun; Kang Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affe...

  15. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  16. Burnup Estimation of Rhodium Self-Powered Neutron Detector Emitter in VVER Reactor Core Using Monte Carlo Simulations

    OpenAIRE

    Khrutchinsky, А. А.; Kuten, S. A.; Babichev, L. F.

    2011-01-01

    Estimation of burn-up in a rhodium-103 emitter of self-powered neutron detector in VVER-1000 reactor core has been performed using Monte Carlo simulations within approximation of a constant neutron flux.

  17. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Science.gov (United States)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the

  18. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    International Nuclear Information System (INIS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-01-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz–3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz)

  19. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  20. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.

    Science.gov (United States)

    Shen, Daozhi; Xiao, Ming; Zou, Guisheng; Liu, Lei; Duley, Walter W; Zhou, Y Norman

    2018-03-24

    Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO 2 ) nanowire networks, can yield an output power density of up to 4 µW cm -2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-powered information measuring wireless networks using the distribution of tasks within multicore processors

    Science.gov (United States)

    Zhuravska, Iryna M.; Koretska, Oleksandra O.; Musiyenko, Maksym P.; Surtel, Wojciech; Assembay, Azat; Kovalev, Vladimir; Tleshova, Akmaral

    2017-08-01

    The article contains basic approaches to develop the self-powered information measuring wireless networks (SPIM-WN) using the distribution of tasks within multicore processors critical applying based on the interaction of movable components - as in the direction of data transmission as wireless transfer of energy coming from polymetric sensors. Base mathematic model of scheduling tasks within multiprocessor systems was modernized to schedule and allocate tasks between cores of one-crystal computer (SoC) to increase energy efficiency SPIM-WN objects.

  2. Comparison of dynamic compensation methods for delayed self-powered neutron detector

    International Nuclear Information System (INIS)

    In, Wang Kee; Kim, Joon Sung; Auh, Geun Sun; Yoon, Tae Young

    1993-01-01

    Dynamic compensation methods for rhodium self-powered neutron detector have been developed by Banda and Hoppe to compensate for the time delay associated with detector signals. The time delay is due to the decay of the neutron-activated rhodium and results in delayed detector response. Two digital dynamic compensation methods, were compared for step change of neutron flux in this paper. The inverse kinetics method gave slightly better response time and noise gain. However, the inverse kinetics method also showed overshooting of neutron flux for the step change. (Author)

  3. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  4. Measuring delayed part of the current of a self powered neutron detector and comparison with calculations

    International Nuclear Information System (INIS)

    Kophazi, J.; Czifrus, Sz.; Feher, S.; Por, G.

    2001-01-01

    The paper describes the measurement of the delayed signal of a Rh emitter Self Powered Neutron Detector (SPND) separately from other signal components originating from (n-gamma-e), (background gamma-e) and other effects. In order to separate the delayed signal, the detector was removed from the reactor core and placed to an adequately distant location during the measurement, where the radiation from the core was negligible. The experiment was carried out on the 100kW light water tank-type reactor of Technical University of Budapest and the results of the measurement were compared with the results of Monte Carlo calculations.(author)

  5. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  6. Use of self powered neutron detectors in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Galo Rocha, F. del.

    1989-01-01

    A survey of self-powered neutron detectors, SPND, which are used as part of the in-core instrumentation of nuclear reactors is presented. Measurements with Co and Er SPND's were made in the IEA-R1 reactor for determining the neutron flux distribution and the integral reactor power. Due to the size of the available detectors, the neutron flux distribution could not be obtained with accuracy. The results obtained in the reactor power measurements demonstrate that the SPND have the linearity and the quick response necessary for a reactor power channel. This work also presents a proposed design of a SPND using Pt as wire emissor. This proposed design is based in the experience gained in building two prototypes. The greatest difficulties encountered include materials and technology to perform the delicate weldings. (author)

  7. A novel self-powered MR damper: theoretical and experimental analysis

    International Nuclear Information System (INIS)

    Xinchun, Guan; Hui, Li; Jinping, Ou; Yonghu, Huang; Yi, Ru

    2015-01-01

    This paper presents a novel magnetorheological (MR) damper with a self-powered capability, which is proposed to have energy harvesting and MR damping technologies integrated into a single device. Vibration energy harvesting mechanisms were adopted, based on ball-screw mechanisms and a rotary permanent magnet dc generator, to convert the external vibration energy into electrical energy to power the MR damping unit. The configuration and operating principles of the proposed self-powered MR damper were presented. Considering the core loss effect on the magnetic field, a theoretical analysis of the proposed MR damper was carried out and a mechanical model was developed. Finally, a prototype with a capacity of 10 kN was fabricated and experimentally investigated in both the direct-supply mode and the supply-with-rectifier mode. The results indicated that the proposed configuration is feasible and that both modes can realize good self-adaptability of the MR damping force. However, the direct-supply mode has a sag effect in the force–displacement curve and provides a lower energy-dissipating capacity than the direct-supply mode does under the same conditions. (paper)

  8. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  9. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  10. Robust filtering for dynamic compensation of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Zhao, Wenbo; Gong, Helin; Wang, Kan

    2014-01-01

    Highlights: • Three dynamic compensation methods based on robust filtering theory are proposed. • Filter design problems are converted into linear matrix inequality problems. • Rhodium and Vanadium self-powered neutron detectors are used to validate the use of these three dynamic compensation methods. • The numerical simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression. - Abstract: Self-powered neutron detectors (SPNDs), which are widely used in nuclear reactors to obtain core neutron flux distribution, are accurate at steady state but respond slowly to changes in neutron flux. Dynamic compensation methods are required to improve the response speed of the SPNDs and make it possible to apply the SPNDs for core monitoring and surveillance. In this paper, three digital dynamic compensation methods are proposed. All the three methods are based on the convex optimization framework using linear matrix inequalities (LMIs). The simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression

  11. Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing

    Science.gov (United States)

    Chen, Xuexian; Miao, Liming; Guo, Hang; Chen, Haotian; Song, Yu; Su, Zongming; Zhang, Haixia

    2018-05-01

    We introduce a waterproof and stretchable triboelectric nanogenerator (TENG) that can be attached on the human body, such as fingers and the wrist, to harvest mechanical energy from body movement. The whole device is composed of stretchable material, making it able to endure diverse mechanical deformations and scavenge energy from them. Under gentle mechanical motions of pressing, stretching and bending, the device with an effective area of 1 × 2 cm2 can generate the peak-to-peak output current of 257.5 nA, 50.2 nA, and 33.5 nA, respectively. Besides, the TENG is tightly encapsulated, enabling it to avoid the influence of the external environment like humidity changes and harvest energy under water. Particularly, owing to the thin and soft properties of the encapsulation film, the device can respond to weak vibrations like the wrist pulse and act as a self-powered pulse sensor, which broadens its application prospects in the field of wearable energy harvesting devices and self-powered sensing systems.

  12. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.

    Science.gov (United States)

    Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie

    2018-06-07

    Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ching-Cheng; Liao, Yu-Ming; Chen, Yang-Fang, E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Zhan, Jun-Yu; Lin, Tai-Yuan [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Hsieh, Ya-Ping [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2016-08-01

    A self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In this device, graphene serves as a transparent electrode as well as an efficient collection layer for photogenerated carriers due to its excellent tunability of Fermi energy. The ZnO layer acts as an antireflection layer to trap the incident light and enhance the light absorption. Furthermore, the insertion of the ZnO layer in between graphene and Si layers can create build-in electric field at both graphene/ZnO and ZnO/Si interfaces, which can greatly enhance the charge separation of photogenerated electron and hole pairs. As a result, the sensitivity and response time can be significantly improved. It is believed that our methodology for achieving a high-performance self-powered photodetector based on an appropriate design of band alignment and optical parameters can be implemented to many other material systems, which can be used to generate unique optoelectronic devices for practical applications.

  14. A study on the sensitivity depletion laws for rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kim, Gil Gon

    1999-02-01

    The rhodium self-powered neutron detectors (SPND) in a reactor core provide the operator with the on-line 3-dimensional nuclear power distribution. The signal produced by rhodium SPND is interpreted into the local neutron flux by using a sensitivity depletion law and the local neutron flux is interpreted into the local power by using a power conversion factor. This work on the sensitivity depletion laws for rhodium self-powered neutron detectors (SPND) is performed to improve the uncertainty of the sensitivity depletion law used in ABB-CE reactors employing a rhodium SPND and to develop a calculational tool for providing the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools for a time dependent neutron flux distribution in the rhodium emitter during depletion and for a time dependent beta escape probability that a beta generated in the emitter is escaped into the collector were developed. Due to the cost, the exposure to the radiation, and the longer fuel cycle, there is a strong incentive that the loading density of an in-core instrumentation is reduced and the lifetime of the detector is lengthened. These objectives can be achieved by reducing the uncertainty which is amplified as it depletes. The calculational tools above provide the sensitivity depletion law and show the reduction of the uncertainty to about 1 % in interpreting the signal into the local neutron flux compared to the method employed by ABB-CE. The reduction in the uncertainty of 1 % in interpreting the signal into the local neutron flux is equivalent to the reduction in the uncertainty of 1 % or more in interpreting the signal into the local power and to the extension of the lifetime of rhodium SPND to about 10 % as reported by ABB-CE

  15. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  16. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Lone, M A; Wong, P Y [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD`s are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD`s to electrons and {gamma}-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of {gamma}-ray sensitivity of an SPD placed in a mixed electron and {gamma}-ray field. (author). 30 refs., 1 tab., 8 figs.

  17. Self Powered Non-Dispersive Infra-Red CO{sub 2} Gas Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D R; MacGregor, C, E-mail: des@gassensing.co.uk [Gas Sensing Solutions Ltd, 60 Grayshill Road, Westfield North Courtyard, Glasgow G68 9HQ (United Kingdom)

    2011-08-17

    This paper describes a non-dispersive infra-red CO{sub 2} gas sensor, incorporating a mid-infra-red solid state light source/ detector combination, tuned to match the spectral absorption characteristic of CO{sub 2} gas. Injection moulded optics provide low cost manufacture. Continuous operation power consumption is < 3.5mW and pulsed mode with energy per measurement < 6mJ. Self powered operation using a solar cell is demonstrated together with wireless capability. Performance of two path length variants (20mm and 70mm) is described. The sensor shows invariant temperature output characteristic from -25 to 50 deg. C. Accuracy level is typically {+-}3% of reading.

  18. Analysis of the sensitivity concept of self-powered neutron detector (SPND)

    International Nuclear Information System (INIS)

    Moreira, O.; Lescano, H.

    2012-01-01

    Self powered neutron detectors (SPND) are widely used to monitor the neutron flux, either in nuclear as in irradiation facilities and medical treatments. However, the physical meaning of the parameter that is used to relate the detector signal (an electrical current) with the neutron flux, i.e., the sensitivity of the detector, has not been sufficiently analyzed. Since the definition of sensitivity, ε=i/φ is calculated for particular reactor conditions, i.e., for thermal neutrons at room temperature, it does not take into account the deviation originated from other conditions of temperature (above ambient), as found for example in nuclear power plants. In this work we calculated the microscopic cross section weighted with the neutron flux, defined in the usual way. This weighted microscopic cross section reveals the no proportionality between the absorption rate and the neutron flux, exhibiting the problem that the SPND current signal has to properly represent the neutron flux (author)

  19. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  20. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    International Nuclear Information System (INIS)

    Lone, M.A.; Wong, P.Y.

    1995-01-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD's are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD's to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field. (author). 30 refs., 1 tab., 8 figs

  1. FY 2000 report on the development of ultra low loss power element technology. Commercialization of next generation power semiconductor device; 2000 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of contributing to the promotion of development of ultra low loss power element technology, survey was conducted on the present situation, future, etc. of various technologies/systems related to power semiconductor devices. In the industrial equipment field, it is predicted that power semiconductor devices will be increased in the field of application by enlargement of the defense field of IGBT, new MOS structure elements, etc. In the field of home appliances, possibilities are expected of switching loss reduction and electric noise reduction by making SiC high speed diode. As to the space photovoltaic power generation, SiC is expected for various semiconductors such as solar cells, FET for transmitter/amplifier of radio power electric transmission use micro waves, etc. Concerning the radio communication system plan using stratosphere platform, there are technical problems on communication equipment such as antenna and RF circuit, and the role of SiC device is expected to be large. The society where the electrification rate is 80% and fuel cell vehicles are used is a new paradigm, and it is necessary and indispensable to commercialize ultra low loss power elements using SiC. (NEDO)

  2. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.

    Science.gov (United States)

    Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-08-23

    The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.

  3. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    Science.gov (United States)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  4. Simultaneous Monitoring of Glucose and Lactate by Self-powered Biosensor

    Directory of Open Access Journals (Sweden)

    Ankit Baingane

    2017-07-01

    Full Text Available A dual self-powered biosensing system integrated with energy amplification circuit is described, for simultaneously monitoring glucose and lactate. The self-powered biosensing system is based on the conventional enzymatic biofuel cell equipped with three 4 mm x 4 mm massively dense mesh network of multi-walled carbon nanotubes (MWCNTs bioelectrodes in parallel configuration. The bioelectrodes employed pyroquinoline quinone glucose dehydrogenase (PQQ-GDH as the biocatalyst for the glucose oxidation and D-Lactate dehydrogenase (D-LDH as the biocatalyst for lactate oxidation. A common laccase modified-MWCNTs bioelectrode served as the cathode for the reduction of molecular oxygen. Two charge pump circuits were coupled with 0.1 mF capacitors functioning as transducers. The advantages of employing capacitors were coupled with the efficient energy amplification of the charge pump circuit to amplify the power output from each of the biofuel and charge/discharge the corresponding capacitor. Under operating conditions, the open circuit voltages and short circuit current densities for 180 mg/dL glucose and 25 mM lactate were 339.2 mV and 228.75 µA/cm2 and 370 mV and 66.17 µA/cm2, respectively. The responses for glucose and lactate were linear up to 630 mg/dL and 30 mM with sensitivities of 20.11 Hz/ mM cm-2 and 9.869 Hz/ mM cm-2, respectively. The potential of the described system was demonstrated to provide stable voltage and current output that was capable of driving the charge pump circuit integrated with the capacitor for simultaneously monitoring glucose and lactate. These results were in good agreement with those previously reported.

  5. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Dan Su

    2018-01-01

    Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.

  6. Analysis and solution of current spike occurred in dynamic compensation of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Wang, Kan

    2017-01-01

    Highlights: • The current spike problem is observed in the dynamic compensation process of SPNDs. • The current spike is caused by unphysical current change due to range switching. • Modification on the compensation algorithm is introduced to deal with current spike. - Abstract: Dynamic compensation methods are required to improve the response speed of the Self-Powered Neutron Detectors (SPNDs) and make it possible to apply the SPNDs for core monitoring and surveillance. During the experimental test of the compensation method based on linear matrix inequality (LMI), spikes are observed in the compensated SPND current. After analyzing the measurement data, the cause is fixed on the unphysical change of the uncompensated SPND current due to range switching. Then some modifications on the dynamic compensation algorithms are proposed to solve the current spike problem.

  7. Design, construction and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, construction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties of detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Nevertheless, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were performed in a 100 KW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS, in Belo Horizonte, Brazil. (author) [pt

  8. Design constrution and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, contruction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties od detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Neverthe less, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were perfomance in a 100 kW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS,in Belo Horizonte, Brazil. (Author) [pt

  9. Characterization of hybrid self-powered neutron detector under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, M. E-mail: masaru@oarai.jaeri.go.jp; Nagao, Y.; Yamamura, C.; Nakazawa, M.; Kawamura, H

    2000-11-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%R000.

  10. An investigation of models of rhodium emitter used in self-powered neutron detector

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Piontkovskij, Yu.F.; Goranchuk, V.V.

    2017-01-01

    he paper presents the results of MCNP simulation of the self-powered neutron detector (SPND) signal formation as a result of emitter nuclei activation under the irradiation with neutrons generated in the fuel assemblies. To account for the non-uniformity of emitter burnup along the radius, its model was divided radially into 10 layers of equal thickness. It has been shown that the main contribution of about 88 % of SPND signal is provided by the four peripheral emitter layers. The contribution of different parts of emitter to the SPND signal formation throughout the lifetime of the SPND in the In-Core Monitoring System was found. Simulation results allow us to determine the SPND signal when the spectral characteristics of the neutron flux at the detector location change during the fuel campaign. The study has investigated and proposed a SPND model with the higher neutron sensitivity even though a smaller amount of expensive rhodium is used.

  11. Mathematical model of rhodium self-powered detectors and algorithms for correction of their time delay

    International Nuclear Information System (INIS)

    Bur'yan, V.I.; Kozlova, L.V.; Kuzhil', A.S.; Shikalov, V.F.

    2005-01-01

    The development of algorithms for correction of self-powered neutron detector (SPND) inertial is caused by necessity to increase the fast response of the in-core instrumentation systems (ICIS). The increase of ICIS fast response will permit to monitor in real time fast transient processes in the core, and in perspective - to use the signals of rhodium SPND for functions of emergency protection by local parameters. In this paper it is proposed to use mathematical model of neutron flux measurements by means of SPND in integral form for creation of correction algorithms. This approach, in the case, is the most convenient for creation of recurrent algorithms for flux estimation. The results of comparison for estimation of neutron flux and reactivity by readings of ionization chambers and SPND signals, corrected by proposed algorithms, are presented [ru

  12. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  13. Neutron sensitivity of prompt-response self-powered neutron detectors and the interval rule

    International Nuclear Information System (INIS)

    Molina Avila, J.; Carmolopes, M.

    1989-01-01

    This paper is devoted to the calculation of thermal s th and epithermal s epi sensitivities of cobalt prompt-response Self-Powered Neutron Detectors (SPNDs). The thermal sensitivity was obtained for a Maxwellian neutron field, and the effect of scattering on the self-shielding correction was taken into consideration in the second-collision approximation. The dependence of s th on the emitter radius R was studied in a wide region of R (0.025 to 0.2 cm). The differential and global epithermal sensitivities were calculated using a simple expression for the first-collision neutron absorption probability. Finally, a criterion to evaluate the accuracy of the parameters of the model was established in the form of some Interval Rule which is very sensitive to the radial dependence of the flux perturbation correction and other parameters of the model in both the thermal and epithermal regions

  14. Performance of self-powered neutron detectors in pressurized water reactors

    International Nuclear Information System (INIS)

    Warren, H.D.; Bozarch, D.P.

    1977-01-01

    A typical Babcock and Wilcox pressurized water reactor (PWR) contains 364 rhodium self-powered neutron detectors (SPNDs) and 52 background detectors. The detectors are inserted into the reactor core in 52 dry, multidetector assemblies. Each assembly contains seven SPNDs and one background detector. By mid-1977, eight B and W PWRs, each fitted with SPNDs, were in operation. Many of the SPNDs have operated successfully for more than four years. This paper describes the operational performance of the SPNDs and special tests conducted to improve that performance. Topics included are (1) insulation performance versus neutron dose to the SPND, (2) background signals in the leadwire region of the SPND, and (3) depletion of the SPND emitter versus absorbed neutron dose

  15. Biofuel cell based self-powered sensing platform for L-cysteine detection.

    Science.gov (United States)

    Hou, Chuantao; Fan, Shuqin; Lang, Qiaolin; Liu, Aihua

    2015-03-17

    L-cysteine (L-Cys) detection is of great importance because of its crucial roles in physiological and clinical diagnoses. In this study, a glucose/O2 biofuel cell (BFC) was assembled by using flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH)-based bioanode and laccase-based biocathode. Interestingly, the open circuit potential (OCP) of the BFC could be inhibited by Cu(2+) and subsequently activated by L-Cys, by which a BFC-based self-powered sensing platform for the detection of L-Cys was proposed. The FAD-GDH activity can be inhibited by Cu(2+) and, in turn, subsequent reversible activation by L-Cys because of the binding preference of L-Cys toward Cu(2+) by forming the Cu-S bond. The preferential interaction between L-Cys and Cu(2+) facilitated Cu(2+) to remove from the surface of the bioanode, and thus, the OCP of the system could be turned on. Under optimized conditions, the OCP of the BFC was systematically increased upon the addition of the L-Cys. The OCP increment (ΔOCP) was linear with the concentration of L-Cys within 20 nM to 3 μM. The proposed sensor exhibited lower detection limit of 10 nM L-Cys (S/N = 3), which is significantly lower than those values for other methods reported so far. Other amino acids and glutathione did not affect L-Cys detection. Therefore, this developed approach is sensitive, facile, cost-effective, and environmental-friendly, and could be very promising for the reliable clinically detecting of L-Cys. This work would trigger the interest of developing BFCs based self-powered sensors for practical applications.

  16. Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    KAUST Repository

    Rojas, Jhonathan Prieto

    2010-11-01

    In this work the development of a Self-Powered System-On-Chip is explored by examining two components of process development in different perspectives. On one side, an energy component is approached from a biochemical standpoint where a Microbial Fuel Cell (MFC) is built with standard microfabrication techniques, displaying a novel electrode based on Carbon Nanotubes (CNTs). The fabrication process involves the formation of a micrometric chamber that hosts an enhanced CNT-based anode. Preliminary results are promising, showing a high current density (113.6mA/m2) compared with other similar cells. Nevertheless many improvements can be done to the main design and further characterization of the anode will give a more complete understanding and bring the device closer to a practical implementation. On a second point of view, nano-patterning through silicon nitride spacer width control is developed, aimed at producing alternative sub-100nm device fabrication with the potential of further scaling thanks to nanowire based structures. These nanostructures are formed from a nano-pattern template, by using a bottom-up fabrication scheme. Uniformity and scalability of the process are demonstrated and its potential described. An estimated area of 0.120μm2 for a 6T-SRAM (Static Random Access Memory) bitcell (6 devices) can be achieved. In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.

  17. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    Science.gov (United States)

    LeVert, Francis E.; Cox, Samson A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.

  18. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    International Nuclear Information System (INIS)

    LeVert, F.E.; Cox, S.A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor

  19. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators

    International Nuclear Information System (INIS)

    Lone, M.A.

    1992-08-01

    A self-powered detector (SPD) is a simple passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors for monitoring neutron and gamma ray fields. Responses of various SPDs to electron and gamma ray beams from industrial accelerators were investigated with Monte Carlo simulations. By judicious choice of transmission filters, threshold SPD probes were investigated for on-line monitoring of the beam energy spectrum of the high-power IMPELA industrial electron accelerator. (Author) (14 figs, 16 refs.)

  20. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are key to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices. In fact,...

  1. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are one of the keys to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices....

  2. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    International Nuclear Information System (INIS)

    Uluşan, H; Gharehbaghi, K; Külah, H; Zorlu, Ö; Muhtaroğlu, A

    2015-01-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage. (paper)

  3. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    Science.gov (United States)

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  4. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Science.gov (United States)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  5. Development of an inconel self powered neutron detector for in-core reactor monitoring

    International Nuclear Information System (INIS)

    Alex, M.; Ghodgaonkar, M.D.

    2007-01-01

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60 Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10 -18 A/R/h/cm (-9.3x10 -24 A/γ/cm 2 -s/cm), -5.2x10 -18 A/R/h/cm (-1.133x10 -23 A/γ/cm 2 -s/cm) and 34x10 -18 A/R/h/cm (7.14x10 -23 A/γ/cm 2 -s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10 -22 and 2.64x10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress

  6. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alex, M. [Electronics Division, BARC, Mumbai (India)]. E-mail: maryalex@barc.gov.in; Ghodgaonkar, M.D. [Electronics Division, BARC, Mumbai (India)

    2007-04-21

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the {sup 60}Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10{sup -18} A/R/h/cm (-9.3x10{sup -24} A/{gamma}/cm{sup 2}-s/cm), -5.2x10{sup -18} A/R/h/cm (-1.133x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) and 34x10{sup -18} A/R/h/cm (7.14x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10{sup -23} A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10{sup -22} and 2.64x10{sup -22} A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within {+-}5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  7. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    Science.gov (United States)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  8. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    Science.gov (United States)

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  9. Compact and Ultra-Low-Power 2.4 GHz LNA for On-body Communication Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Gülstorff, Steen; Jakobsen, Kaj Bjarne

    2015-01-01

    components. The noise figure is as low as 1.5 dB with an associated power gain of 6.2 dB while it consumes less than 1 mW drawn from a 1 V supply. The input third-order intercept point (IIP3) and the 1-dB compression point (P1dB) are −11 and −9 dBm, respectively. The input and output return loss are better...

  10. An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network.

    Science.gov (United States)

    Ullah, Sana; Kwak, Kyung Sup

    2012-06-01

    Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay.

  11. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  12. Simulation and testing of a micro electromagnetic energy harvester for self-powered system

    Directory of Open Access Journals (Sweden)

    Yiming Lei

    2014-01-01

    Full Text Available This paper describes a low cost and efficient electromagnetic vibration energy harvester (EVEH for a self-powered system. The EVEH consists of a resistant (copper spring, a permanent magnet (NdFeB35 and a wire-wound copper coil. The copper spring was fabricated by the laser precision cutting technology. A numerical model was adopted to analyze magnetic field distribution of a rectangle permanent magnet. The finite element (FEM soft ANSYS was used to simulate the mechanical properties of the system. The testing results show that the micro electromagnetic vibration energy harvester can generate the maximal power 205.38 μW at a resonance frequency of 124.2 Hz with an acceleration of 0.5 g (g = 9.8 ms−2 across a load the 265 Ω and a superior normalized power density (NPD of 456.5 μW cm−3 g−2. The magnetic field distribution of the permanent magnet was calculated to optimize geometric parameters of the coil. The proposed EVEH has a high efficiency with the lower cost.

  13. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.

    Science.gov (United States)

    Ma, Nan; Zhang, Kewei; Yang, Ya

    2017-12-01

    Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A study on the sensitivity of self-powered neutron detectors (SPNDs) and a new proposal

    International Nuclear Information System (INIS)

    Lee, Wan No; Cho, Gyu Seong

    1997-01-01

    Self-Powered Neutron Detectors (SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position for the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage

  15. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Science.gov (United States)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  16. An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices

    International Nuclear Information System (INIS)

    Bendib, T.; Djeffal, F.; Meguellati, M.

    2014-01-01

    An analytical investigation has been proposed to study the subthreshold behavior of junctionless gates all around (JLGAA) MOSFET for nanoscale CMOS analog applications. Based on 2-D analytical analysis, a new subthreshold swing model for short-channel JLGAA MOSFETs is developed. The analysis has been used to calculate the subthreshold swing and to compare the performance of the investigated design and conventional GAA MOSFET, where the comparison of device architectures shows that the JLGAA MOSFET exhibits a superior performance with respect to the conventional inversion-mode GAA MOSFET in terms of the fabrication process and electrical behavior in the subthreshold domain. The analytical models have been validated by 2-D numerical simulations. The proposed analytical models are used to formulate the objectives functions. The overall objective function is formulated by means of a weighted sum approach to search the optimal electrical and dimensional device parameters in order to obtain the better scaling capability and the electrical performance of the device for ultra-low power applications. (semiconductor devices)

  17. Ultra Low Concentration Adsorption Equilibria

    National Research Council Canada - National Science Library

    Mahle, John J; Buettner, Leonard C; LeVan, M. D; Schindler, Bryan J

    2006-01-01

    .... Specifically this work focuses on novel experimental and modeling methods to characterize and predict at ultra-low chemical vapor concentrations the protection afforded by adsorption-based vapor filtration systems...

  18. Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio.

    Science.gov (United States)

    Peng, Mingzeng; Liu, Yudong; Yu, Aifang; Zhang, Yang; Liu, Caihong; Liu, Jingyu; Wu, Wei; Zhang, Ke; Shi, Xieqing; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin

    2016-01-26

    Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.

  19. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  20. Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions.

    Science.gov (United States)

    Israr-Qadir, Muhammad; Jamil-Rana, Sadaf; Nur, Omer; Willander, Magnus

    2017-07-19

    Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol.

  1. Response characteristics of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.

    1978-05-01

    As part of the development of a new flux-detector assembly for future CANDU reactors, the sensitivities of a variety of vanadium, cobalt and platinum self-powered detectors have been determined in a simulated CANDU core installed in the ZED-2 test reactor at CRNL. While the vanadium and cobalt detectors had solid emitters, the platinum detectors were of two types, having either solid platinum emitters, or emitters consisting of a platinum sheath over an Inconel core. Almost all of the signal from the cobalt and vanadium detectors is due to neutron events in the emitters. For these detectors we have measured the total sensitivities per unit length. For the platinum detectors, reactor γ-rays and neutrons both contribute appreciably to the output signal, and in addition to the total sensitivity, we have determined the individual neutron and γ-ray sensitivities for these detectors. It was found that the detector sensitivities depend primarily on emitter diameter and that the observed variations can be fitted by means of power laws. (author)

  2. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Directory of Open Access Journals (Sweden)

    Kim Myong-Seop

    2018-01-01

    Full Text Available A calibration technology of the self-powered neutron detectors (SPNDs using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  3. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Science.gov (United States)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  4. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  5. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    Science.gov (United States)

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  6. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    Science.gov (United States)

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  7. Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects.

    Science.gov (United States)

    Peng, Wenbo; Wang, Xingfu; Yu, Ruomeng; Dai, Yejing; Zou, Haiyang; Wang, Aurelia C; He, Yongning; Wang, Zhong Lin

    2017-06-01

    Self-powered photodetectors (PDs) have long been realized by utilizing photovoltaic effect and their performances can be effectively enhanced by introducing the piezo-phototronic effect. Recently, a novel pyro-phototronic effect is invented as an alternative approach for performance enhancement of self-powered PDs. Here, a self-powered organic/inorganic PD is demonstrated and the influences of externally applied strain on the pyro-phototronic and the photovoltaic effects are thoroughly investigated. Under 325 nm 2.30 mW cm -2 UV illumination and at a -0.45% compressive strain, the PD's photocurrent is dramatically enhanced from ≈14.5 to ≈103 nA by combining the pyro-phototronic and piezo-phototronic effects together, showing a significant improvement of over 600%. Theoretical simulations have been carried out via the finite element method to propose the underlying working mechanism. Moreover, the pyro-phototronic effect can be introduced by applying a -0.45% compressive strain to greatly enhance the PD's response to 442 nm illumination, including photocurrent, rise time, and fall time. This work provides in-depth understandings about the pyro-phototronic and the piezo-phototronic effects on the performances of self-powered PD to light sources with different wavelengths and indicates huge potential of these two effects in optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  9. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Science.gov (United States)

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  10. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  11. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Directory of Open Access Journals (Sweden)

    Magnus Falk

    Full Text Available Here for the first time, we detail self-contained (wireless and self-powered biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor, and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  12. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    Science.gov (United States)

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  13. Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers.

    Science.gov (United States)

    Fuh, Yiin Kuen; Huang, Zih Ming; Wang, Bo Sheng; Li, Shan Chien

    2017-12-01

    In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.

  14. Use of self-powered detectors of near containment gamma monitoring

    International Nuclear Information System (INIS)

    Kemp, J.; LaFontaine, M.; Sharma, H.

    2001-01-01

    A study was conducted during the period April to May 1988, to select a self-powered detector (SPD) with an appropriate emitter for measuring the gamma radiation dose rate in near-containment. The selected SPD would be used in the containment monitoring systems for the Ringhals and Forsmark reactors in Sweden. In-containment gamma radiation (81 keV to ∼3 MeV energy range) could result from the release of gaseous fission-product nuclides of bromine, krypton, iodine and xenon. Associated dose rates can range from 10 to 10 6 Gy/h. Tests were performed on platinum and vanadium emitter SPDs 1 using 60 Co, 192 Ir and X-ray gamma/photon sources. A gamma energy dependent polarity change in the signal from the Pt SPD (signal goes from positive to negative as energy drops below 100 keV), coupled with a non-linear response, eliminated that design from further study in this application. The vanadium SPDs produced a linear, negative signal irrespective of the impingent gamma energy level. The gamma sensitivity of the 18 V SPDs tested in the program, ranged from -1.07 x 10 -14 A/Gy/h to -1.87 x 10 -14 A/Gy/h per metre emitter length. (author)

  15. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.

    Science.gov (United States)

    Dagdeviren, Canan; Li, Zhou; Wang, Zhong Lin

    2017-06-21

    Living subjects (i.e., humans and animals) have abundant sources of energy in chemical, thermal, and mechanical forms. The use of these energies presents a viable way to overcome the battery capacity limitation that constrains the long-term operation of wearable/implantable devices. The intersection of novel materials and fabrication techniques offers boundless possibilities for the benefit of human health and well-being via various types of energy harvesters. This review summarizes the existing approaches that have been demonstrated to harvest energy from the bodies of living subjects for self-powered electronics. We present material choices, device layouts, and operation principles of these energy harvesters with a focus on in vivo applications. We discuss a broad range of energy harvesters placed in or on various body parts of human and animal models. We conclude with an outlook of future research in which the integration of various energy harvesters with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics, treatment, and prevention.

  16. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  17. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  18. Neutron and gamma sensitivities of self-powered detectors: Monte Carlo modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, Ludo [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol, (Belgium)

    2015-07-01

    This paper deals with the development of a detailed Monte Carlo approach for the calculation of the absolute neutron sensitivity of SPNDs, which makes use of the MCNP code. We will explain the calculation approach, including the activation and beta emission steps, the gamma-electron interactions, the charge deposition in the various detector parts and the effect of the space charge field in the insulator. The model can also be applied for the calculation of the gamma sensitivity of self-powered detectors and for the radiation-induced currents in signal cables. The model yields detailed information on the various contributions to the sensor currents, with distinct response times. Results for the neutron sensitivity of various types of SPNDs are in excellent agreement with experimental data obtained at the BR2 research reactor. For typical neutron to gamma flux ratios, the calculated gamma induced SPND currents are significantly lower than the neutron induced currents. The gamma sensitivity depends very strongly upon the immediate detector surroundings and on the gamma spectrum. Our calculation method opens the way to a reliable on-line determination of the absolute in-pile thermal neutron flux. (authors)

  19. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  20. Analysis of self-powered gamma ray detector with directional discrimination

    International Nuclear Information System (INIS)

    Levert, F.E.; Beyerlein, R.A.; Cox, S.A.

    1979-01-01

    The results of a combined Monte Carlo simulation and experimental investigation of the directional and energy dependent response of a self-powered gamma detector with a flat plate Pb-C central electrode are presented. The electron yield of the central electrode in a three dimensional mockup of the detector was calculated for photons of several discrete energies, emanating from an infinitely thin planar source, incident on the outer surface of the detector. Separate computations were done with the source facing the lead side and carbon side of the central electrode. Experimental measurements with a detector that closely matched the design used in the simulation were conducted in a graphite column next to a neutron leakage face of a low flux reactor. A localized gamma ray source was created by positioning a 235 U strip between the leakage face of the reactor and the detector. A comparison of results obtained in both cases showed good agreement. Also experimental measurements to determine the effect of the thickness of lead shielding surrounding the outer wall of the detector and space charge in the vacuum insulator between the central electrode and the inner wall on the response of the detector were performed. (Auth.)

  1. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit

    Science.gov (United States)

    Wu, Wenzhuo

    2016-03-01

    Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed. 51 11700-21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology 26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs’ figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

  2. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor

    KAUST Repository

    Xi, Yi

    2017-02-17

    Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self-powered speed sensor of wind by correlating the short-circuit current with the wind speed.

  3. Industrial tests of rhodium self-powered detectors: the Golfech 2 experimentation

    International Nuclear Information System (INIS)

    Mourlevat, J.L.; Janvier, D.; Warren, H.D.

    2000-01-01

    In co-operation with Electricite de France (EDF), FRAMATOME has been testing two in-core strings which are equipped with rhodium self-powered detectors (SPDs) in the Golfech Unit 2 reactor (1300 MW, 4L plant) since August 1997. The rhodium SPDs and the strings which support them were designed and built by the US FRAMATOME subsidiary FRAMATOME-COGEMA-FUEL (FCF). The rhodium signals and some other plant parameters are acquired through the use of a specific device designed by the CEA (Commissariat a l'Energie Atomique) and are processed off-line by FRAMATOME. This demonstration test is planned to last until mid-2000. The following presentation is focused on the results obtained during the first demonstration cycle (from 08/97 to 12/98). The tests that have been conducted consist of checking the rhodium depletion and of comparing the rhodium signals to the movable probes. In order to compensate for the delay in the rhodium signals, a deconvolution algorithm has also been tested. Up to now, the results are very satisfactory and a future large scale industrial application is being discussed with the EDF. The main objective of the next experimentation phase is to test - under industrial conditions - a prototype of an on-line monitoring unit known as the Partial In-Core Monitoring System (PIMS). This system will include 16 rhodium in-core strings and will use an on-line 3-D core model. (authors)

  4. Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current.

    Science.gov (United States)

    Li, Shuaishuai; Wang, Tao; Chen, Xiaoshuang; Lu, Wei; Xie, Yiqun; Hu, Yibin

    2018-04-26

    High polarization sensitivity, suppressed dark current and low energy consumption are all desirable device properties for photodetectors. In this work, we propose phosphorene-based photodetectors that are driven using photogalvanic effects (PGEs). The inversion symmetry of pristine phosphorene is broken using either application of an out-of-plane gate voltage or a heterostructure that is composed of the original phosphorene and blue phosphorene. The potential asymmetry enables PGEs under illumination by polarized light. Quantum transport calculations show that robust photocurrents are indeed generated by PGEs under a zero external bias voltage because of the broken inversion symmetry. These results indicate that the proposed photodetector is self-powered. In addition, the zero bias voltage eliminates the dark currents that are caused by application of an external bias voltage to traditional photodetectors. High polarization sensitivity to both linearly and circularly polarized light can also be realized, with extinction ratios ranging up to 102. The photoresponse of the proposed phosphorene/blue phosphorene heterostructure can be greatly enhanced by gating and is several orders of magnitude higher than that in gated phosphorene.

  5. Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric-enzymatic reaction coupling process

    Science.gov (United States)

    Zhao, Tianming; Fu, Yongming; He, Haoxuan; Dong, Chuanyi; Zhang, Linlin; Zeng, Hui; Xing, Lili; Xue, Xinyu

    2018-02-01

    A new self-powered wearable gustation electronic skin for mimicking taste buds has been realized based on enzyme-modified/ZnO nanowire arrays on patterned-electrode flexible substrate. The e-skin can actively taste beverages or fruits without any external electric power. Through the piezoelectric-enzymatic reaction coupling effect, the nanowires can harvest the mechanical energy of body movement and output piezoelectric signal. The piezoelectric output is significantly dependent on the concentration of target analyte. The response for detecting 2 × 10-2 M ascorbic acid (ascorbate acid oxidase@ZnO) is up to 171.747, and the selectivity is high. The response for detecting 50% alcohol (alcohol oxidase@ZnO) is up to 45.867. Our results provide a new research direction for the development of multifunctional e-skin and expand the study scope for self-powered bionic systems.

  6. Exploration of Sub-VT and Near-VT 2T Gain-Cell Memories for Ultra-Low Power Applications under Technology Scaling

    Directory of Open Access Journals (Sweden)

    Alexander Fish

    2013-04-01

    Full Text Available Ultra-low power applications often require several kb of embedded memory and are typically operated at the lowest possible operating voltage (VDD to minimize both dynamic and static power consumption. Embedded memories can easily dominate the overall silicon area of these systems, and their leakage currents often dominate the total power consumption. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. This paper presents a gain-cell array which, for the first time, targets aggressively scaled supply voltages, down into the subthreshold (sub-VT domain. Minimum VDD design of gain-cell arrays is evaluated in light of technology scaling, considering both a mature 0.18 μm CMOS node, as well as a scaled 40 nm node. We first analyze the trade-offs that characterize the bitcell design in both nodes, arriving at a best-practice design methodology for both mature and scaled technologies. Following this analysis, we propose full gain-cell arrays for each of the nodes, operated at a minimum VDD. We find that an 0.18 μm gain-cell array can be robustly operated at a sub-VT supply voltage of 400mV, providing read/write availability over 99% of the time, despite refresh cycles. This is demonstrated on a 2 kb array, operated at 1 MHz, exhibiting full functionality under parametric variations. As opposed to sub-VT operation at the mature node, we find that the scaled 40 nm node requires a near-threshold 600mV supply to achieve at least 97% read/write availability due to higher leakage currents that limit the bitcell’s retention time. Monte Carlo simulations show that a 600mV 2 kb 40 nm gain-cell array is fully functional at frequencies higher than 50 MHz.

  7. (Na, K)NbO3-Based Ceramics for Self-Powered Energy Harvesting Applications.

    Science.gov (United States)

    Kim, Jinhwan; Koh, Jung-Hyuk

    2015-03-01

    Self-powered energy harvesting technologies have been intensively investigated by employ- ing Pb-free piezoelectric materials. One such Pb-free piezoelectric material, the ceramic 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3, was prepared by employing the conventional mixed oxide method. 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were prepared and the effect of sintering temperature on the microstructure, piezoelectric and ferroelectric properties were system- atically investigated for energy harvesting applications. The crystal structure of 0.97(Na0.5K0.5)NbO3- 0.03(Bi0.5Na0.5) TiO3 Pb-free piezoelectric ceramics, sintered at temperatures between 1080 °C and 1160 °C, was examined by X-ray diffraction analysis. The dielectric properties of 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were measured from 1 kHz to 1 MHz for the various sintering temperatures. We expect that optimization of sintering parameters can improve the piezoelectric and ferroelectric properties of 0.97 (Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics for energy harvesting.

  8. A study on the sensitivity of self-powered neutron detectors (SPNDs)

    Science.gov (United States)

    Lee, Wanno; Cho, Gyuseong; Kim, Kwanghyun; Kim, Hee Joon; choi, Yuseon; Park, Moon Chu; Kim, Soongpyung

    2001-08-01

    Self-powered neutron detectors (SPNDs) are widely used in reactors to monitor neutron flux, while they have several advantages such as small size, and relatively simple electronics required in conjunction with those usages, they have some intrinsic problems of the low level of output current-a slow response time and the rapid change of sensitivity-that make it difficult to use for a long term. Monte Carlo simulation was used to calculate the escape probability as a function of the birth position of emitted beta particle for geometry of rhodium-based SPNDs. A simple numerical method calculated the initial generation rate of beta particles and the change of generation rate due to rhodium burnup. Using results of the simulation and the simple numerical method, the burnup profile of rhodium number density and the neutron sensitivity were calculated as a function of burnup time in reactors. This method was verified by the comparison of this and other papers, and data of YGN3.4 (Young Gwang Nuclear plant 3, 4) about the initial sensitivity. In addition, for improvement of some properties of rhodium-based SPNDs, which are currently used, a modified geometry is proposed. The proposed geometry, which is tube-type, is able to increase the initial sensitivity due to increase of the escape probability. The escape probability was calculated by changing the thickness of the insulator and compared solid-type with tube-type about each insulator thickness. The method used here can be applied to the analysis and design of other types of SPNDs.

  9. A study on the sensitivity of self-powered neutron detectors(SPNDs)

    International Nuclear Information System (INIS)

    Lee, Wan No

    1997-02-01

    Self-Powered Neutron Detectors(SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with those usage, they have some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability as a function of the birth position of emitted beta particle for a geometry of rhodium-based SPNDs. A simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity are calculated as a function of burn-up time in reactors. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material and modified geometry. From searching nuclear data, Ag 109 is chosen as a replacing material for rhodium. Silver has a low neutron absorption cross-section and a high beta energy and a low density when it is compared with rhodium. The sensitivity and the density change of silver as a function of burn-up are calculated using this method. Also, this paper compares the initial sensitivity of a solid type with its of a tube type. The initial sensitivity is increased with the new material and the tube type. Silver is also found to be used for longer time than rhodium. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage

  10. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  11. A machine-learning approach for damage detection in aircraft structures using self-powered sensor data

    Science.gov (United States)

    Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto

    2017-04-01

    This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.

  12. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  13. Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions

    International Nuclear Information System (INIS)

    Bedoya, Iván D.; Saxena, Samveg; Cadavid, Francisco J.; Dibble, Robert W.; Wissink, Martin

    2012-01-01

    efficiency was close to 45%, and NO x emissions were below the US-2010 limit of 0.27 g/kW h. These results show that a biogas fueled HCCI engine is a promising option in stationary power generation applications, meeting high efficiency and ultra-low NO x emissions.

  14. Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Mandal, Dipankar

    2017-03-01

    A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.

  15. Performance testing of self-powered detector signal converters at Dukovany nuclear power plant - stage 1

    International Nuclear Information System (INIS)

    Erben, O.; Hajek, P.; Zerola, L.; Karsulin, M.

    1990-11-01

    The converters were manufactured at the Institute of Nuclear Research, Rez. Dynamic functions of the converters were tested during the start-up of reactor unit 4, Dukovany nuclear power plant, and their stability during its normal operation. The results and evaluation of the measurements show a good performance of converters. They have a low offset, good stability and the values of current are in a good agreement with the values obtained using other methods. The values of insulation resistance are in a good agreement with the values obtained manually using the method of additional resistance. These converters are planned to be used in the upgraded in-service inspection system in WWER-440 nuclear power plants. (Z.S.) 9 tabs., 22 figs., 1 ref

  16. Report on achievement in developing an ultra low loss power element technology. Survey on practical application of the next generation power semiconductor devices; 1998 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Trends were surveyed for development of an ultra low loss power element. Performance improvement has been progressed on power semiconductor elements by using Si as the raw material, but loss reduction has come close to the physical limit. SiC is expected of possibility to go beyond this limit. SiC is so very excellent that its band gap is two to three times greater, insulation breakdown electric field is 7.5 times higher, temperature to become a true semiconductor is three to four times higher than those of Si. The wide gap can reduce high temperature leaking current in p-n junctions, and the increased authenticity temperature can increase the upper limit for operation temperature. The insulation breakdown strength being higher by one digit can reduce the drift layer thickness, and is expected to dramatically reduce the loss. The problem is that high quality crystals have not been obtained to date. One of the promising application fields is electric vehicle. The device currently using the power element in the largest scale is used in frequency converting stations to link the 50-Hz power network in the eastern part of Japan to the 60-Hz network in the western part of Japan. Surveys were carried out on the Sakuma frequency converting station and the New Shinano substation. (NEDO)

  17. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms

    International Nuclear Information System (INIS)

    Erturk, Alper; Delporte, Ghislain

    2011-01-01

    Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy

  18. A Self-Powered Thin-Film Radiation Detector Using Intrinsic High-Energy Current (HEC) (Author’s Final Version)

    Science.gov (United States)

    2016-09-08

    of electromagnetic 85 pulse effects on cables and electrical devices4 and as a self - powered detector for in-core neutron flux measurement in nuclear...AFCEC-CX-TY-TP-2016-0003 A SELF - POWERED THIN-FILM RADIATION DETECTOR USING INTRINSIC HIGH-ENERGY CURRENT (HEC) (AUTHOR’S FINAL VERSION...14 -- 5 Oct 15 A self - powered thin-film radiation detector using intrinsic high-energy current (HEC) (Author’s Final Version) FA8051-15-P-0010

  19. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.

    Science.gov (United States)

    Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin

    2017-10-01

    The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m -2 under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation.

    Science.gov (United States)

    Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin

    2015-08-25

    Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.

  1. Implementation of a robust hybrid rotary-translational vibration energy harvester for autonomous self-powered acceleration measurement

    Science.gov (United States)

    Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.

    2015-04-01

    In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.

  2. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Directory of Open Access Journals (Sweden)

    Yiin-Kuen Fuh

    2017-07-01

    Full Text Available In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS. A new integration of print circuit board (PCB technology-based piezoelectric generator (PG concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  3. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Science.gov (United States)

    Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu

    2017-07-01

    In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  4. ZnO Piezoelectric Nanowires for Use in a Self-Powered Structural Health Monitoring Device for Fiber-Reinforced Composites Uploading Attachment Instructions

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed research is to develop a new self-powered structural health monitoring (SHM) system for fiber-reinforced polymer (FRP) composites by using...

  5. Implantable self-powered detector for on-line determination of neutron flux in patients during NCT treatment.

    Science.gov (United States)

    Miller, M E; Mariani, L E; Gonçalves-Carralves, M L Sztejnberg; Skumanic, M; Thorp, S I

    2004-11-01

    A novel system to determine thermal neutron flux in real time during NCT treatments was developed in the National Atomic Energy Commission of Argentina. The system is based on a special self-powered detector that can be implanted in patients owing to its small size and biocompatibility. High voltage is not required to operate this kind of detectors, which is a considerable advantage in terms of medical uses. By choosing the appropriate materials, it was possible to obtain a prototype with thermal neutron sensitivity providing for an adequate signal level in typical NCT thermal fluxes. It was also possible to minimize gamma response in order to neglect its contribution.

  6. Implantable self-powered detector for on-line determination of neutron flux in patients during NCT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.E. E-mail: miller@cae.cnea.gov.ar; Mariani, L.E.; Sztejnberg Goncalves-Carralves, M.L.; Skumanic, M.; Thorp, S.I

    2004-11-01

    A novel system to determine thermal neutron flux in real time during NCT treatments was developed in the National Atomic Energy Commission of Argentina. The system is based on a special self-powered detector that can be implanted in patients owing to its small size and biocompatibility. High voltage is not required to operate this kind of detectors, which is a considerable advantage in terms of medical uses. By choosing the appropriate materials, it was possible to obtain a prototype with thermal neutron sensitivity providing for an adequate signal level in typical NCT thermal fluxes. It was also possible to minimize gamma response in order to neglect its contribution.

  7. Investigation of self-powered gamma flux detectors with Lead(II) oxide serving as both emitter and insulator

    International Nuclear Information System (INIS)

    Shi, H.; Yue, S.; Jonkmans, G.; Sur, B.; Hilborn, J.

    2010-01-01

    The use of Lead(II) oxide as the electron-emitting component and the insulating component of self-powered flux detectors is a concept that had not been previously explored. Detectors constructed from various combinations of electrodes (stainless steel, Al, Pb, and W) and insulating materials (Al 2 O 3 and PbO) were irradiated in a 427 Gy/h gamma field. Although high gamma sensitivities were achieved, PbO did not prove to be a strong emitter of gamma-induced electrons. Nevertheless, PbO did serve as a better insulator than one that is currently in use, namely alumina. (author)

  8. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

    Science.gov (United States)

    2013-01-01

    ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153

  9. Self-Powered UV-Near Infrared Photodetector Based on Reduced Graphene Oxide/n-Si Vertical Heterojunction.

    Science.gov (United States)

    Li, Guanghui; Liu, Lin; Wu, Guan; Chen, Wei; Qin, Sujie; Wang, Yi; Zhang, Ting

    2016-09-01

    A novel self-powered photodetector based on reduced graphene oxide (rGO)/n-Si p-n vertical heterojunction with high sensitivity and fast response time is presented. The photodetector contains a p-n vertical heterojunction between a drop-casted rGO thin film and n-Si. Contacts between the semiconductor layer (rGO, n-Si) and source-drain Ti/Au electrodes allow efficient transfer of photogenerated charge carriers. The self-powered UV-near infrared photodetector shows high sensitivity toward a spectrum of light from 365 to 1200 nm. Under the 600 nm illumination (0.81 mW cm -2 ), the device has a photoresponsivity of 1.52 A W -1 , with fast response and recover time (2 ms and 3.7 ms), and the ON/OFF ratios exceed 10 4 when the power density reaches ≈2.5 mW cm -2 . The high photoresponse primarily arises from the built-in electric field formed at the interface of n-Si and rGO film. The effect of rGO thickness, rGO reduction level, and layout of rGO/n-Si effective contact area on device performance are also systematically investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  11. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    Science.gov (United States)

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    Science.gov (United States)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  13. A self-powered biosensing device with an integrated hybrid biofuel cell for intermittent monitoring of analytes.

    Science.gov (United States)

    Majdecka, Dominika; Draminska, Sylwia; Janusek, Dariusz; Krysinski, Paweł; Bilewicz, Renata

    2018-04-15

    In this work, we propose an integrated self-powered sensing system, driven by a hybrid biofuel cell (HBFC) with carbon paper discs coated with multiwalled carbon nanotubes. The sensing system has a biocathode made from laccase or bilirubin oxidase, and the anode is made from a zinc plate. The system includes a dedicated custom-built electronic control unit for the detection of oxygen and catechol analytes, which are central to medical and environmental applications. Both the HBFC and sensors, operate in a mediatorless direct electron transfer mode. The measured characteristics of the HBFC with externally applied resistance included the power-time dependencies under flow cell conditions, the sensors performance (evaluated by cyclic voltammetry), and chronoamperometry. The HBFC is integrated with analytical devices and operating in a pulse mode form long-run monitoring experiments. The HBFC generated sufficient power for wireless data transmission to a local computer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Direct detection of cysteine using functionalized BaTiO3 nanoparticles film based self-powered biosensor.

    Science.gov (United States)

    Selvarajan, Sophia; Alluri, Nagamalleswara Rao; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2017-05-15

    Simple, novel, and direct detection of clinically important biomolecules have continuous demand among scientific community as well as in market. Here, we report the first direct detection and facile fabrication of a cysteine-responsive, film-based, self-powered device. NH 2 functionalized BaTiO 3 nanoparticles (BT-NH 2 NPs) suspended in a three-dimensional matrix of an agarose (Ag) film, were used for cysteine detection. BaTiO 3 nanoparticles (BT NPs) semiconducting as well as piezoelectric properties were harnessed in this study. The changes in surface charge properties of the film with respect to cysteine concentrations were determined using a current-voltage (I-V) technique. The current response increased with cysteine concentration (linear concentration range=10µM-1mM). Based on the properties of the composite (BT/Ag), we created a self-powered cysteine sensor in which the output voltage from a piezoelectric nanogenerator was used to drive the sensor. The potential drop across the sensor was measured as a function of cysteine concentrations. Real-time analysis of sensor performance was carried out on urine samples by non-invasive method. This novel sensor demonstrated good selectivity, linear concentration range and detection limit of 10µM; acceptable for routine analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    Science.gov (United States)

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Self-Powered Detector Simulation `MATiSSe' Toolbox applied to SPNDs for severe accident monitoring in PWRs

    Science.gov (United States)

    Barbot, Loïc; Villard, Jean-François; Fourrez, Stéphane; Pichon, Laurent; Makil, Hamid

    2018-01-01

    In the framework of the French National Research Agency program on nuclear safety and radioprotection, the `DIstributed Sensing for COrium Monitoring and Safety' project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named `MATiSSe'. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor.

  17. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    Science.gov (United States)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  18. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    Energy Technology Data Exchange (ETDEWEB)

    Han Jingbin; Fan Fengru; Xu Chen; Lin Shisheng; Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Wei Min; Duan Xue, E-mail: zhong.wang@mse.gatech.edu, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-10-08

    High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 {mu}m-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices.

  19. Application of the self-powered detector concept in the design of a threshold gamma-ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1979-01-01

    The self-powered detector concept has been utilized to develop an energy threshold gamma-ray detector. Gamma-ray energy discrimination is achieved by using a thick annular lead shield around the outer wall (emitter) of the detector in conjunction with a self-shielding central electrode (collector). Measurements conducted in the graphite pit of the Argonne Thermal Source Reactor have confirmed its ability to detect high-energy prompt fission gamma rays while discriminating against a significant flux of low-energy gamma rays from the decay of fission products. Also, auto-power spectral densities obtained with the detector were used to estimate the kinetic parameter, β/l, of the reactor

  20. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    KAUST Repository

    Han, Jingbin

    2010-09-10

    Abstract High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 μm-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices. © 2010 IOP Publishing Ltd.

  1. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    Science.gov (United States)

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  2. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  3. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    Science.gov (United States)

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  4. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    Directory of Open Access Journals (Sweden)

    Md Rezaul Hasan

    2015-10-01

    Full Text Available A self-powered ultraviolet (UV photodetector (PD based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO coated plastic polyethylene terephthalate (PET substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either frontside or backside. Morphology, structural, chemical, and optical properties of sputtered NiO and ZnO films were also investigated.

  5. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Md Rezaul [Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, Fairfax, Virginia 22030 (United States); Xie, Ting; Liu, Guannan [Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Barron, Sara C. [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Nguyen, Nhan V. [Semiconductor and Dimensional Metrology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Motayed, Abhishek [Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Rao, Mulpuri V. [Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, Fairfax, Virginia 22030 (United States); Debnath, Ratan, E-mail: ratan.debnath@nist.gov [Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2015-10-01

    A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either frontside or backside. Morphology, structural, chemical, and optical properties of sputtered NiO and ZnO films were also investigated.

  6. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Science.gov (United States)

    Li, Xiaoyun; Liu, Wei; Li, Peigang; Song, Jia; An, Yuehua; Shen, Jingqin; Wang, Shunli; Guo, Daoyou

    2018-03-01

    PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene) (PFH) on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO) transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  7. Adaptable piezoelectric hemispherical composite strips using a scalable groove technique for a self-powered muscle monitoring system.

    Science.gov (United States)

    Alluri, Nagamalleswara Rao; Vivekananthan, Venkateswaran; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2018-01-18

    Contrary to traditional planar flexible piezoelectric nanogenerators (PNGs), highly adaptable hemispherical shape-flexible piezoelectric composite strip (HS-FPCS) based PNGs are required to harness/measure non-linear surface motions. Therefore, a feasible, cost-effective and less-time consuming groove technique was developed to fabricate adaptable HS-FPCSs with multiple lengths. A single HS-CSPNG generates 130 V/0.8 μA and can also work as a self-powered muscle monitoring system (SP-MMS) to measure maximum human body part movements, i.e., spinal cord, throat, jaw, elbow, knee, foot stress, palm hand/finger force and inhale/exhale breath conditions at a time or at variable time intervals.

  8. Self-powered 'AND' logic circuit of dynamic type with positive safety and application of said 'AND' circuit

    International Nuclear Information System (INIS)

    Lefebvre, Claude; Therond, J.P.

    1974-01-01

    The present invention relates to a self-powered 'AND' logic circuit of dynamic type with positive safety, which delivers on duty operation an output signal equal to the logic product of the input logic signals. The invention relates also to the use of said 'AND' logic circuits in developing n/m logics also of dynamic types with positive safety, delivering on duty operation a zero valued signal when, at least n of the m input signals have the value zero. This type of logics can be inserted in nuclear reactor protection systems; when the value of the reactor operating physical characteristics go out of the safety margins, or true trouble affects 'AND' circuits the value of the output signal is zero, that triggers off the safety absorber drap, for instance [fr

  9. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  10. High sensitivity, fast speed and self-powered ultraviolet photodetectors based on ZnO micro/nanowire networks

    Directory of Open Access Journals (Sweden)

    Zhiming Bai

    2014-02-01

    Full Text Available Ultraviolet (UV photodetectors (PDs based on ZnO micro/nanowire (MNW networks with Pt contacts have been fabricated on glass substrates. The PDs exhibited a high photosensitivity (5×103 for 365 nm UV light with a fast recovery time (0.2 s at a reverse bias voltage of 2 V. The light induced modulation of Schottky barrier and MNW–MNW junction barrier was employed to account for the results. It was also observed that the PD had a high on–off ratio of 800 without external bias. The photovoltaic effect was proposed to explain the self-powered phenomenon.

  11. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Directory of Open Access Journals (Sweden)

    Xiaoyun Li

    2018-03-01

    Full Text Available PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene (PFH on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  12. Self-Powered Neutron Detector Qualification for Absolute On-Line In-Pile Neutron Flux Measurements in BR2

    Science.gov (United States)

    Vermeeren, L.; Wéber, M.

    2003-06-01

    A set of ten Self-Powered Neutron Detectors with Co, Rh and Ag emitters has been irradiated in several channels of the BR2 research reactor at SCK•CEN aiming at a comparison of their performance as thermal neutron flux detectors under various conditions. To allow for a correct interpretation of their signals, all detector sensitivity contributions (prompt and delayed) were calculated using a dedicated Monte Carlo model. The various contributions were also measured separately; the agreement between calculated and experimental data, including data from activation dosimetry, was excellent. Detailed neutron flux profiles were obtained from the SPND data, after correction for the finite detector lengths and for the slow response of delayed SPNDs.

  13. Long-term performance of the CANDU-type of vanadium self-powered neutron detectors in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: leungt@aecl.ca

    2007-07-01

    The CANDU-type of in-core vanadium self-powered neutron flux detectors have been installed in NRU to monitor the axial neutron flux distributions adjacent to the loop fuel test sites since 1996. This paper describes how the thermal neutron fluxes were measured at two monitoring sites, and presents a method of correcting the vanadium burn-up effect, which can be up to 2 to 3% per year, depending on the detector locations in the reactor. It also presents the results of measurements from neutron flux detectors that have operated for over eight-years in NRU. There is good agreement between the measured and simulated neutron fluxes, to within {+-} 6.5%, and the long-term performance of the CANDU-type of vanadium neutron flux detectors in NRU is satisfactory. (author)

  14. H{infinity} Filtering for Dynamic Compensation of Self-Powered Neutron Detectors - A Linear Matrix Inequality Based Method -

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.G.; Kim, Y.H.; Cha, K.H.; Kim, M.K. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    A method is described to develop and H{infinity} filtering method for the dynamic compensation of self-powered neutron detectors normally used for fixed incore instruments. An H{infinity} norm of the filter transfer matrix is used as the optimization criteria in the worst-case estimation error sense. Filter modeling is performed for both continuous- and discrete-time models. The filter gains are optimized in the sense of noise attenuation level of H{infinity} setting. By introducing Bounded Real Lemma, the conventional algebraic Riccati inequalities are converted into Linear Matrix Inequalities (LMIs). Finally, the filter design problem is solved via the convex optimization framework using LMIs. The simulation results show that remarkable improvements are achieved in view of the filter response time and the filter design efficiency. (author). 15 refs., 4 figs., 3 tabs.

  15. Studies on Flat Sandwich-type Self-Powered Detectors for Flux Measurements in ITER Test Blanket Modules

    Science.gov (United States)

    Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald

    2018-01-01

    Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.

  16. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  17. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    International Nuclear Information System (INIS)

    Angelone, M.; Klix, A.; Pillon, M.; Batistoni, P.; Fischer, U.; Santagata, A.

    2014-01-01

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra

  18. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  19. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  20. Responses of platinum, vanadium and cobalt self-powered flux detectors near simulated booster rods in a ZED-2 mockup of a Bruce reactor core

    International Nuclear Information System (INIS)

    French, P.M.; Shields, R.B.; Kroon, J.C.

    1978-02-01

    The static responses of Pt, V and Co self-powered detectors have been compared with copper-foil neutron activation profiles in reference and perturbed Bruce reactor core mockups assembled in the ZED-2 test reactor at Chalk River Nuclear Laboratories. The results indicate that the normalized response of each self-powered detector is an accurate measure of the thermal-neutron flux at locations greater than one lattice pitch from either a booster rod or the core boundary. They indicate that, in the Bruce booster/detector configuration, the normalized static Pt response overestimates the neutron flux by less than 3.5% upon full booster-rod insertion. (author)

  1. Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS

    KAUST Repository

    Wang, Zhong Lin

    2011-01-01

    Two new fields are introduced to MEMS/NEMS: a nanogenerator that harvests mechanical energy for powering nanosystems, and strained induced piezotronics for smart MEMS. Fundamentally, due to the polarization of ions in a crystal that has non

  2. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors

    KAUST Repository

    Yang, Pokang; Lin, Zonghong; Pradel, Ken C.; Lin, Long; Li, Xiuhan; Wen, Xiaonan; He, Jr-Hau; Wang, Zhong Lin

    2015-01-01

    Discovering renewable and sustainable power sources is indispensable for the development of green electronics and sensor networks. In this paper, we present origami triboelectric nanogenerators (TENGs) using paper as the starting material, with a

  3. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  4. Observations of Earth space by self-powered stations in Antarctica.

    Science.gov (United States)

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  5. Study on the sensitivity of Self-Powered Neutron Detectors (SPND) and its change due to burn-up

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Lee, Wanno; Yoon, Jeong-Hyoun.

    1996-01-01

    Self-Powered Neutron Detectors (SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with its usage, it has some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation was accomplished to calculate the escape probability as a function of the birth position for the typical geometry of rhodium-based SPNDs. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity is calculated as a function of burn-up time in the reactor. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long-term usage. (author)

  6. Radiological safety aspects associated with the handling, storage and disposal of self power neutron detectors in TAPS - 3 and 4

    International Nuclear Information System (INIS)

    Parida, B.K.; Mudgal, B.; Ghadigoankar, V.R.; Niraj; Ashok; Pati, C.K.; Patil, P.M.; Pawar, S.K.; Varadhan, R.S.

    2006-01-01

    At Tarapur Atomic Power Station 3 and 4, 540 MWe Pressurised Heavy Water Reactors, core being large in size requires a continuous in core monitoring for local flux disturbances. Nearly 200 Self Powered Neutron Detectors (SPNDs) of the Straight Individually Replaceable (SIR) type are distributed in the reactor core. For purpose of reactor regulation and protection, cobalt SPNDs that have a prompt response for changes in power is used for in-core flux mapping, vanadium SPNDs that provide accurate measure of neutron flux, even though having slow response is used In core SPNDs are placed in Vertical Flux Units (VFU) and Horizontal Flux Units (HFUs). These SPNDs were to be replaced at regular intervals to meet the design intent. Cobalt SPNDs have dose rates of the order of 1000 Gy/h and the Mineral Insulated (MI) cables of Vanadium SPNDs have dose rates of the order of 100 Gy/h. So far 3 Cobalt SPNDs were removed from HFUs and are being stored in lead shielding inside spent fuel storage facility. These high active components were handled with meticulous planning with lowest exposures to the maintainers. Radiological safety aspects of handling and storage of SPNDs are discussed in this report. (author)

  7. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    Science.gov (United States)

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  8. Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS

    KAUST Repository

    Wang, Zhong Lin

    2011-01-01

    Two new fields are introduced to MEMS/NEMS: a nanogenerator that harvests mechanical energy for powering nanosystems, and strained induced piezotronics for smart MEMS. Fundamentally, due to the polarization of ions in a crystal that has non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. The principle of harvesting irregular mechanical energy by the nanogenerator relies on the piezopotenital driven transient flow of electrons in external load, which can be resulted from body motion, muscle stretching, breathing, tiny mechanical vibration/disturbance, sonic wave etc. As of today, a gentle straining can output 1-3 V at an instant output power of ∼2 μW from an integrated nanogenerator of a very thin sheet of 1 cm2 in size. This technology has the potential applications for power MEMS/NEMS that requires a power in the μW to mW range. Furthermore, we have replaced the externally applied gate voltage to a CMOS field effect transistor by the strain induced piezopotential as a "gate" voltage to tune/control the charge transport from source to drain. The devices fabricated by this principle are called piezotronics, with applications in strain/force/pressure triggered/controlled electronic devices, sensors and logic units.

  9. Self-powered autonomous wireless sensor node using vibration energy harvesting

    International Nuclear Information System (INIS)

    Torah, R; Glynne-Jones, P; Tudor, M; Beeby, S; O'Donnell, T; Roy, S

    2008-01-01

    This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s −2 rms acceleration and can be as low as 0.2 m s −2 rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm 3 producing an average power of 58 µW at 0.6 m s −2 rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s −2 rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application

  10. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-02-01

    Full Text Available Wireless sensor networks (WSNs play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT, many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  11. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  12. Evaluation of in-core measurements with self-powered detectors

    International Nuclear Information System (INIS)

    Spoden, E.

    1977-01-01

    A calculational method is presented for transformation of n-β currents into relative thermal neutron fluxes taking into account an epithermal correction. The difference between epithermal corrections with cross section ratios is demonstrated based on calculations with NR approximation and multiplied by the ratio of mean epithermal and thermal first collision probabilities as well as on calculations using the model of infinite dilution. The effects of this difference on axial power density distribution, relative power of the fuel assemblies, and the inhomogeneity coefficients are discussed in the light of a characteristic measurement with rhodium emitter in a WWER-type reactor. The effect of errors in the nuclear data on the mean error of relative thermal neutron flux is evaluated. (author)

  13. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-04

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  14. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  15. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  16. Use of in-core self-powered detectors in the nuclear reactor control system

    International Nuclear Information System (INIS)

    Mitel'man, M.G.; Andreev, L.G.; Batenin, I.V.

    1975-01-01

    The paper describes the results of experiments conducted at the Obninsk atomic power station on the establishment of an integrated system for the control and automatic regulation of the distribution of energy liberation. The pick-ups used for this system are direct-charge detectors with rhodium emitters. The system, which consists of 12 integral DPZ-7 detectors distributed evenly on 2 mutually perpendicular diamaters and 2 assemblies, each containing 4 1n direct-charge detectors, monitors the distribution of neutron flow density according to core height. Increased signals from the detectors were fed into the summation block, in which the outgoing signal was also adjusted. The half-life of the rhodium was calculated and the non-inertia of the entire system ascertained. The total operating time of the system for the automatic control of reactor power is approximately 1 h. The influence of interference was not determined. During the experiment, the power of the reactor remained constant, i.e. its regulation by the direct-charge detectors inside the core was effective. (author)

  17. A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems.

    Science.gov (United States)

    Roy, Abhishek; Klinefelter, Alicia; Yahya, Farah B; Chen, Xing; Gonzalez-Guerrero, Luisa Patricia; Lukas, Christopher J; Kamakshi, Divya Akella; Boley, James; Craig, Kyle; Faisal, Muhammad; Oh, Seunghyun; Roberts, Nathan E; Shakhsheer, Yousef; Shrivastava, Aatmesh; Vasudevan, Dilip P; Wentzloff, David D; Calhoun, Benton H

    2015-12-01

    This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.

  18. Self-powered highly enhanced broad wavelength (UV to visible) photoresponse of ZnO@ZnO1-xSx@ZnS core-shell heterostructures.

    Science.gov (United States)

    Sarkar, Sanjit; Das Mahapatra, Ayon; Basak, Durga

    2018-08-01

    In the present scenario of energy crisis, it is inevitable to focus on the low powered or self-powered devices. Multi-spectral photoresponse is an additional advantage to the above feature. We have developed an efficient self-powered photodetector with broad wavelength detection range based on heterostructures of two wide band-gap materials ZnO and ZnS. More than two orders higher responsivity and 'ON/OFF' ratio has been observed in case of heterostructure sample as compared to pristine ZnO. On the basis of the controlled experimental results, it has been established that the interfacial surface engineering, can be useful to improve the visible response and a significant photovoltaic performance under visible light illumination can be achieved. Unlike the other recent reports on self-powered UV-visible photodetector, we have achieved two order higher visible response without compromising the UV photoresponse. Unprecedented broad wavelength photodetection in self-powered mode in the present study highlights the uniqueness and advantage of an interface in a core-shell heterostructure for photodetection applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring.

    Science.gov (United States)

    Ma, Ye; Zheng, Qiang; Liu, Yang; Shi, Bojin; Xue, Xiang; Ji, Weiping; Liu, Zhuo; Jin, Yiming; Zou, Yang; An, Zhao; Zhang, Wei; Wang, Xinxin; Jiang, Wen; Xu, Zhiyun; Wang, Zhong Lin; Li, Zhou; Zhang, Hao

    2016-10-12

    Operation time of implantable electronic devices is largely constrained by the lifetime of batteries, which have to be replaced periodically by surgical procedures once exhausted, causing physical and mental suffering to patients and increasing healthcare costs. Besides the efficient scavenging of the mechanical energy of internal organs, this study proposes a self-powered, flexible, and one-stop implantable triboelectric active sensor (iTEAS) that can provide continuous monitoring of multiple physiological and pathological signs. As demonstrated in human-scale animals, the device can monitor heart rates, reaching an accuracy of ∼99%. Cardiac arrhythmias such as atrial fibrillation and ventricular premature contraction can be detected in real-time. Furthermore, a novel method of monitoring respiratory rates and phases is established by analyzing variations of the output peaks of the iTEAS. Blood pressure can be independently estimated and the velocity of blood flow calculated with the aid of a separate arterial pressure catheter. With the core-shell packaging strategy, monitoring functionality remains excellent during 72 h after closure of the chest. The in vivo biocompatibility of the device is examined after 2 weeks of implantation, proving suitability for practical use. As a multifunctional biomedical monitor that is exempt from needing an external power supply, the proposed iTEAS holds great potential in the future of the healthcare industry.

  1. Dynamic compensation of the Silver self-powered neutron detector in the ramp program at the OSIRIS reactor

    International Nuclear Information System (INIS)

    Moulin, D.J.

    1994-01-01

    The Silver self-powered neutron detector (SPND) is a common detector used in the ramp program at the OSIRIS reactor. The Silver SPND signal is a reference during steady states, but its response is too slow for monitoring transient tests. In order to compensate for the inherent time delay a mathematical processing method of the Silver SPND signal was developed. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation algorithm can be used for transient conditions as well as steady state conditions. A computer program reconstructs, in real-time, the dynamic neutron flux sensed by the Silver detector from the current measured between the emitter and the collector of the SPND. Although this method decreases slightly the signal-to-noise ratio, it maintains the SPND's characteristics and reduces the response time from about 10 minutes to less than 4 seconds for a step change in flux. This provides for prompt and accurate measurement of fuel rod power during ramp experiments in the OSIRIS reactor. This development makes the Silver SPND very suitable for many on-line monitoring applications

  2. Self powered sensing by combining novel sensor architectures with energy harvesting

    Science.gov (United States)

    Bedekar, Vishwas Narayan

    The sensing techniques investigated in this thesis utilize piezoelectric materials, piezoresistive materials, and magnetoelectric composites. Prior studies on structural health monitoring have demonstrated the use and promise of piezoelectric sensors. In this research, impedance spectroscopy based sensing technique was investigated with respect to two parameters (i) effect of the piezoelectric vibration mode on damage index metric, and (ii) selection of frequency band through manipulation of the electrode size and shape. These results were then used to determine sensor geometry and dimensions for detecting surface defects, fatigue and corrosion. Based upon these results, power requirement for structural health monitoring sensors was determined. Next, piezoelectric materials were coupled with magnetostrictive material for novel magnetic field gradient sensing. The ceramic -- ceramic (CC) gradiometer resembles in functionality a magnetoelectric transformer. It measures the magnetic field gradient and sensitivity with respect to a reference value. The CC gradiometer designed in this study was based upon the magnetoelectric (ME) composites and utilizes the ring-dot piezoelectric transformer structure working near resonance as the basis. This study investigated the gradiometer design and characterized the performance of gradiometer based upon Terfenol--D -- PZT composites. Based upon these results, next a metal -- ceramic gradiometer consisting of PZT and nickel was designed and characterized. In this thesis, two different designs of gradiometer with nickel and PZT laminate composites were fabricated. Nickel was chosen over other materials considering its co-firing ability with PZT. It can give a better control over dimensional parameters of the gradiometer sample and further size reduction is possible with tape casting technique. Detailed theoretical analysis was conducted in order to understand the experimental results. In order to significantly reduce the power

  3. Development of Self-Powered Wireless Structural Health Monitoring (SHM) for Wind Turbine Blades

    Science.gov (United States)

    Lim, Dong-Won

    Wind turbine blade failure can lead to unexpected power interruptions. Monitoring wind turbine blades is important to ensure seamless electricity delivery from power generation to consumers. Structural health monitoring (SHM) enables early recognition of structural problems so that the safety and reliability of operation can be enhanced. This dissertation focuses on the development of a wireless SHM system for wind turbine blades. The sensor is comprised of a piezoelectric energy harvester (EH) and a telemetry unit. The sensor node is mounted on the blade surface. As the blade rotates, the blade flexes, and the energy harvester captures the strain energy on the blade surface. Once sufficient electricity is captured, a pulse is sent from the sensing node to a gateway. Then, a central monitoring algorithm processes a series of pulses received from all three blades. This wireless SHM, which uses commercially available components, can be retrofitted to existing turbines. The harvested energy for sensing can be estimated in terms of two factors: the available strain energy and conversion efficiency. The available strain energy was evaluated using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator. The conversion efficiency was studied analytically and experimentally. An experimental set-up was designed to mimic the expected strain frequency and amplitude for rotor blades. From a series of experiments, the efficiency of a piezoelectric EH at a typical rotor speed (0.2 Hz) was approximately 0.5%. The power requirement for sending one measurement (280 muJ) can be achieved in 10 minutes. Designing a detection algorithm is challenging due to this low sampling rate. A new sensing approach-the timing of pulses from the transmitter-was introduced. This pulse timing, which is tied to the charging time, is indicative of the structural health. The SHM system exploits the inherent triple redundancy of the three blades. The timing data of the three blades are

  4. A self-powered thin-film radiation detector using intrinsic high-energy current

    Energy Technology Data Exchange (ETDEWEB)

    Zygmanski, Piotr, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sajo, Erno, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States)

    2016-01-15

    Purpose: The authors introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary charged particles in the detector material, which induces conduction current in an external readout circuit. Direct energy conversion of the incident radiation powers the signal formation without the need for external bias voltage or amplification. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. The optimal design of HEC detectors consists of microscopic or nanoscopic structures. Methods: Theoretical and computational developments are presented to illustrate the salient properties of the HEC detector and to demonstrate its feasibility. In this work, the authors examine single-sandwiched and periodic layers of Cu and Al, and Au and Al, ranging in thickness from 100 nm to 300 μm and separated by similarly sized dielectric gaps, exposed to 120 kVp x-ray beam (half-value thickness of 4.1 mm of Al). The energy deposition characteristics and the high-energy current were determined using radiation transport computations. Results: The authors found that in a dual-layer configuration, the signal is in the measurable range. For a defined total detector thickness in a multilayer structure, the signal sharply increases with decreasing thickness of the high-Z conductive layers. This paper focuses on the computational results while a companion paper reports the experimental findings. Conclusions: Significant advantages of the device are that it does not require external power supply and amplification to create a measurable signal; it can be made in any size and geometry, including very thin (sub-millimeter to submicron) flexible curvilinear forms, and it is inexpensive. Potential applications include medical dosimetry (both in vivo and external), radiation protection, and other settings where one or more of the above qualities are desired.

  5. Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics.

    Science.gov (United States)

    Hinchet, Ronan; Seung, Wanchul; Kim, Sang-Woo

    2015-07-20

    Recently, smart systems have met with large success. At the origin of the internet of things, they are a key driving force for the development of wireless, sustainable, and independent autonomous smart systems. In this context, autonomy is critical, and despite all the progress that has been made in low-power electronics and batteries, energy harvesters are becoming increasingly important. Thus, harvesting mechanical energy is essential, as it is widespread and abundant in our daily life environment. Among harvesters, flexible triboelectric nanogenerators (TENGs) exhibit good performance, and they are easy to integrate, which makes them perfect candidates for many applications and, therefore, crucial to develop. In this review paper, we first introduce the fundamentals of TENGs, including their four basic operation modes. Then, we discuss the different improvement parameters. We review some progress made in terms of performance and integration that have been possible through the understanding of each operation mode and the development of innovative structures. Finally, we present the latest trends, structures, and materials in view of future improvements and applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.

    Science.gov (United States)

    Wang, Zhong Lin

    2013-11-26

    Triboelectrification is an effect that is known to each and every one probably since ancient Greek time, but it is usually taken as a negative effect and is avoided in many technologies. We have recently invented a triboelectric nanogenerator (TENG) that is used to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. Since the most useful materials for TENG are organic, it is also named organic nanogenerator, which is the first using organic materials for harvesting mechanical energy. In this paper, we review the fundamentals of the TENG in the three basic operation modes: vertical contact-separation mode, in-plane sliding mode, and single-electrode mode. Ever since the first report of the TENG in January 2012, the output power density of TENG has been improved 5 orders of magnitude within 12 months. The area power density reaches 313 W/m(2), volume density reaches 490 kW/m(3), and a conversion efficiency of ∼60% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available but wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, and more. Alternatively, TENG can also be used as a self-powered sensor for actively detecting the static and dynamic processes arising from mechanical agitation using the voltage and current output signals of the TENG, respectively, with potential applications for touch pad and smart skin technologies. To enhance the performance of the TENG, besides the vast choices of materials in the triboelectric

  7. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  8. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  9. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface.

    Science.gov (United States)

    Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2016-12-27

    Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.

  10. An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags

    International Nuclear Information System (INIS)

    Jia Xiaoyun; Feng Peng; Zhang Shengguang; Wu Nanjian; Zhao Baiqin; Liu Su

    2013-01-01

    This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler—Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm 2 and 0.12 mm 2 , respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s). (semiconductor integrated circuits)

  11. Design and development of self-powered sensors on wireless sensor network for standalone plant critical data management during SBO and beyond design basis events

    International Nuclear Information System (INIS)

    Aparna, J.; Dulera, I.V.; Rama Rao, A.; Vijayan, P.K.

    2015-01-01

    Advanced reactors are designed with an aim of maximum safety, optimized fuel utilization and effective system design. Safety aspects in reactor designs are being viewed for all possible vulnerabilities, and as a result, robust self-regulating passive safety features have been favored in Gen IV and advanced reactor designs. In addition to passive systems, the accidents scenarios at Fukushima indicate the dire need of reliable and stand-alone self-powered sensors, for monitoring plant critical parameters for effective damage control actions. There is a strong need for plant critical data management and situation awareness during the unavailability of all conventional power sources in a nuclear power plant, during extended station blackout (SBO) conditions. These self-powered sensors would assist the operators in managing events like SBO and help in containing any Beyond Design Basis Events (BDBE) conditions, well away from the public domain

  12. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  13. 10 GHz frequency comb spectral broadening in AlGaAs-on-Insulator nano-waveguide with ultra-low pump power

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW.......We experimentally demonstrated 10 GHz frequency comb spectral broadening with a 30-dB bandwidth of 238 nm in an 11-mm long AlGaAsOI nano-waveguide. The 10-GHz 230-fs pump pulse has an average power of only 12 mW....

  14. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision

    Science.gov (United States)

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-01

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on–off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  15. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision.

    Science.gov (United States)

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-22

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on-off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  16. Development of Micro-sized Microbial Fuel Cells as Ultra-Low Power Generators Using Nano-engineered Materials and Sustainable Designs

    KAUST Repository

    Mink, Justine E.

    2013-12-01

    Many of the most pressing global challenges today and in the future center around the scarcity of sustainable energy and water sources. The innovative microbial fuel cell (MFC) technology addresses both as it utilizes bacteria to convert wastewaters into electricity. Advancing this technology requires a better understanding of the optimal materials, designs and conditions involved. The micro-sized MFC was recently developed to serve this need by providing a rapid testing device requiring only a fraction of the materials. Further, development of micro-liter scale MFCs has expanded into potential applications such as remote and self-sustained power sources as well as on-chip energy generators. By using microfabrication, the fabrication and assembly of microsized MFCs is potentially inexpensive and mass produced. The objective of the work within this dissertation was to explore and optimize the micro-sized MFC to maximize power and current generation towards the goal of a usable and application-oriented device. Micro-sized MFCs were examined and developed using four parameters/themes considered most important in producing a high power generating, yet usable device: Anode- The use of nano-engineered carbon nanomaterials, carbon nanotubes and graphene, as anode as well as testing semiconductor industry standard anode contact area materials for enhanced current production. 5 Cathode- The introduction of a membrane-less air cathode to eliminate the need for continuous chemical refills and making the entire device mobile. Reactor design- The testing of four different reactor designs (1-75 μLs) with various features intended to increase sustainability, cost-effectiveness, and usability of the microsized MFC. Fuels- The utilization of real-world fuels, such as industrial wastewaters and saliva, to power micro-sized MFCs. The micro-sized MFC can be tailored to fit a variety of applications by varying these parameters. The device with the highest power production here was

  17. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  18. Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self-powered micro-shock sensing

    Science.gov (United States)

    Zhu, Jianxiong; Chen, Cong; Guo, Xiaoyu

    2018-04-01

    We report a suspended polytetrafluoroethylene (PTFE) nanostructure electret film in dual variable cavities for a self-powered micro-shock sensing application. The prototype contained series variable air cavities, a suspended nanostructure PTFE electret film and independent electrode films. The charges on the suspended nanostructure PTFE electret film provided the electrostatic field around the electret film in the series variable air cavities. When the reported device was driven by a micro-shock pressure, the inducted electrostatic charges on both the top and bottom electrodes would vary as the micro-shock pressing or releasing. Experimental results showed that the maximum of a short-circuit current density (J sc ) and an open-circuit voltage (V oc ) reached 3 ± 0.1 nA cm‑2 and 3.6 ± 0.1 V, respectively. It was found that the parameter J sc was more advantageous in identifying stronger shocks (parameter acceleration a bigger than 0.1 m s‑2), whereas the parameter V oc was more sensitive for weaker shocks, such as acceleration a smaller than 0.1 m s‑2. Moreover, finger continuous micro-shock pressure taps application was used to demonstrate the mechanical energy conversion performance with 4.5 ± 0.2 V open-circuit voltages. The research on the nanostructure electret PTFE film in series dual variable air cavities not only gave us a fresh idea about the principle and design of the shocking sensor, but also provided an easy fabrication and a low cost shocking sensor for the Internet of Things (IoT) systems.

  19. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    Directory of Open Access Journals (Sweden)

    Mayukh Bhattacharyya

    2018-05-01

    Full Text Available Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.

  20. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.

    Science.gov (United States)

    Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin

    2018-05-07

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.

  1. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays

    KAUST Repository

    Ahmed, Abdelsalam

    2017-01-20

    Flexible and stretchable human-machine Interfacing devices have attracted great attention due to the need for portable, ergonomic, and geometrically compatible devices in the new era of computer technology. Triboelectric nanogenerators (TENG) have shown promising potential for self-powered human–machine interacting devices. In this paper, a flexible, stretchable and self-powered keyboard is developed based on vertical contact-separation mode TENG. The keyboard is fabricated using urethane, silicone rubbers and Carbon Nanotubes (CNTs) electrodes. The structure shows a highly flexible, stretchable, and mechanically durable behavior, which can be conformal on different surfaces. The keyboard is capable of converting mechanical energy of finger tapping to electrical energy based on contact electrification, which can eliminate the need of external power source. The device can be utilized for wireless communication with computers owing to the self-powering mechanism. The keyboards also demonstrate consistent behavior in generating voltage signals regardless of touching objects’ materials and environmental effects like humidity. In addition, the proposed system can be used for keystroke dynamic-based authentication. Therefore, highly secured accessibility to the computers can be achieved owing to the keyboard’s high sensitivity and accurate selectivity of different users.

  2. A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride nano/micro fibers

    Directory of Open Access Journals (Sweden)

    Y.-K. Fuh

    2018-02-01

    Full Text Available Energy harvesting devices based on the triboelectric and piezoelectric principles have been widely developed to scavenge wasteful and tiny mechanical energy into usable electrical energy. In particular, triboelectric energy harvesting generators with relatively simpler structure and piezoelectric fiber-based counterpart with extremely light weight compositions showed a very promising application in the self-powered sensors. In this paper, a novel hybridization of graphenebased piezoelectric generator (GBPG and graphene-PET triboelectric generator (GPTG were simultaneously packaged. The integrated structure, graphene-based hybridized self-powered sensor (GHSPS, was demonstrated to be optically transparent and mechanically robust. For the piezoelectrically harvesting device, an in-situ poling and direct-write near-field electrospinning (NFES Poly(vinylidene fluoride (PVDF piezoelectric fibers were fabricated and integrated with a single layer chemical vapor deposition (CVD grown graphene. On the other hand for GPTG counterpart, two composite layers of a single layer graphene/PET simultaneously served as triboelectrically rubbing layers as well as bottom/top electrode. This GHSPS successfully superimposed both piezoelectric and triboelectric electricity and the synergistically higher output voltage/current/power were measured as ~6 V/280 nA/172 nW in one press-and-release cycle of finger induced motion. The proposed GHSPS showed a promising application in the field of self-powered sensors to be ubiquitously implemented in the future Industry 4.0 scenarios.

  3. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays

    KAUST Repository

    Ahmed, Abdelsalam; Zhang, Steven L.; Hassan, Islam; Saadatnia, Zia; Zi, Yunlong; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Flexible and stretchable human-machine Interfacing devices have attracted great attention due to the need for portable, ergonomic, and geometrically compatible devices in the new era of computer technology. Triboelectric nanogenerators (TENG) have shown promising potential for self-powered human–machine interacting devices. In this paper, a flexible, stretchable and self-powered keyboard is developed based on vertical contact-separation mode TENG. The keyboard is fabricated using urethane, silicone rubbers and Carbon Nanotubes (CNTs) electrodes. The structure shows a highly flexible, stretchable, and mechanically durable behavior, which can be conformal on different surfaces. The keyboard is capable of converting mechanical energy of finger tapping to electrical energy based on contact electrification, which can eliminate the need of external power source. The device can be utilized for wireless communication with computers owing to the self-powering mechanism. The keyboards also demonstrate consistent behavior in generating voltage signals regardless of touching objects’ materials and environmental effects like humidity. In addition, the proposed system can be used for keystroke dynamic-based authentication. Therefore, highly secured accessibility to the computers can be achieved owing to the keyboard’s high sensitivity and accurate selectivity of different users.

  4. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.; Lai, Ying-Chih; He, Xu; Liu, Ruiyuan; Zi, Yunlong; Wang, Zhong Lin

    2017-01-01

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  5. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.

    2017-05-15

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  6. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    Science.gov (United States)

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  7. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

    Science.gov (United States)

    Yang, Kai; Wan, Jianmei; Zhang, Shuai; Tian, Bo; Zhang, Youjiu; Liu, Zhuang

    2012-03-01

    Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer treatment. In this work, by using ultra-small reduced graphene oxide (nRGO) with non-covalent PEG coating, we study how sizes and surface chemistry affect the in vivo behaviors of graphene, and remarkably improve the performance of graphene-based in vivo photothermal cancer treatment. Owing to the enhanced NIR absorbance and highly efficient tumor passive targeting of nRGO-PEG, excellent in vivo treatment efficacy with 100% of tumor elimination is observed after intravenous injection of nRGO-PEG and the followed 808 nm laser irradiation, the power density (0.15 W/cm(2), 5 min) of which is an order of magnitude lower than that usually applied for in vivo tumor ablation using many other nanomaterials. All mice after treatment survive over a period of 100 days without a single death or any obvious sign of side effect. Our results highlight that both surface chemistry and sizes are critical to the in vivo performance of graphene, and show the promise of using optimized nano-graphene for ultra-effective photothermal treatment, which may potentially be combined with other therapeutic approaches to assist our fight against cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  9. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  10. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-12-06

    A rapid, low-temperature, and solution-based route is developed for growing large-sized cesium lead halide perovskite single crystals under ambient conditions. An ultralow minority carrier concentration was measured in CsPbBr3 (≈108 holes per cm3, much lower than in any other lead halide perovskite and crystalline silicon), which enables to realize self-powered photodetectors with a high ON/OFF ratio (105).

  11. Ref Tek Ultra-low Power Seismic Recorder With Low-cost High Speed Internet Telemetry U An Advanced Real-time Seismological Data Acquisition System

    Science.gov (United States)

    Passmore, P.; Zimakov, L.; Rozhkov, M.

    The 3rd Generation Seismic Recorder, Model 130-01, has been designed to be easier to use - more compact, lighter in weight, lower power, and requires less maintenance than other recorders. Not only is the hardware optimized for field deployments, soft- ware tools as well have been specially developed to support both field and base station operation. The 130's case is a clamshell design, inherently waterproof, with easy access to all user features on the top of the unit. The 130 has 6 input/output connectors, an LCD display, and a removable lid on top of the case. There are two Channel input connectors on a 6-channel unit (only one on a 3-channel unit), a Terminal connector for setup and control, a Net connector combining Ethernet and Serial PPP for network access, a 12 VDC Power connector, and a GPS receiver connector. The LCD display allows the user to monitor the status of various sub systems within the 130 without having a terminal device attached. For storing large amounts of data the IBM MicrodriveTM is offered. User setup, control and status monitoring is done either with a Personal Digital Assistant (PDA) (Palm OS compatible) using our Palm Field Controller (PFC) software or from a PC/workstation using our REF TEK Network Controller (RNC) GUI interface. StarBand VSAT is the premier two-way, always-on, high-speed satellite Internet ser- vice. StarBand means high-speed Internet without the constraints and congestion of land-based cable or telephone networks. StarBand uses a single satellite dish antenna for receiving and for sending dataUno telephone connection is needed. The hardware ° cost is much less than standard VSAT equipment with double or single hop transmis- sion. REF TEK protocol (RTP) provides end-to-end error-correcting data transmission and command/control. StarBandSs low cost VSAT provides two-way, always-on, high speed satellite Internet data availability. REF TEK and StarBand create the most ad- vanced real-time seismological data acquisition

  12. The chemistry of ultra-low concentrations

    International Nuclear Information System (INIS)

    Vertes, Attila; Kiss, Istvan

    1987-01-01

    Methods for the separation and enrichment of radionuclides in the ultra-low concentration range (coprecipitation, adsorption of radioactive substances on crystals) are disscussed in this chapter of the textbook. The properties and behaviour of ultra-dilute solutions, radiocolloids and the electrochemistry of ultra-dilute solution are also overviewed

  13. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    Science.gov (United States)

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  15. The domestic development of rhodium self-powered detector used in the core of Qinshan third nuclear power plant

    International Nuclear Information System (INIS)

    Xiong Weihua; Zhang Zhenhua; Yu Yijun; Zhang Yun; Wu Jun; Deng Peng

    2009-01-01

    This article introduced Qinshan third nuclear power plant's Vanadium detector's principle of work, the domestically development's earlier period preparation, the craft processing process, the domestically sample's experiment as well as the sample in core demonstration test. Elaborated process of manufacture's quality control request and the essential craft, and the factory manufacture experiment situation, and to the installation and trial run process, the modification factor and the test result has carried on the introduction and the analysis. (authors)

  16. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    Science.gov (United States)

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  17. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.

    Science.gov (United States)

    Han, Wuxiao; He, Haoxuan; Zhang, Linlin; Dong, Chuanyi; Zeng, Hui; Dai, Yitong; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2017-09-06

    The emerging multifunctional flexible electronic-skin for establishing body-electric interaction can enable real-time monitoring of personal health status as a new personalized medicine technique. A key difficulty in the device design is the flexible power supply. Here a self-powered wearable noninvasive electronic-skin for perspiration analysis has been realized on the basis of a piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. The electronic-skin can detect lactate, glucose, uric acid, and urea in the perspiration, and no outside electrical power supply or battery is used in the biosensing process. The piezoelectric impulse of the piezo-biosensing units serves as the power supply and the data biosensor. The working mechanism can be ascribed to the piezoelectric-enzymatic-reaction coupling effect of enzyme/ZnO nanowires. The electronic-skin can real-time/continuously monitor the physiological state of a runner through analyzing the perspiration on his skin. This approach can promote the development of a new-type of body electric and self-powered biosensing electronic-skin.

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  19. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  20. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  1. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    Science.gov (United States)

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  2. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  3. Ultra low bit-rate speech coding

    CERN Document Server

    Ramasubramanian, V

    2015-01-01

    "Ultra Low Bit-Rate Speech Coding" focuses on the specialized topic of speech coding at very low bit-rates of 1 Kbits/sec and less, particularly at the lower ends of this range, down to 100 bps. The authors set forth the fundamental results and trends that form the basis for such ultra low bit-rates to be viable and provide a comprehensive overview of various techniques and systems in literature to date, with particular attention to their work in the paradigm of unit-selection based segment quantization. The book is for research students, academic faculty and researchers, and industry practitioners in the areas of speech processing and speech coding.

  4. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  5. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  6. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    Science.gov (United States)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  7. Review of some problems encountered with In-Core Fission chambers and Self-Powered Neutron Detectors in PWR's. Tests - Present use - Outlook on the near future

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-01-01

    The working conditions of in-core detectors are investigated as well as some reliability problems which depend on nuclear environment (such as decrease of sensibility, loss of insulation...). Then we review the long-term irradiation tests in experimental reactor that have been carried out by the CEA these last years, with fission chambers (FC) and Self-Powered Detectors (SPD). The travelling probe system with moveable FC used in the 900 MWe PWR is briefly described. Finally an outlook on future possibilities is given; for instance the use of fixed SPD and a moveable FC in the same thimble, allowing recalibration of the fixed detectors [fr

  8. Numerische und experimentelle Untersuchungen zur Beschreibung der Wirkungsweise und Effektivität von grossflächigen hochsensitiven SPNDs : Self-Powered-Neutron-Detectors

    OpenAIRE

    Al-Dabagh, D.

    1981-01-01

    In the present work the neutron sensitivity of large surface "Self-Powered- Neutron-Detectors«SPNDs) is determined numericaily and experimentally. First a computer model for the parametric caIculation of the (n,$\\gamma$)-reaction rates in the emitter of the SPND was developed under use of the Monte-Carlo-Program KENO 11 ‘To determine the escape-probability of the electrons produced via Comptonor photoelectric effect by the emitter as weil as fron the surrounding isolator, a new Monte-Carlo-Pr...

  9. Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and Its Application in Self-Powered Active Acetylene Gas Sensing.

    Science.gov (United States)

    Uddin, A S M Iftekhar; Yaqoob, Usman; Chung, Gwiy-Sang

    2016-11-09

    Herein we report an enhanced triboelectric nanogenerator (TENG) based on the contact-separation mode between a patterned film of polydimethylsiloxane (PDMS) with a semimetallic elastomer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nylon fiber film. The addition of ethylene glycol to the PEDOT:PSS film improves the functionality of the TENG significantly, yielding promising applicability in both indoor and outdoor (i.e., under sunlight) environments, with the maximum instantaneous power of 0.09 mW (indoors) and 0.2 mW (outdoors) for the load resistance of 3.8 MΩ. The device can also generate 11.2 V and 0.08 μA cm -2 in response to the forearm movement of a human. Additionally, by replacing the bare nylon fiber in the TENG design with a Ag@ZnO/nylon fiber film, a self-powered active sensor (triboelectric nanogenerator-based sensor; TENS) has been realized to detect acetylene (C 2 H 2 ) gas. The TENS exhibits excellent sensitivity of 70.9% (indoors) and 89% (outdoors) to C 2 H 2 gas of 1000 ppm concentration. The proposed approach for harvesting energy and sensing can be advantageous in practical applications and may stimulate new research that will enhance nanogenerators as well as wearable, self-powered active sensors.

  10. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    Science.gov (United States)

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  11. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System.

    Science.gov (United States)

    Qi, Jia; Ma, Nan; Ma, Xiaochen; Adelung, Rainer; Yang, Ya

    2018-04-25

    Ferroelectric materials can be utilized for fabricating photodetectors because of the photovoltaic effect. Enhancing the photovoltaic performance of ferroelectric materials is still a challenge. Here, a self-powered ultraviolet (UV) photodetector is designed based on the ferroelectric BiFeO 3 (BFO) material, exhibiting a high current/voltage response to 365 nm light in heating/cooling states. The photovoltaic performance of the BFO-based device can be well modulated by applying different temperature variations, where the output current and voltage can be enhanced by 60 and 75% in heating and cooling states, respectively. The enhancement mechanism of the photocurrent is associated with both temperature effect and thermo-phototronic effect in the photovoltaic process. Moreover, a 4 × 4 matrix photodetector array has been designed for detecting the 365 nm light distribution in the cooling state by utilizing photovoltage signals. This study clarifies the role of the temperature effect and the thermo-phototronic effect in the photovoltaic process of the BFO material and provides a feasible route for pushing forward practical applications of self-powered UV photodetectors.

  12. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    Science.gov (United States)

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.

  13. Ultra-Low-Dropout Linear Regulator

    Science.gov (United States)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  14. Device for neutron flux monitoring in IEA-R1 reactor using rhodium self powered neutron detector; Dispositivo de mapeamento de fluxo de neutron atraves do SPN/Rodio no IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Ricci Filho, Walter; Fernando, Alberto de Jesus; Jerez, Rogerio; Tondin, Julio B.M.; Pasqualetto, Hertz [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    The IEA-R1 reactor has undergone a modernization tio increase its operating power to 5 MW, in order to allow a more efficient production of radioisotopes. The objective of this work is to provide the reactor with flux monitoring device using a rhodium self powered neutron detector. Self powered detectors are rugged miniature devices with are increasingly being used for fixed in core reactor monitoring both for safety purposes and flux mapping. The work presents the results obtained with Rhodium-SPND in several irradiation position inside the reactor core. (author)

  15. Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors: Monte Carlo sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L. [SCK/CEN, B-2400 Mol (Belgium)

    2001-07-01

    Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)

  16. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  17. Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors: Monte Carlo sensitivity calculations

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2001-01-01

    Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)

  18. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Philip [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-06-09

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products will have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.

  19. Large-area self-powered neutron-detectors for neutron-flux measurements in HTRs. Status of developmental work

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Serpekian, T.; Benninghofen, G.; Serafin, N.; Spillekothen, H.G.

    1982-06-01

    The development is described of the large-area SPN-detector as an out of core power monitoring system. Gadolinium or cobalt was used as the emitter. Response functions of the gadolinium SPN-detector were found with regard to the reactor power, the effect of the gamma field, its short-term behaviour following reactor shutdown and long-term behaviour during reactor operation. It was shown that a detector of 0.1 mm emitter thickness can withstand an integral thermal neutron flux of 2.10 20 nvt almost without efficiency loss thus indicating that the large-area gadolinium SPN-detector is a suitable means for power monitoring in large HTGR's

  20. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  1. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  2. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring

    KAUST Repository

    Yang, Po Kang

    2015-05-15

    A flexible triboelectric nanogenerator (FTENG) based on wavy-structured Kapton film and a serpentine electrode on stretchable substrates is presented. The as-fabricated FTENG is capable of harvesting ambient mechanical energy via both compressive and stretching modes. Moreover, the FTENG can be a bendable power source to work on curved surfaces; it can also be adaptively attached onto human skin for monitoring gentle body motions. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A 600-µW ultra-low-power associative processor for image pattern recognition employing magnetic tunnel junction-based nonvolatile memories with autonomic intelligent power-gating scheme

    Science.gov (United States)

    Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2016-04-01

    A novel associative processor using magnetic tunnel junction (MTJ)-based nonvolatile memories has been proposed and fabricated under a 90 nm CMOS/70 nm perpendicular-MTJ (p-MTJ) hybrid process for achieving the exceptionally low-power performance of image pattern recognition. A four-transistor 2-MTJ (4T-2MTJ) spin transfer torque magnetoresistive random access memory was adopted to completely eliminate the standby power. A self-directed intelligent power-gating (IPG) scheme specialized for this associative processor is employed to optimize the operation power by only autonomously activating currently accessed memory cells. The operations of a prototype chip at 20 MHz are demonstrated by measurement. The proposed processor can successfully carry out single texture pattern matching within 6.5 µs using 128-dimension bag-of-feature patterns, and the measured average operation power of the entire processor core is only 600 µW. Compared with the twin chip designed with 6T static random access memory, 91.2% power reductions are achieved. More than 88.0% power reductions are obtained compared with the latest associative memories. The further power performance analysis is discussed in detail, which verifies the special superiority of the proposed processor in power consumption for large-capacity memory-based VLSI systems.

  4. Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar

    2016-11-01

    An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.

  5. Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing

    Science.gov (United States)

    Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang

    2018-04-01

    Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.

  6. A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Lawrence, C.B.; Hall, D.S.

    1982-05-01

    Self-powered flux detectors are used in CANDU nuclear power reactors to determine the spatial neutron flux distribution in the reactor core for use by both the reactor control and safety systems. To establish the dynamic response of different types of flux detectors, the Chalk River Nuclear Laboratories have an ongoing experimental irradiation program in the NRU research reactor for which a data acquistion system has been developed. The system described in this paper is used to measure the currents from the detectors both at a slow, regular logging interval, and at a rapid, adaptive rate following a reactor shutdown. Currents that range from 100 pA to 1 mA full scale can be measured from up to 38 detectors and stored at sampling rates of up to 20 samples per second. The dynamic characteristics of the detectors can be computed from the stored records. The data acquisition system comprises a DEC LSI-11/23 microcomputer, dual cartridge disks, floppy disks, a hard copy and a video display terminal. The RT-11 operating system is used and all application programs are written in FORTRAN

  7. Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity- and Pressure-Sensing Skins.

    Science.gov (United States)

    Lai, Ying-Chih; Deng, Jianan; Liu, Ruiyuan; Hsiao, Yung-Chi; Zhang, Steven L; Peng, Wenbo; Wu, Hsing-Mei; Wang, Xingfu; Wang, Zhong Lin

    2018-06-04

    Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism-like adaptive bodies have shown great potential in vast robot-human and robot-environment applications. Developing skin-like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self-powered active triboelectric robotic skins (tribo-skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low-pressure regime. The tribo-skins can actively sense proximity, contact, and pressure to external stimuli via self-generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo-skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self-generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing

    KAUST Repository

    Lai, Ying-Chih

    2016-11-03

    The development of wearable and large-area fabric energy harvester and sensor has received great attention due to their promising applications in next-generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread-based triboelectric nanogenerator (TENG) and its uses in elastically textile-based energy harvesting and sensing have been demonstrated. The energy-harvesting thread composed by one silicone-rubber-coated stainless-steel thread can extract energy during contact with skin. With sewing the energy-harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human-motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread-based self-powered and active sensing uses, including gesture sensing, human-interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single-thread-based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth-based articles.

  9. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  10. Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing

    KAUST Repository

    Lai, Ying-Chih; Deng, Jianan; Zhang, Steven L.; Niu, Simiao; Guo, Hengyu; Wang, Zhong Lin

    2016-01-01

    The development of wearable and large-area fabric energy harvester and sensor has received great attention due to their promising applications in next-generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread-based triboelectric nanogenerator (TENG) and its uses in elastically textile-based energy harvesting and sensing have been demonstrated. The energy-harvesting thread composed by one silicone-rubber-coated stainless-steel thread can extract energy during contact with skin. With sewing the energy-harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human-motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread-based self-powered and active sensing uses, including gesture sensing, human-interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single-thread-based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth-based articles.

  11. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  12. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane

    Science.gov (United States)

    Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin

    2013-02-01

    A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.

  13. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam

    2016-12-08

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  14. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam; Saadatnia, Zia; Hassan, Islam; Zi, Yunlong; Xi, Yi; He, Xu; Zu, Jean; Wang, Zhong Lin

    2016-01-01

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  15. Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction

    Science.gov (United States)

    Abdul-Hameed, Assel A.; Mahdi, M. A.; Ali, Basil; Selman, Abbas M.; Al-Taay, H. F.; Jennings, P.; Lee, Wen-Jen

    2018-04-01

    Core-shell self-powered SiNWs homojunction photosensors have been fabricated. SiNWs are prepared by a metal assisted chemical etching method using different HF/H2O2 ratios and etching times. The length of the p-SiNWs increased as the H2O2 concentration and etching time increased. All the grown SiNWs show very low (∼0.7%) optical reflectance for the wavelength range of 200-1100 nm. Photoluminescence spectra of all prepared SiNWs show sharp and broad emission bands located in the red region of the light spectrum. Core-shell homojunction photosensors were fabricated by spin coating P2O2 onto the surface of the prepared p-SiNWs and annealed at 900 °C for 1 h. The fabricated devices exhibited photovoltaic behavior and high photosensitivity with fast response speed to the visible light. However, the sample that was fabricated using HF/H2O2 ratio of 1:1 showed the highest photosensitivity value of 3578% while the photosensor prepared using 2:1 ratio of HF/H2O2 gave the faster rise and decay time.

  16. Graphene/semiconductor silicon modified BiFeO{sub 3}/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Medwal, Rohit, E-mail: rohitmedwal@gmail.com; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2015-08-10

    We report photovoltaic response of highly transparent graphene/BiFe{sub 0.95}Si{sub 0.05}O{sub 3} (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I{sub SC} 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V{sub OC} ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I{sub SC} of 0.63 mA and V{sub OC} of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I{sub SC} and V{sub OC} with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  17. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Medwal, Rohit; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S.; Tomar, Monika; Gupta, Vinay

    2015-01-01

    We report photovoltaic response of highly transparent graphene/BiFe 0.95 Si 0.05 O 3 (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I SC 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V OC  ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I SC of 0.63 mA and V OC of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I SC and V OC with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows

  18. Improvement of core monitoring code cecor by the virtual segmentation of the self powered neutron detector loaded at Korean Standard Nuclear Plant

    International Nuclear Information System (INIS)

    Choi, T.; Jung, Y.S.

    2006-01-01

    Full text: Full text: Korean Standard Nuclear Plant uses Self Powered Neutron Detectors (SPNDs) to measure the neutron flux in the reactor core. The SPND's height is 40 cm and is located axially at the five different positions and 45 radial places. The design code simulated a reactor core is calculated by segmentation of the core. The segmentation is called as 'node', of which size is normally 20 cm. The axial height of the detector is larger than that of the node, and the larger detector's height maybe product some error on the axially complex shape. The analysis with the detector's signals showed some errors at the non-cosine axial flux shape. In order to reduce the errors for the shape, we tried to divide the detector by introducing the virtual boundary in the detector. Then, each axially 5 detectors had two virtual segmentations respectively and the detector's signal was divided by the inputs. So the more virtual detector's signals were gotten, the more accurate axial shape was produced. The result with virtual segmentations in a detector gave less deviation than the case without virtual segmentation (the current model). After the middle of cycle at the initial core specially, the axial neutron flux shape is changed to the saddle type one. The current model gave some error in Root Mean Square (RMS) between the measured value and the calculated one. The virtual segmentation model gave the better agreement at that time

  19. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction.

    Science.gov (United States)

    Chen, Xing; Liu, Kewei; Zhang, Zhenzhong; Wang, Chunrui; Li, Binghui; Zhao, Haifeng; Zhao, Dongxu; Shen, Dezhen

    2016-02-17

    Because of the direct band gap of 4.9 eV, β-Ga2O3 has been considered as an ideal material for solar-blind photodetection without any bandgap tuning. Practical applications of the photodetectors require fast response speed, high signal-to-noise ratio, low energy consumption and low fabrication cost. Unfortunately, most reported β-Ga2O3-based photodetectors usually possess a relatively long response time. In addition, the β-Ga2O3 photodetectors based on bulk, the individual 1D nanostructure, and the film often suffer from the high cost, the low repeatability, and the relatively large dark current, respectively. In this paper, a Au/β-Ga2O3 nanowires array film vertical Schottky photodiode is successfully fabricated by a simple thermal partial oxidation process. The device exhibits a very low dark current of 10 pA at -30 V with a sharp cutoff at 270 nm. More interestingly, the 90-10% decay time of our device is only around 64 μs, which is much quicker than any other previously reported β-Ga2O3-based photodetectors. Besides, the self-powering, the excellent stability and the good reproducibility of Au/β-Ga2O3 nanowires array film photodetector are helpful to its commercialization and practical applications.

  20. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction.

    Science.gov (United States)

    Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin

    2018-05-22

    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.

  1. Improved Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect.

    Science.gov (United States)

    Shen, Yanwei; Yan, Xiaoqin; Si, Haonan; Lin, Pei; Liu, Yichong; Sun, Yihui; Zhang, Yue

    2016-03-09

    Strain-induced piezoelectric potential (piezopotential) within wurtzite-structured ZnO can engineer the energy-band structure at a contact or a junction and, thus, enhance the performance of corresponding optoelectronic devices by effectively tuning the charge carriers' separation and transport. Here, we report the fabrication of a flexible self-powered ZnO/Spiro-MeOTAD hybrid heterojunction ultraviolet photodetector (UV PD). The obtained device has a fast and stable response to the UV light illumination at zero bias. Together with responsivity and detectivity, the photocurrent can be increased about 1-fold upon applying a 0.753% tensile strain. The enhanced performance can be attributed to more efficient separation and transport of photogenerated electron-hole pairs, which is favored by the positive piezopotential modulated energy-band structure at the ZnO-Spiro-MeOTAD interface. This study demonstrates a promising approach to optimize the performance of a photodetector made of piezoelectric semiconductor materials through straining.

  2. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content.

    Science.gov (United States)

    da Costa, Eduardo Ferreira; de Oliveira, Nestor E; Morais, Flávio J O; Carvalhaes-Dias, Pedro; Duarte, Luis Fernando C; Cabot, Andreu; Siqueira Dias, J A

    2017-03-12

    We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor's capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor's root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  3. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

    Directory of Open Access Journals (Sweden)

    Eduardo Ferreira da Costa

    2017-03-01

    Full Text Available We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  4. CMOS circuits for electromagnetic vibration transducers interfaces for ultra-low voltage energy harvesting

    CERN Document Server

    Maurath, Dominic

    2015-01-01

    Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100µW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over...

  5. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors.

    Science.gov (United States)

    Borchani, Wassim; Aono, Kenji; Lajnef, Nizar; Chakrabartty, Shantanu

    2016-07-01

    Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.

  6. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  7. Self-Powered Optical Spectroscopy

    Science.gov (United States)

    2015-08-27

    camera ,  suggest  that  label-­‐free...mate  the  system  with  a  standard  cell  phone   camera  for  quantitative  readout.  We  show  that  transferring...34change" Microfluidic"channel" Acrylic "box" iPhone" AIM  3:  Implement  a  new  strategy  for  low-­‐cost,  depth-­‐ resolved,

  8. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    The thin-walled, tube-shaped emitter electrode of the gamma flux-sensitive detector consists of Pt, Pb, Bi, Ta or W. At some distance it is enclosed by a coaxial collector tube made of inconel. The interspaces are filled with Al 2 O 3 or MgO. The outer diameter of the detector amounts to about 3.56 mm. (DG) [de

  9. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  10. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.

    Science.gov (United States)

    Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang

    2015-11-25

    Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.

  11. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  12. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    Science.gov (United States)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  13. Ultra-low Voltage CMOS Cascode Amplifier

    OpenAIRE

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique.

  14. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique......, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique....

  15. Results and interpretation of noise measurements using in-core self powered neutron detector strings at Unit 2 of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gloeckler, O.; Por, G.; Valko, J.

    1986-11-01

    In-core neutron noise and fuel assembly outlet temperature noise measurements were performed at Unit 2 of Paks Nuclear Power Plant. Characteristics of the reactor and the noise measuring equipment are briefly described. The in-core Rhodium emitter selfpowered neutron detector strings positioned axially above the other show high coherence and linear phase at low frequencies indicating a marked transport effect, not regularly measured in PWRs. The coherence between horizontally placed neutron detectors is small and the phase is zero. A transport effect of different nature is obtained between neutron detectors (in-core and ex-core) and fuel assembly outlet thermocouples. The observed characteristics depend on reactor and fuel assembly power in a way supporting interpretation in terms of coolant density and void content changes and power feedback effects. During routine analysis vibration of 1.1 Hz appeared as a strong peak in the power spectra. The control assembly that was responsible for the observed behaviour could be localized with high certainty. (author)

  16. Ultra-low-angle boundary networks within recrystallizing grains

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Zhang, Yubin

    2017-01-01

    We present direct evidence of a network of well-defined ultra-low-angle boundaries in bulk recrystallizing grains of 99.5% pure aluminium (AA1050) by means of a new, three-dimensional X-ray mapping technique; dark-field X-ray microscopy. These boundaries separate lattice orientation differences o...

  17. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  18. Ultra low and negative expansion glass–ceramic materials ...

    Indian Academy of Sciences (India)

    Ultra low and negative expansion glass–ceramic materials have been obtained from pyrophyllite and blast furnace slag. The batch composition was modified with the addition of lithium carbonate, hydrated alumina, boric acid and nucleating agent (titania). The batch was melted at 1400°C followed by casting in the form of ...

  19. Reaching ultra low phosphorus concentrations by filtration techniques

    NARCIS (Netherlands)

    Scherrenberg, S.M.

    2011-01-01

    This research deals with tertiary treatment techniques used for the removal of phosphorus from wastewater treatment plant (WWTP) effluent. The main objective of this research is to obtain ultra low total phosphorus (<0.15 mg total phosphorus/L) concentrations by coagulation, flocculation and

  20. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H₂S sensor.

    Science.gov (United States)

    Nie, Yuxin; Deng, Ping; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2014-07-04

    Room-temperature, high H2S sensing has been realized from a CuO/ZnO nanoarray self-powered, active gas sensor. The piezoelectric output of CuO/ZnO nanoarrays can act not only as the power source of the device, but also as the H2S sensing signal at room temperature. Upon exposure to 800 ppm H2S at room temperature, the piezoelectric output of the device greatly decreased from 0.738 V (in air) to 0.101 V. The sensitivity increased to 629.8, much higher than bare ZnO nanoarrays. As the device was exposed to H2S, a CuO/ZnO PN-junction was converted into a CuS/ZnO Ohmic contact, which greatly increased the electron density in the nanowire and enhanced the screen effect on the piezoelectric output. Our results can stimulate a research trend on designing new composite piezoelectric material for high-performance self-powered active gas sensors.

  1. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  2. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  3. 65NM sub-threshold 11T-SRAM for ultra low voltage applications

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Aunet, Snorre

    In this paper a new ultra low power SRAM cell is proposed. In the proposed SRAM topology, additional circuitry has been added to a standard 6T-SRAM cell to improve the static noise margin (SNM) and the performance. Foundry models for a 65 nm standard CMOS process were used for obtaining reliable...... simulated results. The circuit was simulated for supply voltages from 0.2 V to 0.35 V verifying the robustness of the proposed circuit for different supply voltages. The simulations show a significant improvement in SNM and a 4X improvement in read speed still maintaining a satisfactory write noise margin...

  4. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis.

    Science.gov (United States)

    Yang, Wenyan; Han, Wuxiao; Gao, Huiling; Zhang, Linlin; Wang, Shuai; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2018-01-25

    As the concentration of different biomarkers in human body fluids are an important parameter of chronic disease, wearable biosensors for in situ analysis of body fluids with high sensitivity, real-time detection, flexibility and biocompatibility have significant potential therapeutic applications. In this paper, a flexible self-powered implantable electronic-skin (e-skin) for in situ body fluids analysis (urea/uric-acid) as a real-time kidney-disease diagnoser has been proposed based on the piezo-enzymatic-reaction coupling process of ZnO nanowire arrays. It can convert the mechanical energy of body movements into a piezoelectric impulse, and the outputting piezoelectric signal contains the urea/uric-acid concentration information in body fluids. This piezoelectric-biosensing process does not need an external electricity supply or battery. The e-skin was implanted under the abdominal skin of a mouse and provided in situ analysis of the kidney-disease parameters. These results provide a new approach for developing a self-powered in situ body fluids-analysis technique for chronic-disease diagnosis.

  5. Optimization and Characterization of CMOS for Ultra Low Power Applications

    International Nuclear Information System (INIS)

    Ajmal Kafeel, M.; Hasan, M.; Shah Alalm, M; Pable, S.D.

    2015-01-01

    Aggressive voltage scaling into the subthreshold operating region holds great promise for applications with strict energy budget. However, it has been established that higher speed super threshold device is not suitable for moderate performance subthreshold circuits. The design constraint for selecting V_th and T_ox is much more flexible for subthreshold circuits at low voltage level than super threshold circuits. In order to obtain better performance from a device under subthreshold conditions, it is necessary to investigate and optimize the process and geometry parameters of a Si MOSFET at nanometer technology node. This paper calibrates the fabrication process parameters and electrical characteristics for n- and p-MOSFET s with 35 nm physical gate length. Thereafter, the calibrated device for super threshold application is optimized for better performance under subthreshold conditions using TCAD simulation. The device simulated in this work shows 9.89% improvement in subthreshold slope and 34% advantage I_on/I_off in ratio for the same drive current.

  6. Optimization and Characterization of CMOS for Ultra Low Power Applications

    Directory of Open Access Journals (Sweden)

    Mohd. Ajmal Kafeel

    2015-01-01

    Full Text Available Aggressive voltage scaling into the subthreshold operating region holds great promise for applications with strict energy budget. However, it has been established that higher speed superthreshold device is not suitable for moderate performance subthreshold circuits. The design constraint for selecting Vth and TOX is much more flexible for subthreshold circuits at low voltage level than superthreshold circuits. In order to obtain better performance from a device under subthreshold conditions, it is necessary to investigate and optimize the process and geometry parameters of a Si MOSFET at nanometer technology node. This paper calibrates the fabrication process parameters and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length. Thereafter, the calibrated device for superthreshold application is optimized for better performance under subthreshold conditions using TCAD simulation. The device simulated in this work shows 9.89% improvement in subthreshold slope and 34% advantage in ION/IOFF ratio for the same drive current.

  7. Ultra low power temperature compensation method for palladium nanowire grid

    NARCIS (Netherlands)

    Ing. Erik Puik; J.F. van der Bent; C.J.M. van Rijn

    2010-01-01

    From Science direct: One of the nanowires was covered with a 2-Hydroxyethyl methacrylate based compound to prevent hydrogen from reaching the wire. The compound was dried by a UV source and tested in chamber for comparison with previous measurements. The results shows that temperature effects can

  8. Ultra-low power and wearable CO2 sensors

    Data.gov (United States)

    National Aeronautics and Space Administration — IRIS architecture, nano chemical sensor, and e-textile antenna will be integrated/tested to make it wearable, mobile, peel-stick or fit where it is needed for...

  9. Ultra-Low-Power Event-Driven Radio Design

    NARCIS (Netherlands)

    Huang, X.

    2014-01-01

    The emerging field of internet of things promises mankind an enhanced life quality, produc-tivity and security. One critical technology enabler is ubiquitous and unobtrusive wireless connectivity activated by ambient events and operated with little human intervention for con-figuration and

  10. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  11. A programmable ultra-low noise X-band exciter.

    Science.gov (United States)

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  12. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    Energy Technology Data Exchange (ETDEWEB)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea [Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn (Germany)

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  13. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    International Nuclear Information System (INIS)

    Winn, W.G.

    1999-01-01

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC

  14. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  15. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  16. Dielectric response of KCN crystals at ultra-low frequencies

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.; Slaets, J.

    1987-01-01

    We describe an ultra low frequency equipment employing programmable digital technique. The system is used to measure the dielectric parameters et, en and tg d or pure KCN crystals as a function of temperature in the frequency range 10-2 Hz to 40 Hz. The relaxation time of the Cn dipoles presents a classical temperature activated reorientation behaviour characterized by an Arrhenius law t=to exp (U/kT) with t0=7,26 x 10-15 s and U = 0,147 eV.

  17. Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect.

    Science.gov (United States)

    Zhao, Yayu; Fu, Yongming; Wang, Penglei; Xing, Lili; Xue, Xinyu

    2015-02-07

    Highly stable piezo-immunoglobulin-biosensing has been realized from a SiO2/ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active biosensor. The piezoelectric output generated by the SiO2/ZnO NW NG can act not only as a power source for driving the device, but also as a sensing signal for detecting immunoglobulin G (IgG). The stability of the device is very high, and the relative standard deviation (RSD) ranges from 1.20% to 4.20%. The limit of detection (LOD) of IgG on the device can reach 5.7 ng mL(-1). The response of the device is in a linear relationship with IgG concentration. The biosensing performance of SiO2/ZnO NWs is much higher than that of bare ZnO NWs. A SiO2 layer uniformly coated on the surface of the ZnO NW acts as the gate insulation layer, which increases mechanical robustness and protects it from the electrical leakages and short circuits. The IgG biomolecules modified on the surface of the SiO2/ZnO NW act as a gate potential, and the field effect can influence the surface electron density of ZnO NWs, which varies the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for a highly stable self-powered/active biosensor.

  18. Ultra-Low Inductance Design for a GaN HEMT Based 3L-ANPC Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Castellazzi, Alberto; Iannuzzo, Francesco

    2016-01-01

    contributors to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four layer PCB with the aim to maximise the switching performance of GaN HEMTs is explained. Gate driver design for GaN HEMT devices is presented. Common-mode behaviours......In this paper, an ultra-low inductance power cell design for a 3L-ANPC based on 650 V GaN HEMT devices is presented. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which are the main...

  19. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  20. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barton, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  1. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN)

    International Nuclear Information System (INIS)

    Cabrera-Palmer, Belkis; Barton, Paul

    2017-01-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  2. Chromatic dispersion effects in ultra-low coherence interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Lychagov, V V; Ryabukho, V P [N.G.Chernyshevsky Saratov State University (Russian Federation)

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that is an order of magnitude greater than the pulse width. (interferometry)

  3. Ultra-low-head hydroelectric technology: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Daqing; Deng, Zhiqun (Daniel)

    2017-10-01

    In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the current achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.

  4. Ultra-low dispersion spectroscopy of stars and galaxies

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Parthasarathy, M.

    1977-01-01

    Application of ultra-low dispersion spectroscopy 10,000 A mm - 1 , is described to study the nuclei of elliptical galaxies, the quasi-stellar objects and for the discovery of faint OB stars, reddened stars and red stars. The instrument used is an f/2 slitless spectrograph with a three degree quartz prism at the Cassegrain focus of the 102-cm Ritchey-Chratien reflector at Kavalur. The spectra cover a field of 40 minutes of arc and the dispersion is 10,000 A mm - 1 . Ultra-low dispersion spectra (microspectra) were obtained for fifteen elliptical and three SO galaxies from the list of Ekers and Ekers (1973) who classified them as compact and extended sources from the observations of radio emission at 6 cms. From an analysis of micro-spectra and from direct photographs with graded exposure times, it is found that all compact radio galaxies in the Ekers list also have optically compact nuclei. Some of these elliptical galaxies with compact nuclei show enhancement of intensity in the blue violet region. From an examination of microspectra of forty-three of the known quasi-stellar objects of different redshifts it is found that the most striking characteristic of the spectra is their flat appearance. This characteristic flatness is also noticed in the microspectrum of the large redshift quasi-stellar objects like OH 471 and OQ 172 which do not have UV excess. Because of this characteristic difference in the appearance of the microspectra of the quasi-stellar objects and stellar objects, it is possible to detect new OSO's with this technique. An application of this technique to detect red stars in our galaxy and in the Large Magellanic cloud is discussed. (author)

  5. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  6. Advanced Durable Flexible Ultra Low Outgassing Thermal Control Coatings for NASA Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I program proposes to synthesize novel nanoengineered ultra low out gassing elastomers and formulate high temperature capable flexible thermal control...

  7. A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes.

    Science.gov (United States)

    Hoffmann, Martin W G; Mayrhofer, Leonhard; Casals, Olga; Caccamo, Lorenzo; Hernandez-Ramirez, Francisco; Lilienkamp, Gerhard; Daum, Winfried; Moseler, Michael; Waag, Andreas; Shen, Hao; Prades, J Daniel

    2014-12-17

    Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L; Callahan, T; Leone, D; Naegeli, D; Shouse, K; Smith, L; Whitney, K [Southwest Research Inst., San Antonio, TX (United States)

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  9. Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism.

    Science.gov (United States)

    Yu, Binwei; Fu, Yongming; Wang, Penglei; Zhao, Yayu; Xing, Lili; Xue, Xinyu

    2015-04-28

    Highly sensitive humidity sensing has been realized from a Cd-doped ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active gas sensor. The piezoelectric output of the device acts not only as a power source, but also as a response signal to the relative humidity (RH) in the environment. The response of Cd-ZnO (1 : 10) NWs reached up to 85.7 upon exposure to 70% relative humidity, much higher than that of undoped ZnO NWs. Cd dopant can increase the number of oxygen vacancies in the NWs, resulting in more adsorption sites on the surface of the NWs. Upon exposure to a humid environment, a large amount of water molecules can displace the adsorbed oxygen ions on the surface of Cd-ZnO NWs. This procedure can influence the carrier density in Cd-ZnO NWs and vary the screening effect on the piezoelectric output. Our study can stimulate a research trend on exploring composite materials for piezo-gas sensing.

  10. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  11. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition

    Science.gov (United States)

    Adhikary, Prakriti; Biswas, Anirban; Mandal, Dipankar

    2016-12-01

    Composite nanofibers of Eu3+ doped poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))/graphene are prepared by the electrospinning technique for the fabrication of ultrasensitive wearable piezoelectric nanogenerators (WPNGs) where the post-poling technique is not necessary. It is found that the complete conversion of the piezoelectric β-phase and the improvement of the degree of crystallinity is governed by the incorporation of Eu3+ and graphene sheets into P(VDF-HFP) nanofibers. The flexible nanocomposite fibers are associated with a hypersensitive electronic transition that results in an intense red light emission, and WPNGs also have the capability of detecting external pressure as low as ~23 Pa with a higher degree of acoustic sensitivity, ~11 V Pa-1, than has ever been previously reported. This means that ultrasensitive WPNGs can be utilized to recognize human voices, which suggests they could be a potential tool in the biomedical and national security sectors. The capacitor’s ability to charge from abundant environmental vibrations, such as music, wind, body motion, etc, drives WPNGs as a power source for portable electronics. This fact may open up the prospect of using the Eu3+ doped P(VDF-HFP)/graphene composite electrospun nanofibers, with their multifunctional properties such as vibration sensitivity, wearability, red light emission capability and piezoelectric energy harvesting, for various promising applications in portable electronics, health care monitoring, noise detection and security monitoring.

  12. Morphology of Burned Ultra-low Density Fiberboards

    Directory of Open Access Journals (Sweden)

    Min Niu

    2015-09-01

    Full Text Available The synergistic effect of two fire retardants, a Si-Al compound and chlorinated paraffin, was tested on ultra-low density fiberboards (ULDFs. To further understand the mechanism of fire retardancy, morphologies of unburned and burned ULDFs were studied using a scanning electron microscope with energy dispersive spectroscopy. It was found that as the volume of the burned ULDFs shrank, some crevices appeared. In addition, less fly ash formed on the top of specimens, and more bottom ashes remained in the original framework, with a clear network of structure built by the fibers. Carbon was almost absent in the fly ash; however, the weight ratio of C in the bottom ashes reached the maximum (> 43% of the composition. Oxygen, Al, and Si appeared to have varying weight ratios for different ashes. Oxygen content increased with increasing Si and Al contents. Furthermore, Cl sharply decreased to less than 1% after combustion. Therefore, upon combustion, it was found that almost all of the substances in ULDFs, except for the Si-Al compound, were pyrolyzed to volatile carbon oxides and Cl compounds, especially the fly ash and lightweight C compounds.

  13. Assembly techniques for ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-01-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100–200 KeV/c) for particles momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams

  14. Assembly techniques for ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  15. Ultra Low Friction of DLC Coating with Lubricant

    International Nuclear Information System (INIS)

    Kano, M; Yoshida, K

    2010-01-01

    The objective of this study was to find a trigger to make clear a mechanism of the ultra low friction by evaluating the friction property of DLC-DLC combination under lubrication with the simple fluid. The Pin-on-disc reciprocating and rotating sliding tests were conducted to evaluate the friction property. The super low friction property of pure sliding with the ta-C(T) pair coated by the filtered arc deposition process under oleic acid lubrication was found at the mixed lubrication condition. It was thought that the low share strength tribofilm composed of water and acid seemed to be formed on ta-C sliding interface. Additionally, the smooth sliding surface formed on ta-C(T) was seemed to be required to keep this tribofilm. Then, the super low friction was thought to be obtained by this superlubrication condition. Although the accurate and direct experimental data must be required to make clear this super low friction mechanism, the advanced effect obtained by the simple material combination is expected to be applied on the large industrial fields in near future.

  16. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  17. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    Science.gov (United States)

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  18. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  19. Self-powered optical sensor systems

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.

    2009-01-01

    A 0.35 μm CMOS process has been used for on-chip integration of a sun sensor composed of a 2x2 photodiode array and a current-to-voltage amplifier. Unlike conventional sun sensors, a shade profile proportional to the angle of incidence of incoming light is projected onto the photodiodes. This

  20. Personality identified self-powering keyboard

    Science.gov (United States)

    Wang, Zhong Lin; Zhu, Guang; Chen, Jun

    2018-02-06

    A keyboard for converting keystrokes into electrical signals is disclosed. The keyboard includes a plurality of keys. At least one of the keys includes two electrodes and a member that generates triboelectric charges upon skin contact. The member is adjacent to one of the electrodes to affect a flow of electrons between the two electrodes when a distance between the member and the skin varies.