WorldWideScience

Sample records for self-interacting point particles

  1. The effect of six-point one-particle reducible local interactions in the dual fermion approach

    International Nuclear Information System (INIS)

    Katanin, A A

    2013-01-01

    We formulate the dual fermion approach for strongly correlated electronic systems in terms of the lattice and dual effective interactions, obtained by using the covariation splitting formula. This allows us to consider the effect of six-point one-particle reducible interactions, which are usually neglected by the dual fermion approach. We show that the consideration of one-particle reducible six-point (as well as higher order) vertices is crucially important for the diagrammatic consistency of this approach. In particular, the relation between the dual and lattice self-energy, derived in the dual fermion approach, implicitly accounts for the effect of the diagrams, containing six-point and higher order local one-particle reducible vertices, and should be applied with caution, if these vertices are neglected. Apart from that, the treatment of the self-energy feedback is also modified by six-point and higher order vertices; these vertices are also important to account for some non-local corrections to the lattice self-energy, which have the same order in the local four-point vertices as the diagrams usually considered in the approach. These observations highlight an importance of six-point and higher order vertices in the dual fermion approach, and call for the development of new schemes of treatment of non-local fluctuations, which are based on one-particle irreducible quantities. (paper)

  2. Self-consistent neutral point current and fields from single particle dynamics

    International Nuclear Information System (INIS)

    Martin, R.F. Jr.

    1988-01-01

    In order to begin to build a global model of the magnetotail-auroral region interaction, it is of interest to understand the role of neutral points as potential centers of particle energization in the tail. In this paper, the single particle current is calculated near a magnetic neutral point with magnetotail properties. This is balanced with the Ampere's law current producing the magnetic field to obtain the self-consistent electric field for the problem. Also calculated is the current-electric field relationship and, in the regime where this relation is linear, an effective conductivity. Results for these macroscopic quantities are surprisingly similar to the values calculated for a constant normal field current sheet geometry. Application to magnetotail modeling is discussed. 11 references

  3. The Motion of Point Particles in Curved Spacetime

    Directory of Open Access Journals (Sweden)

    Eric Poisson

    2011-09-01

    Full Text Available This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle -- its only effect is to contribute to the particle's inertia. What remains after subtraction is a regular field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (Part I. It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (Part II. It continues with a thorough discussion of Green's functions in curved spacetime (Part III. The review presents a detailed derivation of each of the three equations of motion (Part IV. Because the notion of a point mass is problematic in general relativity, the review concludes (Part V

  4. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  5. Electron spin from self interaction

    International Nuclear Information System (INIS)

    Spavieri, G.

    1992-01-01

    The author explores the possibility that the electron self-interaction is the origin of the spin and of the radiative effects of QED. The electron is conceived as a charged, massless, point particle with a quantum or stochastic, internal motion about its center of mass and bound by a self-interaction potential. The hydrodynamic equations of motion describing the electron in its center of mass frame are related to non-Markovian stochastic equations recently used to derive the Schroedinger equation. By averaging over this stochastic internal motion and identifying the energy with the rest mass energy, the angular momentum exhibits properties characteristic of spin. The electromagnetic self-interactions added to the Hamiltonian of the particle correct the g factor to yield the anomalous value (g-2)/2 ∼ 1159.7(2.3) X 10 -6 in agreement with experiment. Calculations of other open-quotes radiativeclose quotes effects including the Lamb shift are presented. The results obtained are finite and suggest that the QED corrections attributed to radiative effects could be obtained classically, i.e., without second quantization and renormalization, by complementing the Dirac theory with this self-interaction mechanism. The g factor dependence on the external magnetic field of this and other spin models is compared with that of QED, showing that these theories can be tested by the present precision measurements of the g factor. 33 refs., 2 tabs

  6. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  7. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  8. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  9. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet

    2017-04-01

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  10. Strong constraints on self-interacting dark matter with light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Walia, Parampreet [Oslo Univ. (Norway). Dept. of Physics; Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-04-15

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  11. Charge interaction between particle-laden fluid interfaces.

    Science.gov (United States)

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  12. The electrostatic interaction between interfacial colloidal particles

    Science.gov (United States)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  13. Colliding clusters and dark matter self-interactions

    CERN Document Server

    Kahlhoefer, Felix; Frandsen, Mads T; Sarkar, Subir

    2014-01-01

    When a dark matter halo moves through a background of dark matter particles, self-interactions can lead to both deceleration and evaporation of the halo and thus shift its centroid relative to the collisionless stars and galaxies. We study the magnitude and time evolution of this shift for two classes of dark matter self-interactions, viz. frequent self-interactions with small momentum transfer (e.g. due to long-range interactions) and rare self-interactions with large momentum transfer (e.g. contact interactions), and find important differences between the two cases. We find that neither effect can be strong enough to completely separate the dark matter halo from the galaxies, if we impose conservative bounds on the self-interaction cross-section. The majority of both populations remain bound to the same gravitational potential and the peaks of their distributions are therefore always coincident. Consequently any apparent separation is mainly due to particles which are leaving the gravitational potential, so...

  14. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  15. Laws of motion for interacting Yang-Mills particles

    International Nuclear Information System (INIS)

    Fuchs, H.

    1988-01-01

    Our recent Lagrangian approach to the equations of motion for test particles with internal structure can be enlarged to the laws of motion for interacting particles, at least in principle. As an example we consider the interaction of point particles endowed with a pole-dipole structure of the non-abelian charge. (author)

  16. Velocity width of the resonant domain in wave-particle interaction

    International Nuclear Information System (INIS)

    Firpo, Marie-Christine; Doveil, Fabrice

    2002-01-01

    Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one electrostatic wave and N quasiresonant particles. For the simplest nonintegrable Hamiltonian coupling two particles to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from chaotic ones. These estimates are fully retrieved through computation of the largest Lyapunov exponent. For the large-N particle self-consistent case, we numerically investigate the localization of stochasticity in velocity space and test a qualitative estimate of the borders of chaos

  17. Transitions induced by speed in self-propelled particles system with attractive interactions

    Science.gov (United States)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  18. Academic Self-Efficacy, Faculty-Student Interactions, and Student Characteristics as Predictors of Grade Point Average

    Science.gov (United States)

    Gosnell, Joan C.

    2012-01-01

    The purpose of the study was to explore student characteristics, academic self-efficacy, and faculty-student interactions as predictors of grade point average for upper-division (college level third and fourth year) education students at a public 4-year degree-granting community college. The study examined the effects of student characteristics…

  19. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  20. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  1. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  2. INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.

    2010-01-01

    We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...... system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other...... states are unstable. The models are motivated from physics, chemistry, and biology, and the principal investigations can be useful for many systems with interacting particles or agents. The models match particularly well a system in neuroscience, namely the axonal pathfinding and sorting in the olfactory...

  3. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  4. Boosted dark matter signals uplifted with self-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyoungchul, E-mail: kckong@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Mohlabeng, Gopolang, E-mail: mohlabeng319@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Park, Jong-Chul, E-mail: log1079@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-04-09

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  5. Effective description of dark matter self-interactions in small dark matter haloes

    International Nuclear Information System (INIS)

    Kummer, Janis

    2017-07-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observ- able offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment we develop an effective description of small dark matter haloes taking into account the two major effects due to dark matter self-scatterings: deceleration and evaporation. We point out that self-scatterings can have a sizeable impact on the trajectories of galaxies, diminishing the separation between galaxies and dark matter in merging clusters. This effect depends sensitively on the underlying particle physics, in particular the angular dependence of the self-scattering cross section, and cannot be predicted from the momentum transfer cross section alone.

  6. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  7. Colliding clusters and dark matter self-interactions

    DEFF Research Database (Denmark)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Frandsen, Mads Toudal

    2014-01-01

    When a dark matter halo moves through a background of dark matter particles, self-interactions can lead to both deceleration and evaporation of the halo and thus shift its centroid relative to the collisionless stars and galaxies. We study the magnitude and time evolution of this shift for two...... classes of dark matter self-interactions, viz. frequent self-interactions with low momentum transfer (e.g. due to long-range interactions) and rare self-interactions with high momentum transfer (e.g. contact interactions), and find important differences between the two cases. We find that neither effect...... can be strong enough to completely separate the dark matter halo from the galaxies, if we impose conservative bounds on the self-interaction cross-section. The majority of both populations remain bound to the same gravitational potential and the peaks of their distributions are therefore always...

  8. Dark matter self-interactions from a general spin-0 mediator

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian

    2017-04-15

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  9. Dark matter self-interactions from a general spin-0 mediator

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian

    2017-01-01

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  10. Dark matter self-interactions from a general spin-0 mediator

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian, E-mail: felix.kahlhoefer@desy.de, E-mail: kai.schmidt-hoberg@desy.de, E-mail: sebastian.wild@desy.de [DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-08-01

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  11. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  12. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  13. Quantum mechanics of a free particle on a plane with an extracted point

    International Nuclear Information System (INIS)

    Kowalski, K.; Podlaski, K.; Rembielinski, J.

    2002-01-01

    A detailed study of a quantum free particle on a pointed plane is presented in this paper. In particular, some questions posed in the very recent paper by M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002) are clarified. Namely, the topological effects related to extracting a point from a plane are indicated. The proposed results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions

  14. spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-01-01

    Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)

  15. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  16. Long-range Self-interacting Dark Matter in the Sun

    International Nuclear Information System (INIS)

    Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng

    2015-01-01

    We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided

  17. Spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-02-01

    We study spinning self-dual particles in two dimensions. They are obtained from the chiral bosonic particle through the square root technique. We show that the resulting field theory can be either fermionic or bosonic and that the associated self-dual field reveals its Lorentz tensor structure which remains hidden in the usual formulations. We also calculate the spinning self-dual particle propagators using the BFV formalism. (author) [pt

  18. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  19. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  20. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I. [College of Engineering, Arkansas State University, Jonesboro, Arkansas 72467 (United States); Sheppard, C. J. [College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467 (United States)

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  1. Effective interactions for self-energy. I. Theory

    International Nuclear Information System (INIS)

    Ng, T.K.; Singwi, K.S.

    1986-01-01

    A systematic way of deriving effective interactions for self-energy calculations in Fermi-liquid systems is presented. The self-energy expression contains effects of density and spin fluctuations and also multiple scattering between particles. Results for arbitrarily polarized one-component Fermi-liquid systems and unpolarized two-component systems are explicitly given

  2. Dark matter self-interactions and small scale structure

    Science.gov (United States)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  3. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  4. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where asMmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole

  5. Four-particle scattering with three-particle interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    The four-particle scattering formalism proposed independently by Alessandrini, by Mitra et al., by Rosenberg, and by Takahashi and Mishima is extended to include a possible three-particle interaction. The kernel of the new equations we get contain both two- and three-body connected parts and gets four-body connected after one iteration. On the other hand, the kernel of the original equations in the absence of three-particle interactions does not have a two-body connected part. We also write scattering equations for the transition operators connecting the two-body fragmentation channels. They are generalization of the Sloan equations in the presence of three-particle interactions. We indicate how to include approximately the effect of a weak three-particle interaction in a practical four-particle scattering calculation

  6. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s=8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Avati, V.; Baechler, J. [CERN, Geneva (Switzerland); and others

    2015-03-17

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton–proton collisions at √s=8 TeV within the range 3.9<η<4.7 and -6.95<η<-6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with p{sub T}>0 MeV/c, produced in inelastic interactions with at least one charged particle in -7<η<-6 or 3.7<η<4.8. The dN{sub ch}/dη has been found to decrease with |η|, from 5.11 ± 0.73 at η=3.95 to 1.81 ± 0.56 at η=-6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  7. Measurement of the forward charged particle pseudorapidity density in pp collisions at √(s) = 8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Avati, V. [CERN, Geneva (Switzerland); Baechler, J. [CERN, Geneva (Switzerland); Berardi, V. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bottigli, U. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Bruecken, E. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Buzzo, A. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S. [INFN Sezione di Bari, Bari (Italy); Catanesi, M.G. [INFN Sezione di Bari, Bari (Italy); Covault, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Csanad, M. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Eoetvoes University, Department of Atomic Physics, Budapest (Hungary); Csoergo, T. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Deile, M. [CERN, Geneva (Switzerland); Doubek, M. [Czech Technical University, Prague (Czech Republic); Eggert, K. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Eremin, V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg (Russian Federation); Ferro, F. [INFN Sezione di Genova, Genoa (Italy); Fiergolski, A. [INFN Sezione di Bari, Bari (Italy); Warsaw University of Technology, Warsaw (Poland); Garcia, F. [Helsinki Institute of Physics, Helsinki (Finland); Georgiev, V. [University of West Bohemia, Plzen (Czech Republic); Giani, S. [CERN, Geneva (Switzerland); Grzanka, L. [AGH University of Science and Technology, Krakow (Poland); Polish Academy of Science, Institute of Nuclear Physics, Krakow (Poland); Hammerbauer, J. [University of West Bohemia, Plzen (Czech Republic); Heino, J. [Helsinki Institute of Physics, Helsinki (Finland); Hilden, T. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Karev, A. [CERN, Geneva (Switzerland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kundrat, V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S. [INFN Sezione di Pisa, Pisa (Italy); Latino, G. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Leszko, T. [Warsaw University of Technology, Warsaw (Poland); Lippmaa, E. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lokajicek, M.V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Losurdo, L. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Lo Vetere, M. [INFN Sezione di Genova, Genoa (IT); Universita degli Studi di Genova, Genoa (IT); Lucas Rodriguez, F. [CERN, Geneva (CH); Macri, M. [INFN Sezione di Genova, Genoa (IT); Maeki, T. [Helsinki Institute of Physics, Helsinki (FI); Mercadante, A. [INFN Sezione di Bari, Bari (IT); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (IT); CERN, Geneva (CH); Minutoli, S. [INFN Sezione di Genova, Genoa (IT); Nemes, F. [MTA Wigner Research Center, RMKI, Budapest (HU); Eoetvoes University, Department of Atomic Physics, Budapest (HU); Niewiadomski, H. [CERN, Geneva (CH); Oliveri, E. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Oljemark, F. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Orava, R. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Oriunno, M. [SLAC National Accelerator Laboratory, Stanford, CA (US); Oesterberg, K. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Palazzi, P. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Peroutka, Z. [University of West Bohemia, Plzen (CZ); Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (CZ); Quinto, M. [INFN Sezione di Bari, Bari (IT); Dipartimento Interateneo di Fisica di Bari, Bari (IT); Radermacher, E. [CERN, Geneva (CH); Radicioni, E. [INFN Sezione di Bari, Bari (IT); Ravotti, F. [CERN, Geneva (CH); Robutti, E. [INFN Sezione di Genova, Genoa (IT); Ropelewski, L. [CERN, Geneva (CH); Ruggiero, G. [CERN, Geneva (CH); Saarikko, H. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Scribano, A. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Smajek, J. [CERN, Geneva (CH); Snoeys, W. [CERN, Geneva (CH); Sodzawiczny, T. [CERN, Geneva (CH); Sziklai, J. [MTA Wigner Research Center, RMKI, Budapest (HU); Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (US); Turini, N. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Vacek, V. [Czech Technical University, Prague (CZ); Welti, J. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Whitmore, J. [Penn State University, Department of Physics, University Park, PA (US); Wyszkowski, P. [AGH University of Science and Technology, Krakow (PL); Zielinski, K. [AGH University of Science and Technology, Krakow (PL); Collaboration: TOTEM Collaboration

    2015-03-01

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton-proton collisions at √(s) = 8 TeV within the range 3.9 < η < 4.7 and -6.95 < η < -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97 % of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p{sub T} > 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 < η < -6 or 3.7 < η < 4.8. The dN{sub ch}/dη has been found to decrease with vertical stroke η vertical stroke, from 5.11 ± 0.73 at η = 3.95 to 1.81 ± 0.56 at η = -6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement. (orig.)

  8. Measurement of the forward charged particle pseudorapidity density in pp collisions at √(s) = 8 TeV using a displaced interaction point

    International Nuclear Information System (INIS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Bruecken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csoergo, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajicek, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Maeki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Oesterberg, K.; Palazzi, P.; Peroutka, Z.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Whitmore, J.; Wyszkowski, P.; Zielinski, K.

    2015-01-01

    The pseudorapidity density of charged particles dN ch /dη is measured by the TOTEM experiment in proton-proton collisions at √(s) = 8 TeV within the range 3.9 < η < 4.7 and -6.95 < η < -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97 % of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p T > 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 < η < -6 or 3.7 < η < 4.8. The dN ch /dη has been found to decrease with vertical stroke η vertical stroke, from 5.11 ± 0.73 at η = 3.95 to 1.81 ± 0.56 at η = -6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement. (orig.)

  9. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  10. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  11. Interacting particle systems in time-dependent geometries

    Science.gov (United States)

    Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E.

    2013-09-01

    Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space-time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion.

  12. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  13. A proton point source produced by laser interaction with cone-top-end target

    International Nuclear Information System (INIS)

    Yu, Jinqing; Jin, Xiaolin; Zhou, Weimin; Zhao, Zongqing; Yan, Yonghong; Li, Bin; Hong, Wei; Gu, Yuqiu

    2012-01-01

    In this paper, we propose a proton point source by the interaction of laser and cone-top-end target and investigate it by two-dimensional particle-in-cell (2D-PIC) simulations as the proton point sources are well known for higher spatial resolution of proton radiography. Our results show that the relativistic electrons are guided to the rear of the cone-top-end target by the electrostatic charge-separation field and self-generated magnetic field along the profile of the target. As a result, the peak magnitude of sheath field at the rear surface of cone-top-end target is higher compared to common cone target. We test this scheme by 2D-PIC simulation and find the result has a diameter of 0.79λ 0 , an average energy of 9.1 MeV and energy spread less than 35%.

  14. Gas-liquid transition in the model of particles interacting at high energy

    International Nuclear Information System (INIS)

    Bondarenko, S.; Komoshvili, K.

    2013-01-01

    An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, the Boltzmann equation is solved for a self-consistent field (Vlasov's equation) in the linear approximation for the case of a gas under external pressure and the corresponding change of the Knudsen number of the system is calculated. (orig.)

  15. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  16. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  17. Self-regulating and self-evolving particle swarm optimizer

    Science.gov (United States)

    Wang, Hui-Min; Qiao, Zhao-Wei; Xia, Chang-Liang; Li, Liang-Yu

    2015-01-01

    In this article, a novel self-regulating and self-evolving particle swarm optimizer (SSPSO) is proposed. Learning from the idea of direction reversal, self-regulating behaviour is a modified position update rule for particles, according to which the algorithm improves the best position to accelerate convergence in situations where the traditional update rule does not work. Borrowing the idea of mutation from evolutionary computation, self-evolving behaviour acts on the current best particle in the swarm to prevent the algorithm from prematurely converging. The performance of SSPSO and four other improved particle swarm optimizers is numerically evaluated by unimodal, multimodal and rotated multimodal benchmark functions. The effectiveness of SSPSO in solving real-world problems is shown by the magnetic optimization of a Halbach-based permanent magnet machine. The results show that SSPSO has good convergence performance and high reliability, and is well matched to actual problems.

  18. Feebly Interacting Dark Matter Particle as the Inflaton

    OpenAIRE

    Tenkanen, Tommi

    2016-01-01

    We present a scenario where a $Z_2$-symmetric scalar field $\\phi$ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays \\`{a} la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, $\\lambda\\phi^4$, non-minimal coupling to gravity, $\\xi\\phi^2R$, and coupling to another scalar f...

  19. Non-Abelian monopole in the parameter space of point-like interactions

    International Nuclear Information System (INIS)

    Ohya, Satoshi

    2014-01-01

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills

  20. Collective motion of groups of self-propelled particles following interacting leaders

    Science.gov (United States)

    Ferdinandy, B.; Ozogány, K.; Vicsek, T.

    2017-08-01

    In order to keep their cohesiveness during locomotion gregarious animals must make collective decisions. Many species boast complex societies with multiple levels of communities. A common case is when two dominant levels exist, one corresponding to leaders and the other consisting of followers. In this paper we study the collective motion of such two-level assemblies of self-propelled particles. We present a model adapted from one originally proposed to describe the movement of cells resulting in a smoothly varying coherent motion. We shall use the terminology corresponding to large groups of some mammals where leaders and followers form a group called a harem. We study the emergence (self-organization) of sub-groups within a herd during locomotion by computer simulations. The resulting processes are compared with our prior observations of a Przewalski horse herd (Hortobágy, Hungary) which we use as results from a published case study. We find that the model reproduces key features of a herd composed of harems moving on open ground, including fights for followers between leaders and bachelor groups (group of leaders without followers). One of our findings, however, does not agree with the observations. While in our model the emerging group size distribution is normal, the group size distribution of the observed herd based on historical data have been found to follow lognormal distribution. We argue that this indicates that the formation (and the size) of the harems must involve a more complex social topology than simple spatial-distance based interactions.

  1. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  2. Quasi-particles and effective mean field in strongly interacting matter

    International Nuclear Information System (INIS)

    Levai, P.; Ko, C.M.

    2010-01-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  3. Experimental investigation on particle-wall interactions

    International Nuclear Information System (INIS)

    Zeisel, H.; Dorfner, V.

    1988-01-01

    There is still a lack in the knowledge about many physical processes in two-phase flows and therefore their mathematical description for the modelling of two-phase flows by computer simulations still needs some improvement. One required information is the physical procedure of the momentum transfer between the phases themselves, such as particle-particle or particle-fluid interactions, and between the phases and the flow boundaries, such as particle-wall or fluid-wall interactions. The interaction between the two phases can be either a 'long-range' interference or a direct contact between both. For the particle-fluid two-phase flow system the interaction can be devided in particle-fluid, particle-particle and particle-boundary interactions. In this investigation the attention is drawn to the special case of a particle-wall interaction and its 'long-range' interference effect between the wall and a small particle which approaches the wall in normal direction. (orig./GL)

  4. Self-interacting dark matter

    Science.gov (United States)

    Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.

    Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.

  5. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  6. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles

    Science.gov (United States)

    Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  7. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    Science.gov (United States)

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  8. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  9. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  10. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  11. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    International Nuclear Information System (INIS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-01-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n  = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)

  12. Elimination of Power Divergences in Consistent Model for Spinless and High-Spin Particle Interactions

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2007-01-01

    The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle

  13. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  14. Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number

    Science.gov (United States)

    Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel

    2007-11-01

    We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.

  15. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  16. Interactive Terascale Particle Visualization

    Science.gov (United States)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  17. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  18. Constraints on self interacting dark matter from IceCube results

    International Nuclear Information System (INIS)

    Albuquerque, Ivone F.M.; Robertson, Denis S.; Heros, Carlos Pérez de los

    2014-01-01

    If dark matter particles self-interact, their capture by astrophysical objects should be enhanced. As a consequence, the rate by which they annihilate at the center of the object will increase. If their self scattering is strong, it can be observed indirectly through an enhancement of the flux of their annihilation products. Here we investigate the effect of self-interaction on the neutrino flux produced by annihilating dark matter in the center of the Sun. We consider annihilation into two channels: W + W − (or τ + τ − for a dark matter mass below the W mass) and b b-bar . We estimate the event rate in the IceCube detector, using its 79-string configuration, and compare our prediction to their experimental results, hence probing dark matter self interacting models

  19. Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Evaporative Droplets

    Directory of Open Access Journals (Sweden)

    Minsoo P. Kim

    2015-06-01

    Full Text Available Block copolymers (BCPs can create various morphology by self-assembly in bulk or film. Recently, using BCPs in confined geometries such as thin film (one-dimension, cylindrical template (two-dimension, or emulsion droplet (three-dimension, nanostructured BCP particles have been prepared, in which unique nanostructures of the BCP are formed via solvent annealing process and can be controlled depending on molecular weight ratio and interaction parameter of the BCPs, and droplet size. Moreover, by tuning interfacial property of the BCP particles, anisotropic particles with unique nanostructures have been prepared. Furthermore, for practical application such as drug delivery system, sensor, self-healing, metamaterial, and optoelectronic device, functional nanoparticles can be incorporated inside BCP particles. In this article, we summarize recent progress on the production of structured BCP particles and composite particles with metallic nanoparticles.

  20. The classical equations of motion for a spinning point particle with charge and magnetic moment

    International Nuclear Information System (INIS)

    Rowe, E.G.P.; Rowe, G.T.

    1987-01-01

    The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)

  1. Electromagnetic deflection of spinning particles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1992-01-01

    It is shown that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a point-like spin-half particle possessing an electric charge and magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. The equations obtained encompass the well-tested Lorentz force and Thomas-Bargmann-Michel-Telegdi spin equations, as well as providing a definite specification of the classical magnetic dipole force, whose exact form has been the subject of recent debate. Radiation reaction - the force and torque on an accelerated particle due to its self-interaction - is neglected at this stage. 18 refs

  2. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Analysis of subcooled boiling with the two-fluid particle interaction method

    International Nuclear Information System (INIS)

    Shirakawa, Noriyuki; Horie, Hideki; Yamamoto, Yuichi; Tsunoyama, Shigeaki

    2003-01-01

    A particle interaction method called MPS (the Moving Particle Semi-implicit method), which formulates the differential operators in Navier-Stokes' equation as interactions between particles characterized by a kernel function, has been developed in recent years. We have extended this method to a two-fluid system with a potential-type surface tension in order to analyze the two-phase flow without experimental correlation. This extended method (Two-Fluid MPS: TF-MPS) was successfully applied to a subcooled boiling experiment. The most important element in any effective subcooled boiling model is to be able to accurately calculate where significant void fraction appears, that is, the location of the void departure point. The location of the initial void ejection into the subcooled liquid core can be determined fairly well experimentally and conventionally is given in terms of a critical subcooling. We investigated the relation between Stanton and Peclet numbers at the void departure point in the calculated results with TF-MPS method, varying the inlet water velocity to change Peclet number. (author)

  4. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    Science.gov (United States)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  5. Non-self-adjoint Schrödinger operators with nonlocal one-point interactions

    Czech Academy of Sciences Publication Activity Database

    Kuzhel, S.; Znojil, Miloslav

    2017-01-01

    Roč. 11, č. 4 (2017), s. 923-944 ISSN 1735-8787 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : 1-dimensional Schrodinger operator * nonlocal one-point interactions * boundary triplet Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.833, year: 2016

  6. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  7. Colloidal interactions in field-directed self-assembly

    Science.gov (United States)

    Lele, Pushkar P.

    This thesis discusses: (1) the fabrication of an experimental tool, namely holographic optical tweezers for simultaneously manipulating spatial locations of multiple particles, (2) development of a framework for interpreting hydrodynamic interactions between multiple particles close to a no-slip surface and comparisons of experimental data with predictive modeling results (Stokesian dynamics simulations) (3) investigations of colloidal particle interactions under external AC fields and the intriguing spontaneous pattern formations in the suspension and, (4) the use of an unconventional assemble-stretch technique for creating novel 2D and 3D crystalline arrays of anisotropically shaped particles, from spherical particle templates. By blinking holographic optical traps, we investigate the hydrodynamic interactions in multi-particle ensembles, influenced by a no-slip surface. The measurements are carried out by screening out electrostatic interactions in the suspension. We observe that with increasing proximity with the surface, the effect of particle-particle hydrodynamic interactions on the short-time self-diffusivities is screened. We use the Stokeslet representation of particles and combine it with the method of images to understand the correlated motion of particles within the ensembles. Analysis of the resultant ensemble eigen-modes reveals that even in dilute suspensions, the effective diffusivities decay as the inverse of the separations, over the range of particle-particle separations we experimented with. The relative modes exhibit dominant contributions from close neighboring particles and the collective modes incorporate long-range contributions from all particles in the ensemble. Our analysis also confirms that for larger number of particles in the ensemble, the contributions from particle-particle interactions increase and in concentrated suspensions they over-ride the strong hydrodynamic screening by the wall. We investigate the microstructure of

  8. On the interpretation of dark matter self-interactions in Abell 3827

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Kummer, Janis; Sarkar, Subir

    2015-04-01

    Self-interactions of dark matter particles can potentially lead to an observable separation between the dark matter halo and the stars of a galaxy moving through a region of large dark matter density. Such a separation has recently been observed in a galaxy falling into the core of the galaxy cluster Abell 3827. We estimated the DM self-interaction cross section needed to reproduce the observed effects and find that the sensitivity of Abell 3827 has been significantly overestimated in a previous study. Our corrected estimate is σ/m DM ∝3 cm 2 g -1 when self-interactions result in an effective drag force and σ/m DM ∝ 1.5 cm 2 g -1 for the case of contact interactions, in some tension with previous upper bounds.

  9. Self-interacting dark matter constraints in a thick dark disk scenario

    Science.gov (United States)

    Vattis, Kyriakos; Koushiappas, Savvas M.

    2018-05-01

    A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.

  10. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    Science.gov (United States)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  11. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  12. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  13. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  14. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to μ + and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics

  15. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    Science.gov (United States)

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  16. Gravitational field of massive point particle in general relativity

    International Nuclear Information System (INIS)

    Fiziev, P.P.

    2003-10-01

    Using various gauges of the radial coordinate we give a description of the static spherically symmetric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist infinitely many such solutions to the Einstein equations which are physically different and only some of them describe the gravitational field of a single massive point particle. In particular, we show that the widespread Hilbert's form of Schwarzschild solution does not solve the Einstein equations with a massive point particle's stress-energy tensor. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravitational mass defect of a point particle and determine the dependence of the solutions on this mass defect. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. (author)

  17. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Pair interaction of bilayer-coated nanoscopic particles

    Science.gov (United States)

    Zhang, Qi-Yi

    2009-02-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  18. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  19. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    Science.gov (United States)

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  20. 3d particle simulations on ultra short laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  1. A point particle model of lightly bound skyrmions

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2017-04-01

    Full Text Available A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1≤B≤8 obtained by numerical simulation of the full field theory. For 9≤B≤23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein–Rubinstein constraints, is devised.

  2. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  3. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    Science.gov (United States)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  4. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    proton event edge, where dispersion effects (beaming are the greatest, and at the point of peak proton flux, where the particle energy flux is the greatest.Key words. Interplanetary physics (energetic particles; MHD waves and turbulence – Space plasma physics (charged particle motion and acceleration; wave-particle interactions

  5. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    proton event edge, where dispersion effects (beaming are the greatest, and at the point of peak proton flux, where the particle energy flux is the greatest.Key words. Interplanetary physics (energetic particles; MHD waves and turbulence – Space plasma physics (charged particle motion and acceleration; wave-particle interactions

  6. Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro

    2006-01-01

    For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested

  7. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  8. Injections of energetic particles into the magnetosphere. Consequences on deformations of distribution functions, and on gyro-resonance interactions

    International Nuclear Information System (INIS)

    Solomon, Jacques

    1977-01-01

    This research thesis addresses convection movements of energetic ionised particles in the Earth near magnetosphere (geocentric distances of about 2 to 10 Earth radii), and the interactions between these particles and waves they may generate. The author first recalls some notions dealing with cyclotron interactions between waves and particles, gives an example of dispersion relationship for these interactions, and indicates possible approximations for simplification purposes. The author also outlines the role of the hot and cold plasma with respect to densities in the wave amplification coefficient. Then, the author reports the study of wave amplification and of particle scattering. He tries to address the problem of waves-particles interaction through a self-consistent approach, i.e. by calculating simultaneously the spectral intensity of emitted waves and the particle distribution function resulting from their scattering. He more particularly addresses the case of a non-stationary interaction (relaxation) and of a stationary interaction. Complete calculations are performed for this last case. Radial and azimuth drift movements of hot particles under the influence of magnetic and static electric fields are then taken into account [fr

  9. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  10. Observation and Control of Hamiltonian Chaos in Wave-particle Interaction

    International Nuclear Information System (INIS)

    Doveil, F.; Ruzzon, A.; Elskens, Y.

    2010-01-01

    Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step.This contribution reviews: presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm.The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation.A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the field of

  11. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  12. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  13. Self-diffusion of particles interacting through a square-well or square-shoulder potential

    NARCIS (Netherlands)

    Wilbertz, H.; Michels, J.; Beijeren, H. van; Leegwater, J.A.

    1988-01-01

    The diffusion coefficient and velocity autocorrelation function for a fluid of particles interacting through a square-well or square-shoulder potential are calculated from a kinetic theory similar to the Davis-Rice-Sengers theory and the results are compared to those of computer simulations. At low

  14. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  15. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  16. Direct detection signatures of self-interacting dark matter with a light mediator

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Kaplinghat, Manoj; Yu, Hai-Bo

    2015-01-01

    Self-interacting dark matter (SIDM) is a simple and well-motivated scenario that could explain long-standing puzzles in structure formation on small scales. If the required self-interaction arises through a light mediator (with mass ∼ 10 MeV) in the dark sector, this new particle must be unstable to avoid overclosing the universe. The decay of the light mediator could happen due to a weak coupling of the hidden and visible sectors, providing new signatures for direct detection experiments. The SIDM nuclear recoil spectrum is more peaked towards low energies compared to the usual case of contact interactions, because the mediator mass is comparable to the momentum transfer of nuclear recoils. We show that the SIDM signal could be distinguished from that of DM particles with contact interactions by considering the time-average energy spectrum in experiments employing different target materials, or the average and modulated spectra in a single experiment. Using current limits from LUX and SuperCDMS, we also derive strong bounds on the mixing parameter between hidden and visible sector

  17. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  18. Unparticle self-interactions at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Bergstroem, Johannes; Ohlsson, Tommy

    2009-01-01

    We investigate the effect of unparticle self-interactions at the Large Hadron Collider (LHC). Especially, we discuss the three-point correlation function, which is determined by conformal symmetry up to a constant, and study its relation to processes with four-particle final states. These processes could be used as a favorable way to look for unparticle physics, and for weak enough couplings to the standard model, even the only way. We find updated upper bounds on the cross sections for unparticle-mediated 4γ final states at the LHC and novel upper bounds for the corresponding 2γ2l and 4l final states. The size of the allowed cross sections obtained are comparably large for large values of the scaling dimension of the unparticle sector, but they decrease with decreasing values of this parameter. In addition, we present relevant distributions for the different final states, enabling the possible identification of the unparticle scaling dimension if there was to be a large number of events of such final states at the LHC.

  19. Perturbative evaluation of the zero-point function for self-interacting scalar field on a manifold with boundary

    International Nuclear Information System (INIS)

    Tsoupros, George

    2002-01-01

    The character of quantum corrections to the gravitational action of a conformally invariant field theory for a self-interacting scalar field on a manifold with boundary is considered at third loop-order in the perturbative expansion of the zero-point function. Diagramatic evaluations and higher loop-order renormalization can be best accomplished on a Riemannian manifold of positive constant curvature accommodating a boundary of constant extrinsic curvature. The associated spherical formulation for diagramatic evaluations reveals a non-trivial effect which the topology of the manifold has on the vacuum processes and which ultimately dissociates the dynamical behaviour of the quantized field from its behaviour in the absence of a boundary. The first surface divergence is evaluated and the necessity for simultaneous renormalization of volume and surface divergences is shown

  20. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  1. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  2. Observation of a visible charmed particle decay in neutrino interactions

    International Nuclear Information System (INIS)

    Cnops, A.M.; Connolly, P.L.; Kahn, S.A.

    1979-01-01

    In a sample of 250 semileptonic charmed particle decays (ν/sub μ/ + Neon → μ - + e + + ... events), one clear event is found where the e + does not come directly from the ν interaction vertex but from a decay point 1.1 cm downstream of the vertex. This event is interpreted as a visible charmed particle decay: into an e + and a positive and a negative charged track. The observation of a visible charm decay in the sample is consistent with what is expected if the charm lifetime were of the order 5 x 10 -13 sec. 5 references

  3. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out

  4. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  5. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  6. Observation of Hamiltonian chaos and its control in wave-particle interaction

    International Nuclear Information System (INIS)

    Doveil, F; Macor, A; Aissi, A

    2007-01-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics

  7. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    Science.gov (United States)

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  8. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled self-interaction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore, the particular field self-regularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C,P,T, although its individual interaction terms are of V-A and thus C,P nonconserving type

  9. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  10. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  11. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model...... levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse...

  12. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  13. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    Science.gov (United States)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  14. Synthesis and self-assembly of Janus and patchy colloidal particles

    Science.gov (United States)

    Jiang, Shan

    Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle

  15. Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Somnath; Basu, D.N. [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Atta, Debasis [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Government General Degree College, West Bengal (India); Imam, Kouser [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Aliah University, Department of Physics, Kolkata (India); Samanta, C. [Virginia Military Institute, Department of Physics and Astronomy, Lexington, VA (United States)

    2017-07-15

    The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∝1.94 M {sub CircleDot} with radius ∝10.4 km. (orig.)

  16. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.

    Science.gov (United States)

    Shen, Zaiyi; Würger, Alois; Lintuvuori, Juho S

    2018-03-27

    Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].

  17. Narrow Escape of Interacting Diffusing Particles

    Science.gov (United States)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  18. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    Science.gov (United States)

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  19. Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2018-05-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.

  20. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    Science.gov (United States)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  1. Elasto-capillary interactions of drops and particles

    Science.gov (United States)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  2. Self-Assembly of Molecular Threads into Reversible Gels

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2001-03-01

    Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.

  3. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  4. Light weakly interacting massive particles

    Science.gov (United States)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  5. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  6. A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Correggi, M., E-mail: michele.correggi@gmail.com [Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Dipartimento di Matematica e Fisica (Italy); Dell’Antonio, G. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy); Finco, D. [Università Telematica Internazionale Uninettuno, Corso V. Emanuele II 39, Facoltà di Ingegneria (Italy); Michelangeli, A. [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265 (Italy); Teta, A. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy)

    2015-12-15

    We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m{sup ∗} ≃ (13.607){sup −1} a self-adjoint and lower bounded Hamiltonian H{sub 0} can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m{sup ∗},m{sup ∗∗}), where m{sup ∗∗} ≃ (8.62){sup −1}, there is a further family of self-adjoint and lower bounded Hamiltonians H{sub 0,β}, β ∈ ℝ, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.

  7. A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity

    International Nuclear Information System (INIS)

    Correggi, M.; Dell’Antonio, G.; Finco, D.; Michelangeli, A.; Teta, A.

    2015-01-01

    We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m ∗ ≃ (13.607) −1 a self-adjoint and lower bounded Hamiltonian H 0 can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m ∗ ,m ∗∗ ), where m ∗∗ ≃ (8.62) −1 , there is a further family of self-adjoint and lower bounded Hamiltonians H 0,β , β ∈ ℝ, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide

  8. Cosmic censorship, area theorem, and self-energy of particles

    International Nuclear Information System (INIS)

    Hod, Shahar

    2002-01-01

    The (zeroth-order) energy of a particle in the background of a black hole is given by Carter's integrals. However, exact calculations of a particle's self-energy (first-order corrections) are still beyond our present reach in many situations. In this paper we use Hawking's area theorem in order to derive bounds on the self-energy of a particle in the vicinity of a black hole. Furthermore, we show that self-energy corrections must be taken into account in order to guarantee the validity of Penrose's cosmic censorship conjecture

  9. Topological background on charmed and beauty particle pairs produced in high energy hadron interactions in nuclear emulsions

    International Nuclear Information System (INIS)

    Romano, G.

    1984-01-01

    This chapter demonstrates that by making use of the fact that new flavors must be produced in pairs in strong interactions and that beauty particles are expected to decay often into charmed particles, the contribution of background simulating decays can be computed from a pure topological point of view. Topics covered include the emulsion data, the search for charmed particles, the search for beauty particles, detection efficiency, and the evaluation of mean life-time. It is assumed that in the interaction of (350-400) GeV hadrons in emulsion the production rate of charmed particle pairs is 5X10 -3 /interaction. The corresponding figures for BB production are estimated to be 10 3 times smaller. It is noted that some neutral decay topology, like 4 or more charged prongs, are much less affected by background

  10. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    's shocks, and these shocks to be believed to accelerate ions up to several MeV per nucleon. In this paradigm particle acceleration is commonly believed to occur mainly at the well-formed reverse shock at 2-3 AU with particles streaming back from the shocks from the outer heliosphere to 1 AU (Malandraki et al., 2007). However, AEPEs observed for many hours before the crossing of the forward shock (or even before the leading edge of a CIR without well-formed forward shock) cannot be explained within the framework of this paradigm. We have recently found that the effect of pre-CIR AEPEs occurs mainly as a result of the formation of a region filled with magnetic islands compressed between the high-density leading edge of a CIR and the HCS (Khabarova et al. ApJ, 2016). We show here that any kind of complicated stream-CIR interactions may lead to the same effect due to the formation of magnetic cavities in front of CIRs. The analysis of in situ multi-spacecraft measurements often suggests very complicated ways of propagation of streams and current sheets that form magnetic cavities. In the case of multiple stream-stream interaction, comparisons of data from distant spacecraft may be puzzling and even useless for understanding the large-scale topology of the region of particle acceleration, because even several point measurements cannot reconstruct approximate forms of the magnetic cavities and shed light on the pre-history of their origin and evolution. We employ interplanetary scintillation tomographic data for reconstructions of the solar wind speed, density and interplanetary magnetic field profiles to understand a 3-D picture of stream interactions responsible for pre-CIR AEPEs. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324

  11. On the interpretation of dark matter self-interactions in Abell 3827

    DEFF Research Database (Denmark)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Kummer, Janis

    2015-01-01

    Self-interactions of dark matter (DM) particles can potentially lead to an observable separation between the DM halo and the stars of a galaxy moving through a region of large DM density. Such a separation has recently been observed in a galaxy falling into the core of the galaxy cluster Abell 3827...

  12. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  13. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  14. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  15. Electromagnetic spin–orbit interaction and giant spin-Hall effect in dielectric particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yineng [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics and Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, 100081, Beijing (China)

    2013-12-09

    We report a phenomenon that electromagnetic spin–orbit interactions can be tailored by dielectric nanoparticles, and self-similar giant spin-Hall effect has been observed in the dielectric particle cluster. The near-field phase singularities and phase vorticity in the longitudinal component of scattered field can also be controlled by such a dielectric structure. The origin of phenomena is believed to be due to the collective resonance excitation in the dielectric particle cluster. It is expected to find applications in optics information processing and designing new nanophotonic devices.

  16. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  17. Noncanonical quantization of two particles interacting via a harmonic potential

    International Nuclear Information System (INIS)

    Palev, T.D.

    1981-01-01

    Following the ideas of Wigner a non-canonical quantization of a system of two non-relativistic point particles, interacting via a harmonic potential is studied. The center-of-mass phase-space variables are quantized in a canonical way, whereas the internal momentum and the coordinates are assumed to be operators, generating finite-dimensional representations of the Lie superalgebra A(0, 2). It turns out that the operators of the internal Hamiltonian, the relative distance, the internal momentum and the orbital momentum commute with each other. The spectrum of these operators is finite. In particular the distance between the particles is preserved in time and can have four different values so that the particles are confined. Every coordinate operator can be diagonalized, however, the position of the particles cannot be localized, since the operators of the Cartesian cooordinates do not commute. The angular momentum of the system can be either zero or one (in units h/2π/2) [ru

  18. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  19. Scattering properties of point dipole interactions

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.

    2006-01-01

    dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...

  20. Self-interacting asymmetric dark matter coupled to a light massive dark photon

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Pearce, Lauren; Kusenko, Alexander

    2014-01-01

    Dark matter (DM) with sizeable self-interactions mediated by a light species offers a compelling explanation of the observed galactic substructure; furthermore, the direct coupling between DM and a light particle contributes to the DM annihilation in the early universe. If the DM abundance is due to a dark particle-antiparticle asymmetry, the DM annihilation cross-section can be arbitrarily large, and the coupling of DM to the light species can be significant. We consider the case of asymmetric DM interacting via a light (but not necessarily massless) Abelian gauge vector boson, a dark photon. In the massless dark photon limit, gauge invariance mandates that DM be multicomponent, consisting of positive and negative dark ions of different species which partially bind in neutral dark atoms. We argue that a similar conclusion holds for light dark photons; in particular, we establish that the multi-component and atomic character of DM persists in much of the parameter space where the dark photon is sufficiently light to mediate sizeable DM self-interactions. We discuss the cosmological sequence of events in this scenario, including the dark asymmetry generation, the freeze-out of annihilations, the dark recombination and the phase transition which gives mass to the dark photon. We estimate the effect of self-interactions in DM haloes, taking into account this cosmological history. We place constraints based on the observed ellipticity of large haloes, and identify the regimes where DM self-scattering can affect the dynamics of smaller haloes, bringing theory in better agreement with observations. Moreover, we estimate the cosmological abundance of dark photons in various regimes, and derive pertinent bounds

  1. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  2. Self-interaction corrections in density functional theory

    International Nuclear Information System (INIS)

    Tsuneda, Takao; Hirao, Kimihiko

    2014-01-01

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds

  3. Particle-Hole Character of the Higgs and Goldstone Modes in Strongly Interacting Lattice Bosons

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Trivedi, N.; Carusotto, I.; Menotti, C.

    2018-02-01

    We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.

  4. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  5. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    Science.gov (United States)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  6. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    International Nuclear Information System (INIS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The calssical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnetic ZPE

  7. Wave-particle interactions in rotating mirrorsa)

    Science.gov (United States)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  8. Wave-particle Interactions In Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  9. Wave-particle interactions in rotating mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  10. Wave-particle Interactions In Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  11. Collective rotations of active particles interacting with obstacles

    Science.gov (United States)

    Mokhtari, Zahra; Aspelmeier, Timo; Zippelius, Annette

    2017-10-01

    We consider active particles in a heterogeneous medium, modeled by static, random obstacles. In accordance with the known tendency of active particles to cluster, we observe accumulation and crystallization of active particles around the obstacles which serve as nucleation sites. In the limit of high activity, the crystals start to rotate spontaneously, resembling a rotating rigid body. We trace the occurrence of these oscillations to the enhanced attraction of particles whose orientation points along the rotational velocity as compared to those whose orientation points in the opposite direction.

  12. Modified momentum exchange method for fluid-particle interactions in the lattice Boltzmann method.

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-03-01

    In this paper, a modified momentum exchange method for fluid-particle interactions is proposed based on the finite-volume lattice Boltzmann method. The idea of the improvement is to remove the restriction that the boundary points must be set as the midpoints of the grid lines or the intersection of the grid lines with the solid boundaries. The particle surface is represented by a set of arc (area) elements, and the interior fluid is used which the geometric conservation law is naturally satisfied. The interactions between fluid and arc (area) elements of particle boundary are considered using the momentum exchange method, and the mass of the fluid particles which collide with an arc (area) element is obtained by means of numerical integration in the control volume. The fluid field is corrected with the help of the smooth kernel function. Moreover, a generalized explicit time marching scheme is introduced to resolve the motion of particle in the problems with the ratio of particle density to fluid density is close to or less than 1. Finally, some numerical case studies of particle sedimentation are carried out to validate the present method. The corresponding results have a good agreement with the previous literature, which strongly demonstrates the capability of the improved method.

  13. Cellular structures in a system of interacting particles

    International Nuclear Information System (INIS)

    Lev, B.I.

    2009-01-01

    The general description of the formation of a cellular structure in the system of interacting particles is proposed. The analytical results for possible cellular structures in the usual colloidal systems, systems of particles immersed in a liquid crystal, and gravitational systems have been presented. It is shown that the formation of a cellular structure in all systems of interacting particles at different temperatures and concentrations of particles has the same physical nature

  14. Critical points for finite Fibonacci chains of point delta-interactions and orthogonal polynomials

    International Nuclear Information System (INIS)

    De Prunele, E

    2011-01-01

    For a one-dimensional Schroedinger operator with a finite number n of point delta-interactions with a common intensity, the parameters are the intensity, the n - 1 intercenter distances and the mass. Critical points are points in the parameters space of the Hamiltonian where one bound state appears or disappears. The study of critical points for Hamiltonians with point delta-interactions arranged along a Fibonacci chain is shown to be closely related to the study of the so-called Fibonacci operator, a discrete one-dimensional Schroedinger-type operator, which occurs in the context of tight binding Hamiltonians. These critical points are the zeros of orthogonal polynomials previously studied in the context of special diatomic linear chains with elastic nearest-neighbor interaction. Properties of the zeros (location, asymptotic behavior, gaps, ...) are investigated. The perturbation series from the solvable periodic case is determined. The measure which yields orthogonality is investigated numerically from the zeros. It is shown that the transmission coefficient at zero energy can be expressed in terms of the orthogonal polynomials and their associated polynomials. In particular, it is shown that when the number of point delta-interactions is equal to a Fibonacci number minus 1, i.e. when the intervals between point delta-interactions form a palindrome, all the Fibonacci chains at critical points are completely transparent at zero energy. (paper)

  15. New particles and interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10 32 /cm 2 -sec) with pp (with L = 10 33 /cm 2 -sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in √s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references

  16. Inter-particle and interfacial interaction of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Bae, Che Jin; Hwang, Yosun; Park, Jongnam; An, Kwangjin; Lee, Youjin; Lee, Jinwoo; Hyeon, Taeghwan; Park, J.-G.

    2007-01-01

    In order to understand inter-particle as well as interfacial interaction of magnetic nanoparticles, we have prepared several Fe 3 O 4 nanoparticles in the ranges from 3 to 50 nm. These nanoparticles are particularly well characterized in terms of size distribution with a standard deviation (σ) in size less than 0.4 nm. We investigated the inter-particle interaction by measuring the magnetic properties of the nanoparticles while controlling inter-particle distances by diluting the samples with solvents. According to this study, blocking temperatures dropped by 8-17 K with increasing the inter-particle distances from a few nm to 140 nm while the overall shape and qualitative behavior of the magnetization remain unchanged. It implies that most features observed in the magnetic properties of the nanoparticles are due to the intrinsic properties of the nanoparticles, not due to the inter-particle interaction. We then examined possible interfacial magnetic interaction in the core-shell structure of our Fe 3 O 4 nanoparticles

  17. The effect of perception anisotropy on particle systems describing pedestrian flows in corridors

    NARCIS (Netherlands)

    Gulikers, L.; Evers, J.H.M.; Muntean, A.; Lyulin, A.

    2012-01-01

    We consider a microscopic model (a system of self-propelled particles) to study the behaviour of a large group of pedestrians walking in a corridor. Our point of interest is the effect of anisotropic interactions on the global behaviour of the crowd. The anisotropy we have in mind reflects the fact

  18. The effect of perception anisotropy on particle systems describing pedestrian flows in corridors

    NARCIS (Netherlands)

    Gulikers, L.; Evers, J.H.M.; Muntean, A.; Lyulin, A.

    2013-01-01

    We consider a microscopic model (a system of self-propelled particles) to study the behaviour of a large group of pedestrians walking in a corridor. Our point of interest is the effect of anisotropic interactions on the global behaviour of the crowd. The anisotropy we have in mind reflects the fact

  19. Interactive methods for exploring particle simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  20. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  1. Charm and particle production in neutrino interactions

    International Nuclear Information System (INIS)

    Cazzoli, E.G.; Cnops, A.M.; Connolly, P.L.; Louttit, R.I.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tso, T.T.; Williams, H.H.

    1976-01-01

    Ten strange particles were observed in a total of 1086 charged current neutrino interactions obtained in the analysis of 482,000 pictures taken in the Brookhaven Cryogenic 7' Bubble Chamber filled with hydrogen and deuterium. Details of these events are presented together with rates for associated strange particle and ΔS = +-ΔQ production in neutrino interactions

  2. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  3. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  4. Cavitation inception on micro-particles: a self propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of

  5. Self-diffusion at the melting point: From H2 and N2 to liquid metals

    International Nuclear Information System (INIS)

    Armstrong, B.H.

    1992-01-01

    A nominal lower bound to the mean free diffusion time at the melting point T m was obtained earlier which provided a factor-two type estimate for self-diffusion coefficients of the alkali halides, alkali metals, eight other metals, and Ar. The argument was based on the classical Uncertainty Principle applied to the solid crystal, whereby maximum-frequency phonons lose validity as collective excitations and degenerate into aperiodic, single-particle diffusive motion at the melting point. Because of the short time scale of this motion, the perfect-gas diffusion equation and true mass can be used to obtain the self-diffusion coefficient in the Debye approximation to the phonon spectrum. This result for the self-diffusion coefficient also yields the scale factor that determines the order of magnitude of liquid self-diffusion coefficients, which has long been an open question. The earlier theory is summarized and clarified, and the results extended to the more complex molecular liquids H 2 and N 2 . It is also demonstrated that combining Lindemann's melting law with the perfect-gas diffusion equation estimate yields a well-known empirical expression for liquid-metal self-diffusion at T m . Validity of the self-diffusion estimate over a melting temperature range from 14 to more than 1,300 K and over a wide variety of crystals provides strong confirmation for the existence of the specialized diffusive motion at the melting point, as well as confirmation of a relation between the phonon spectrum of the solid crystal and diffusive motion in the melt. 21 refs., 2 tabs

  6. The interaction of fine particles with stranded oil

    International Nuclear Information System (INIS)

    Owens, E.H.

    1999-01-01

    The interaction of micron-sized mineral particles with stranded oil reduces its adhesion to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. Oil and Fine-particle Interaction ('OFI') can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. Fine-particle interaction can be accelerated during a spill response by relocating the oiled sediments into the surf zone. This has been achieved successfully on two occasions to date: the Tampa Bay response in Florida, and the Sea Empress operation in Wales. Sediment relocation also causes physical abrasion by the hydraulic action of waves so that the processes of fine-particle interaction and surf washing usually occur in combination on open coasts. (author)

  7. Self-consistent quasi-particle RPA for the description of superfluid Fermi systems

    CERN Document Server

    Rahbi, A; Chanfray, G; Schuck, P

    2002-01-01

    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situation and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtaining. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.

  8. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  9. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  10. PHYSICS, SCIENCE POLICY CERN's seven-point strategy for future particle physics

    CERN Multimedia

    2004-01-01

    Better coordinated particle accelerator research, with more powerful technology, are major priorities on the seven-point "to do list" revealed last week by CERN, the world's largest particle physics laboratory

  11. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    Science.gov (United States)

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  12. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D; De Freitas, U; De Mello, E R Bezerra, E-mail: denis.barros@ifpb.edu.br, E-mail: umbelino@fisica.ufpb.br, E-mail: emello@fisica.ufpb.br [Instituto Federal de Educacao, Ciencia e Tecnologia da ParaIba, 58.800-970, Sousa, PB (Brazil)

    2011-03-21

    We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green's function associated with this physical system. We explicitly show that for points outside the monopole's core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.

  13. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    International Nuclear Information System (INIS)

    Barbosa, D; De Freitas, U; De Mello, E R Bezerra

    2011-01-01

    We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green's function associated with this physical system. We explicitly show that for points outside the monopole's core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.

  14. Extending Particle Swarm Optimisers with Self-Organized Criticality

    DEFF Research Database (Denmark)

    Løvbjerg, Morten; Krink, Thiemo

    2002-01-01

    Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions.......Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions....

  15. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  16. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  17. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We in-pile tested U-Mo dispersion in Al matrix. Black-Right-Pointing-Pointer We observed interaction layer growth between U-Mo and Al and pore formation there. Black-Right-Pointing-Pointer Pores degrades thermal conductivity and structural integrity of the fueled zone. Black-Right-Pointing-Pointer The amorphous behavior of interaction layers is thought to be the main reason for unstable large pore growth. Black-Right-Pointing-Pointer A mechanism for pore formation and possible remedy to prevent it are proposed. - Abstract: Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  18. Mean multiplicity of secondary particles in hadron-nuclear interactions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.

    1980-01-01

    The mean multiplicity of secondary particles in hA interactions is examined in the framework of the multiplex scattering theory. The dependence of the secondary particle multiplicity coefficient Rsub(6)=anti nsub(hA)/anti nsub(hN) (where anti nsub(hA) and anti nsub(hN) are mean multiplicities of secondary relativistic particles in hA and hN interactions, respectively) on the energy and type of incident particles and atomic number of a target nucleus is analysed. It is shown that predictions of the leading particle cascade model are in satisfactory agreement with the experimental data if the uncertainties of the inelasticity in hN interactions are taken into account. The value Rsub(A) weakly depends both on the incident particle energy and the form of parametrization anti nsub(hN)(E). Allowance of energy losses fluctuation of leading particle results in the Rsub(A) value decrease. From the model of leading particles it does not follow that Rsub(a) strictly depends on the type of incident particles at the fixed value of mean number of collisions. But quantitative values of Rsub(A) for different types of particles and at one value of anti ν, (i.e. at properly chosen value) coincide. The value of Rsub(A) is profoundly dependent on the values of inelasticity factor in hN interactions

  19. Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2003-01-01

    -Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...

  20. Impact of ultralight axion self-interactions on the large scale structure of the Universe

    Science.gov (United States)

    Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2018-01-01

    Ultralight axions have sparked attention because their tiny mass m ˜10-22 eV , which leads to a kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the Lyman-α forest power spectrum set a tight lower bound on their mass of m ≳10-21 eV which makes them much less relevant from an astrophysical point of view. An important caveat to these numerical studies is that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could counteract the quantum "pressure" induced by the strong delocalization of the particles. In this work, we show that even a tiny attractive interaction among ultralight axions can have a significant impact on the stability of cosmic structures at low redshift. After a brief review of known results about solitons in the absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length is larger than a critical value. However, we show that pancakes are unstable against transverse perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant is extremely small, f ≲1013 GeV . Notwithstanding, axion solitonic cores could leave a detectable signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is ˜100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the impact of axion

  1. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  2. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  3. Point interactions in two- and three-dimensional Riemannian manifolds

    International Nuclear Information System (INIS)

    Erman, Fatih; Turgut, O Teoman

    2010-01-01

    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac-delta interactions on two- and three-dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator Φ(E). In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for a general class of manifolds, e.g. for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by the Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the β function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by Rajeev.

  4. One-dimensional gravity in infinite point distributions

    Science.gov (United States)

    Gabrielli, A.; Joyce, M.; Sicard, F.

    2009-10-01

    The dynamics of infinite asymptotically uniform distributions of purely self-gravitating particles in one spatial dimension provides a simple and interesting toy model for the analogous three dimensional problem treated in cosmology. In this paper we focus on a limitation of such models as they have been treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e., the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by “Jeans swindle” for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling of the Jeans swindle in three dimensions, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show explicitly that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N -body simulations. For identical particles the dynamics of the simplest toy model (without expansion) is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss and compare with previous results in the literature and present new results for the specific case of this simplest (static) model starting from “shuffled lattice” initial conditions. These show qualitative properties of the evolution (notably its “self-similarity”) like those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.

  5. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  6. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  7. An experimental study of particle-bubble interaction and attachment in flotation

    KAUST Repository

    Sanchez Yanez, Aaron

    2017-05-01

    The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  8. Third-order particle-hole ring diagrams with contact-interactions and one-pion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2017-05-15

    The third-order particle-hole ring diagrams are evaluated for a NN-contact interaction of the Skyrme type. The pertinent four-loop coefficients in the energy per particle anti E(k{sub f}) ∝ k{sub f}{sup 5+2n} are reduced to double integrals over cubic expressions in Euclidean polarization functions. Dimensional regularization of divergent integrals is performed by subtracting power divergences and the validity of this method is checked against the known analytical results at second order. The complete O(p{sup 2}) NN-contact interaction is obtained by adding two tensor terms and their third-order ring contributions are also calculated in detail. The third-order ring energy arising from long-range 1π-exchange is computed and it is found that direct and exchange contributions are all attractive. The very large size of the three-ring energy due to point-like 1π-exchange, anti E(k{sub f0}) ≅ -92 MeV at saturation density, is however in no way representative for that of realistic chiral NN-potentials. Moreover, the third-order (particle-particle and hole-hole) ladder diagrams are evaluated with the full O(p{sup 2}) contact interaction, and the simplest three-ring contributions to the isospin-asymmetry energy A(k{sub f}) ∝ k{sub f}{sup 5} are studied. (orig.)

  9. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  10. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  11. [Research in elementary particles and interactions

    International Nuclear Information System (INIS)

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K + decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e + e - interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks

  12. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  13. From basic processes to sensors: particle-matter interactions

    International Nuclear Information System (INIS)

    Laforge, Bertrand; Bourgeois, Christian

    2005-11-01

    This academic course aims at presenting and explaining techniques of detection of radiations displaying an energy higher that some tens of keV, such as those met in nuclear physics or in particle physics. In a first part, the author first analyses the operation of a biological sensor (the eye), and then presents some generalities about matter: Rutherford experiment, the atom, molecules and solids. The second part deals with interactions between radiations and matter. The author there addresses interactions of heavy charged particles (ionization with high or low energy transfer), interactions of electrons (ionization, Bremsstrahlung), multiple scattering and straggling, the Cherenkov effect, transition radiation, the interaction of γ radiations in matter (Compton effect, photoelectric effect), the interaction of neutrons in matter. Appendices address γ spectrometry, the radiation of a charged particle moving in a dielectric medium, and issues related to statistical fluctuations (distribution functions, fluctuation propagation, energy resolution, noises)

  14. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  15. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  16. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  17. A study of compound particles in pion-nucleus interactions

    International Nuclear Information System (INIS)

    Ahmad, Tufail

    2012-01-01

    In this paper, the phenomenon of multiparticle production has been studied using the nuclear emulsion technique. Nuclear emulsion is a material which memorises the tracks of charged particles. When an incident particle interacts with the nuclei of the emulsion, secondary particles are produced. These secondary particles are classified into three categories viz., shower (Ns), grey (Ng) and black (Nb) particles. The investigation of particle-nucleus collisions is fundamental for understanding the nature of the interaction process. In such studies most of the attention was paid to the relativistic charged particles that is showers (1-3). From the survey of literature it is found that slow particles (grey and black) are less studied in comparison to charged shower particles. Grey particles may provide some valuable information and it may be taken as good measure of number of collisions made by the incident particle

  18. Scalar self-energy for a charged particle in global monopole spacetime with a spherical boundary

    International Nuclear Information System (INIS)

    De Mello, E R Bezerra; Saharian, A A

    2012-01-01

    We analyze combined effects of the geometry produced by a global monopole and a concentric spherical boundary on the self-energy of a point-like scalar charged test particle at rest. We assume that the boundary is outside the monopole's core with a general spherically symmetric inner structure. An important quantity to this analysis is the three-dimensional Green function associated with this system. For both Dirichlet and Neumann boundary conditions obeyed by the scalar field on the sphere, the Green function presents a structure that contains contributions due to the background geometry of the spacetime and the boundary. Consequently, the corresponding induced scalar self-energy also presents a similar structure. For points near the sphere, the boundary-induced part dominates and the self-force is repulsive/attractive with respect to the boundary for Dirichlet/Neumann boundary condition. In the region outside the sphere at large distances from it, the boundary-free part in the self-energy dominates and the corresponding self-force can be either attractive or repulsive with dependence of the curvature coupling parameter for scalar field. In particular, for the minimal coupling we show the presence of a stable equilibrium point for the Dirichlet boundary condition. In the region inside the sphere, the nature of the self-force depends on the specific model for the monopole's core. As illustrations of the general procedure adopted, we shall consider two distinct models, namely the flower-pot and the ballpoint-pen ones. (paper)

  19. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  20. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  1. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Zalavári, László [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)

    2017-04-19

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  2. Anisotropy migration of self-point defects in dislocation stress fields in BCC Fe and FCC Cu

    International Nuclear Information System (INIS)

    Sivak, A.B.; Chernov, V.M.; Dubasova, N.A.; Romanov, V.A.

    2007-01-01

    Spatial dependence of the interaction energies of self-point defects (vacancies and self interstitial atoms in stable, metastable and saddle point configurations) with edge dislocations in slip systems {1 1 0} and {1 0 0} in BCC Fe and {1 1 1} in FCC Cu was calculated using the anisotropic theory of elasticity and molecular statics (hybrid method). The migration pathways of vacancies and SIA ( dumbbell in Fe and dumbbell in Cu) along which the migration of the defects with the lowest energy barriers were defined in the presence of the dislocation stress fields. These pathways are significantly different in the stress fields of dislocations

  3. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.

    Science.gov (United States)

    Zhang, Du; Su, Neil Qiang; Yang, Weitao

    2017-07-20

    The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

  4. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  5. An interacting particle process related to Young tableaux

    OpenAIRE

    Borodin, Alexei; Olshanski, Grigori

    2013-01-01

    We discuss a stochastic particle system consisting of a two-dimensional array of particles living in one space dimension. The stochastic evolution bears a certain similarity to Hammersley's process, and the particle interaction is governed by combinatorics of the Young tableaux.

  6. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction

    International Nuclear Information System (INIS)

    Bourdier, A.

    1999-01-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  7. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    International Nuclear Information System (INIS)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    2014-01-01

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed

  8. Extended two-particle Green close-quote s functions and optical potentials for two particle scattering by by many-body targets

    International Nuclear Information System (INIS)

    Brand, J.; Cederbaum, L.S.

    1996-01-01

    An extension of the fermionic particle-particle propagator is presented that possesses similar algebraic properties to the single-particle Green close-quote s function. In particular, this extended two-particle Green close-quote s function satisfies Dyson close-quote s equation and its self energy has the same analytic structure as the self energy of the single-particle Green close-quote s function. For the case of a system interacting with one-particle potentials only, the two-particle self energy takes on a particularly simple form, just like the common self energy does. The new two-particle self energy also serves as a well behaved optical potential for the elastic scattering of a two-particle projectile by a many-body target. Due to its analytic structure, the two-particle self energy avoids divergences that appear with effective potentials derived by other means. Copyright copyright 1996 Academic Press, Inc

  9. Self-Similar Spin Images for Point Cloud Matching

    Science.gov (United States)

    Pulido, Daniel

    based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  10. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  11. New data on the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    The authors demonstrated that standard dose calculation methods for hot particles could seriously overestimate the beta dose rate component to skin. The reason-self-absorption within an activated satellite particle that has a finite thickness can lead to dramatic reductions in beta output, as compared to that predicted by calculation models that assume the particle has zero thickness. In this paper, the authors demonstrate the self-absorption effect with a particle model and confirmed it with measurements on two high-activity Co-60 particles found at the Palo Verde Nuclear Power Station. The authors then described a method for using an Eberline RO-2 ion chamber survey instrument to estimate the beta dose rate reduction related to self-absorption within a particle. This method relied on the comparison of the uncorrected beta/gamma ratio [(open window-closed window) divided-by closed window] for a particle expected of exhibiting self-absorption to the ratio obtained for a particle of zero thickness

  12. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  13. From MIPS to Vicsek: A comprehensive phase diagram for self-propelled rods

    Science.gov (United States)

    Shi, Xiaqing

    Self-propelled rods interacting by volume exclusion is one of the simplest active matter systems. Despite years of effort, no comprehensive picture of their phase diagram is available. Furthermore, results on explicit rods are so far largely disconnected from those obtained on the relatively better understood cases of motility induced phase separation (MIPS) of (usually) isotropic active particles, and from our current knowledge of Vicsek-style aligning point particles. In this talk, I will present a complete phase diagram of a generic model of self-propelled rods and show how it is connected to both MIPS and Vicsek worlds.

  14. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub...

  15. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  16. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  17. Schroedinger operators with point interactions and short range expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)

  18. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  19. Accounting for the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    This paper reports that the assumptions used dose calculations can be overly conservative for discrete hot particles (activated satellite chips and irradiated fuel fragments) due to self-absorption of betas within the particles. Using data from tests with a Co-60 hot particle, a model is developed to estimate the dose reduction factor afforded by self-absorption in a satellite chip with a known thickness. The model can be applied indirectly using ion chamber survey instrument readings (the thickness of the particle does not have to be measured). Tests with Co-60 particles found at the Palo Verde Nuclear Generating Station verify that self-absorption is significant -- in one case, a dose reduction factor of 7 was measured in a satellite chip with a visible thickness

  20. Investigation on particle-solid interactions

    International Nuclear Information System (INIS)

    Yano, Syukuro

    1988-08-01

    Basic processes in plasma-material interactions have been surveyed and reviewed. Problems concerned with carbon materials, which have been progressively used for the first wall and limiters in Tokamaks, are mainly discussed. Recent usage of carbon materials, basic properties and characteristics of carbon/graphite materials, desorption of gasses are described. As to the interactions of incident hydrogen isotope particles with graphite surface, data of trapping, depth profile, reemission, isotope exchange, and diffusion are reviewed and discussed. (author)

  1. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  2. Interactive visual exploration of a trillion particles

    KAUST Repository

    Schatz, Karsten

    2017-03-10

    We present a method for the interactive exploration of tera-scale particle data sets. Such data sets arise from molecular dynamics, particle-based fluid simulation, and astrophysics. Our visualization technique provides a focus+context view of the data that runs interactively on commodity hardware. The method is based on a hybrid multi-scale rendering architecture, which renders the context as a hierarchical density volume. Fine details in the focus are visualized using direct particle rendering. In addition, clusters like dark matter halos can be visualized as semi-transparent spheres enclosing the particles. Since the detail data is too large to be stored in main memory, our approach uses an out-of-core technique that streams data on demand. Our technique is designed to take advantage of a dual-GPU configuration, in which the workload is split between the GPUs based on the type of data. Structural features in the data are visually enhanced using advanced rendering and shading techniques. To allow users to easily identify interesting locations even in overviews, both the focus and context view use color tables to show data attributes on the respective scale. We demonstrate that our technique achieves interactive performance on a one trillionpar-ticle data set from the DarkSky simulation.

  3. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    International Nuclear Information System (INIS)

    Barbosa, Denis; Freitas, Umbelino; Mello, Eugenio Bezerra de

    2011-01-01

    Full text: Global monopoles are heavy spherically symmetric topological objects which may have been formed by the vacuum phase transition in the early universe after Planck time. Although the global monopole was first introduced by Sokolov and Starobinsky, its gravitational effects have been analyzed by Barriola and Vilenkin. We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ball-point pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole. (author)

  4. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Denis; Freitas, Umbelino; Mello, Eugenio Bezerra de [Instituto Federal de Educacao, Ciencia e Tecnologia da Paraiba (IFPB), Joao Pessoa, PB (Brazil); Universidade Federal da Paraiba (IFPB), PB (Brazil)

    2011-07-01

    Full text: Global monopoles are heavy spherically symmetric topological objects which may have been formed by the vacuum phase transition in the early universe after Planck time. Although the global monopole was first introduced by Sokolov and Starobinsky, its gravitational effects have been analyzed by Barriola and Vilenkin. We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ball-point pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole. (author)

  5. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    Science.gov (United States)

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  6. Two-particle versus three-particle interactions in single ionization of helium by ion impact

    International Nuclear Information System (INIS)

    Schulz, M; Moshammer, R; Fischer, D; Ullrich, J

    2004-01-01

    We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions

  7. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.

    Science.gov (United States)

    Wang, Sijia; Wu, Ning

    2014-04-01

    Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.

  8. Elementary particles and basic interactions. Trends and perspectives

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1992-06-01

    This lesson given to Physics teachers, takes stock of actual knowledge and trends in Particle Physics: basic interactions and unification, elementary particles (lepton-quarks), fields theories, boson and gluon discovery. It reminds the operating principle of different large accelerators established in the world and associated particle detectors. It includes also a glossary

  9. Spin flip due to the spin–orbit interaction of colliding slow charged particles

    International Nuclear Information System (INIS)

    Sasorov, P. V.; Fomin, I. V.

    2017-01-01

    The scattering amplitudes of point charged particles is calculated analytically taking into account the spin–orbit interaction. We have considered two cases typical of a hydrogen-like plasma: scattering of an electron by a heavy ion and scattering of an electron by a free electron. The results have been obtained taking into account the ranges of low collision energies smaller than α"2m_ec"2, where α is the fine structure constant.

  10. Communication Styles of Interactive Tools for Self-Improvement.

    Science.gov (United States)

    Niess, Jasmin; Diefenbach, Sarah

    Interactive products for self-improvement (e.g., online trainings to reduce stress, fitness gadgets) have become increasingly popular among consumers and healthcare providers. In line with the idea of positive computing, these tools aim to support their users on their way to improved well-being and human flourishing. As an interdisciplinary domain, the design of self-improvement technologies requires psychological, technological, and design expertise. One needs to know how to support people in behavior change, and one needs to find ways to do this through technology design. However, as recent reviews show, the interlocking relationship between these disciplines is still improvable. Many existing technologies for self-improvement neglect psychological theory on behavior change, especially motivational factors are not sufficiently considered. To counteract this, we suggest a focus on the dialog and emerging communication between product and user, considering the self-improvement tool as an interactive coach and advisor. The present qualitative interview study (N = 18) explored the user experience of self-improvement technologies. A special focus was on the perceived dialog between tool and user, which we analyzed in terms of models from communication psychology. Our findings show that users are sensible to the way the product "speaks to them" and consider this as essential for their experience and successful change. Analysis revealed different communication styles of self-improvement tools (e.g., helpful-cooperative, rational-distanced, critical-aggressive), each linked to specific emotional consequences. These findings form one starting point for a more psychologically founded design of self-improvement technology. On a more general level, our approach aims to contribute to a better integration of psychological and technological knowledge, and in consequence, supporting users on their way to enhanced well-being.

  11. The problem of infinite self-energy in electrodynamics and gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, K P; Sivaram, C [Indian Inst. of Science, Bangalore. Div. of Physics and Mathematical Sciences

    1975-02-01

    The appearance of infinities in the self-energies of point particles in both classical and quantum electrodynamics has been a persistent problem for the last several decades. This problem is discussed at length in relation to the Newtonian theory of gravitation and the modern (relativity) theory on gravitation. Gravitational contraction and the mass and radius of the electron are treated in detail. The spacetime properties around the Schwarzchild radius of the electron are modified to explain the divergences. The quantum gravitational mass and the quantum gravitational length are mentioned. It is pointed out that the out-off at the Schwarzchild radius applies not only to photon but also to the virtual quanta of all fields with which the particle interacts. Arguments are extended to explain the gravitational interactions of the proton. The interactions of the hadrons through f-gravity are explained. Recent work on renormalisibility (i.e. removal of divergences) of quantum gravitation are mentioned.

  12. Characteristics of the groups of charged particles in bar pp,pp and K-p interactions at 32 GeV/c

    International Nuclear Information System (INIS)

    Bogolubsky, M.Yu.; Levitsky, M.S.; Maksimov, V.V.

    1995-01-01

    In the clan model, a method is developed for determining the following characteristics of the groups of charged particles: group multiplicity in an interval, particle multiplicity in a group, and width distribution of groups. Distribution densities are obtained for particles originating from clans produced at a given rapidity point with given width in bar pp, K - p, and pp interactions at 32 GeV/c. It is shown that the differences in the rate of growth of factorial moments in bar pp and K - p interactions are due to a difference in the relative contributions of small-width clans. 12 refs., 13 figs., 2 tabs

  13. The weak interaction in nuclear, particle and astrophysics

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.

    1989-01-01

    This book is an introduction to the concepts of weak interactions and their importance and consequences for nuclear physics, particle physics, neutrino physics, astrophysics and cosmology. After a general introduction to elementary particles and interactions the Fermi theory of weak interactions is described together with its connection with nuclear structure and beta decay including the double beta decay. Then, after a general description of gauge theories the Weinberg-Salam theory of the electroweak interactions is introduced. Thereafter the weak interactions are considered in the framework of grand unification. Then the physics of neutrinos is discussed. Thereafter connections of weak interactions with astrophysics are considered with special regards to the gravitational collapse and the synthesis of heavy elements in the r-process. Finally, the connections of grand unified theories and cosmology are considered. (HSI) With 141 figs., 39 tabs

  14. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.

    Science.gov (United States)

    Nandi, Saroj Kumar; Gov, Nir S

    2017-10-25

    The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f 0 and a persistence time τ p . Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T eff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T eff that approaches a constant in the long-time limit, which depends on the activity parameters f 0 and τ p . We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τ α , the α-relaxation time, behaves as τ α ∼ f 0 -2γ , where γ = 1.74 is the MCT exponent for the passive system. τ α may increase or decrease as a function of τ p depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.

  15. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  16. Does Digital Game Interactivity Always Promote Self-Efficacy?

    Science.gov (United States)

    Lee, Yu-Hao

    2015-11-01

    Interactive digital games can promote self-efficacy by engaging players in enactive and observational learning. However, interactivity does not always lead to greater self-efficacy. Important constructs in social cognitive theory, such as performance outcome and perceived similarity, are often not accounted for in studies that have tested the effect of digital game interactivity on self-efficacy. This study assessed the effects of interactive digital games compared with passive digital games based on video comparison, a common experimental design used to test the effect of digital game interactivity on self-efficacy. In addition, this study also evaluated player performance and measured perceived similarity to the observed player. Findings suggested that in general, digital game interactivity predicted higher self-efficacy compared with noninteractive passive games. However, in the noninteractive conditions, the effects of performance on self-efficacy were moderated by perceived similarity between the observer and the observed player. When the observed player was perceived to be similar to the observer, the effects of performance on self-efficacy were comparable to the interactive game, but when the observed player was perceived as dissimilar to the observer, observing the dissimilar player failed to increase observer self-efficacy. Implications for interactivity manipulations and game developers are discussed.

  17. Interaction range perturbation theory for three-particle problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Shapoval, D.V.

    1988-01-01

    The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established

  18. Measurement of Charged Particle Interactions in Spacecraft and Planetary Habitat Shielding Materials

    Science.gov (United States)

    Zeitlin, Cary J.; Heilbronn, Lawrence H.; Miller, Jack; Wilson, John W.; Singleterry, Robert C., Jr.

    2003-01-01

    Accurate models of health risks to astronauts on long-duration missions outside the geomagnetosphere will require a full understanding of the radiation environment inside a spacecraft or planetary habitat. This in turn requires detailed knowledge of the flux of incident particles and their propagation through matter, including the nuclear interactions of heavy ions that are a part of the Galactic Cosmic Radiation (GCR). The most important ions are likely to be iron, silicon, oxygen, and carbon. Transport of heavy ions through complex shielding materials including self-shielding of tissue modifies the radiation field at points of interest (e.g., at the blood-forming organs). The incident flux is changed by two types of interactions: (1) ionization energy loss, which results in reduced particle velocity and higher LET (Linear Energy Transfer); and (2) nuclear interactions that fragment the incident nuclei into less massive ions. Ionization energy loss is well understood, nuclear interactions less so. Thus studies of nuclear fragmentation at GCR-like energies are needed to fill the large gaps that currently exist in the database. These can be done at only a few accelerator facilities where appropriate beams are available. Here we report results from experiments performed at the Brookhaven National Laboratory s Alternating Gradient Synchrotron (AGS) and the Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC). Recent efforts have focused on extracting charge-changing and fragment production cross sections from silicon beams at 400, 600, and 1200 MeV/nucleon. Some energy dependence is observed in the fragment production cross sections, and as in other data sets the production of fragments with even charge numbers is enhanced relative to those with odd charge numbers. These data are compared to the NASA-LaRC model NUCFRG2. The charge-changing cross section data are compared to recent calculations using an improved model due to Tripathi, which accurately predicts the

  19. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  20. Direct observation of a 'devil's staircase' in wave-particle interaction

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro; Elskens, Yves

    2006-01-01

    We report the experimental observation of a 'devil's staircase' in a time-dependent system considered as a paradigm for the transition to large-scale chaos in the universality class of Hamiltonian systems. A test electron beam is used to observe its non-self-consistent interaction with externally excited wave(s) in a traveling wave tube (TWT). A trochoidal energy analyzer records the beam energy distribution at the output of the interaction line. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior for increasing excitation amplitude, due to the nonlinear forcing by the second wave on the pendulum-like motion of a charged particle in one electrostatic wave

  1. Analysis of the dynamic interaction between SVOCs and airborne particles

    DEFF Research Database (Denmark)

    Liu, Cong; Shi, Shanshan; Weschler, Charles J.

    2013-01-01

    A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...

  2. Dynamics of relativistic point particles as a problem with constraints

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1976-01-01

    The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation

  3. Self-consistent description of dipole states taking into account the one-particle continuum

    International Nuclear Information System (INIS)

    Gareev, F.A.; Ershov, S.N.; Pyatov, N.I.; Fayans, S.A.; Salamov, D.I.

    1981-01-01

    A self-consistent translationally invariant model with separable effective interactions is used to describe the dipole excitations of spherical nuclei. The equations for the effective field are solved in the coordinate representation, taking the one-particle continuum into account exactly. This makes it possible to obtain the escape widths of excitations with energy above the nucleon-emission threshold. We calculate the energies, B(E1), strength functions, escape widths, and transition densities of the dipole states for a number of light and heavy nuclei

  4. Fluctuations and pattern formation in self-propelled particles.

    Science.gov (United States)

    Mishra, Shradha; Baskaran, Aparna; Marchetti, M Cristina

    2010-06-01

    We consider a coarse-grained description of a collection of self-propelled particles given by hydrodynamic equations for the density and polarization fields. We find that the ordered moving or flocking state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating stripes of flocking particles interspersed with low-density disordered regions. Further, we find that even in the regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density and orientational order. We study the hydrodynamic equations analytically and numerically to characterize both regimes.

  5. Scattering and absorption of particles emitted by a point source in a cluster of point scatterers

    International Nuclear Information System (INIS)

    Liljequist, D.

    2012-01-01

    A theory for the scattering and absorption of particles isotropically emitted by a point source in a cluster of point scatterers is described and related to the theory for the scattering of an incident particle beam. The quantum mechanical probability of escape from the cluster in different directions is calculated, as well as the spatial distribution of absorption events within the cluster. A source strength renormalization procedure is required. The average quantum scattering in clusters with randomly shifting scatterer positions is compared to trajectory simulation with the aim of studying the validity of the trajectory method. Differences between the results of the quantum and trajectory methods are found primarily for wavelengths larger than the average distance between nearest neighbour scatterers. The average quantum results include, for example, a local minimum in the number of absorption events at the location of the point source and interference patterns in the angle-dependent escape probability as well as in the distribution of absorption events. The relative error of the trajectory method is in general, though not generally, of similar magnitude as that obtained for beam scattering.

  6. A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2009-01-01

    In this article we study the effect of the inter-particle interaction on the bed dynamics, by considering a variable restitution coefficient. The restitution coefficient is varied in time and space depending on the moisture content due to the particle-droplet interaction and evaporation. This study

  7. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  8. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  9. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  10. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  11. A correction procedure for thermally two-way coupled point-particles

    Science.gov (United States)

    Horwitz, Jeremy; Ganguli, Swetava; Mani, Ali; Lele, Sanjiva

    2017-11-01

    Development of a robust procedure for the simulation of two-way coupled particle-laden flows remains a challenge. Such systems are characterized by O(1) or greater mass of particles relative to the fluid. The coupling of fluid and particle motion via a drag model means the undisturbed fluid velocity evaluated at the particle location (which is needed in the drag model) is no longer equal to the interpolated fluid velocity at the particle location. The same issue arises in problems of dispersed flows in the presence of heat transfer. The heat transfer rate to each particle depends on the difference between the particle's temperature and the undisturbed fluid temperature. We borrow ideas from the correction scheme we have developed for particle-fluid momentum coupling by developing a procedure to estimate the undisturbed fluid temperature given the disturbed temperature field created by a point-particle. The procedure is verified for the case of a particle settling under gravity and subject to radiation. The procedure is developed in the low Peclet, low Boussinesq number limit, but we will discuss the applicability of the same correction procedure outside of this regime when augmented by appropriate drag and heat exchange correlations. Supported by DOE, J. H. Supported by NSF GRF

  12. Are Higgs particles strongly interacting(question mark)

    International Nuclear Information System (INIS)

    Shanker, O.

    1982-02-01

    The order of magnitude of Yukawa couplings in some theories with flavour violating Higgs particles is estimated. Based on these couplings, mass bounds for flavour violating Higgs particles are derived from the Ksub(L)-Ksub(S) mass difference. The Higgs particles have to be very heavy, implying that the Higgs sector quartic couplings are very large. Thus, these theories seem to require a strongly interacting Higgs sector unless one adjusts to the Higgs-fermion Yukawa couplings to within two orders of magnitude, so as to suppress the coupling of Higgs particles to the flavour-violating anti sd current. Most models with flavour violating Higgs particles have the same general features, so the conclusions are likely to hold for a wide class of models with flavour violating Higgs particles

  13. Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach

    Science.gov (United States)

    Yao, Yuan; Capecelatro, Jesse

    2018-03-01

    We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.

  14. Effects of field interactions upon particle creation in Robertson-Walker universes

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.; Ford, L.H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length. (author)

  15. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.

    Science.gov (United States)

    Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio

    2018-02-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.

  16. Self-Assembly of Colloidal Particles

    Indian Academy of Sciences (India)

    is self-assembly where one engineers interaction between nanoscopic building blocks so ..... big question in the field how this microscopic chirality of the virus gets translated ... shape emerges due to a competition between the surface tension.

  17. The nonlinear Dirac equation and the study of effective many-particle interactions in QED

    International Nuclear Information System (INIS)

    Ionescu, D.C.

    1987-12-01

    The starting point of the discussion was extended Lagrangian density for the classical Dirac field. The considered additional terms we had thereby interpreted as effective interactions because the corresponding field theory was not renormalizable. A scalar coupling as well as a vectorial coupling were put into calculation. The equation of motion for the system was thereby a one-particle equation which separated for s 1/2 and p 1/2 states and led to a system of coupled differential equations for the radial part. The derived radial equations were studied on three different levels. First we considered ordinary systems from atomic physics with ordinal numbers Z ≤ 110 in order to obtain from precision experiments of quantum electrodynamics upper bounds for the coupling constants. Second we have studied the influence of these additional interactions on the energy levels of the superheavy systems with ordinal numbers 110 ≤ Z ≤ 190. Third we have searched for bound states of a nonlinear Dirac equation which should exist only because of the effective interaction. In the further study we have then changed to a field-quantized consideration because our hitherto analysis was purely classical. In this connection we have studied the (e + e - ) 2 system with a (anti ΨΓΨ) 2 interaction. From the corresponding many-particle equation we have then by means of the Hartree-Fock method derived the one-particle equation of the system. Finally we had studied the electron-positron interaction by exchange of a massive intermediate vector boson. (orig./HSI) [de

  18. Self-organization of social hierarchy on interaction networks

    International Nuclear Information System (INIS)

    Fujie, Ryo; Odagaki, Takashi

    2011-01-01

    In order to examine the effects of interaction network structures on the self-organization of social hierarchy, we introduce the agent-based model: each individual as on a node of a network has its own power and its internal state changes by fighting with its neighbors and relaxation. We adopt three different networks: regular lattice, small-world network and scale-free network. For the regular lattice, we find the emergence of classes distinguished by the internal state. The transition points where each class emerges are determined analytically, and we show that each class is characterized by the local ranking relative to their neighbors. We also find that the antiferromagnetic-like configuration emerges just above the critical point. For the heterogeneous networks, individuals become winners (or losers) in descending order of the number of their links. By using mean-field analysis, we reveal that the transition point is determined by the maximum degree and the degree distribution in its neighbors

  19. Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction

  20. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    Bossev, D.P.; Warren, G.

    2009-01-01

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  1. Hydrodynamic limit of interacting particle systems

    International Nuclear Information System (INIS)

    Landim, C.

    2004-01-01

    We present in these notes two methods to derive the hydrodynamic equation of conservative interacting particle systems. The intention is to present the main ideas in the simplest possible context and refer for details and references. (author)

  2. Dynamics of magnetic nano-particle assembly

    International Nuclear Information System (INIS)

    Kondratyev, V N

    2010-01-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  3. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  4. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  5. Planckian Interacting Massive Particles as Dark Matter

    CERN Document Server

    Garny, Mathias; Sloth, Martin S.

    2016-03-10

    The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar...

  6. Active matter in silico : phase behaviour of attractive, repulsive and anisotropic self-propelled particles

    NARCIS (Netherlands)

    Prymidis, V.

    2017-01-01

    In this thesis we study emergent statistical properties of many-particle systems of self-propelled particles using computer simulations. Ensembles of self-propelled particles belong to the class of physical systems labeled active matter, a term that refers to systems whose individual components are

  7. Vacuum polarization and topological self-interaction of a charge in multiconic space

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Grats, Y.V.; Lavrent'ev, A.B.

    1995-01-01

    The behavior of classical and quantized massless scalar fields in n-dimensional multiconic space-time is considered. An expression for the Euclidean Green's function is obtained using the methods of perturbation theory. It is shown that a nontrivial topology of the space distorts the electrostatic field of a pointlike charge; as a result, the self-energy of the particle assumes a nonzero value, and a force of topological self-interaction arises. Similarly, a change in the spectrum of vacuum fluctuations of a quantized scalar field leads to nonzero vacuum expectation values left-angle φ 2 right-angle vac and left-angle T μv right-angle va and gives rise to vacuum attraction between parallel cosmic strings. 28 refs

  8. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  9. On the Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2012-01-01

    The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermi...

  10. Interaction of free charged particles with a chirped electromagnetic pulse

    International Nuclear Information System (INIS)

    Khachatryan, A.G.; Goor, F.A. van; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles

  11. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics

  12. Controlled, Constrained, or Flexible? How Self-Management Goals Are Shaped By Patient-Provider Interactions.

    Science.gov (United States)

    Franklin, Marika; Lewis, Sophie; Willis, Karen; Rogers, Anne; Venville, Annie; Smith, Lorraine

    2018-06-01

    A person-centered approach to goal-setting, involving collaboration between patients and health professionals, is advocated in policy to support self-management. However, this is difficult to achieve in practice, reducing the potential effectiveness of self-management support. Drawing on observations of consultations between patients and health professionals, we examined how goal-setting is shaped in patient-provider interactions. Analysis revealed three distinct interactional styles. In controlled interactions, health professionals determine patients' goals based on biomedical reference points and present these goals as something patients should do. In constrained interactions, patients are invited to present goals, yet health professionals' language and questions orientate goals toward biomedical issues. In flexible interactions, patients and professionals both contribute to goal-setting, as health professionals use less directive language, create openings, and allow patients to decide on their goals. Findings suggest that interactional style of health professionals could be the focus of interventions when aiming to increase the effectiveness of goal-setting.

  13. P-matrix description of charged particles interaction

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1992-01-01

    The paper deals with formalism of the P-matrix description of two charged particles interaction. Separation in the explicit form of the background part corresponding to the purely Coulomb interaction in the P-matrix is proposed. Expressions for the purely Coulomb P-matrix, its poles, residues and purely Coulomb P-matrix approach eigenfunctions are obtained. (author). 12 refs

  14. Interacting particle systems on graphs

    Science.gov (United States)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  15. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  16. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics. (Author) [pt

  17. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    Science.gov (United States)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  18. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  19. Stochastic interaction between TAE and alpha particles

    International Nuclear Information System (INIS)

    Krlin, L.; Pavlo, P.; Malijevsky, I.

    1996-01-01

    The interaction of toroidicity-induced Alfven eigenmodes with thermonuclear alpha particles in the intrinsic stochasticity regime was investigated based on the numerical integration of the equation of motion of alpha particles in the tokamak. The first results obtained for the ITER parameters and moderate wave amplitudes indicate that the stochasticity is highest in the trapped/passing boundary region, where the alpha particles jump stochastically between the two regimes with an appreciable radial excursion (about 0.5 m amplitudes). A similar chaotic behavior was also found for substantially lower energies (about 350 keV). 7 figs., 15 refs

  20. Collective motion of active Brownian particles with polar alignment.

    Science.gov (United States)

    Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio

    2018-04-04

    We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

  1. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM

  2. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  3. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  4. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  5. Phase separation of self-propelled ballistic particles

    Science.gov (United States)

    Bruss, Isaac R.; Glotzer, Sharon C.

    2018-04-01

    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  6. Self-exciting point process in modeling earthquake occurrences

    International Nuclear Information System (INIS)

    Pratiwi, H.; Slamet, I.; Respatiwulan; Saputro, D. R. S.

    2017-01-01

    In this paper, we present a procedure for modeling earthquake based on spatial-temporal point process. The magnitude distribution is expressed as truncated exponential and the event frequency is modeled with a spatial-temporal point process that is characterized uniquely by its associated conditional intensity process. The earthquakes can be regarded as point patterns that have a temporal clustering feature so we use self-exciting point process for modeling the conditional intensity function. The choice of main shocks is conducted via window algorithm by Gardner and Knopoff and the model can be fitted by maximum likelihood method for three random variables. (paper)

  7. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    Science.gov (United States)

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  8. Three-particle one-hole multiple scattering contribution to the nuclear effective interaction in mass-18 nuclei

    International Nuclear Information System (INIS)

    Bando, H.; Krenciglowa, E.M.; Ando, K.

    1979-01-01

    Within the systematic framework of the double partition approach, the three-particle one-hole multiple scattering and Q-box formalisms are combined to give the valence-linked and connected energy-independent effective interaction. All low-lying [2p+3p1h] contributions to the mass-18 effective interaction are evaluated using an essentially exact energy-dependent reaction matrix based on the Reid SC potential. The low-lying one-body field of the core nucleus is treated consistently with the underlying reaction matrix G through particle- and hole-line self-energy insertions. Center-of-mass motion, folded diagrams and starting energy dependence are properly taken into account throughout. The low-lying [2p+3p1h] correlations are strongly damped by self-energy insertions. By incorporating only the folded diagram contributions with origins in the low-lying space, the net effect of all low-lying [2p+3p1h] correlations is to give back the bare-G plus second-order core-polarization spectra which are found to be in respectable agreement with the experimental spectra. However, including the full folded diagram contribution, which has additional contributions from the high-lying space through the energy dependence of G, leads to final spectra which deviate sizably from experiment. The present results are conclusive in the sense that the treatment is essentially exact for low-lying [2p+3p1h] correlations which originate from the high-lying two-particle correlations through the reaction matrix G. (Auth.)

  9. Analytic properties of finite-temperature self-energies

    International Nuclear Information System (INIS)

    Weldon, H. Arthur

    2002-01-01

    The analytic properties in the energy variable k 0 of finite-temperature self-energies are investigated. A typical branch cut results from n particles being emitted into the heat bath and n ' being absorbed from the heat bath. There are three main results: First, in addition to the branch points at which the cuts terminate, there are also branch points attached to the cuts along their length. Second, branch points at k 0 =±k are ubiquitous and for massive particles they are essential singularities. Third, in a perturbative expansion using free particle propagators or in a resummed expansion in which the propagator pole occurs at a real energy, the self-energy will have a branch point at the pole location

  10. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  11. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Amorim, R.; Tiomno, J.

    1977-01-01

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt

  12. On the reduced dynamics of a subset of interacting bosonic particles

    Science.gov (United States)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  13. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    Science.gov (United States)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on

  15. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    Science.gov (United States)

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  17. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  18. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  19. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    Science.gov (United States)

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  20. Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles

    Directory of Open Access Journals (Sweden)

    Ming-Yu Zhang

    2016-09-01

    Full Text Available A new microfluidic approach to preparing anisotropic colloidal photonic crystal microparticles is developed and the self-assembly kinetics of colloidal nanoparticles is discussed. Based on the “coffee ring” effect in the self-assembly process of colloidal silica particle in strong solvent extraction environment, we successfully prepared anisotropic photonic crystal microparticles with different shapes and improved optical properties. The shapes and optical properties of photonic crystal microparticles can be controlled by adjusting the droplet size and extraction rate. We studied the self-assembly mechanism of colloidal silica particles in strong solvent extraction environment, which has potential applications in a variety of fields including optical communication technology, environmental response, photo-catalysis and chromic material.

  1. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  2. Self-assembly scenarios of patchy colloidal particles in two dimensions

    International Nuclear Information System (INIS)

    Doppelbauer, Guenther; Bianchi, Emanuela; Kahl, Gerhard

    2010-01-01

    We have investigated the self-assembly scenario of patchy colloidal particles in a two-dimensional system. The energetically most favourable ordered particle arrangements have been identified via an optimization tool that is based on genetic algorithms. Assuming different simple models for patchy colloidal particles, which include binary mixtures as well as attraction and repulsion between the patches, we could identify a broad variety of highly non-trivial ordered structures. The strategies of the systems to self-assemble become evident from a systematic variation of the pressure: (i) saturation of patch bonds at low pressure and close packing at high pressure and (ii) for intermediate pressure values, the strategy is governed by a trade-off between these two energetic aspects. The present study is yet another demonstration of the efficiency and the high reliability of genetic algorithms as versatile optimization tools.

  3. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  4. Accelerated particle interaction with static gases

    International Nuclear Information System (INIS)

    Hvelplund, P.

    1977-01-01

    This work describes experimental studies of stopping power and electron capture and loss associated with the passage of fast atomic particles through static gas targets. Most of the results, as well as a detailed description of the experimental procedures, have been reported in a series of articles. After an introduction to particle-gas collisions follows a short description of some theoretical approaches used in the field of stopping power and charge-changing collisions. The last part is concerned with a review of the experimental procedures employed in the papers. At the same time, the data reported in these papers are used as a starting point for further discussion of experimental studies of stopping power and charge-changing collisions. (Auth.)

  5. Free-Standing and Self-Crosslinkable Hybrid Films by Core–Shell Particle Design and Processing

    Directory of Open Access Journals (Sweden)

    Steffen Vowinkel

    2017-11-01

    Full Text Available The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS or poly(methyl methacrylate (PMMA, while the comparably soft particle shell consists of poly(ethyl acrylate (PEA and different alkoxysilane-based poly(methacrylates. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM.

  6. Interaction mechanisms between ceramic particles and atomized metallic droplets

    Science.gov (United States)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of

  7. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  8. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  9. Many Drops Interactions I: Simulation of Coalescence, Flocculation and Fragmentation of Multiple Colliding Drops with Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-06-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.

  10. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    Science.gov (United States)

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  11. Studies of many-particle correlations in proton-nucleus interactions using distributions of rapidity-gaps between particles

    International Nuclear Information System (INIS)

    Mangotra, L.K.; Otterlund, I.; Stenlund, E.

    1985-01-01

    Many-particle correlations in proton-Emulsion interactions at 400 GeV have been investigated using distributions of rapidity-gaps between particles. We have defined the normalized semi-inclusive rapidity-gap correlation function which is shown to have advantages over the normalized two- particle correlation function. Small, but significant, deviations from zero-correlations are observed in the data

  12. Influence of the Surfactant Nature on the Occurrence of Self-Assembly between Rubber Particles and Thermally Reduced Graphite Oxide during the Preparation of Natural Rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Héctor Aguilar-Bolados

    2015-01-01

    Full Text Available The natural rubber (NR latex consists of polymer particles charged negatively due to the adsorbed phospholipids and proteins molecules. The addition of stable aqueous suspension of thermally reduced graphite oxide (TRGO stabilized by ionic surfactants to NR latex can favor the occurrence of interaction between the stabilized TRGO and NR particles. Herein, the use of two surfactants of different nature, namely, sodium dodecyl sulfate (SDS and dodecyltrimethylammonium bromide (DTAB, for the preparation of (TRGO/NR nanocomposites, is reported. Zeta potential and particle size measurements indicated that the use of DTAB as cationic surfactant results in the flocculation of NR particles and promoted the formation of ion-pair interactions between TRGO and the proteins and/or phospholipids present on the NR surface. This indicates that the use of DTAB can promote a self-assembly phenomenon between TRGO with adsorbed DTAB molecules and NR particles. The occurrence of self-assembly phenomenon allows obtaining homogenous dispersion of TRGO particles in the polymer matrix. The TRGO/NR nanocomposites prepared by the use of DTAB exhibited superior mechanical properties and excellent electrical conductivities reaching values of stress at 500% strain of 3.02 MPa and 10−4 S/cm, respectively.

  13. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  14. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  15. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  16. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  17. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    International Nuclear Information System (INIS)

    Pederson, Mark R.; Baruah, Tunna; Basurto, Luis; Kao, Der-you

    2016-01-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C 60 , and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C 60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  18. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  19. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag

    Science.gov (United States)

    Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.

    2018-02-01

    Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.

  20. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles

    Science.gov (United States)

    Gaspard, Pierre; Kapral, Raymond

    2018-04-01

    The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.

  1. RadSim: a program to simulate individual particle interactions for educational purposes

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Palefsky, Steven; DeBlois, Francois

    2006-01-01

    A program was developed, RadSim, which can be used to simulate certain individual interactions of photons, electrons, positrons and alpha particles with a single atom for educational purposes. The program can be run in two modes: manual and simulated. In the manual mode, an individual particle undergoing a specified interaction with a target atom can be simulated, which essentially comes down to a graphical evaluation of kinematic equations. In the simulated mode, a preset number of identical particles are allowed to undergo a specified interaction type with a target atom. The exit channel of the interaction is sampled from probability distributions using Monte Carlo methods. The incoming and outgoing particles are visualized and the frequency distribution of the kinematic variables of the exit channel is displayed graphically. It has to be emphasized that RadSim was mainly developed for educational purposes. (note)

  2. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  3. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  4. Energy-dependent point interactions in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2005-01-01

    We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed

  5. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-05-28

    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  6. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  7. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  8. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  9. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  10. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  11. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  12. Non-potential interactions and the origin of masses of elementary particles

    International Nuclear Information System (INIS)

    Sun, J.

    1982-01-01

    We propose a fundamental assumption on internal states of particles. It follows from the fundamental assumption that: (1) the constituents of particles become non-particle objects; and (2) there appear naturally non-potential interactions. This non-potential interaction leads to a series of interesting results, one of which is that it yields the origin of masses of elementary particles. All mass values are given by the theory without pre-assumed mass values of the constituents (except the rest mass of the electron; mass is a physical quantity which appears only in particles but not in their constituents). The theoretically calculated mass values are in excellent agreement with the experimental values. In all calculations, only one constant b = 0.99935867 is introduced (bc being the speed of internal motion)

  13. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  14. Shielded transient self-interaction of a bunch entering a circle from a straight path

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straight path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented

  15. A corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model

    Energy Technology Data Exchange (ETDEWEB)

    Foster, D P; Pinettes, C [Laboratoire de Physique Theorique et Modelisation (CNRS UMR 8089), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac 95031, Cergy-Pontoise Cedex (France)

    2003-10-17

    A recently introduced extension of the corner transfer matrix renormalization group method useful for the study of self-avoiding walk-type models is presented in detail and applied to a class of interacting self-avoiding walks due to Bloete and Nienhuis. This model displays two different types of collapse transition depending on model parameters. One is the standard {theta}-point transition. The other is found to give rise to a first-order collapse transition despite being known to be in other respects critical.

  16. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  17. Opportunities, Rational Choice, and Self-Control: On the Interaction of Person and Situation in a General Theory of Crime

    Science.gov (United States)

    Seipel, Christian; Eifler, Stefanie

    2010-01-01

    In this article, deviant action is analyzed on the basis of ideas derived from Gottfredson and Hirschi's self-control theory. Presumedly, self-control in interaction with opportunities can explain deviant action. This assumption is elaborated using the concept of high- and low-cost situations from rational choice theory. From this point of view,…

  18. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    Science.gov (United States)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  19. Many-particle hydrodynamic interactions in parallel-wall geometry: Cartesian-representation method

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.; Bhattacharya, S.

    2005-01-01

    This talk will describe the results of our theoretical and numerical studies of hydrodynamic interactions in a suspension of spherical particles confined between two parallel planar walls, under creeping-flow conditions. We propose an efficient algorithm for evaluating many-particle friction matrix in this system-no Stokesian-dynamics algorithm of this kind has been available so far. Our approach involves expanding the fluid velocity field in the wall-bounded suspension into spherical and Cartesian fundamental sets of Stokes flows. The spherical set is used to describe the interaction of the fluid with the particles and the Cartesian set to describe the interaction with the walls. At the core of our method are transformation relations between the spherical and Cartesian fundamental sets. Using the transformation formulas, we derive a system of linear equations for the force multipoles induced on the particle surfaces; the coefficients in these equations are given in terms of lateral Fourier integrals corresponding to the directions parallel to the walls. The force-multipole equations have been implemented in a numerical algorithm for the evaluation of the multiparticle friction matrix in the wall-bounded system. The algorithm involves subtraction of the particle-wall and particle-particle lubrication contributions to accelerate the convergence of the results with the spherical-harmonics order, and a subtraction of the single-wall contributions to accelerate the convergence of the Fourier integrals. (author)

  20. Production of neutrinos and neutrino-like particles in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production -3 times the π 0 production cross section. 144 references

  1. Three- and two-point one-loop integrals in heavy particle effective theories

    International Nuclear Information System (INIS)

    Bouzas, A.O.

    2000-01-01

    We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)

  2. Introduction to supersymmetry and its applications to particle interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1978-01-01

    The fundamental mechanisms are first studied: spontaneous breaking of gauge invariance and supersymmetry, definition of conserved quantum numbers. Then it is shown how to construct spontaneously broken supersymmetric gauge theories of weak and electromagnetic interactions. Supersymmetry associates a neutrino to the photon; new leptons and Higgs scalars to heavy vector bosons; heavy scalar particles to usual leptons and quarks. The Goldstone neutrino and photon neutrino belong to a new class of leptons, with its own quantum number, R; R-conservation explains why these neutrinos have not yet been observed. Particles with R=0 are those of usual gauge theories, gauge bosons, fermions and Higgs scalars; the others lead to new weak interactions phenomena, where scalars can be exchanged. Finally, it is shown how strong and gravitational interactions can also be included [fr

  3. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    Feldman, L.C.; Lupke, G.; Tolk, N.H.; Lopez, R.; Haglund, R.F.; Haynes, T.E.; Boatner, L.A.

    2003-01-01

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  4. The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu [National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2017-11-01

    This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.

  5. The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes

    Science.gov (United States)

    Bhatnagar, S.; Cornwell, T. J.

    2017-11-01

    This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.

  6. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions

    Science.gov (United States)

    Romanelli, N.; Mazelle, C.; Meziane, K.

    2018-02-01

    Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.

  7. Evaluation of self-interaction parameters from binary phase diagrams

    International Nuclear Information System (INIS)

    Ellison, T.L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams

  8. Cosmological constraints on interacting light particles

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Christopher [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON, N2L 2Y5 Canada (Canada); Cui, Yanou [Department of Physics and Astronomy, University of California, 900 University Ave, Riverside, CA, 92521 (United States); Sigurdson, Kris, E-mail: cbrust@perimeterinstitute.ca, E-mail: yanou.cui@ucr.edu, E-mail: krs@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 Canada (Canada)

    2017-08-01

    Cosmological observations are becoming increasingly sensitive to the effects of light particles in the form of dark radiation (DR) at the time of recombination. The conventional observable of effective neutrino number, N {sub eff}, is insufficient for probing generic, interacting models of DR. In this work, we perform likelihood analyses which allow both free-streaming effective neutrinos (parametrized by N {sub eff}) and interacting effective neutrinos (parametrized by N {sub fld}). We motivate an alternative parametrization of DR in terms of N {sub tot} (total effective number of neutrinos) and f {sub fs} (the fraction of effective neutrinos which are free-streaming), which is less degenerate than using N {sub eff} and N {sub fld}. Using the Planck 2015 likelihoods in conjunction with measurements of baryon acoustic oscillations (BAO), we find constraints on the total amount of beyond the Standard Model effective neutrinos (both free-streaming and interacting) of Δ N {sub tot} < 0.39 at 2σ. In addition, we consider the possibility that this scenario alleviates the tensions between early-time and late-time cosmological observations, in particular the measurements of σ{sub 8} (the amplitude of matter power fluctuations at 8 h {sup −1} Mpc), finding a mild preference for interactions among light species. We further forecast the sensitivities of a variety of future experiments, including Advanced ACTPol (a representative CMB Stage-III experiment), CMB Stage-IV, and the Euclid satellite. This study is relevant for probing non-standard neutrino physics as well as a wide variety of new particle physics models beyond the Standard Model that involve dark radiation.

  9. Search of unified theory of basic types of elementary particle interactions

    International Nuclear Information System (INIS)

    Anselm, A.

    1981-01-01

    Four types of forces are described (strong, weak, electromagnetic and gravitational) mediating the basic interactions of quarks and leptons, and attempts are reported of forming a unified theory of all basic interactions. The concepts are discussed, such as the theory symmetry (eg., invariance in relation to the Lorentz transformations) and isotopic symmetry (based on the interchangeability of particles in a given isotopic multiplet). Described are the gauge character of electromagnetic and gravitational interactions, the violation of the gauge symmetry and the mechanism of particle confinement. (H.S.)

  10. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s = 8 TeV using a displaced interaction point

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Covault, C.; Csanád, M.; Csörgő, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macrí, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Peroutka, Z.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Whitmore, J.; Wyszkowski, P.; Zielinski, K.

    2015-01-01

    The the pseudorapidity density of charged particles dN$_{ch}$/d$\\eta$ is measured by the TOTEM experiment in pp collisions at √s = 8 TeV within the range 3.9 0 MeV/c, produced in inelastic interactions with at least one charged particle in −7 < $\\eta$ < −6 or 3.7< $\\eta$ < 4.8. The dN$_{ch}$/d$\\eta$ has been found to decrease with |$\\eta$|, from 5.11 ± 0.73 at $\\eta$ =3.95 to 1.81 ± 0.56 at $\\eta$ = −6.925. Several MC generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  11. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko

    2017-12-01

    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  12. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  13. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  14. Growth of the interaction layer around fuel particles in dispersion fuel

    International Nuclear Information System (INIS)

    Olander, D.

    2009-01-01

    Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x . The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel

  15. The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems

    Science.gov (United States)

    Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon

    Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  16. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  17. Self-dual gauge field, its quantum fluctuations, and interacting fermions

    International Nuclear Information System (INIS)

    Flory, C.A.

    1983-01-01

    The quantum fluctuations about a self-dual background field in SU(2) are computed. The background field consists of parallel and equal uniform chromomagnetic and chromoelectric fields. Determination of the gluon fluctuations about this field yields zero modes, which are naturally regularized by the introduction of massless fermions. This regularization makes the integrals over all fluctuations convergent, and allows a simple computation of the vacuum energy which is shown to be lower than the energy of the configuration of zero field strength. The regularization of the zero modes also facilitates the introduction of heavy test charges which can interact with the classical background field and also exchange virtual quanta. The formalism for introducing these heavy test charges could be a good starting point for investigating the relevant physics of the self-dual background field beyond the classical level

  18. Asymptotics of Resonances Induced by Point Interactions

    Czech Academy of Sciences Publication Activity Database

    Lipovský, J.; Lotoreichik, Vladimir

    2017-01-01

    Roč. 132, č. 6 (2017), s. 1677-1682 ISSN 0587-4246 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : self-adjoint three-dimensional Schrodinger operator * interactions * resonances Subject RIV: BE - Theoretical Physics OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.469, year: 2016

  19. Self-interaction corrections applied to Mg-porphyrin, C{sub 60}, and pentacene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Mark R. [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Baruah, Tunna; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Kao, Der-you [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 (United States)

    2016-04-28

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C{sub 60}, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C{sub 60} molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  20. The rotation curve of a point particle in stringy gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Sung Moon; Park, Jeong-Hyuck; Suh, Minwoo, E-mail: sinsmk2003@sogang.ac.kr, E-mail: park@sogang.ac.kr, E-mail: minsuh@usc.edu [Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 (Korea, Republic of)

    2017-06-01

    Double Field Theory suggests to view the whole massless sector of closed strings as the gravitational unity. The fundamental symmetries therein, including the O( D , D ) covariance, can determine unambiguously how the Standard Model as well as a relativistic point particle should couple to the closed string massless sector. The theory also refines the notion of singularity. We consider the most general, spherically symmetric, asymptotically flat, static vacuum solution to D =4 Double Field Theory, which contains three free parameters and consequently generalizes the Schwarzschild geometry. Analyzing the circular geodesic of a point particle in string frame, we obtain the orbital velocity as a function of R /( M {sub ∞} G ) which is the dimensionless radial variable normalized by mass. The rotation curve generically features a maximum and thus non-Keplerian over a finite range, while becoming asymptotically Keplerian at infinity, R /( M {sub ∞} G )→ ∞. The adoption of the string frame rather than Einstein frame is the consequence of the fundamental symmetry principle. Our result opens up a new scheme to solve the dark matter/energy problems by modifying General Relativity at 'short' range of R /( M {sub ∞} G ).

  1. Particle-stabilized oscillating diver: a self-assembled responsive capsule

    DEFF Research Database (Denmark)

    Tavacoli, Joe; Thijssen, Job H. J.; Clegg, Paul S.

    2011-01-01

    We report the experimental discovery of a self-assembled capsule, with density set by interfacial glass beads and an internal bubble, that automatically performs regular oscillations up and down a vial in response to a temperature gradient. Similar composites featuring interfacial particles...

  2. Analysis of solid particles falling down and interacting in a channel with sedimentation using fictitious boundary method

    Science.gov (United States)

    Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.

    2018-06-01

    We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.

  3. Determine point-to-point networking interactions using regular expressions

    Directory of Open Access Journals (Sweden)

    Konstantin S. Deev

    2015-06-01

    Full Text Available As Internet growth and becoming more popular, the number of concurrent data flows start to increasing, which makes sense in bandwidth requested. Providers and corporate customers need ability to identify point-to-point interactions. The best is to use special software and hardware implementations that distribute the load in the internals of the complex, using the principles and approaches, in particular, described in this paper. This paper represent the principles of building system, which searches for a regular expression match using computing on graphics adapter in server station. A significant computing power and capability to parallel execution on modern graphic processor allows inspection of large amounts of data through sets of rules. Using the specified characteristics can lead to increased computing power in 30…40 times compared to the same setups on the central processing unit. The potential increase in bandwidth capacity could be used in systems that provide packet analysis, firewalls and network anomaly detectors.

  4. Interaction of particles with fluid-fluid interfaces quantified using magnetic tweezers

    NARCIS (Netherlands)

    Cappelli, S.; Jong, de A.M.; Prins, M.W.J.

    2014-01-01

    A key challenge in point-of-care diagnostics is the miniaturization and integration of assay processes in lab-on-chip devices. Assay processes based on magnetic particles are particularly suited for miniaturization and integration, because the particles can be actively controlled using external

  5. Final state interaction effect on correlations in narrow particles pairs

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1990-01-01

    In this paper the dependence of the two-particle correlation function on the space-time dimensions of the particle production region is discussed. The basic formulae, taking into account he effects of quantum statistics and final state interaction, and the conditions of their applicability are given

  6. Probing velocity dependent self-interacting dark matter with neutrino telescopes

    Science.gov (United States)

    Robertson, Denis S.; Albuquerque, Ivone F. M.

    2018-02-01

    Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.

  7. Reducing Interaction Costs for Self-interested Agents

    Science.gov (United States)

    Zhang, Yunqi; Larson, Kate

    In many multiagent systems, agents are not able to freely interact with each other or with a centralized mechanism. They may be limited in their interactions by cost or by the inherent structure of the system. Using a combinatorial auction application as motivation, we study the impact of interaction costs and structure on the strategic behaviour of self-interested agents. We present a particular model of costly agent-interaction, and argue that self-interested agents may wish to coordinate their actions with their neighbours so as to reduce their individual costs. We highlight the issues that arise in such a setting, propose a cost-sharing mechanism that agents can use, and discuss group coordination procedures. Experimental work validates our model.

  8. Effect of particle size on colloidal zirconia rheology at the isoelectric point

    International Nuclear Information System (INIS)

    Leong, Y.K.; Scales, P.J.; Healy, T.W.; Boger, D.V.

    1995-01-01

    This paper examines the effects of particle concentration and size on the yield stress of ZrO 2 suspensions at a well-defined surface chemistry condition of the isoelectric point (IEP). At the IEP, the relationship between yield stress τ y max and particulate volume fraction φ s , and mean particle size d was evaluated to be τ y max = K φ s 4.0 /d 2.0 . The difference in size distribution of the various ZrO 2 suspensions examined causes some degree of scatter in the data used to establish the τ y max , φ s , and d relation. The use of particle concentration n t based on the fine size fraction instead of volume fraction φ s provided a better correlation, because the fine particles govern the properties of the flocculated network structure

  9. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces

    International Nuclear Information System (INIS)

    Thomas, E.W.

    1985-02-01

    This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping

  10. Statistical effect of interactions on particle creation in expanding universe

    International Nuclear Information System (INIS)

    Kodama, Hideo

    1982-01-01

    The statistical effect of interactions which drives many-particle systems toward equilibrium is expected to change the qualitative and quantitative features of particle creation in expanding universe. To investigate this problem a simplified model called the finite-time reduction model is formulated and applied to the scalar particle creation in the radiation dominant Friedmann universe. The number density of created particles and the entropy production due to particle creation are estimated. The result for the number density is compared with that in the conventional free field theory. It is shown that the statistical effect increases the particle creation and lengthens the active creation period. As for the entropy production it is shown that it is negligible for scalar particles in the Friedmann universe. (author)

  11. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  12. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  13. Indirect probe of electroweak-interacting particles at future lepton colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke; Ichikawa, Koji; Kundu, Anirban; Matsumoto, Shigeki; Shirai, Satoshi

    2015-01-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2)_L×U(1)_Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100–1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  14. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke

    2015-04-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2) L x U(1) Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  15. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    Science.gov (United States)

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (pdextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self-administration replicating previous findings. Augmenting interactions were observed with

  16. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  17. Traffic and related self-driven many-particle systems

    Science.gov (United States)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  18. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  19. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    Science.gov (United States)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  20. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  1. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions

    International Nuclear Information System (INIS)

    Miyake, Yohei; Usui, Hideyuki

    2009-01-01

    A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.

  2. Electron self-injection and acceleration in the bubble regime of laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters

  3. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: a study using common inhaler components.

    Science.gov (United States)

    Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I

    2016-12-19

    Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.

  4. Colloquium: Toward living matter with colloidal particles

    Science.gov (United States)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  5. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  6. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  7. Quantum motion on two planes connected at one point

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1986-01-01

    Free motion of a particle on the manifold which consists of two planes connected at one point is studied. The four-parameter family of admissible Hamiltonians is constructed by self-adjoint extensions of the free Hamiltonian with the singular point removed. The probability of penetration between the two parts of the configuration manifold is calculated. The results can be used as a model for quantum point-contact spectroscopy

  8. Plasma surface interactions at the JET X-point tiles

    International Nuclear Information System (INIS)

    Martinelli, A.P.; Behrisch, R.; Coad, J.P.; Kock, L. de

    1989-01-01

    Operation with a magnetic divertor, which leads to a zero poloidal field inside the volume of the discharge vessel (the X-point) has led to substantial improvements in confinement time in JET. In this mode the diverted plasma is conducted to a large number of graphite tiles (X-point tiles) near the top of the vessel. The power handling capability of these tiles limits the maximum additional heating power to the discharge. The study of the surface modifications of the X-point tiles of JET is therefore of interest both to correlate the magnetic configuration and plasma particle and energy fluxes with the surface modifications, and also to get information about the erosion and deposition at these wall areas. (author) 5 refs., 4 figs

  9. Self-Regulation, Cooperative Learning, and Academic Self-Efficacy: Interactions to Prevent School Failure.

    Science.gov (United States)

    Fernandez-Rio, Javier; Cecchini, Jose A; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A

    2017-01-01

    Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12-17 years old ( M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ -means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students' academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and

  10. Self-Regulation, Cooperative Learning, and Academic Self-Efficacy: Interactions to Prevent School Failure

    Science.gov (United States)

    Fernandez-Rio, Javier; Cecchini, Jose A.; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A.

    2017-01-01

    Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12–17 years old (M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ-means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students’ academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and

  11. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  12. Atomic interactions of charged particles with matter

    International Nuclear Information System (INIS)

    Bichsel, H.

    1993-01-01

    Ideas about the interactions of charged particles with matter are discussed. First, some experimental information is presented. Concepts related to collision cross sections and the Bethe model for them are given. The stopping power is derived and applied to the discussion of depth dose functions ('Bragg curves'). Some details of the energy loss in microscopic volumes are discussed

  13. Point kernel technique for calculating dose rates due to cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Thornhill, M.J.; McCarthy, J.T.; Morrissette, R.R.; Leach, B.N.

    1989-01-01

    This paper reports on a computer code called BETA that has been developed by health physicists at the Vermont Yankee Nuclear Power Station which accounts for the mass and size of hot particles of Cobalt-60, and therefore corrects the Loevinger-based dose calculation for self-absorption

  14. Search for a particle with a long interaction length

    International Nuclear Information System (INIS)

    Barrowes, S.C.; Huggett, R.W.; Jones, W.V.; Levit, L.B.; Porter, L.G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambdasub(m) = 300 to 2,000 cm -2 in air. Such a particle, called the mandela, has been proposed by the Leeds group to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although the data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means. (orig.) [de

  15. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  16. Shape-dependent guidance of active Janus particles by chemically patterned surfaces

    Science.gov (United States)

    Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.

    2018-01-01

    Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.

  17. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  18. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  19. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  20. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  1. X-ray lines and self-interacting dark matter.

    Science.gov (United States)

    Mambrini, Yann; Toma, Takashi

    We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.

  2. A novel self-replicating chimeric lentivirus-like particle.

    Science.gov (United States)

    Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.

  3. Ordering dynamics of self-propelled particles in an inhomogeneous medium

    Science.gov (United States)

    Das, Rakesh; Mishra, Shradha; Puri, Sanjay

    2018-02-01

    Ordering dynamics of self-propelled particles in an inhomogeneous medium in two dimensions is studied. We write coarse-grained hydrodynamic equations of motion for density and polarisation fields in the presence of an external random disorder field, which is quenched in time. The strength of inhomogeneity is tuned from zero disorder (clean system) to large disorder. In the clean system, the polarisation field grows algebraically as LP ∼ t0.5 . The density field does not show clean power-law growth; however, it follows Lρ ∼ t0.8 approximately. In the inhomogeneous system, we find a disorder-dependent growth. For both the density and the polarisation, growth slows down with increasing strength of disorder. The polarisation shows a disorder-dependent power-law growth LP(t,Δ) ∼ t1/\\bar zP(Δ) for intermediate times. At late times, there is a crossover to logarithmic growth LP(t,Δ) ∼ (\\ln t)1/\\varphi , where φ is a disorder-independent exponent. Two-point correlation functions for the polarisation show dynamical scaling, but the density does not.

  4. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard-magnetic...... core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find...... that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit....

  5. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    Science.gov (United States)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  6. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  7. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2015-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code. In the PIC

  8. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2014-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context.

  9. GRADSPH: A parallel smoothed particle hydrodynamics code for self-gravitating astrophysical fluid dynamics

    NARCIS (Netherlands)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.; Boffin, H.

    2009-01-01

    We describe the algorithms implemented in the first version of GRADSPH, a parallel, tree-based, smoothed particle hydrodynamics code for simulating self-gravitating astrophysical systems written in FORTRAN 90. The paper presents details on the implementation of the Smoothed Particle Hydro (SPH)

  10. Self-Exciting Point Process Modeling of Conversation Event Sequences

    Science.gov (United States)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  11. On the Origin of Elementary Particle Masses

    Directory of Open Access Journals (Sweden)

    Hansson J.

    2014-04-01

    Full Text Available The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermions is seen to yield a mas s for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charge d leptons and quarks. The neutrino interacts only through the weak force, hence becom es light. The electron in- teracts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental parti- cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or slightly larger due to a somewhat larger color charge. Inclu ding particles outside the standard model proper, gravitons are not exactly massless, but very light due to their very weak self-interaction. Some immediate and physically interesting consequences arise: i Gluons have an e ff ective range ∼ 1 fm, physically explaining why QCD has finite reach; ii Gravity has an effective range ∼ 100 Mpc coinciding with the largest known structures, the cosmic voids; iii Gravitational waves undergo dispersion even in vacuum, and have all five polarizations (not just the two of m = 0, which might explain why they have not yet been detected.

  12. Process maps for plasma spray: Part 1: Plasma-particle interactions

    International Nuclear Information System (INIS)

    Gilmore, Delwyn L.; Neiser, Richard A. Jr.; Wan, Yuepeng; Sampath, Sanjay

    2000-01-01

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data

  13. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  14. Constraining self-interacting dark matter with scaling laws of observed halo surface densities

    Science.gov (United States)

    Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia

    2018-04-01

    The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.

  15. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    International Nuclear Information System (INIS)

    Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  16. Interaction between particles and grain boundaries under conditions of cooperative migration

    International Nuclear Information System (INIS)

    Marvina, L.A.; Marvin, V.B.

    1996-01-01

    The analysis of particle grain boundary interaction is performed for dispersion hardened alloys when cooperative migration takes place. It is shown that in a general case the particle experiences a Zener force and a force of grain boundary surface tension due to boundary bending between particles. Approximate numerical estimates are made for the force acting on a particle in dispersion hardened alloy Ni-HfO 2 . It is noted that during cooperative migration of particle and grain boundary the velocity of the particle is directed along the resulting force. The latter equals the sum of surface tension and Zener forces. 6 refs., 2 figs

  17. Personal vulnerability and work-home interaction: the effect of job performance-based self-esteem on work/home conflict and facilitation.

    Science.gov (United States)

    Innstrand, Siw Tone; Langballe, Ellen Melbye; Espnes, Geir Arild; Aasland, Olaf Gjerløw; Falkum, Erik

    2010-12-01

    The aim of the present study was to examine the longitudinal relationship between job performance-based self-esteem (JPB-SE) and work-home interaction (WHI) in terms of the direction of the interaction (work-to-home vs. home-to-work) and the effect (conflict vs. facilitation). A sample of 3,475 respondents from eight different occupational groups (lawyers, physicians, nurses, teachers, church ministers, bus drivers, and people working in advertising and information technology) supplied data at two points of time with a two-year time interval. The two-wave, cross-lagged structural equations modeling (SEM) analysis demonstrated reciprocal relationships between these variables, i.e., job performance-based self-esteem may act as a precursor as well as an outcome of work-home interaction. The strongest association was between job performance-based self-esteem and work-to-home conflict. Previous research on work-home interaction has mainly focused on situational factors. This longitudinal study expands the work-home literature by demonstrating how individual vulnerability (job performance-based self-esteem) contributes to the explanation of work-home interactions. © 2010 The Authors. Scandinavian Journal of Psychology © 2010 The Scandinavian Psychological Associations.

  18. Effective source approach to self-force calculations

    International Nuclear Information System (INIS)

    Vega, Ian; Wardell, Barry; Diener, Peter

    2011-01-01

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  19. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  20. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    Science.gov (United States)

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  1. The physics of wave-particle interactions with applications to astrophysics

    International Nuclear Information System (INIS)

    Karimabadi, H.

    1988-01-01

    The physics of electromagnetic wave-particle interactions in the limit of a strong static magnetic field is investigated using Hamiltonian and multiple time-scale techniques. For sufficiently small wave amplitude, the system is integrable and the motion in phase space is regular. For amplitudes exceeding a threshold value, the system become nonintegrable and the particle motion in phase space becomes stochastic. The stochasticity is caused by the overlapping of the adjacent resonances. The particle dynamics in various limits is discussed using a novel graphical technique for analyzing the particle motion. It is found that for ncosα > 1, the constant Hamiltonian surfaces are topologically closed and the maximum attainable particle energy is severely limited (n is the index of refraction and α is the wave propagation angle). For ncosα ≤ 1, however, the constant Hamiltonian surfaces are open due to relativistic correlations and the particles can gain large energies. A diffusion equation analogous to the Fokker-Planck equation is derived and used to examine the effect of the wave on an ensemble of particles. The model is applied to two different space applications. (i) It is shown that electrons can be accelerated by interacting with fundamental or second harmonic of an obliquely propagating cyclotron wave. This acceleration mechanism can explain the observed high energy electrons in solar type III bursts. (ii). The Kennel and Coroniti (1984) model of the Crab nebula is reexamined including the wave effects. A new model for the Crab nebula which accounts for the presence of radio electrons is proposed and its predictions compared to observations

  2. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    Science.gov (United States)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  3. Interactive design for self-study and developing students’ critical thinking skills in electromagnetic radiation topic

    Science.gov (United States)

    Ambarwati, D.; Suyatna, A.

    2018-01-01

    The purpose of this research are to create interactive electronic school books (ESB) for electromagnetic radiation topic that can be used for self-study and increasing students’ critical thinking skills. The research method was based on the design of research and development (R&D) model of ADDIE. The research procedure is used limited the design of the product has been validated. Data source at interactive requirement analysis phase of ESB is student and high school teacher of class XII in Lampung province. The validation of interactive ESB designs is performed by experts in science education. The data of ESB interactive needs were collected using questionnaires and analyzed using quantitative descriptive. The results of the questionnaire obtained by 97% of books that are often used in the form of printed books from schools have not been interactive and foster critical thinking of students, and 55% of students stating physics books are used not meet expectations. Expectations of students in physics learning, teachers must use interactive electronic books. The results of the validation experts pointed out, the design of ESB produced is interactive, can be used for self-study, and increasing students’ critical thinking skills, which contains instruction manuals, learning objectives, learning materials, sample questions and discussion, video illustrations, animations, summaries, as well as interactive quizzes incorporating feedback exam practice and preparation for college entrance.

  4. Boosted dark matter signals uplifted with self-interaction

    OpenAIRE

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul

    2018-01-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in l...

  5. Single-particle states vs. collective modes: friends or enemies ?

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-05-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

  6. Particle interaction with the deuteron

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1974-09-01

    A study of the particle deuteron interactions at low, intermediate and high energies is presented. The differential cross section for pion deuteron scattering, near the 33 resonance, is calculated considering the Fermi motion and the off energy shell effects. We present formulae for the calculation of correction to the incoherent production cross section on deuteron arising from the multiple scattering and interference; we apply them to the case K + → K 0 π + between 1. and 5 Gev/c. is introduced. A relativistic correction to the double scattering Glauber formula and is done an application to the rho photoproduction on deuteron at high energies

  7. Some questions on the research in particle physics

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    Some new developments in elementary particle physics and interaction processes are reviewed. Recent advances in the field of particle physics including the observation of an anomalous behaviour of interaction cross section at high energy levels, the deep inelastic scattering of electrons from protons, the existence of neutral currents and the relative frequency of events with high transverse pulses are pointed out. A special development is the discovery and identification of a number of new particles and processes. New advances in understanding of the structure of subelementary particles, and the combination of electromagnetic and weak interactions are described. After a discussion of the technical and instrumental requirements and possibilities in the field of elementary particle research, the role and achievements of Hungarian scientists in high-energy facilities of the Soviet Union are emphasized. (P.J.)

  8. Wave-particle Interactions in Space and Laboratory Plasmas

    Science.gov (United States)

    An, Xin

    This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons

  9. Parent–Child Interactions, Peripheral Serotonin, and Self-Inflicted Injury in Adolescents

    Science.gov (United States)

    Crowell, Sheila E.; Beauchaine, Theodore P.; McCauley, Elizabeth; Smith, Cindy J.; Vasilev, Christina A.; Stevens, Adrianne L.

    2009-01-01

    Self-inflicted injury in adolescence indicates significant emotional and psychological suffering. Although data on the etiology of self-injury are limited, current theories suggest that the emotional lability observed among self-injuring adolescents results from complex interactions between individual biological vulnerabilities and environmental risk. For example, deficiencies in serotonergic functioning, in conjunction with certain family interaction patterns, may contribute to the development of emotional lability and risk for self-injury. The authors explored the relation between peripheral serotonin levels and mother–child interaction patterns among typical (n = 21) and self-injuring (n = 20) adolescents. Findings revealed higher levels of negative affect and lower levels of both positive affect and cohesiveness among families of self-injuring participants. Peripheral serotonin was also correlated with the expression of positive affect within dyads. Furthermore, adolescents’ serotonin levels interacted with negativity and conflict within dyads to explain 64% of the variance in self-injury. These findings underscore the importance of considering both biological and environmental risk factors in understanding and treating self-injuring adolescents. PMID:18229978

  10. Quantum self-organization and nuclear collectivities

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-02-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The outcome of the collective mode is determined basically by the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger gaps between relevant single particle states. Thus, the single-particle state and the collective mode are “enemies” each other. However, the nuclear forces are demonstrated to be rich enough so as to enhance relevant collective mode by reducing the resistance power by changing singleparticle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, when the quantum self-organization occurs, single-particle energies can be self-organized, being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.

  11. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Science.gov (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  12. Shielded transient self-interaction of a bunch entering a circle from a straight path

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    When a short (mm-length) bunch with high (nC-regime) charge is transported through a magnetic bending system, self-interaction via coherent synchrotron radiation (CSR) and space charge may alter the bunch dynamics significantly. The authors consider a Gaussian rigid-line-charge bunch following a straight-path trajectory into a circle, with the trajectory centered between two infinite, parallel, perfectly conducting plates. Transients associated with CSR and space charge generated from source particles both on the straight path and the circle are calculated, and their net effect on the radiated power is contrasted with that of shielded steady-state CSR

  13. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  14. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  15. Flow induced crystallisation of penetrable particles

    Science.gov (United States)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  16. $\\mathcal{C}$, $\\mathcal{P}$, $\\mathcal{T}$ operations and classical point charged particle dynamics

    OpenAIRE

    Torromé, Ricardo Gallego

    2014-01-01

    The action of parity inversion, time inversion and charge conjugation operations on several differential equations for a classical point charged particle are described. Moreover, we consider the notion of {\\it symmetrized acceleration} $\\Delta_q$ that for models of point charged electrodynamics is sensitive to deviations from the standard Lorentz force equation. It is shown that $\\Delta_q$ can be observed with current or near future technology and that it is an useful quantity for probing rad...

  17. Lunar particle shadows and boundary layer experiment: plasma and energetic particles on the Apollo 15 and 16 subsatellites. Final report

    International Nuclear Information System (INIS)

    Anderson, K.A.; Chase, L.M.; Lin, R.P.; McCoy, J.E.; McGuire, R.E.

    1974-01-01

    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetary particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance

  18. Two particles interacting via the Yukawa potential in the frame of a truly nonrelativistic wave equation

    International Nuclear Information System (INIS)

    Kukhtin, V.V.; Kuzmenko, M.V.

    2000-01-01

    Complete text of publication follows. Recent studies (1) have shown that the Schroedinger nonrelativistic wave equation for a system of interacting particles is not a rigorously nonrelativistic one since it is based on the implicit assumption that the interaction propagation velocity is a finite value, which implies commutativity of the operators of coordinates and momenta of different particles. The refusal from this assumption implies their noncommutativity, which allows one to construct a truly nonrelativistic nonlinear self-consistent wave equation for a system of interacting particles. In the frame of the advanced wave equation, we investigate the spectrum of bound states for the two-body problem with the Yukawa potential V(r) = -V 0 a exp(-r/a)/r as a function of parameters of the potential. A peculiar feature of the spectrum is the presence of a critical value of V 0 (with the fixed parameter a), above which the given bound state cannot exist. In the ground state with l = 0 at a critical value of V 0 , the mean distance between particles takes the least value equal to the Compton wavelength of the particle with reduced mass. We estimate the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ([χ 1 , p 2x ] = i(h/2π)m 2 /M x ε) for the bound state of a deuteron, for which we consider the lowest state with l = 0 as its ground state. The parameter a of the Yukawa potential is taken to be equal to the Compton wavelength of a pion, 1.41 fm. In order to obtain the binding energy of a deuteron E = -2.22452 MeV, the parameter V 0 has to equal 51.23 MeV. In this case, the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ε = 0.0011, i.e., the commutator is nonzero even for such a weakly bound system as a deuteron where particles are located outside the region of action of nuclear forces for a significant fraction of time. Moreover

  19. Quasi-particle description of strongly interacting matter: Towards a foundation

    International Nuclear Information System (INIS)

    Bluhm, M.; Kaempfer, B.; Schulze, R.; Seipt, D.

    2007-01-01

    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Φ-functional approach to QCD which motivates the quasi-particle picture. (orig.)

  20. Non-Gaussian path integration in self-interacting scalar field theories

    International Nuclear Information System (INIS)

    Kaya, Ali

    2004-01-01

    In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit

  1. New particle-hole symmetries and the extended interacting boson model

    CERN Document Server

    De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M

    1998-01-01

    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.

  2. Equations of motion of a particle interacting with a scalar field

    International Nuclear Information System (INIS)

    Sato, N.K.

    1984-01-01

    The equations of motion of a particle (nucleon) interacting with a escalar (mesonic) field are derived by the energy momentum tensor moments method of Papapetrou. After a detailed study of the mesonic radiation field the expression of the reactive radiation force of the field upon the particle is established. (Author) [pt

  3. Point based interactive image segmentation using multiquadrics splines

    Science.gov (United States)

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  4. Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite

    Science.gov (United States)

    Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya

    2018-05-01

    The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.

  5. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    Science.gov (United States)

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-01

    We propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particle types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. Our results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.

  6. MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)

    2013-08-15

    A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.

  7. Dynamical theory of hadron interactions based upon extended particle picture, 2

    International Nuclear Information System (INIS)

    Hara, Osamu

    1977-01-01

    The interaction of hadron is discussed on the basis of an extended particle model. We assume that the interaction between hadrons is due to the coupling between currents carried by excitons excited in the particles, which is mediated by some intermediate field. This picture enables us to write down all hadron interactions once this original interaction between excitons is given -- thus leading to a more unified and a dynamical understanding of the hadron interactions. As examples π-π, anti K-N and π-N interactions are discussed. As far as the comparison is possible, the resulting meson-meson interactions and the meson-baryon interactions are in agreement with those obtained by SU 6 or its relativistic generalization. But a great advantage of our model is that it gives furthermore new relations between these meson-meson interactions and meson-baryon interactions because of its unified structure. For example, we find that in our model the coupling constant for the rho ππ interaction g sub(rhoππ) is related to the (pseudo-scalar) π-N coupling constant g by g sub(rhoππ)sup(2)/4π = (6/5) 2 (m sub(rho) m sub(π)/M 2 )(G 2 /4π), where m sub(rho), m sub(π) and M denote respectively the mass for rho, π and the nucleon. This relation is satisfied very well experimentally. (auth.)

  8. Method for constructing bound state wave functions of two interacting particles on nullplanes

    International Nuclear Information System (INIS)

    Leidigh, T.J.

    1980-01-01

    Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum

  9. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Collective behaviour of self-propelling particles with conservative kinematic constraints

    NARCIS (Netherlands)

    Ratushna, Valeriya Igorivna

    2007-01-01

    In this thesis I considered the dynamics of self-propelling particles (SPP). Flocking of living organisms like birds, fishes, ants, bacteria etc. is an area where the theory of the collective behaviour of SPP can be applied. One can often see how these animals develop coherent motion, amazing the

  11. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point

    Science.gov (United States)

    Quan, Yundi; Pickett, Warren E.

    2018-02-01

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ± \\sqrt{k_x2n +k_y2m} form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  12. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  13. Report of the 1991 workshop on particle-material interactions for fusion research

    International Nuclear Information System (INIS)

    1992-11-01

    The Annual Workshop on Particle-Material Interactions in the Working Group of the Research Committee on A and M Data was held at the head-quarters of JAERI, Tokyo, on December 12-13, 1991. The purpose of the Workshop was to obtain future prospects for the activities of the Working Group, by discussing current states and problems in the research on particle-material interactions relevant to the thermocontrolled fusion. The present report contains 16 papers presented at the Workshop, which are mainly concerned with plasma-facing materials in ITER, radiation damage in carbon materials, trapping, emission and permeation of hydrogen in metals, and heavy ion-solid surface interactions. (author)

  14. The magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NARCIS (Netherlands)

    Seong, Y.; Kang, T.G.; Hulsen, M.A.; den Toonder, J.M.J.; Anderson, P.D.

    2016-01-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and non-magnetic sides. A direct numerical scheme is

  15. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  16. Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2006-01-01

    The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of a point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin-Lagrangian is used to analyse the electromagnetic behaviour of the model magnetic moment (composed of two oppositely charged particles of different masses in an initially circular Coulomb orbit) interacting with a passing point charge. Considerations of force, energy, momentum and centre of energy are treated through second order in 1/c. The changing magnetic moment is found to put a force back on a passing charge; this force is of order 1/c 2 and depends upon the magnitude of the magnetic moment. The limit of a many-particle magnet arranged as a toroid is discussed. It is suggested that in the multiparticle limit, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields of the passing charge penetrate into the body of the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. The proposed multiparticle limit is consistent with the conservation laws for energy and momentum, as well as constant motion of the centre of energy, and Newton's third law for the net Lorentz forces on the magnet and on the point charge. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle and Vaidman

  17. Socialization and Adolescent Self-Esteem: Symbolic Interaction and Social Learning Explanations.

    Science.gov (United States)

    Openshaw, D. Kim; And Others

    1983-01-01

    Investigated the effects of social learning and symbolic interaction on adolescent self-esteem. Adolescents (N=368) and their parents completed measures of self-esteem, parental behavior and parental power. Results suggested adolescent self-esteem is more a function of social interaction and the reflected appraisals of others than a modeling of…

  18. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  19. Probing dark matter self-interaction in the Sun with IceCube-PINGU

    International Nuclear Information System (INIS)

    Chen, Chian-Shu; Lee, Fei-Fan; Lin, Guey-Lin; Lin, Yen-Hsun

    2014-01-01

    We study the capture, annihilation and evaporation of dark matter (DM) inside the Sun. It has been shown that the DM self-interaction can increase the DM number inside the Sun. We demonstrate that this enhancement becomes more significant in the regime of small DM mass, given a fixed DM self-interaction cross section. This leads to the enhancement of neutrino flux from DM annihilation. On the other hand, for DM mass as low as as a few GeVs, not only the DM-nuclei scatterings can cause the DM evaporation, DM self-interaction also provides non-negligible contributions to this effect. Consequently, the critical mass for DM evaporation (typically 3 ∼ 4 GeV without the DM self-interaction) can be slightly increased. We discuss the prospect of detecting DM self-interaction in IceCube-PINGU using the annihilation channels χχ → τ + τ - , νν-bar as examples. The PINGU sensitivities to DM self-interaction cross section σ χχ are estimated for track and cascade events

  20. Biasing secondary particle interaction physics and production in MCNP6

    International Nuclear Information System (INIS)

    Fensin, M.L.; James, M.R.

    2016-01-01

    Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP

  1. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  2. Steering particles by breaking symmetries

    Science.gov (United States)

    Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René

    2018-06-01

    We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.

  3. Particle-like representation for the field of a moving point charge in nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Gitman, D M; Shabad, A E; Shishmarev, A A

    2017-01-01

    In a simple nonlinear model stemming from quantum electrodynamics wherein the pointlike charge has finite field-self-energy, we demonstrate that the latter can be presented as a soliton with its energy–momentum vector satisfying the standard mechanical relation characteristic of a free moving massive relativistic particle. (paper)

  4. Solutions for correlations along the coexistence curve and at the critical point of a kagomé lattice gas with three-particle interactions

    Science.gov (United States)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2008-01-01

    We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.

  5. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    Science.gov (United States)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  6. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sarim Ahmed

    2018-06-01

    Full Text Available A venturi scrubber is an important element of Filtered Containment Venting System (FCVS for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide (TiO2 particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB model has been used to predict deformation of water droplets, whereas the Eulerian–Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity. Keywords: Computational Fluid Dynamics, Dust Particles, Filtered Containment Venting System, Self-priming Venturi Scrubber, Venturi Scrubber

  7. Recent advances in elementary particle physics

    International Nuclear Information System (INIS)

    Zepeda, D.A.

    1985-01-01

    A brief review of recent successful results in elementary particle physics, as well as of those problems which may be dealt with in the present of near future is presented. A description of elementary particles and their interactions as they are presently conceived is given. The standard model of electroweak interactions is discussed in detail and the relevance of the recent discovery of the intermediate bosons W + and Z is analized. Finally, the weak features of the standard model and the theories which solve these problems are pointed out. (author)

  8. Coherent correlated states of interacting particles - the possible key to paradoxes and features of LENR

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Vysotskyy, Mykhaylo V.

    2015-01-01

    In this article, the universal mechanism of optimization of low energy nuclear reactions (LENR) on the basis of coherent correlated states (CCS) of interacting particles is discussed. Formation of these states is the result of special nonstationary low energy action to parameters of potential well containing interacting particles. It was shown that in real nuclear-physical systems usage of CCS leads to sharp growth (up to 10 30 -10 100 and more) of Coulomb barrier penetrability at very low energy of interacting particles. Several successful LENR experiments based on CCS are discussed. (author)

  9. Pubertal status, interaction with significant others, and self-esteem of adolescent girls.

    Science.gov (United States)

    Lacković-Grgin, K; Dekovíc, M; Opacić, G

    1994-01-01

    The aim of this study was to examine the relationship between pubertal status, the quality of interactions with significant others, and the self-esteem of adolescent girls. The model which was tested, hypothesized that pubertal status affects self-esteem through girls' interactions with their parents and friends. Pubertal status was operationalized as the number of months between occurrence of the first menstrual periods and time of the investigation. The measure of self-esteem was the shortened form of the Coopersmith Self-Esteem Inventory. Analyses revealed that girls who begun menstruating six months before the investigation obtained higher scores on the measure of self-esteem than did girls who had been menstruating 13 months or more. The best predictor of self-esteem, however, was the quality of interaction with their mothers. The results support the theoretical view that stresses the importance of interaction with significant others for the development of self-esteem.

  10. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.

    2010-01-01

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  11. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  12. Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Eguilior, S.

    2003-07-01

    Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.

  13. Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves

    International Nuclear Information System (INIS)

    Castejon, F.; Eguilior, S.

    2003-01-01

    Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs

  14. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    Science.gov (United States)

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  15. Negative numbers and antimatter particles

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2012-01-01

    . Experimental observation of CP violation aroused a great hope for explaining why our universe is not exactly matter antimatter symmetric. Sakharov stated that without the violation of baryonic number, it is not possible to obtain from pure energy a universe made of only matter. The fact that our universe is asymmetric (in number) but perfectly neutral, points toward the existence of a hypothetic interaction violating A and L but conserving all charges. This Matter Creation (MC) interaction creating either a pair of matter particles or antimatter particles (instead of a pair of particle antiparticle) would have a charge BAL = (A-L) and a neutral messenger Z*. Even if CP is conserved, MC would allow the creation of a number of matter particles not exactly equal to the number of antimatter particles. Our universe would then correspond to the remaining excess when all matter antimatter pairs have disappeared. Observation of matter nonconservation processes would be of great interest to falsify this speculation. In a plan with A and L as axes, pure energy is represented by the origin (A = 0, L = 0). A symmetric universe is also represented by (A = 0, L = 0) meaning that there are exactly the same number of baryons and antibaryons, and the same number of leptons and antileptons. Our present matter universe is instead represented by a point of the diagonal with A = L = present A value. This value is tiny relative to the number of gammas resulting from the annihilation of matter–antimatter particles. (author)

  16. Self-avoiding trails with nearest-neighbour interactions on the square lattice

    International Nuclear Information System (INIS)

    Bedini, A; Owczarek, A L; Prellberg, T

    2013-01-01

    Self-avoiding walks and self-avoiding trails, two models of a polymer coil in dilute solution, have been shown to be governed by the same universality class. On the other hand, self-avoiding walks interacting via nearest-neighbour contacts (ISAW) and self-avoiding trails interacting via multiply visited sites (ISAT) are two models of the coil-globule, or collapse transition of a polymer in dilute solution. On the square lattice it has been established numerically that the collapse transition of each model lies in a different universality class. The models differ in two substantial ways. They differ in the types of subsets of random walk configurations utilized (site self-avoidance versus bond self-avoidance) and in the type of attractive interaction. It is therefore of some interest to consider self-avoiding trails interacting via nearest-neighbour attraction (INNSAT) in order to ascertain the source of the difference in the collapse universality class. Using the flatPERM algorithm, we have performed computer simulations of this model. We present numerical evidence that the singularity in the free energy of INNSAT at the collapse transition has a similar exponent to that of the ISAW model rather than the ISAT model. This would indicate that the type of interaction used in ISAW and ISAT is the source of the difference in the universality class. (paper)

  17. Self-consistent field theory for the interactions between keratin intermediate filaments

    International Nuclear Information System (INIS)

    Akinshina, Anna; Jambon-Puillet, Etienne; Warren, Patrick B; Noro, Massimo G

    2013-01-01

    Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region

  18. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book

  19. The interaction of LAMBDA and nucleon in the LAMBDA hypernuclei

    International Nuclear Information System (INIS)

    Jin Xingnan

    1988-01-01

    The interaction of lambda particle and nucleon is discussed from phenomenological point of view. The effective interactions between the lambda particle and the nucleon in the hypernuclei are also presented in this paper. The structure effect of the hypernuclei will make influence to the effective interaction between the lambda particle and the nucleon in the hypernucei. The spin-orbital coupling of lambda particle in the lambda hypernucleus is much smaller than the spin-orbital coupling of nucleon in nucleus

  20. Interactive Trunk Extraction from Forest Point Cloud

    Directory of Open Access Journals (Sweden)

    T. Mizoguchi

    2014-06-01

    Full Text Available For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.