DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR
Directory of Open Access Journals (Sweden)
Berzan V.
2012-04-01
Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.
Self-excitation of space charge waves
DEFF Research Database (Denmark)
Lyuksyutov, Sergei; Buchhave, Preben; Vasnetsov, Mikhail
1997-01-01
We report a direct observation of space charge waves in photorefractive crystals with point group 23 (sillenites) based on their penetration into an area with uniform light illumination. It is shown experimentally that the quality factor of the waves increases substantially with respect to what c...... current theory predicts [B. Sturman el al., Appl. Phys. A 55, 235 (1992)]. This results in the appearance of strong spontaneous beams caused by space charge wave self-excitation....
Self-excitation of single nanomechanical pillars
Kim, Hyun S.; Qin, Hua; Blick, Robert H.
2010-03-01
Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.
Impact self-excited vibrations of linear motor
Zhuravlev, V. Ph.
2010-08-01
Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.
load loss performance of an autonomous self-excited induction
African Journals Online (AJOL)
ES Obe
Seyoum, D. and Wolf, P., Self Excited In- duction Generators for Breaking Van Appli- cations, Proc. AUPEC, Brisbane Australia,. September, 2004. 12. Wang, L. and Su, J. Dynamic Performance of an isolated Self-Excited Induction gener- ator under various loading conditions, IEEE. Trans. on Energy Conversion, Vol. 14, No.
Self-Exciting Point Process Modeling of Conversation Event Sequences
Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo
Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.
Proposition for sensorless self-excitation by a piezoelectric device
Tanaka, Y.; Kokubun, Y.; Yabuno, H.
2018-04-01
In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.
Robust structural design against self-excited vibrations
Spelsberg-Korspeter, Gottfried
2013-01-01
This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.
Load Loss Performance of an Autonomous Self-Excited Induction ...
African Journals Online (AJOL)
This paper presents a dynamic analysis of an autonomous Self-Excited Induction Generator (SEIG) showing dynamic loss of load performance. In stand-alone operation of the SEIG, especially when supplying a low power utility, an interesting performance of the SEIG observed for various power factor loads can be ...
Self-exciting point process in modeling earthquake occurrences
International Nuclear Information System (INIS)
Pratiwi, H.; Slamet, I.; Respatiwulan; Saputro, D. R. S.
2017-01-01
In this paper, we present a procedure for modeling earthquake based on spatial-temporal point process. The magnitude distribution is expressed as truncated exponential and the event frequency is modeled with a spatial-temporal point process that is characterized uniquely by its associated conditional intensity process. The earthquakes can be regarded as point patterns that have a temporal clustering feature so we use self-exciting point process for modeling the conditional intensity function. The choice of main shocks is conducted via window algorithm by Gardner and Knopoff and the model can be fitted by maximum likelihood method for three random variables. (paper)
Self-excitation of Rydberg atoms at a metal surface
DEFF Research Database (Denmark)
Bordo, Vladimir
2017-01-01
The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....
Laboratory Observations of Self-Excited Dust Acoustic Shocks
Heinrich, J.; Kim, S.-H.; Merlino, R. L.
2009-09-01
Repeated, self-excited dust acoustic shock waves (DASWs) have been observed in a dc glow discharge dusty plasma using high-speed video imaging. Two major observations are reported: (1) The self-steepening of a nonlinear dust acoustic wave (DAW) into a saw-tooth wave with sharp gradient in dust density, very similar to those found in numerical solutions of the fully nonlinear fluid equations for a nondispersive DAW [B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004)], and (2) the collision and confluence of two DASWs.
Equations of state for self-excited MHD generator studies
Energy Technology Data Exchange (ETDEWEB)
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
SRF cavity testing using a FPGA Self Excited Loop
Ben-Zvi, Ilan
2018-01-01
This document provides a detailed description of procedures for very-high precision calibration and testing of superconducting RF cavities using digital Low-Level RF (LLRF) electronics based on Field Programmable Gate Arrays (FPGA). The use of a Self-Excited Loop with an innovative procedure for fast turn-on allows the measurement of the forward, reflected and transmitted power from a single port of the directional coupler in front of the cavity, thus eliminating certain measurement errors. Various procedures for measuring the quality factor as a function of cavity fields are described, including a single RF pulse technique. Errors are estimated for the measurements.
Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder
Directory of Open Access Journals (Sweden)
Junlei Wang
2016-01-01
Full Text Available Self-excited vibration of a square cylinder has been considered as an effective way in harvesting piezoelectric wind energy. In present work, both of the vortex-induced vibration and unstable galloping phenomenon process are investigated in a reduced velocity (Ur=U/ωn·D range of 4≤Ur≤20 with load resistance ranging in 100 Ω≤R≤1 MΩ. The vortex-induced vibration covers presynchronization, synchronization, and postsynchronization branches. An aeroelectromechanical model is given to describe the coupling of the dynamic equation of the fluid-structure interaction and the equation of Gauss law. The effects of load resistance are investigated in both the open-circuit and close-circuit system by a linear analysis, which covers the parameters of the transverse displacement, aerodynamic force, output voltage, and harvested power utilized to measure the efficiency of the system. The highest level of the transverse displacement and the maximum value of harvested power of synchronization branch during the vortex-induced vibration and galloping are obtained. The results show that the large-amplitude galloping at high wind speeds can generate energy. Additionally, energy can be harvested by utilization of the lock-in phenomenon of vortex-induced vibration under low wind speed.
Digital limiter for a self-excited loop
International Nuclear Information System (INIS)
Joshi, G.; Singh, P.; Agarwal, V.; Kumar, G.
2015-01-01
Limiter is one of the main signal processing modules of a self-excited loop (SEL). It plays a crucial role in initiating and stabilizing the amplitude of the RF field in a free running SEL. In a recently reported implementation of a self excited loop in digital domain, the limiter has been realized at based band in the form of a feedback loop. This feedback loop stabilizes the amplitude of the RF phasor present at its input without affecting its phase. In the present work we study the suitability of this implementation of limiter through analysis and simulations. An approximate equivalent model of an SEL, incorporating the digital limiter, is created in analog domain. It is demonstrated that even in the presence for large transients, such as, at the start up of oscillations, SEL continues to exhibit smooth and predictable response. In free running mode of operation the coupling from loop oscillation frequency change to resonator field amplitude change is absent, thus avoiding instability due to electro-mechanical coupling. In the locked mode, the transmission of amplitude jitter through the limiter is far exceeded by that through the controller gain thereby keeping the behavior of the digital SEL close to its analog counterpart. (author)
Energy risk management through self-exciting marked point process
International Nuclear Information System (INIS)
Herrera, Rodrigo
2013-01-01
Crude oil is a dynamically traded commodity that affects many economies. We propose a collection of marked self-exciting point processes with dependent arrival rates for extreme events in oil markets and related risk measures. The models treat the time among extreme events in oil markets as a stochastic process. The main advantage of this approach is its capability to capture the short, medium and long-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, as is common in extreme value theory applications. We make use of the proposed model in order to obtain an improved estimate for the Value at Risk in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk estimates improve as a result of finer modeling approach. This is supported by an empirical application in the representative West Texas Intermediate (WTI) and Brent crude oil markets. - Highlights: • We propose marked self-exciting point processes for extreme events in oil markets. • This approach captures the short and long-term behavior of extremes. • We improve the estimates for the VaR in the WTI and Brent crude oil markets
Transverse acoustic forcing of a round hydrodynamically self-excited jet
Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.
2017-11-01
Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding
Lin, Po-Cheng; I, Lin
2016-02-01
We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.
Time-resolved measurement of global synchronization in the dust acoustic wave
Williams, J. D.
2014-10-01
A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.
Mechanism of occurrence of self-exciting sloshing in rectangular vessel by plane jet flow
International Nuclear Information System (INIS)
Fukaya, Masashi; Okamoto, Koji; Madarame, Haruki
1996-01-01
FBRs have free liquid surfaces in reactor vessels and others, and it is expected that the flow velocity of liquid sodium coolant heightens accompanying the reduction of the reactor size. In the field where free liquid surface and high velocity flow exist, there is the possibility that various unstable phenomena occur on the liquid surface by the interference of the free liquid surface and flow. One example is the self-exciting sloshing by flow. In order to elucidate the mechanism of occurrence of the phenomena in a simple system, the experimental and analytical examinations were carried out on the self-exciting sloshing of free liquid surface in a rectangular vessel by plane jet flow. The basic oscillation characteristics of self-exciting sloshing were examined, and the physical quantities that control the occurrence of self-exciting sloshing were investigated by examining the effect in the case of changing the shapes of vessels. The experiments on the self-exciting sloshing in the case of vertical, horizontal and oblique plane jet flows are reported. The model for the occurrence of oscillation, in which the interaction of sloshing and jet variation was simplified, is proposed, and the verification of the model is reported. (K.I.)
Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
International Nuclear Information System (INIS)
Li Zhi-Xin; Cao Qing-Jie; Alain, Léger
2016-01-01
We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)
Plastic deformation of solids viewed as a self-excited wave process
International Nuclear Information System (INIS)
Zuev, L.B.; Danilov, V.I.
1998-01-01
A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)
Synchronization enhancement via an oscillatory bath in a network of ...
Indian Academy of Sciences (India)
2015-02-05
Feb 5, 2015 ... The possibility of using a dynamic environment to achieve and optimize phase synchronization in a network of self-excited cells with free-end boundary conditions is addressed in this paper. The dynamic environment is an oscillatory bath coupled linearly to a network of four cells. The boundaries of the ...
Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input
Addo, Peter Martey
2014-01-01
This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.
Modeling and Performance of a Self-Excited Two-Phase Reluctance ...
African Journals Online (AJOL)
A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...
Degenerate Hopf bifurcation in a self-exciting Faraday disc dynamo
Indian Academy of Sciences (India)
Weiquan Pan
2017-05-31
May 31, 2017 ... Recently, self-exciting Faraday disk dynamo is also a topic of con- cern [16–20]. ..... Hopf bifurcation. (a) Projected on the x–z plane and (b) pro- ... Key Lab of Com- plex System Optimization and Big Data Processing. (No.
Capacitive VAr requirements for wind driven self-excited induction generators
International Nuclear Information System (INIS)
Singaravelu, S.; Velusami, S.
2007-01-01
This paper presents the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, used as isolated power sources by a constant speed or a variable speed prime mover, to obtain the desired voltage regulation at various values of load and speed. Different performance criteria such as constant terminal voltage or constant air gap flux have been considered. The developed mathematical model using nodal analysis based on graph theory is quite general in nature and can be used for any combination of the unknown variables such as magnetizing reactance (X M ) and frequency (F) or capacitive reactance (X C ) and frequency (F) or capacitive reactance (X C ) and speed (υ). The proposed model completely avoids the tedious and erroneous manual work of segregating the real and imaginary components of the complex impedance of the machine for deriving the specific model for each operating modes. Moreover, any element, like the core loss component, can be included or excluded from the model if required. Next, to obtain the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, a fuzzy logic approach is used for the first time to find the unknown variables using the above model. The results are presented in a normalized form so that they are valid for a wide range of machines and would be useful for the design of voltage regulators for such generators
Synchronicity from Synchronized Chaos
Directory of Open Access Journals (Sweden)
Gregory S. Duane
2015-03-01
Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.
Directory of Open Access Journals (Sweden)
Mohamed Mostafa R.
2016-01-01
Full Text Available Self-Excited Permanent Magnet Induction Generator (PMIG is commonly used in wind energy generation systems. The difficulty of Self-Excited Permanent Magnet Induction Generator (SEPMIG modeling is the circuit parameters of the generator vary at each load conditions due to the a change in the frequency and stator voltage. The paper introduces a new modeling for SEPMIG using Gauss-sidle relaxation method. The SEPMIG characteristics using the proposed method are studied at different load conditions according to the wind speed variation, load impedance changes and different shunted capacitor values. The system modeling is investigated due to the magnetizing current variation, the efficiency variation, the power variation and power factor variation. The proposed modeling system satisfies high degree of simplicity and accuracy.
Amplitude control of the track-induced self-excited vibration for a maglev system.
Zhou, Danfeng; Li, Jie; Zhang, Kun
2014-09-01
The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of wind driven self-excited induction generator supplying isolated DC loads
Directory of Open Access Journals (Sweden)
Khaled S. Sakkoury
2017-05-01
Full Text Available This paper presents the analysis, modelling and simulation of wind-driven self-excited induction generator (SEIG. The three-phase SEIG is driven by a variable-speed prime mover to represent a wind turbine. Also, the paper investigates the dynamic performance of the SEIG during start-up, increasing or decreasing the load or rotor speed. The value of the excitation capacitance required for the SEIG is calculated to give suitable saturation level to assure self-excitation and to avoid heavy saturation levels. Matching of the maximum power available from the wind turbine is performed through varying the load value. The effect of AC–DC power conversion on the generator is investigated. The system simulation is carried out using MATLAB/SIMULINK toolbox program.
Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.
Tsai, Ya-Yi; I, Lin
2014-07-01
Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.
Assessment of guide vane self-excitation stability at small openings in pump flow
International Nuclear Information System (INIS)
Nennemann, B; Sallaberger, M; Henggeler, U; Gentner, C; Parkinson, E
2012-01-01
A parameter study of self-excited pump turbine guide vane instability at small openings using a combined CFD-1DOF approach shows that clear tendencies are difficult to obtain. Two types of boundary conditions can be used in the simulations: prescribed mass flow and prescribed pressure. Simulations with both show results that - for one specific operating condition - are consistent with a self-excited guide vane incident at a prototype pump turbine. However, over a larger range of reduced velocities, the tendencies obtained with the two boundary condition types are not always consistent. Pressure boundary conditions may be the more realistic option. Results then show that with increasing reduced velocity, guide vanes will eventually reach static instability or divergence. This may not be problematic. In contrast, passing through a zone of dynamic instability during operation should and can be avoided.
Self-excited vibration control for axially fast excited beam by a time delay state feedback
International Nuclear Information System (INIS)
Hamdi, Mustapha; Belhaq, Mohamed
2009-01-01
This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.
Investigations on the self-excited oscillations in a kerosene spray flame
Energy Technology Data Exchange (ETDEWEB)
de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P. [Engineering Department, Cambridge University, Trumpington Street, CB2 1PZ, Cambridge (United Kingdom)
2009-02-15
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer function between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)
International Nuclear Information System (INIS)
Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.
2009-01-01
At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies
Study of self-excited ion acoustic waves in a plasma
International Nuclear Information System (INIS)
Ghoranneviss, M.H.; Agashe, V.V.
1985-01-01
Plasma oscillation were studied in spherical discharge system of different sizes: with diameters of 10, 20 and 40 cm. The self-excited ion-acoustic waves were observed, and the oscillation amplitudes were measured at different radial distances. If the discharge conditions were varied, the oscillation frequency was found varying discontinuously from mode to mode. The method used is suggested for application in plasma diagnostics as a very reliable tool for the investigation of stationary dc. low pressure plasma in the absence of external magnetic fields. (D.Gy.)
Hierarchy of temporal responses of multivariate self-excited epidemic processes
Saichev, Alexander; Maillart, Thomas; Sornette, Didier
2013-04-01
Many natural and social systems are characterized by bursty dynamics, for which past events trigger future activity. These systems can be modelled by so-called self-excited Hawkes conditional Poisson processes. It is generally assumed that all events have similar triggering abilities. However, some systems exhibit heterogeneity and clusters with possibly different intra- and inter-triggering, which can be accounted for by generalization into the "multivariate" self-excited Hawkes conditional Poisson processes. We develop the general formalism of the multivariate moment generating function for the cumulative number of first-generation and of all generation events triggered by a given mother event (the "shock") as a function of the current time t. This corresponds to studying the response function of the process. A variety of different systems have been analyzed. In particular, for systems in which triggering between events of different types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report a novel hierarchy of intermediate asymptotic power law decays ˜ 1/ t 1-( m+1) θ of the rate of triggered events as a function of the distance m of the events to the initial shock in the type space, where 0 < θ < 1 for the relevant long-memory processes characterizing many natural and social systems. The richness of the generated time dynamics comes from the cascades of intermediate events of possibly different kinds, unfolding via random changes of types genealogy.
Forced and self-excited oscillations in a natural gas fired lean premixed combustor
Energy Technology Data Exchange (ETDEWEB)
Kim, Daesik; Park, Sung Wook
2010-11-15
An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)
Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo
Wei, Zhouchao; Moroz, Irene; Sprott, J. C.; Akgul, Akif; Zhang, Wei
2017-03-01
We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.
Directory of Open Access Journals (Sweden)
Mohamed E. A. Farrag
2014-01-01
Full Text Available Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG in the distribution network. Self-Excited Induction Generators (SEIG represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG and the active load (essential for balancing power generation and demand. This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.
Energy Technology Data Exchange (ETDEWEB)
Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Na, Woonki [California State University, Fresno; Leighty, Bill [The Leighty Foundation; Kim, Jonghoon [Chungnam National University
2017-12-14
Self-Excited Induction Generation(SEIG) is very rugged, simple, lightweight, and it is easy and inexpensive to implement, very simple to control, and requires a very little maintenance. In this variable-speed operation, the SEIG needs a power electronics interface to convert from the variable frequency output voltage of the generator to a DC output voltage for battery or other DC applications. In our study, a SEIG is connected to the power electronics interface such as diode rectifier and DC/DC converter and then an electrolyzer is connected as a final DC load for fuel cell applications. An equivalent circuit model for an electrolyzer is utilized for our application. The control and analysis for the proposed system is carried out by using PSCAD and MATLAB software. This study would be useful for designing and control analysis of power interface circuits for SEIG for a variable speed wind turbine generation with fuel cell applications before the actual implementation.
Generating functions and stability study of multivariate self-excited epidemic processes
Saichev, A. I.; Sornette, D.
2011-09-01
We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.
SELF-EXCITED WAVE PROCESSES IN CHAINS OF UNIDIRECTIONALLY COUPLED IMPULSE NEURONS
Directory of Open Access Journals (Sweden)
S. D. Glyzin
2015-01-01
Full Text Available The article is devoted to the mathematical modeling of neural activity. We propose new classes of singularly perturbed differential-difference equations with delay of Volterra type. With these systems, the models as a single neuron or neural networks are described. We study attractors of ring systems of unidirectionally coupled impulse neurons in the case where the number of links in the system increases indefinitely. In order to study periodic solutions of travelling wave type of this system, some special tricks are used which reduce the existence and stability problems for cycles to the investigation of auxiliary system with impulse actions. Using this approach, we establish that the number of stable self-excited waves simultaneously existing in the chain increases unboundedly as the number of links of the chain increases, that is, the well-known buffer phenomenon occurs.
Self-excited oscillation due to the fluid discharge over a flexible weir, 1
International Nuclear Information System (INIS)
Hisano, Katsumi; Kaneko, Shigehiko
1989-01-01
The excitation mechanism of a self-excited oscillation due to the fluid discharge over a flexible weir was investigated both theoretically and experimentally. A new type of hydroelastic instability was discovered during test operations of the Super-Phenix LMFBR reactor in France. According to the recent report by Aita, this phenomenon includes two types of instability modes: one is sloshing mode which means the oscillation of a weir associated with coupled sloshing modes of both feeding and restitution fluid collectors; the other is a hydroelastic mode which means the oscillation of a weir associated with fluid-shell modes. In this report, the excitation mechanism of a sloshing mode is discussed by calculating the excitation energy brought by discharge to the fluid-structure system. The theoretical results for the range of sloshing mode instability almost agreed with the experimental data. (author)
Self-excited oscillation due to the fluid discharge over a flexible weir, 2
International Nuclear Information System (INIS)
Hisano, Katsumi; Kaneko, Shigehiko
1990-01-01
The excitation mechanism of a self-excited oscillation due to the fluid discharge over a flexible weir was investigated both theoretically and experimentally. A new type of hydroelastic instability was discovered during test operations of the Super-Phenix LMFBR reactor in France. According to a recent report by Aita, this phenomenon includes two types of instability modes: one is the sloshing mode which means the oscillation of a weir associated with coupled sloshing modes of both feeding and restitution fluid collectors; the other is a hydroelastic mode which means the oscillation of a weir associated with fluid-shell modes. In this report, the excitation mechanism of a hydroelastic mode is discussed by calculating the excitation energy brought by discharge to the fluid-structure system. The theoretical results for the range of hydroelastic mode instability virtually agreed with the experimental data. (author)
Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations
Directory of Open Access Journals (Sweden)
Mohammad Amin Rashidifar
2014-01-01
Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.
The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance
International Nuclear Information System (INIS)
Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D
2012-01-01
The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.
Experimental stand-alone self-excited induction generator driven by a diesel motor
Directory of Open Access Journals (Sweden)
Mhamdi Taoufik
2017-12-01
Full Text Available This paper presents an experimental work to design and size a diesel generator (DG. The basic system is equipped with a 1.5 kW self-excited induction generator (SEIG, a diesel motor (DM, a static voltage compensator (SVC and controllers. A proportional integral controller is used to meet the requirement of the SEIG frequency regulation. A controlled voltage source is performed by using an SVC with a fuzzy controller, which adjusts voltage by varying the amount of the injected reactive power. An experimental set-up is used to identify the SEIG parameters and select the convenient bank of capacitors that minimize the SEIG starting up time and fix the convenient margin of voltage. The system has been tested by simulation using models implemented by Matlab/Simulink software. The simulation results confirm the efficiency of the proposed strategy of voltage regulation. Keywords: Diesel motor, SEIG, SVC, Voltage regulation, Frequency regulation
Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting
Directory of Open Access Journals (Sweden)
Yong-Nong Chang
2014-01-01
Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.
Directory of Open Access Journals (Sweden)
Jinhui Li
2015-01-01
Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.
Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo
Directory of Open Access Journals (Sweden)
R. Hide
1997-01-01
Full Text Available In the interpretation of geomagnetic polarity reversals with their highly variable frequency over geological time it is necessary, as with other irregularly fluctuating geophysical phenomena, to consider the relative importance of forced contributions associated with changing boundary conditions and of free contributions characteristic of the behaviour of nonlinear systems operating under fixed boundary conditions. New evidence -albeit indirect- in favour of the likely predominance of forced contributions is provided by the discovery reported here of the possibility of complete quenching by nonlineax effects of current fluctuations in a self-exciting homopolar dynamo with its single Faraday disk driven into rotation with angular speed y(τ (where τ denotes time by a steady applied couple. The armature of an electric motor connected in series with the coil of the dynamo is driven into rotation' with angular speed z(τ by a torque xf (x due to Lorentz forces associated with the electric current x(τ in the system (just as certain parts of the spectrum of eddies within the liquid outer core are generated largely by Lorentz forces associated with currents generated by the self-exciting magnetohydrodynamic (MHD geodynamo. The discovery is based on bifurcation analysis supported by computational studies of the following (mathematically novel autonomous set of nonlinear ordinary differential equations: dx/dt = x(y - 1 - βzf(x, dy/dt = α(1 - x² - κy, dz/dt = xf (x -λz, where f (x = 1 - ε + εσx, in cases when the dimensionless parameters (α, β, κ, λ, σ are all positive and 0 ≤ ε ≤ 1. Within those regions of (α, β, κ, λ, σ parameter space where the applied couple, as measured by α, is strong enough for persistent dynamo action (i.e. x ≠ 0 to occur at all, there are in general extensive regions where x(τ exhibits large amplitude regular or irregular (chaotic fluctuations. But these fluctuating r
Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo
Hide, R.
In the interpretation of geomagnetic polarity reversals with their highly variable frequency over geological time it is necessary, as with other irregularly fluctuating geophysical phenomena, to consider the relative importance of forced contributions associated with changing boundary conditions and of free contributions characteristic of the behaviour of nonlinear systems operating under fixed boundary conditions. New evidence -albeit indirect- in favour of the likely predominance of forced contributions is provided by the discovery reported here of the possibility of complete quenching by nonlineax effects of current fluctuations in a self-exciting homopolar dynamo with its single Faraday disk driven into rotation with angular speed y(τ) (where τ denotes time) by a steady applied couple. The armature of an electric motor connected in series with the coil of the dynamo is driven into rotation' with angular speed z(τ) by a torque xf (x) due to Lorentz forces associated with the electric current x(τ) in the system (just as certain parts of the spectrum of eddies within the liquid outer core are generated largely by Lorentz forces associated with currents generated by the self-exciting magnetohydrodynamic (MHD) geodynamo). The discovery is based on bifurcation analysis supported by computational studies of the following (mathematically novel) autonomous set of nonlinear ordinary differential equations: dx/dt = x(y - 1) - βzf(x), dy/dt = α(1 - x²) - κy, dz/dt = xf (x) -λz, where f (x) = 1 - ɛ + ɛσx, in cases when the dimensionless parameters (α, β, κ, λ, σ) are all positive and 0 ≤ ɛ ≤ 1. Within those regions of (α, β, κ, λ, σ) parameter space where the applied couple, as measured by α, is strong enough for persistent dynamo action (i.e. x ≠ 0) to occur at all, there are in general extensive regions where x(τ) exhibits large amplitude regular or irregular (chaotic) fluctuations. But these fluctuating régimes shrink in size as increases
On the physical mechanisms governing self-excited pressure surge in Francis turbines
International Nuclear Information System (INIS)
Müller, A; Favrel, A; Landry, C; Yamamoto, K; Avellan, F
2014-01-01
The required operating range for hydraulic machines is continually extended in an effort to integrate renewable energy sources with unsteady power outputs into the existing electrical grid. The off-design operation however brings forth unfavorable flow patterns in the machine, causing dynamic problems involving cavitation, which may represent a limiting factor to the energy production. In Francis turbines it is observed that the self-excited oscillation of a vortex rope in the draft tube cone prevents the delivery of maximum power when required. This phenomenon is referred to as full load pressure surge and has been the object of extensive research during the past decades. Several contributions deepened its understanding through measurement and simulation of the local flow properties and the global stability parameters. The draft tube pressure level and the runner outlet swirl are identified as key variables in the modelling of the vortex rope dynamics. Recently, a cyclic appearance of blade cavitation has been observed at overload conditions in a multiphase numerical simulation coupling the runner and the draft tube. From the analysis of the simulation it becomes obvious that the cyclic appearance of blade cavitation has a direct effect on the runner outlet swirl, thus introducing an additional interaction mechanism that is not accounted for in formerly published models. For the presented work, the results of this numerical study are confirmed experimentally on a reduced scale model of a Francis turbine. Several wall pressure measurements in the draft tube cone are performed, together with high speed visualizations of the vortex rope and the blade cavitation. The flow swirl is calculated based on Laser Doppler Velocimetry measurements. A possible mechanism explaining the coupling between the self-excited pressure and vortex rope oscillation and the cyclic appearance of the blade cavitation is proposed. Furthermore, the streamwise propagation speed of the flow
Evidences of landslide earthquake triggering due to self-excitation process
Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.
2011-06-01
The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz
An Experimental Validated Control Strategy of Maglev Vehicle-Bridge Self-Excited Vibration
Directory of Open Access Journals (Sweden)
Lianchun Wang
2017-01-01
Full Text Available This study discusses an experimentally validated control strategy of maglev vehicle-bridge vibration, which degrades the stability of the suspension control, deteriorates the ride comfort, and limits the cost of the magnetic levitation system. First, a comparison between the current-loop and magnetic flux feedback is carried out and a minimum model including flexible bridge and electromagnetic levitation system is proposed. Then, advantages and disadvantages of the traditional feedback architecture with the displacement feedback of electromagnet yE and bridge yB in pairs are explored. The results indicate that removing the feedback of the bridge’s displacement yB from the pairs (yE − yB measured by the eddy-current sensor is beneficial for the passivity of the levitation system and the control of the self-excited vibration. In this situation, the signal acquisition of the electromagnet’s displacement yE is discussed for the engineering application. Finally, to validate the effectiveness of the aforementioned control strategy, numerical validations are carried out and the experimental data are provided and analyzed.
Power Management of Islanded Self-Excited Induction Generator Reinforced by Energy Storage Systems
Directory of Open Access Journals (Sweden)
Nachat N. Nasser
2018-02-01
Full Text Available Self-Excited Induction Generators (SEIGs, e.g., Small-Scale Embedded wind generation, are increasingly used in electricity distribution networks. The operational stability of stand-alone SEIG is constrained by the local load conditions: stability can be achieved by maintaining the load’s active and reactive power at optimal values. Changes in power demand are dependent on customers’ requirements, and any deviation from the pre-calculated optimum setting will affect a machine’s operating voltage and frequency. This paper presents an investigation of the operation of the SEIG in islanding mode of operation under different load conditions, with the aid of batteries as an energy storage source. In this research a current-controlled voltage-source converter is proposed to regulate the power exchange between a direct current (DC energy storage source and an alternating current (AC grid, the converter’s controller is driven by any variation between machine capability and load demand. In order to prolong the system stability when the battery reaches its operation constraints, it is recommended that an ancillary generator and a dummy local load be embedded in the system. The results show the robustness and operability of the proposed system in the islanding mode of the SEIG under different load conditions.
International Nuclear Information System (INIS)
Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A
2015-01-01
The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization
On self-exciting coupled Faraday disk homopolar dynamos driving series motors
Moroz, Irene M.; Hide, Raymond; Soward, Andrew M.
1998-06-01
We present the results of a preliminary analytical and numerical study of one of the simpler members of a hierarchy of N (where N ≥ 1) coupled self-exciting Faraday disk homopolar dynamos, incorporating motors as additional electrical elements driven by the dynamo-generated current, as proposed by Hide (1997). The hierarchy is a generalisation of a single disk dynamo ( N = 1) with just one electric motor in the system, and crucially, incorporating effects due to mechanical friction in both the disk and the motor, as investigated by Hide et al. (1996). This is describable by a set of three coupled autonomous nonlinear ordinary differential equations, which, due to the presence of the motor, has solutions corresponding to co-existing periodic states of increasing complexity, as well as to chaotic dynamics. We consider the case of two such homopolar dynamos ( N = 2) with generally dissimilar characteristics but coupled together magnetically, with the aim of determining the extent to which this coupled system differs in its behaviour from the single disk dynamo with a series motor (Hide et al. 1996). In the case when the units are identical, the behaviour of the double dynamo system (after initial transients have decayed away) is identical to that of the single dynamo system, with solutions (including “synchronised chaos”) locked in both amplitude and phase. When there is no motor in the system and the coefficient of mechanical friction in the disks is small, these transients resemble the well-known ‘non-synchronous’, but structurally unstable Rikitake solution.
A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control
Nakashima, Motomu; Ohgishi, Norifumi; Ono, Kyosuke
This paper describes a numerical and experimental study of a double jointed fish robot utilizing self-excitation control. The fish robot is composed of a streamlined body and a rectangular caudal fin. The body length is 280mm and it has a DC motor to actuate its first joint and a potentiometer to detect the angle of its second joint. The signal from the potentiometer is fed back into the DC motor, so that the system can be self-excited. In order to obtain a stable oscillation and a resultant stable propulsion, a torque limiter circuit is employed. From the experiment, it has been found that the robot can stably propel using this control and the maximum propulsive speed is 0.42m/s.
de Paor, A. M.
Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.
A. M. de Paor
1998-01-01
International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Directory of Open Access Journals (Sweden)
A. M. de Paor
1998-01-01
Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.
International Nuclear Information System (INIS)
Inada, Fumio; Nishihara, Takashi; Yasuo, Akira; Morita, Ryo
2002-01-01
The applicability of the cross-shaped tube bundle as a lower plenum component of pressure vessel is examined to develop a next generation LWR in Japanese electric utilities. The flow-induced vibration characteristics are not understood well. Methods to evaluate turbulence induced vibration and vortex induced vibration were proposed by CRIEPI. In this study, vibration response is obtained experimentally to propose a method to evaluate self-excited vibration of cross-shaped tube bundle. The self-excited vibration was found to be generated when nondimensional flow velocity was above a critical value. The nondimensional critical velocity of normal configuration is 15% smaller than that of staggered configuration, which means that the nondimensional critical velocity of normal configuration can give conservative evaluation. The result of Reynolds number Re=6.2 x 10 4 agrees well with that of Re=6.8 x 10 5 , in which region, the effect of Reynolds number on the critical velocity is small. (author)
Directory of Open Access Journals (Sweden)
ION, C. P.
2018-05-01
Full Text Available A supercapacitor storage system (SCSS is used for improving the dynamic performances of a microgrid (MG fed by a self-excited induction generator (SEIG, in the case of the direct start-up of an induction motor (IM of comparable power. The primary control system contains a voltage source inverter (VSI with a dump load (DL, to which the SCSS is added. The control strategy for the SCSS consists of injecting power into the VSI DC-link when, because of the overload created by the IM, the DC voltage decreases under the acceptable limit. Thus, the overall performance of the SEIG-supplied MG is significantly improved. Simulations and experimental results accomplished on a laboratory-scale MG validate the effectiveness of the proposed control structure.
Energy Technology Data Exchange (ETDEWEB)
Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon
2017-05-11
A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.
On Synchronization Primitive Systems.
The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition
Pantaleone, James
2002-10-01
Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.
Hide, Raymond
1997-02-01
This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor
International Nuclear Information System (INIS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-01-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Overview of Cell Synchronization.
Banfalvi, Gaspar
2017-01-01
The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.
Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min
2018-06-01
The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.
Self-excited multi-scale skin vibrations probed by optical tracking micro-motions of tracers on arms
Chen, Wei-Chia; Chen, Hsiang-Ying; Chen, Yu-Sheng; Tian, Yong; I, Lin
2017-07-01
The self-excited multi-scale mechanical vibrations, their sources and their mutual coupling of different regions on the forearms of supine subjects, are experimentally investigated, using a simple noncontact method, optical video microscopy, which provides 1 μm and 25 ms spatiotemporal resolutions. It is found that, in proximal regions far from the radial artery, the vibrations are the global vibrations of the entire forearm excited by remote sources, propagating through the trunk and the limb. The spectrum is mainly composed of peaks of very low frequency motion (down to 0.05 Hz), low frequency respiration modes, and heartbeat induced modes (about 1 Hz and its harmonics), standing out of the spectrum floor exhibiting power law decay. The nonlinear mode-mode coupling leads to the cascaded modulations of higher frequency modes by lower frequency modes. The nearly identical waveforms without detectable phase delays for a pair of signals along or transverse to the meridian of regions far away from the artery rule out the detectable contribution from the propagation of Qi, some kind of collective excitation which more efficiently propagates along meridians, according to the Chinese medicine theory. Around the radial artery, in addition to the global vibration, the local vibration spectrum shows very slow breathing type vibration around 0.05 Hz, and the artery pulsation induced fundamental and higher harmonics with descending intensities up to the fifth harmonics, standing out of a flat spectrum floor. All the artery pulsation modes are also modulated by respiration and the very slow vibration.
Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min
2017-12-01
The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.
Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.
2004-10-01
Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.
Stages of chaotic synchronization.
Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.
1998-09-01
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.
STUDYING BUSINESS CYCLES SYNCHRONIZATION
Directory of Open Access Journals (Sweden)
N. Servetnyk
2014-06-01
Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.
Clock synchronization and dispersion
International Nuclear Information System (INIS)
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C
2002-01-01
We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect
The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.
Synchronization of Multipoint Hoists
A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll
Synchronization of chaotic systems
International Nuclear Information System (INIS)
Pecora, Louis M.; Carroll, Thomas L.
2015-01-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators
Synchronization of Concurrent Processes
1975-07-01
Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical
Adaptive Backoff Synchronization Techniques
1989-07-01
Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant
Directory of Open Access Journals (Sweden)
A. de Paor
2001-01-01
Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.
Synchronization on effective networks
International Nuclear Information System (INIS)
Zhou Tao; Zhao Ming; Zhou Changsong
2010-01-01
The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.
Synchronization on effective networks
Energy Technology Data Exchange (ETDEWEB)
Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)
2010-04-15
The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.
TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES
Hide, Raymond; Moroz, Irene M.
1999-10-01
The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied couple, α, driving the disk is steady and the Lorentz couple driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated current x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal eddy currents, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate
Merry, Philip
2017-01-01
LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....
RUN LENGTH SYNCHRONIZATION TECHNIQUES
An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .
Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka
2012-10-12
Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.
International Nuclear Information System (INIS)
Singh, G.K.; Kumar, A. Senthil; Saini, R.P.
2011-01-01
This paper describes a new generalized and efficient model for performance analysis of a six-phase self-excited induction generator (SPSEIG) with three capacitor excitation topologies; simple shunt, short shunt and long shunt. Mathematical model of SPSEIG is formulated using nodal admittance method based on graph theory. Attention is focused on the influence of the different capacitor connections on the generator overload and output power capabilities. The generator voltage with simple shunt excitation connection collapses when it is overloaded while with either the short shunt or long shunt excitation connection; generator is able to sustain the load at a lower operating voltage and larger load current. The matrix equation developed by nodal admittance method is solved by Genetic Algorithm (GA) technique to predetermine the steady-state performance of SPSEIG. The experimental and theoretical results are found to be in good agreement.
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
International Nuclear Information System (INIS)
Attoui, Issam; Omeiri, Amar
2014-01-01
Highlights: • A new model of the SEIG is developed to simulate both the rotor and stator faults. • This model takes iron loss, main flux and cross flux saturation into account. • A new control strategy based on Fractional-Order Controller (FOC) is proposed. • The control strategy is developed for the control of the wind turbine speed. • An on-line diagnostic procedure based on the stator currents analysis is presented. - Abstract: In this paper, a contribution to modeling and fault diagnosis of rotor and stator faults of a Self-Excited Induction Generator (SEIG) in an Isolated Wind Energy Conversion System (IWECS) is proposed. In order to control the speed of the wind turbine, while basing on the linear model of wind turbine system about a specified operating point, a new Fractional-Order Controller (FOC) with a simple and practical design method is proposed. The FOC ensures the stability of the nonlinear system in both healthy and faulty conditions. Furthermore, in order to detect the stator and rotor faults in the squirrel-cage self-excited induction generator, an on-line fault diagnostic technique based on the spectral analysis of stator currents of the squirrel-cage SEIG by a Fast Fourier Transform (FFT) algorithm is used. Additionally, a generalized model of the squirrel-cage SEIG is developed to simulate both the rotor and stator faults taking iron loss, main flux and cross flux saturation into account. The efficiencies of generalized model, control strategy and diagnostic procedure are illustrated with simulation results
Asynchronized synchronous machines
Botvinnik, M M
1964-01-01
Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv
Indian Academy of Sciences (India)
We study the synchronization of coupled dynamical systems on networks. The dynamics is .... Such a time-varying topology can occur in social networks, computer networks, WWW ... This has the effect of reducing the spread of the transverse ...
Synchronization in complex networks
Energy Technology Data Exchange (ETDEWEB)
Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.
2007-12-12
Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
DIFFRACTION SYNCHRONIZATION OF LASERS,
semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.
Traffic signal synchronization.
Huang, Ding-wei; Huang, Wei-neng
2003-05-01
The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.
Neural Synchronization and Cryptography
Ruttor, Andreas
2007-11-01
Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.
A Semantics of Synchronization.
1980-09-01
suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75
Pulse Synchronization System (PSS)
International Nuclear Information System (INIS)
1977-06-01
This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor
Indian Academy of Sciences (India)
We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster ...
Heartbeat synchronized with ventilation
Schäfer, Carsten; Rosenblum, Michael G.; Kurths, Jürgen; Abel, Hans-Henning
1998-03-01
It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.
Synchronous, bilateral tonsillar carcinomas
DEFF Research Database (Denmark)
Nami Saber, Camelia; Grønhøj, Christian; Jensen, David Hebbelstrup
2017-01-01
INTRODUCTION: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing, but data on the incidence of synchronous, bilateral tonsillar squamous cell carcinomas (BiTSCCs) is sparse. In this study, we report the incidence and tumour characteristics of BiTSCCs in a population-base...
Phase Grouping of Larmor Electrons by a Synchronous Wave in Controlled Magnetrons
Energy Technology Data Exchange (ETDEWEB)
Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Yakovlev, V. [Fermilab
2018-04-01
A simplified analytical model based on the charge drift approximation has been developed. It considers the resonant interaction of the synchronous wave with the flow of Larmor electrons in a magnetron. The model predicts stable coherent generation of the tube above and below the threshold of self-excitation. This occurs if the magnetron is driven by a sufficient resonant injected signal (up to -10 dB). The model substantiates precise stability, high efficiency and low noise at the range of the magnetron power control over 10 dB by variation of the magnetron current. The model and the verifying experiments with 2.45 GHz, 1 kW magnetrons are discussed.
Injuries in synchronized skating.
Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M
2006-06-01
Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially
Instructor's guide : - synchronized skating school
Mokkila, Eveliina
2011-01-01
The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...
Synchronizing Strategies under Partial Observability
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri
2014-01-01
Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...
International Nuclear Information System (INIS)
Sakurai, Atsunori; Tanimura, Yoshitaka
2014-01-01
The quantum dissipative dynamics of a tunneling process through double barrier structures is investigated on the basis of non-perturbative and non-Markovian treatment. We employ a Caldeira–Leggett Hamiltonian with an effective potential calculated self-consistently, accounting for the electron distribution. With this Hamiltonian, we use the reduced hierarchy equations of motion in the Wigner space representation to study non-Markovian and non-perturbative thermal effects at finite temperature in a rigorous manner. We study current variation in time and the current–voltage (I–V ) relation of the resonant tunneling diode for several widths of the contact region, which consists of doped GaAs. Hysteresis and both single and double plateau-like behavior are observed in the negative differential resistance (NDR) region. While all of the current oscillations decay in time in the NDR region in the case of a strong system–bath coupling, there exist self-excited high-frequency current oscillations in some parts of the plateau in the NDR region in the case of weak coupling. We find that the effective potential in the oscillating case possesses a basin-like form on the emitter side (emitter basin) and that the current oscillation results from tunneling between the emitter basin and the quantum well in the barriers. We find two distinct types of current oscillations, with large and small oscillation amplitudes, respectively. These two types of oscillation appear differently in the Wigner space, with one exhibiting tornado-like motion and the other exhibiting a two piston engine-like motion. (paper)
DEFF Research Database (Denmark)
Pedersen, Dennis; Pedersen, Torben Bach
2004-01-01
The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...
LHC synchronization test successful
The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/
Programmable synchronous communications module
International Nuclear Information System (INIS)
Horelick, D.
1979-10-01
The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering
Exploiting Schemas in Data Synchronization
DEFF Research Database (Denmark)
Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian
2005-01-01
Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....
Content-based intermedia synchronization
Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat
1995-03-01
Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.
Physical Layer Ethernet Clock Synchronization
2010-11-01
42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization
DEFF Research Database (Denmark)
Hansen, Erik W.
, to exist, in order to underline the cognitive basis of man's (comprehension of) existence. A theory of history (existence) is set up on the basis of the traditional dualistic sign function, and the traditional sound-law concept and sound development are reinterpreted in terms of the theory's system...... of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument...
Louis, Jean-Paul
2013-01-01
Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in
Psychic energy and synchronicity.
Zabriskie, Beverley
2014-04-01
Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity. © 2014, The Society of Analytical Psychology.
Laser Megajoule synchronization system
International Nuclear Information System (INIS)
Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.
2011-01-01
This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)
Accelerated testing for synchronous orbits
Mcdermott, P.
1981-01-01
Degradation of batteries during synchronous orbits is analyzed. Discharge and recharge rates are evaluated. The functional relationship between charge rate and degradation is mathematically determined.
Medical issues in synchronized skating.
Abbott, Kristin; Hecht, Suzanne
2013-01-01
Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.
Synchronized dynamic dose reconstruction
International Nuclear Information System (INIS)
Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.
2007-01-01
Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined
International Nuclear Information System (INIS)
Corvin, C.
1995-06-01
A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations
FPGA based fast synchronous serial multi-wire links synchronization
Pozniak, Krzysztof T.
2013-10-01
The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.
Synchronization dynamics of two different dynamical systems
International Nuclear Information System (INIS)
Luo, Albert C.J.; Min Fuhong
2011-01-01
Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Business cycle synchronization in Europe
DEFF Research Database (Denmark)
Bergman, Ulf Michael; Jonung, Lars
2011-01-01
In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...
Biologically Inspired Intercellular Slot Synchronization
Directory of Open Access Journals (Sweden)
Alexander Tyrrell
2009-01-01
Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.
Introduction to media synchronization (Mediasync)
M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)
2018-01-01
textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience
Distributed Synchronization in Communication Networks
2018-01-24
synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the
[Synchronous sigmoideum- and caecum volvulus].
Berg, Anna Korsgaard; Perdawood, Sharaf Karim
2015-09-21
This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.
Digital synchronization and communication techniques
Lindsey, William C.
1992-01-01
Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.
Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow
International Nuclear Information System (INIS)
Kawamura, T.; Nakao, T.; Hayashi, M.; Murayama, K.
2001-01-01
Synchronized vibrations were measured for a circular cylinder subjected to a water cross flow in the subcritical Reynolds numbers in order to compare the synchronized vibration range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on it. A small peak vibration in the lift direction was found when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency in only the subcritical region. The ratio of the Karman vortex frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortices began was about 1/4 in the subcritical region, and increased to 0,32 at the Strouhal number of 0,29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex was about 1/2, and that in the lift direction decreased from 1 to about 0,8 with decreasing Strouhal number. (author)
Generalized synchronization between chimera states
Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene
2017-05-01
Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.
Three types of generalized synchronization
Energy Technology Data Exchange (ETDEWEB)
Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn
2007-02-05
The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.
Three types of generalized synchronization
International Nuclear Information System (INIS)
Yang Junzhong; Hu Gang
2007-01-01
The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated
Noncoherent Symbol Synchronization Techniques
Simon, Marvin
2005-01-01
Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.
Cross-spectrum symbol synchronization
Mccallister, R. D.; Simon, M. K.
1981-01-01
A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.
Principles of synchronous digital hierarchy
Jain, Rajesh Kumar
2012-01-01
The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital
Synchronous Half-Wave Rectifier
Rippel, Wally E.
1989-01-01
Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.
Hybrid synchronization of hyperchaotic Lu system
Indian Academy of Sciences (India)
In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...
Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems
International Nuclear Information System (INIS)
Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.
2009-01-01
This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.
Outer Synchronization of Complex Networks by Impulse
International Nuclear Information System (INIS)
Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu
2011-01-01
This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)
Unidirectional synchronization of Hodgkin-Huxley neurons
Energy Technology Data Exchange (ETDEWEB)
Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx
2005-07-01
Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.
Bodily Synchronization Underlying Joke Telling
Directory of Open Access Journals (Sweden)
R. C. Schmidt
2014-08-01
Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.
Vestibular hearing and neural synchronization.
Emami, Seyede Faranak; Daneshi, Ahmad
2012-01-01
Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.
Linear Synchronous Motor Repeatability Tests
International Nuclear Information System (INIS)
Ward, C.R.
2002-01-01
A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility
A synchronous game for binary constraint systems
Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher
2018-03-01
Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.
Control of non-conventional synchronous motors
Louis, Jean-Paul
2013-01-01
Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,
Simulating synchronization in neuronal networks
Fink, Christian G.
2016-06-01
We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.
Synchronous-flux-generator (SFG)
Energy Technology Data Exchange (ETDEWEB)
Zweygbergk, S.V.; Ljungstroem, O. (ed.)
1976-01-01
The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Fermi Timing and Synchronization System
International Nuclear Information System (INIS)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.
2006-01-01
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed
Epidemic Synchronization in Robotic Swarms
DEFF Research Database (Denmark)
Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung
2009-01-01
Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination...... as an infinite-dimensional optimal controlproblem. Illustrative numerical examples are given and commented....
Fermi Timing and Synchronization System
Energy Technology Data Exchange (ETDEWEB)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.
2006-07-19
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.
Main injector synchronous timing system
International Nuclear Information System (INIS)
Blokland, W.; Steimel, J.
1998-01-01
The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics
Main injector synchronous timing system
International Nuclear Information System (INIS)
Blokland, Willem; Steimel, James
1998-01-01
The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System
Generalized synchronization via impulsive control
International Nuclear Information System (INIS)
Zhang Rong; Xu Zhenyuan; Yang, Simon X.; He Xueming
2008-01-01
This paper demonstrates theoretically that two completely different systems can implement GS via impulsive control, moreover by using impulsive control, for a given manifold y = H(x) we construct a response system to achieve GS with drive system and the synchronization manifold is y = H(x). Our theoretical results are supported by numerical examples
Learning through synchronous electronic discussion
Kanselaar, G.; Veerman, A.L.; Andriessen, J.E.B.
2000-01-01
This article reports a study examining university student pairs carrying out an electronic discussion task in a synchronous computer mediated communication (CMC) system (NetMeeting). The purpose of the assignment was to raise students' awareness concerning conceptions that characterise effective
Epidemic Synchronization in Robotic Swarms
DEFF Research Database (Denmark)
Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung
2009-01-01
Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...
Digital device for synchronous storage
International Nuclear Information System (INIS)
Kobzar', Yu.M.; Kovtun, V.G.; Pashechko, N.I.
1991-01-01
Synchronous storage digital device for IR electron-photon emission spectrometer operating with analogue-to-digital converter F4223 or monocrystal converter K572PV1 is described. The device accomplished deduction of noise-background in each storage cycle. Summation and deduction operational time equals 90 ns, device output code discharge - 20, number of storages -2 23
Neural synchronization via potassium signaling
DEFF Research Database (Denmark)
Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik
2006-01-01
Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...
Anti-synchronization of chaotic oscillators
International Nuclear Information System (INIS)
Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai
2003-01-01
We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Two novel synchronization criterions for a unified chaotic system
International Nuclear Information System (INIS)
Tao Chaohai; Xiong Hongxia; Hu Feng
2006-01-01
Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication
40 CFR 93.128 - Traffic signal synchronization projects.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...
Synchronization of indirectly coupled Lorenz oscillators
Indian Academy of Sciences (India)
Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...
Control synchronization of differential mobile robots
Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.
2004-01-01
In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.
Chaos synchronization based on contraction principle
International Nuclear Information System (INIS)
Wang Junwei; Zhou Tianshou
2007-01-01
This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach
Global chaos synchronization of coupled parametrically excited ...
Indian Academy of Sciences (India)
In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...
Synchronization of coupled nonidentical multidelay feedback systems
International Nuclear Information System (INIS)
Hoang, Thang Manh; Nakagawa, Masahiro
2007-01-01
We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model
Synchronization and comparison of Lifelog audio recordings
DEFF Research Database (Denmark)
Nielsen, Andreas Brinch; Hansen, Lars Kai
2008-01-01
as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....
New type of chaos synchronization in discrete-time systems: the F-M synchronization
Directory of Open Access Journals (Sweden)
Ouannas Adel
2018-04-01
Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.
New type of chaos synchronization in discrete-time systems: the F-M synchronization
Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh
2018-04-01
In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.
Chaos synchronization of coupled hyperchaotic system
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng
2009-01-01
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.
Adaptive feedback synchronization of Lue system
International Nuclear Information System (INIS)
Han, X.; Lu, J.-A.; Wu, X.
2004-01-01
This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods
Targeting engineering synchronization in chaotic systems
Bhowmick, Sourav K.; Ghosh, Dibakar
2016-07-01
A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.
Analysis of remote synchronization in complex networks
Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia
2013-12-01
A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
Producing Newborn Synchronous Mammalian Cells
Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen
2008-01-01
A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.
International Nuclear Information System (INIS)
Yan Sen-Lin
2014-01-01
The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)
Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems
Steur, Erik; van Leeuwen, Cees; Michiels, Wim
2014-01-01
Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...
Nonlinearity induced synchronization enhancement in mechanical oscillators
Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.
2018-05-08
An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.
A chimeric path to neuronal synchronization
Essaki Arumugam, Easwara Moorthy; Spano, Mark L.
2015-01-01
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).
Continuous and discontinuous transitions to synchronization.
Wang, Chaoqing; Garnier, Nicolas B
2016-11-01
We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.
Synchronization in complex networks with switching topology
International Nuclear Information System (INIS)
Wang, Lei; Wang, Qing-guo
2011-01-01
This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.
A chimeric path to neuronal synchronization
Energy Technology Data Exchange (ETDEWEB)
Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)
2015-01-15
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)
Synchronizing noisy nonidentical oscillators by transient uncoupling
Energy Technology Data Exchange (ETDEWEB)
Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)
2016-09-15
Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.
A chimeric path to neuronal synchronization
International Nuclear Information System (INIS)
Essaki Arumugam, Easwara Moorthy; Spano, Mark L.
2015-01-01
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)
Indian Academy of Sciences (India)
abnormally low heart rate known as bradycardia. This results in symptoms like fatigue, dizziness and fainting. In such cases ... cycle. Owing to this interaction, the flashing frequencies get entrained and the phases of the fireflies are locked.
Explosive synchronization coexists with classical synchronization in the Kuramoto model
Energy Technology Data Exchange (ETDEWEB)
Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo [Department of Physics, Bar-Ilan University, Ramat Gan (Israel); Moskalenko, Olga I.; Kurkin, Semen A. [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054 (Russian Federation); Zhang, Xiyun [Department of Physics, East China Normal University, Shanghai 200062 (China); Boccaletti, Stefano [CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); The Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv (Israel)
2016-06-15
Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.
Development of a synchronous subset of AADL
DEFF Research Database (Denmark)
Filali, Mamoun; Lawall, Julia
2010-01-01
We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....
Adaptive Synchronization of Robotic Sensor Networks
Yıldırım, Kasım Sinan; Gürcan, Önder
2014-01-01
The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...
Method for Converter Synchronization with RF Injection
Joshua P. Bruckmeyer; Ivica Kostanic
2015-01-01
This paper presents an injection method for synchronizing analog to digital converters (ADC). This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion) clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simu...
The synchronization of three fractional differential systems
International Nuclear Information System (INIS)
Li Changpin; Yan Jianping
2007-01-01
In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well
Fitness for synchronization of network motifs
DEFF Research Database (Denmark)
Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.
2004-01-01
We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....
Synchronizing a class of uncertain chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme
Impulsive synchronization of Chen's hyperchaotic system
International Nuclear Information System (INIS)
Haeri, Mohammad; Dehghani, Mahsa
2006-01-01
In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated
A True Open-Loop Synchronization Technique
DEFF Research Database (Denmark)
Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.
2016-01-01
Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....
A single phase synchronous micromotor
Energy Technology Data Exchange (ETDEWEB)
Yamada, T.
1982-01-25
The excitation winding of a synchronous micromotor, wound on a bobin made of an electricity insulating material (EIM), is located in a cylindrical mount, whose exterior walls are thicker than the interior ones. From above the mount is covered by a pole top with comb poles. The rotor poles are made of a permanent magnet, seated on a bushing which rotates on a shaft. The stable rotation of the rotor is supported by a stop bearing and a guide bearing, where the latter consists of a magnetic part and a nonmagnetic part.
Synchronous Oscillations in Microtubule Polymerization
Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.
1987-08-01
Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.
Seamless Image Mosaicking via Synchronization
Santellani, E.; Maset, E.; Fusiello, A.
2018-05-01
This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.
Efficient Synchronization Primitives for GPUs
Stuart, Jeff A.; Owens, John D.
2011-01-01
In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...
Synchronization of coupled metronomes on two layers
Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang
2017-12-01
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.
Pilotless Frame Synchronization Using LDPC Code Constraints
Jones, Christopher; Vissasenor, John
2009-01-01
A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.
Synchronization Analysis of the Supermarket Refrigeration System
DEFF Research Database (Denmark)
Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth
2009-01-01
is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....
Acoustophoretic Synchronization of Mammalian Cells in Microchannels
DEFF Research Database (Denmark)
Thévoz, P.; Adams, J.D.; Shea, H.
2010-01-01
We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...
Price synchronization in retailing: some empirical evidence
Directory of Open Access Journals (Sweden)
Marcelo Resende
2014-06-01
Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.
Directory of Open Access Journals (Sweden)
Xiuli Chai
2013-01-01
Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.
Synchronization of coupled chaotic dynamics on networks
Indian Academy of Sciences (India)
We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters ...
Synchronization and emergence in complex systems
Indian Academy of Sciences (India)
... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...
Dependence of synchronization frequency of Kuramoto oscillators ...
Indian Academy of Sciences (India)
Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected ...
Synchronization of oscillators in complex networks
Indian Academy of Sciences (India)
Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...
Synchronized Data Aggregation for Wireless Sensor Network
DEFF Research Database (Denmark)
Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee
2014-01-01
Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...
A clock synchronization skeleton based on RTAI
Huang, Y.; Visser, P.M.; Broenink, Johannes F.
2006-01-01
This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock
Analytical treatment for synchronizing chaos through unidirectional ...
Indian Academy of Sciences (India)
Abstract. The idea of synchronization can be explicitly demonstrated by both numerical and ana- lytical means on a nonlinear electronic circuit. Also, we introduce a scheme to obtain various logic gate structures, using synchronization of chaotic systems. By a small change in the response param- eter of unidirectionally ...
Synchronization of oscillators in complex networks
Indian Academy of Sciences (India)
Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...
Identical synchronization of coupled Rossler systems
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik
1999-01-01
Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...
Chaos synchronization of nonlinear Bloch equations
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived
Synchronization in Quantum Key Distribution Systems
Directory of Open Access Journals (Sweden)
Anton Pljonkin
2017-10-01
Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.
Communicating via robust synchronization of chaotic lasers
International Nuclear Information System (INIS)
Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.
2009-01-01
In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.
Communicating via robust synchronization of chaotic lasers
Energy Technology Data Exchange (ETDEWEB)
Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx
2009-10-15
In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.
Synchronization in networks with heterogeneous coupling delays
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
Chaos synchronization based on intermittent state observer
Institute of Scientific and Technical Information of China (English)
Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming
2004-01-01
This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.
Effects of frustration on explosive synchronization
Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can
2016-12-01
In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.
Variance based OFDM frame synchronization
Directory of Open Access Journals (Sweden)
Z. Fedra
2012-04-01
Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.
Concurrent systems and time synchronization
Burgin, Mark; Grathoff, Annette
2018-05-01
In the majority of scientific fields, system dynamics is described assuming existence of unique time for the whole system. However, it is established theoretically, for example, in relativity theory or in the system theory of time, and validated experimentally that there are different times and time scales in a variety of real systems - physical, chemical, biological, social, etc. In spite of this, there are no wide-ranging scientific approaches to exploration of such systems. Therefore, the goal of this paper is to study systems with this property. We call them concurrent systems because processes in them can go, events can happen and actions can be performed in different time scales. The problem of time synchronization is specifically explored.
Synchronization of world economic activity
Groth, Andreas; Ghil, Michael
2017-12-01
Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.
Chaos synchronization between Chen system and Genesio system
International Nuclear Information System (INIS)
Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao
2007-01-01
This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes
V123 Beam Synchronous Encoder Module
International Nuclear Information System (INIS)
Kerner, T.; Conkling, C. R.; Oerter, B.
1999-01-01
The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring
Bursting synchronization in clustered neuronal networks
International Nuclear Information System (INIS)
Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le
2013-01-01
Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)
Synchronization of Estrus in Cattle: A Review
Directory of Open Access Journals (Sweden)
R. Islam
2011-06-01
Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141
Fuzzy stability and synchronization of hyperchaos systems
International Nuclear Information System (INIS)
Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin
2008-01-01
This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller
Transmission delays in hardware clock synchronization
Shin, Kang G.; Ramanathan, P.
1988-01-01
Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.
Permutation parity machines for neural synchronization
International Nuclear Information System (INIS)
Reyes, O M; Kopitzke, I; Zimmermann, K-H
2009-01-01
Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines
Synchronization Of Parallel Discrete Event Simulations
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
The least channel capacity for chaos synchronization.
Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang
2011-03-01
Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.
Adaptive H∞ Chaos Anti-synchronization
International Nuclear Information System (INIS)
Ahn, Choon Ki
2010-01-01
A new adaptive H ∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H ∞ norm constraint. As an application of the proposed AHAS method, the H ∞ anti-synchronization problem for Genesio–Tesi chaotic systems is investigated. (general)
Analysis of Synchronization for Coupled Hybrid Systems
DEFF Research Database (Denmark)
Li, Zheng; Wisniewski, Rafal
2006-01-01
In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...
Chaos synchronization of the energy resource system
International Nuclear Information System (INIS)
Li Xiuchun; Xu Wei; Li Ruihong
2009-01-01
This paper presents the chaos synchronization problem for new dynamical system (that is, energy resource demand-supply system), where the controller is designed using two different control methods. Firstly, based on stability criterion of linear system, chaotic synchronization is achieved with the help of the active theory, and accordingly, the simulation results are given for verifying the feasibility of the method. Secondly, based on Lyapunov stability theory, on the assumption that all the parameters of the system are unknown, adaptive control approach is proposed to make the states of two chaotic systems asymptotic synchronization. In the end, numerical simulations are used to show the effectiveness of the proposed control method.
Synchronization of two coupled turbulent fires
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
Synchronization System for Next Generation Light Sources
Energy Technology Data Exchange (ETDEWEB)
Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)
2014-03-27
An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.
Usability of synchronization for cognitive modeling
International Nuclear Information System (INIS)
Diebner, Hans H.; Grond, Florian
2005-01-01
We discuss the synchronization features of a previously introduced adaptive system for dynamics recognition in more detail. We investigate the usability of synchronization for modeling and parameter estimations. It is pointed out inhowfar the adaptive system based on synchronization can become a powerful tool in modeling. The adaptive system can store modules of pre-adapted dynamics and is potentially capable of undergoing self-modification. We compare the stored modules with pre-knowledge that a modeler puts into his or her models. In this sense the adaptive system functions like an expert system
Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks
2013-01-01
This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...
International Nuclear Information System (INIS)
Wu, Liang; Zhu, Shiqun
2003-01-01
The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system
On synchronization of three chaotic systems
International Nuclear Information System (INIS)
Yan Jianping; Li Changpin
2005-01-01
In this paper, a simple but efficient method is applied to the synchronization of three chaotic systems, i.e., the chaotic Lorenz, Chua, and Chen systems. Numerical simulations show this method works very well
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Robust adaptive synchronization; dynamical network; multiple delays; multiple uncertainties. ... Networks such as neural networks, communication transmission networks, social rela- tionship networks etc. ..... a very good effect. Pramana – J.
Multivalued synchronization by Poincaré coupling
Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.
2013-10-01
This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.
New GOES satellite synchronized time code generation
Fossler, D. E.; Olson, R. K.
1984-01-01
The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.
Synchronization in complex networks with adaptive coupling
International Nuclear Information System (INIS)
Zhang Rong; Hu Manfeng; Xu Zhenyuan
2007-01-01
Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies
Synchronous correlation matrices and Connes’ embedding conjecture
Energy Technology Data Exchange (ETDEWEB)
Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
Some Considerations on Seriality and Synchronicity
Elena Nechita
2010-01-01
This paper presents an overview of the results that have been obtained lately on seriality and synchronicity and their link, in the light of the new theories and within the frame of complexity science.
Some Considerations on Seriality and Synchronicity
Directory of Open Access Journals (Sweden)
Elena Nechita
2010-01-01
Full Text Available This paper presents an overview of the results that have been obtained lately on seriality and synchronicity and their link, in the light of the new theories and within the frame of complexity science.
High Speed Frame Synchronization and Viterbi Decoding
DEFF Research Database (Denmark)
Paaske, Erik; Justesen, Jørn; Larsen, Knud J.
1996-01-01
The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...
High Speed Frame Synchronization and Viterbi Decoding
DEFF Research Database (Denmark)
Paaske, Erik; Justesen, Jørn; Larsen, Knud J.
1998-01-01
The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...
Dependence of synchronization frequency of Kuramoto oscillators ...
Indian Academy of Sciences (India)
2Department of Theoretical Physics, Physical Research Laboratory, ... on the sine of the phase difference between the oscillators and hence, ... we study the change in synchronization frequency as the symmetry is changed under the limit of.
Dreams: a framework for distributed synchronous coordination
Proença, J.; Clarke, D.; Vink, de E.P.; Arbab, F.
2012-01-01
Synchronous coordination systems, such as Reo, exchange data via indivisible actions, while distributed systems are typically asynchronous and assume that messages can be delayed or get lost. To combine these seemingly contradictory notions, we introduce the Dreams framework. Coordination patterns
Pitch Synchronous Segmentation of Speech Signals
National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....
SYNCHRONIZATION OF OVULATION IN BEEF HERDS ...
African Journals Online (AJOL)
IMPROVED CONCEPTION RATE AFTER AND INTERRUPTED COURSE ... with normal first insemination figures uncomplicated by synchronization and ... get her pregnant again so that she can consistently recalve ... Delayed ovulation may also contribute towards lower .... Effect of syttdtottizotbn on genad hcrd fatility.
Synchronized flow in oversaturated city traffic.
Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes
Koumakis, N.; Di Leonardo, R.
2013-01-01
Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating ...
Synchronous and Asynchronous ATM Multiplexor Properties Comparsion
Jan Zabka
2006-01-01
The article is aimed to ATM multiplexor computer model utilisation. Based on simulation runs we try to review aspects of use a synchronous and asynchronous ATM multiplexors. ATM multiplexor is the input queuing model with three inputs. Synchronous multiplexor works without an input priority. Multiplexor inputs are served periodically. Asynchronous multiplexor model supports several queuing and priority mechanisms. CLR and CTD are basic performance parameters. Input cell flows are genera...
Projective synchronization based on suitable separation
International Nuclear Information System (INIS)
Li Guohui; Xiong Chuan; Sun Xiaonan
2007-01-01
A new approach for constructing a projective-synchronized chaotic slave system is proposed in this paper. This method is based on suitable separation by decomposing the system as the linear part and the nonlinear one. From matrix measure theory, some simple but efficient criteria are derived for projective synchronization of chaotic system. Numerical simulations for the Lorenz system show that this control method works very well
Full state hybrid projective synchronization in hyperchaotic systems
International Nuclear Information System (INIS)
Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei
2009-01-01
In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.
Complete synchronization of two Chen-Lee systems
International Nuclear Information System (INIS)
Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T
2008-01-01
This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach
Nonlinear observer based phase synchronization of chaotic systems
International Nuclear Information System (INIS)
Meng Juan; Wang Xingyuan
2007-01-01
This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme
Frame Synchronization Without Attached Sync Markers
Hamkins, Jon
2011-01-01
We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).
Synchronization of mobile chaotic oscillator networks
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)
2016-09-15
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks
International Nuclear Information System (INIS)
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-01-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks.
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-09-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Explosive synchronization transitions in complex neural networks
Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai
2013-09-01
It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.
Fault-tolerant clock synchronization in distributed systems
Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.
1990-01-01
Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Chaos synchronization in autonomous chaotic system via hybrid feedback control
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang
2009-01-01
This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.
Synchronization of Coupled Neurons Controlled by a Pacemaker
International Nuclear Information System (INIS)
Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia
2011-01-01
We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)
Chaos synchronizations of chaotic systems via active nonlinear control
International Nuclear Information System (INIS)
Huang, J; Xiao, T J
2008-01-01
This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective
Guide to Synchronization of Video Systems to IRIG Timing
1992-07-01
and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with
Directory of Open Access Journals (Sweden)
Md Ruhul Amin
2017-12-01
Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.
International Nuclear Information System (INIS)
Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.
2005-01-01
This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization
International Nuclear Information System (INIS)
Yan-Li, Zou; Guan-Rong, Chen
2009-01-01
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)
Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian
2014-09-01
In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.
Blending Online Asynchronous and Synchronous Learning
Directory of Open Access Journals (Sweden)
Lisa C. Yamagata-Lynch
2014-04-01
Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.
Emergent explosive synchronization in adaptive complex networks
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Adaptive Control Algorithm of the Synchronous Generator
Directory of Open Access Journals (Sweden)
Shevchenko Victor
2017-01-01
Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.
Chaotic synchronization of two complex nonlinear oscillators
International Nuclear Information System (INIS)
Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.
2009-01-01
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Synchronization coupled systems to complex networks
Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas
2018-01-01
A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...
Method of synchronizing independent functional unit
Kim, Changhoan
2018-03-13
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.
Designing Learning Resources in Synchronous Learning Environments
DEFF Research Database (Denmark)
Christiansen, Rene B
2015-01-01
Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...
Adaptive elimination of synchronization in coupled oscillator
Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei
2017-08-01
We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.
Phase synchronization in train connection timetables
Energy Technology Data Exchange (ETDEWEB)
Fretter, Christoph; Mueller-Hannemann, Matthias [Martin Luther Universitaet, Halle-Wittenberg (Germany); Krumov, Lachezar; Weihe, Karsten [TU Darmstadt (Germany); Huett, Marc-Thorsten [Jacobs University, Bremen (Germany)
2010-07-01
Train connection timetables are an important research topic in algorithmics. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is an important contribution to the functioning of public transportation. In addition to efficiency (given, e.g. by minimal average travel times), the robustness of the timetable, i.e. a minimization of delay propagation, is an important criterion. Here we study the balance of efficiency and robustness in train connection timetables from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspectives opens a new avenue towards an understanding of train connection timetables by representing them as spatiotemporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern.
Synchronous characterization of semiconductor microcavity laser beam.
Wang, T; Lippi, G L
2015-06-01
We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.
Synthesizing Modular Invariants for Synchronous Code
Directory of Open Access Journals (Sweden)
Pierre-Loic Garoche
2014-12-01
Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.
Trigger delay compensation of beam synchronous sampling
International Nuclear Information System (INIS)
Steimel, J.
1996-05-01
One of the problems of providing beam feedback in a large accelerator is the lack of beam synchronous trigger signals far from the RF signal source. IF single bucket resolutions are required, a cable extending from the RF source to the other side of the accelerator will not provide a synchronous signal if the RF frequency changes significantly with respect to the cable delay. This paper offers a solution to this problem by locking to the RF, at the remote location, using a digital phase locked loop. Then, the digitized frequency value is used to calculate the phase shift required to remain synchronized to the beam. Results are shown for phase lock to the Fermilab Main Ring RF. 1 ref., 4 figs
Suppression of synchronous resonance for VSGs
DEFF Research Database (Denmark)
Yang, Dongsheng; Wu, Heng; Wang, Xiongfei
2017-01-01
The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability of the po......The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability...... of the power system. However, it is reported that the synchronous frequency resonance (SFR) can be aroused in the VSG due to the resonance peaks in the power control loops at the fundamental frequency. By modelling the power control loop in the dq domain, the mechanism underlying the SFR is studied. It reveals...
Adaptive elimination of synchronization in coupled oscillator
International Nuclear Information System (INIS)
Zhou, Shijie; Lin, Wei; Ji, Peng; Feng, Jianfeng; Zhou, Qing; Kurths, Jürgen
2017-01-01
We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh–Nagumo spiking oscillators and the Hindmarsh–Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy. (paper)
Pinning synchronization of a mobile agent network
International Nuclear Information System (INIS)
Wang, Lei; Sun, You-xian
2009-01-01
We investigate the problem of controlling a group of mobile agents in a plane in order to move them towards a desired orbit via pinning control, in which each agent is associated with a chaotic oscillator coupled with those of neighboring agents, and the pinning strategy is to have the common linear feedback acting on a small fraction of agents by random selection. We explore the effects of the pinning probability, feedback gains and agent density in the pinning synchronization of a mobile agent network under a fast-switching constraint, and perform numerical simulations for validation. In particular, we show that there exists a critical pinning density for network synchronization with an unbounded region: above the threshold, the dynamical network can be controlled by pinning; below it, anarchy prevails. And for the network with a single bounded synchronization region, pinning control has little effect as regards enhancing network synchronizability
Measures of Quantum Synchronization in Continuous Variable Systems
Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
Analysis of ECT Synchronization Performance Based on Different Interpolation Methods
Directory of Open Access Journals (Sweden)
Yang Zhixin
2014-01-01
Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.
On synchronized regions of discrete-time complex dynamical networks
International Nuclear Information System (INIS)
Duan Zhisheng; Chen Guanrong
2011-01-01
In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.
Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma
DEFF Research Database (Denmark)
Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs
2009-01-01
of synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...
Characteristics of silent countingin synchronized swimmers
Directory of Open Access Journals (Sweden)
Sergey V. Leonov
2012-01-01
Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.
Multithreading for synchronization tolerance in matrix factorization
International Nuclear Information System (INIS)
Buttari, Alfredo; Dongarra, Jack; Husbands, Parry; Kurzak, Jakub; Yelick, Katherine
2007-01-01
Physical constraints such as power, leakage and pin bandwidth are currently driving the HPC industry to produce systems with unprecedented levels of concurrency. In these parallel systems, synchronization and memory operations are becoming considerably more expensive than before. In this work we study parallel matrix factorization codes and conclude that they need to be re-engineered to avoid unnecessary (and expensive) synchronization. We propose the use of multithreading combined with intelligent schedulers and implement representative algorithms in this style. Our results indicate that this strategy can significantly outperform traditional codes
Carrier and symbol synchronization system performance study
Lindsey, W. C.
1976-01-01
Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.
GPS synchronized power system phase angle measurements
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
Modulated Field Synchronous Generator for Wind Turbines
Directory of Open Access Journals (Sweden)
Petru Chioncel
2013-01-01
Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...
Synchronous generator wind energy conversion control system
Energy Technology Data Exchange (ETDEWEB)
Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)
1996-12-31
This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.
Synchronous Control of Modular Multilevel Converters
DEFF Research Database (Denmark)
Oleschuk, Valentin; Blaabjerg, Frede; Bose, Bimal K.
2002-01-01
A novel method of direct synchronous pulsewidth modulation (PWM) is applied for control of modular multilevel converters consisting from three standard triphase inverter modules along with an 0.33 p.u. output transformer. The proposed method provides synchronisation of the voltage waveforms...... for each module and the composed voltage at the output of the converter. Multilevel output voltage of the converter has quarter-wave symmetry during the whole range including the zone of overmodulation. Both continuous and discontinuous versions of synchronous PWM, based on vector approach...
Injuries and medical issues in synchronized Olympic sports.
Mountjoy, Margo
2009-01-01
Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.
Hybrid synchronization of two independent chaotic systems on ...
Indian Academy of Sciences (India)
Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.
Making sense of media synchronicity in humanitarian crises
Muhren, W.J.; van den Eede, G.G.P.; van de Walle, B.A.
2009-01-01
This paper reintroduces concepts from sensemaking in media synchronicity theory (MST). It focuses on how media should support synchronicity to fit communication needs when making sense of a humanitarian crisis situation. Findings from interviews with senior management of humanitarian aid
The effects of three methods of synchronization on estrus induction ...
African Journals Online (AJOL)
The effects of three methods of synchronization on estrus induction and ... Due to the importances of estrus synchronization in sheep reproduction and fertility, the ... sponges (medroxyprogesterone) and controlled intravaginal drug-releasing ...
RBF neural network based H∞ synchronization for unknown chaotic ...
Indian Academy of Sciences (India)
, 172 ... the effect of disturbance to an H∞ norm constraint. It is shown that ... unknown chaotic systems; linear matrix inequality (LMI); learning law. 1. Introduction .... (9) is RBFNN H∞ synchronized if the synchronization error e(t) satisfies. ∫ ∞.
Analysis of synchronization in a supermarket refrigeration system
DEFF Research Database (Denmark)
Wisniewski, Rafal; Leth, John-Josef; Rasmussen, Jakob Gulddahl
2014-01-01
increases both the energy consumption and the wear of components. Besides this practical importance, from the theoretical point of view, synchronization, likewise stability, Zeno phenomenon, and chaos, is an interesting dynamical phenomenon. The study of synchronization in the supermarket refrigeration...
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...
Hypothesis test for synchronization: twin surrogates revisited.
Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf
2009-03-01
The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.
Effects of synchronous coaching in teacher training
Hooreman, Ralph W.; Kommers, Petrus A.M.; Jochems, Wim M.G.
2008-01-01
Historically, the nature of coaching the teachers is asynchronously: a reflective discussion with the supervisory coach is the follow-up after a lesson has been taught. We expect that synchronous (immediate) coaching may complement and to a certain extent supplant the asynchronous feedback.
Distance learning through synchronous interactive television.
Hall, Janis L
2007-01-01
The advent and popularity of asynchronous online learning has somewhat obscured a standby technology developed over the last two decades. Interactive videoconferencing, sometimes called "interactive television," though not as glamorous and popular a topic at distance-learning conferences, is still alive and well at many institutions. Three or four years ago, many of us were led to believe that interactive television would go the way of the dinosaurs-everything would soon be in an asynchronous format or on individual desktops. There would no longer be any need for elaborately designed classrooms, networks, and operations staff. To date, this prediction has not come true. In fact, synchronous interactive television has experienced significant growth as newer, easier, and cheaper technologies allow institutions to reach more students with less resource investment. Faculty and students, while appreciating the convenience of asynchronous delivery, still express a need for synchronous communication. This article explores the issues involved in synchronous distance education, the current technologies and proposed future developments, and best practices in terms of classroom design, faculty use, and operational issues. It is not a research article but an anecdotal case study based on Washington State University's experiences over the last 20 years in developing and adapting to new synchronous technologies and creating the support and technical infrastructure to best deliver academic courses through this medium.
Relaxation of synchronization on complex networks.
Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk
2008-07-01
We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.
Synchronizing data from irregularly sampled sensors
Uluyol, Onder
2017-07-11
A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.
Blended synchronous learning environment: Student perspectives
Directory of Open Access Journals (Sweden)
Conklina Sheri
2017-06-01
Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.
Long distance synchronization of mobile robots
Alvarez Aguirre, A.; Nijmeijer, H.; Oguchi, T.
2010-01-01
This paper considers the long distance master-slave and mutual synchronization of unicycle-type mobile robots. The issues that arise when the elements of a robotic network are placed in different locations are addressed, specifically the time-delay induced by the communication channel linking the
Synchronization of chaos by nonlinear feedback
International Nuclear Information System (INIS)
Cheng Yanxiang
1995-01-01
The authors point out that synchronization of chaos may also be achieved by a nonlinear feedback without decomposing the original system. They apply the idea to the Lorentz system, and discuss several forms of nonlinear feedbacks by Lyapunov function and numerical method
Online Moderation of Synchronous E-Argumentation
Asterhan, Christa S. C.; Schwarz, Baruch B.
2010-01-01
In this paper, we present findings on moderation of synchronous, small-group argumentation in blended, co-located learning environments. Drawing on findings from the literature on human facilitation of dialogue in face-to-face settings, we first elaborate on the potential promise of this new practice. However, little is known about what…
Clock Synchronization for Multihop Wireless Sensor Networks
Solis Robles, Roberto
2009-01-01
In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…
An Online Synchronous Test for Professional Interpreters
Chen, Nian-Shing; Ko, Leong
2010-01-01
This article is based on an experiment designed to conduct an interpreting test for multiple candidates online, using web-based synchronous cyber classrooms. The test model was based on the accreditation test for Professional Interpreters produced by the National Accreditation Authority of Translators and Interpreters (NAATI) in Australia.…
Control of a superconducting synchronous motor
Energy Technology Data Exchange (ETDEWEB)
Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2007-04-15
This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.
Is synchronous computermediated communication a viable ...
African Journals Online (AJOL)
Employing a conversationanalytic perspective, the logs were analysed to determine whether the interaction reflected in them replicated that characteristic of face-to-face classroom interaction. Once the discourse study had been completed, the logs were used to determine learners' perceptions of synchronous learning.
Synchronic tutoring of a virtual community
Simons, P.R.J.; Ligorio, M.B.; Talamo, A.
2002-01-01
The role of tutors has changed over time, depending on models of learning and on the technology available. This article discusses the evolution of the tutor role and presents a new model concerning the tutoring functions in a synchronous virtual community. The definition of a virtual community
Permanent synchronization of camcorders via LANC protocol
Vrancic, Damir; Smith, Steven L.
2006-02-01
A device, which keeps two camcorders permanently in synchronization, has been developed. The mentioned device uses LANC (CONTROL-L) camcorder's inputs for synchronization. It enables controlling of two camcorders simultaneously via built-in buttons, by using external LANC remote controller and/or by the PC via serial (RS232) communication. Since device requires LANC inputs on camcorders or ACC inputs on still cameras, it can be used on some camcorders produced by manufacturers Sony and Canon or some still cameras produced by Sony. The device initially synchronizes camcorders or still cameras by applying arbitrarily delayed power-up pulses on LANC (ACC) inputs. Then, on user demand, the camcorders can be permanently synchronized (valid only for some camcorders produced by Sony). The effectiveness of the proposed device is demonstrated by several experiments on three types of camcorders (DCR-TRV900E, HDR-HC1, HVR-Z1U) and one type of still camera (DSC-V1). The electronic schemes, PCB layouts, firmware and communication programs are freely available (under GPL licence).
Asynchronous versus Synchronous Learning in Pharmacy Education
Motycka, Carol A.; St. Onge, Erin L.; Williams, Jennifer
2013-01-01
Objective: To better understand the technology being used today in pharmacy education through a review of the current methodologies being employed at various institutions. Also, to discuss the benefits and difficulties of asynchronous and synchronous methodologies, which are being utilized at both traditional and distance education campuses.…
Symbol synchronization in convolutionally coded systems
Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.
1979-01-01
Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.
Traveling-wave synchronous coil gun
International Nuclear Information System (INIS)
Elliott, D.G.
1991-01-01
This paper reports on a traveling-wave synchronous coil gun which permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required
Efficient Distribution of Triggered Synchronous Block Diagrams
2011-10-21
latest input data it reads fromW ∗. IfR ∗ receives a message fromW ∗ whose fresh-bit is false, meaning that R∗ has already read the latest output data...assumptions on clock synchronization. This has the advantage of providing implementations that are robust to various types of timing uncertainties such as
Supplementary material for: The adaptive synchronization of ...
Indian Academy of Sciences (India)
Supplementary material for: The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters. ADELEH NOURIAN and SAEED BALOCHIAN. -50. -40. -30. -20. -10. 0. 10. 20. 30. 40. -25. -20. -15. -10. -5. 0. 5. 10. 15. 20. 25. Y. Z. -12. -10. -8. -6. -4. -2. 0. 2. 4. 6. 8. -25. -20. -15. -10. -5. 0. 5. 10. 15.
Synchronous Computer-Mediated Communication and Interaction
Ziegler, Nicole
2016-01-01
The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...
Synchronicity and the meaning-making psyche.
Colman, Warren
2011-09-01
This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. © 2011, The Society of Analytical Psychology.
Multiswitching combination–combination synchronization of chaotic ...
Indian Academy of Sciences (India)
2017-02-09
Feb 9, 2017 ... restricted to single drive–response system model. It is therefore interesting to ask whether these studies ... this scheme, a universal controller is designed to realize synchronization between a combination of two ... literature [33]. In view of the above discussions, in this paper, we present a new multiswitching ...
On the structure of phase synchronized chaos
DEFF Research Database (Denmark)
Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Laugesen, Jakob L.
2013-01-01
It is well-known that the transition to chaotic phase synchronization for a periodically driven chaotic oscillator of spiral type involves a dense set of saddle-node bifurcations. However, the way of formation and precise organization of these saddle node bifurcation curves have only recently bee...
Comment on two papers of chaotic synchronization
International Nuclear Information System (INIS)
Li Lixiang; Peng Haipeng; Wang Xiangdong; Yang Yixian
2004-01-01
This Letter comments on two papers of chaotic synchronization, namely [Phys. Rev. Lett. 76 (1996) 1232] and [Phys. Lett. A 321 (2004) 50]. We find that some statements in the two papers are incorrect by numerical simulations. The consequence of the incorrectness is analyzed as well
Adaptive projective synchronization between different chaotic ...
Indian Academy of Sciences (India)
Numerical simulation results are performed to explain the effectiveness and feasibility of ... analysis of nonlinear dynamics have gained immense popularity during the last few ... applications of projective synchronization is in secure communication [31] due to ... of uncertain chaotic systems using adaptive control method.
Synchronization Phenomena in Nephron-Nephron Interaction
DEFF Research Database (Denmark)
Holstein-Rathlou, N.-H.; Yip, K.-P.; Sosnovtseva, Olga
2001-01-01
Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscilla...
Global chaos synchronization of coupled parametrically excited ...
Indian Academy of Sciences (India)
In order to ascertain the error dynamics, we define the synchronization error as ... The following theorem is related to the general control matrix: C = ( c11 c12 .... ates as a means of accounting for the initial transients, we display in figure 5 the.
Design of multistable systems via partial synchronization
Indian Academy of Sciences (India)
Mohammad Ali Khan
2017-07-05
Jul 5, 2017 ... The basic idea of the scheme is to design partial synchronization of states between the coupled systems and ... Numerical simulation results consisting of ... systems of the same order via active control is discussed. In §3, the ...
Synchronization analysis of coloured delayed networks under ...
Indian Academy of Sciences (India)
This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...
from synchronic variation to a grammaticalization path
African Journals Online (AJOL)
Kate H
Abstract. The authors argue that the synchronic variation of cognate objects of weather verbs exhibited in six African languages of South Africa (Sepedi, Sesotho, Tshivenda, isiXhosa, Xitsonga, and. isiZulu) has a diachronic explanation, and may be represented as a grammaticalization path. This path gradually leads from ...
Compatibility of Motion Facilitates Visuomotor Synchronization
Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.
2010-01-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…
Electrotonic vascular signal conduction and nephron synchronization
DEFF Research Database (Denmark)
Marsh, D.J.; Toma, I.; Sosnovtseva, Olga
2009-01-01
Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF......) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5: 1 frequency ratio...... is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce...
Community Pharmacist Attitudes on Medication Synchronization Programs
Directory of Open Access Journals (Sweden)
Matthew Witry
2017-05-01
Full Text Available Background: Medication synchronization is a service offered by an increasing number of community pharmacies that aligns refilling of a patient’s multiple medications. Purported benefits include increased adherence and improved dispensing efficiency. Objective: To assess community pharmacist agreement with a set of declarative statements about medication synchronization programs and to identify variation related to pharmacist characteristics. Methods: In 2015, a cross-sectional survey was mailed to 1,000 pharmacists from 5 Midwestern U.S. states using 4-contacts and an online option. Respondents used a 7-point Likert scale to agree or disagree with 5 statements about medication synchronization. Demographic and workplace characteristics were collected. Data were analyzed using descriptive statistics and factor analysis. Multiple linear regression tested the relationship between pharmacist characteristics and a 4-item attitude composite. Results: There were 258 usable responses for a response rate of 28.8%. About half (45.0% reported their pharmacy offered medication synchronization. Most pharmacists (82.6% agreed this service has a positive impact on patient adherence but 57% agreed that a “significant change to workflow” was or would be required. Pharmacist agreement that the program provides financial benefits to the pharmacy was higher than agreement that the service provides more opportunities for patient interactions (p<0.001. In the multiple regression analysis, having a PharmD and working at a pharmacy offering Medication Therapy Management were associated with more positive scores on the medication synchronization benefits composite whereas working in a staff role (rather than a manager/owner was lower. No demographic predictors were significantly associated with agreeing that a significant change to workflow would be required for implementation. Conclusions: Pharmacists generally were positive about medication synchronization
Directory of Open Access Journals (Sweden)
Chen Chuang-Wei
2012-12-01
Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.
Generalized synchronization in discrete maps. New point of view on weak and strong synchronization
International Nuclear Information System (INIS)
Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.
2013-01-01
In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.
Research on synchronization technology of frequency hopping communication system
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
Stroboscope Based Synchronization of Full Frame CCD Sensors
Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi
2017-01-01
The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...
Methodology for GPS Synchronization Evaluation with High Accuracy
Li Zan; Braun Torsten; Dimitrova Desislava
2015-01-01
Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...
Methodology for GPS Synchronization Evaluation with High Accuracy
Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova
2015-01-01
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...
On analytical justification of phase synchronization in different chaotic systems
International Nuclear Information System (INIS)
Erjaee, G.H.
2009-01-01
In analytical or numerical synchronizations studies of coupled chaotic systems the phase synchronizations have less considered in the leading literatures. This article is an attempt to find a sufficient analytical condition for stability of phase synchronization in some coupled chaotic systems. The method of nonlinear feedback function and the scheme of matrix measure have been used to justify this analytical stability, and tested numerically for the existence of the phase synchronization in some coupled chaotic systems.
Impulsive generalized function synchronization of complex dynamical networks
International Nuclear Information System (INIS)
Zhang, Qunjiao; Chen, Juan; Wan, Li
2013-01-01
This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results
Synchronization of Rikitake chaotic attractor using active control
International Nuclear Information System (INIS)
Vincent, U.E.
2005-01-01
Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found
Chaos synchronization of a unified chaotic system via partial linearization
International Nuclear Information System (INIS)
Yu Yongguang; Li Hanxiong; Duan Jian
2009-01-01
A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.
Synchronization of two chaotic systems: Dynamic compensator approach
International Nuclear Information System (INIS)
Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.
2009-01-01
This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.
An approach of parameter estimation for non-synchronous systems
International Nuclear Information System (INIS)
Xu Daolin; Lu Fangfang
2005-01-01
Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems
30 CFR 56.19008 - Friction hoist synchronizing mechanisms.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...
Adaptive synchronization of a new hyperchaotic system with uncertain parameters
International Nuclear Information System (INIS)
Gao Tiegang; Chen Zengqiang; Yuan Zhuzhi; Yu Dongchuan
2007-01-01
This paper discusses control for the master-slave synchronization of a new hyperchaos with five uncertain parameters. An adaptive control law is derived to make the states of two identical hyperchaotic systems asymptotically synchronized based on the Lyapunov stability theory. Finally, a numerical simulation is presented to verify the effectiveness of the proposed synchronization scheme
Partial synchronization in diffusively time-delay coupled oscillator networks
Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.
2012-01-01
We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks
Complete switched modified function projective synchronization of a ...
Indian Academy of Sciences (India)
This paper extends previous work, where CSMFPS of chaotic systems means that all the state variables of the drive system synchronize with different state variables of the response system. As the synchronization scheme has many combined forms, it is a promising type of synchronization and can provide greater security in ...
Designing synchronization schemes for chaotic fractional-order unified systems
International Nuclear Information System (INIS)
Wang Junwei; Zhang Yanbin
2006-01-01
Synchronization in chaotic fractional-order differential systems is studied both theoretically and numerically. Two schemes are designed to achieve chaos synchronization of so-called unified chaotic systems and the corresponding numerical algorithms are established. Some sufficient conditions on synchronization are also derived based on the Laplace transformation theory. Computer simulations are used for demonstration
Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
International Nuclear Information System (INIS)
Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao
2000-11-01
A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)
21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...
Adaptive synchronization of Rossler system with uncertain parameters
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
This article addresses control for the chaos synchronization of Rossler systems with three uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical Rossler systems asymptotically synchronized. A numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme
Chaos synchronization between two different chaotic dynamical systems
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
This work presents chaos synchronization between two different chaotic systems by nonlinear control laws. First, synchronization problem between Genesio system and Rossler system has been investigated, and then the similar approach is applied to the synchronization problem between Genesio system and a new chaotic system developed recently in the literature. The control performances are verified by two numerical examples
Synchronous Control Method and Realization of Automated Pharmacy Elevator
Liu, Xiang-Quan
Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.
Adaptive synchronization of hyperchaotic Chen system with uncertain parameters
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
This article addresses control for the chaos synchronization of hyperchaotic Chen system with five uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme
Synchronization in Coupled Oscillators with Two Coexisting Attractors
International Nuclear Information System (INIS)
Han-Han, Zhu; Jun-Zhong, Yang
2008-01-01
Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Duffing oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions. (general)
Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems
Directory of Open Access Journals (Sweden)
Zhouchao Wei
2011-01-01
Full Text Available Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.
Nonlinear Dynamics of Controlled Synchronizations of Manipulator System
Directory of Open Access Journals (Sweden)
Qingkai Han
2014-01-01
Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.
Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
International Nuclear Information System (INIS)
Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan
2012-01-01
We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)
Stroboscope Based Synchronization of Full Frame CCD Sensors.
Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi
2017-04-07
The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.
Synchronization of modified Colpitts oscillators with structural perturbations
Energy Technology Data Exchange (ETDEWEB)
Kammogne, Soup Tewa; Fotsin, H B, E-mail: hbfotsin@yahoo.fr [Laboratoire d' electronique, Departement de Physique, Faculte des sciences, Universite de Dschang, PO Box 067, Dschang (Cameroon)
2011-06-01
This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.
Role of multistability in the transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga
1999-01-01
In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...
Dutta, Soumita; Avasthi, Prachee
2017-01-01
The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small
Does synchronization reflect a true interaction in the cardiorespiratory system?
Toledo, E; Akselrod, S; Pinhas, I; Aravot, D
2002-01-01
Cardiorespiratory synchronization, studied within the framework of phase synchronization, has recently raised interest as one of the interactions in the cardiorespiratory system. In this work, we present a quantitative approach to the analysis of this nonlinear phenomenon. Our primary aim is to determine whether synchronization between HR and respiration rate is a real phenomenon or a random one. First, we developed an algorithm, which detects epochs of synchronization automatically and objectively. The algorithm was applied to recordings of respiration and HR obtained from 13 normal subjects and 13 heart transplant patients. Surrogate data sets were constructed from the original recordings, specifically lacking the coupling between HR and respiration. The statistical properties of synchronization in the two data sets and in their surrogates were compared. Synchronization was observed in all groups: in normal subjects, in the heart transplant patients and in the surrogates. Interestingly, synchronization was less abundant in normal subjects than in the transplant patients, indicating that the unique physiological condition of the latter promote cardiorespiratory synchronization. The duration of synchronization epochs was significantly shorter in the surrogate data of both data sets, suggesting that at least some of the synchronization epochs are real. In view of those results, cardiorespiratory synchronization, although not a major feature of cardiorespiratory interaction, seems to be a real phenomenon rather than an artifact.
Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems
International Nuclear Information System (INIS)
Zhou Jin; Lu Junan; Wu Xiaoqun
2007-01-01
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems
Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling
International Nuclear Information System (INIS)
Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu
2005-01-01
In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism
System and method for time synchronization in a wireless network
Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.
2010-03-30
A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.
Synchronization of Budding Yeast by Centrifugal Elutriation.
Rosebrock, Adam P
2017-01-03
In yeast, cell size is normally tightly linked to cell cycle progression. Centrifugal elutriation is a method that fractionates cells based on the physical properties of cell size-fluid drag and buoyant density. Using a specially modified centrifuge and rotor system, cells can be physically separated into one or more cohorts of similar size and therefore cell cycle position. Small G 1 daughters are collected first, followed by successively larger cells. Elutriated populations can be analyzed immediately or can be returned to medium and permitted to synchronously progress through the cell cycle. This protocol describes two different elutriation methods. In the first, one or more fractions of synchronized cells are obtained from an asynchronous starting population, reincubated, and followed prospectively across a time series. In the second, an asynchronous starting population is separated into multiple fractions of similarly sized cells, and each cohort of similarly sized cells can be analyzed separately without further growth. © 2017 Cold Spring Harbor Laboratory Press.
Synchronous and Cogged Fan Belt Performance Assessment
Energy Technology Data Exchange (ETDEWEB)
Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Acosta, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2014-02-01
The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.
Communication with spatial periodic chaos synchronization
International Nuclear Information System (INIS)
Zhou, J.; Huang, H.B.; Qi, G.X.; Yang, P.; Xie, X.
2005-01-01
Based on the spatial periodic chaos synchronization in coupled ring and linear arrays, we proposed a random high-dimensional chaotic encryption scheme. The transmitter can choose hyperchaotic signals randomly from the ring at any different time and simultaneously transmit the information of chaotic oscillators in the ring to receiver through public channel, so that the message can be masked by different hyperchaotic signals in different time intervals during communication, and the receiver can decode the message based on chaos synchronization but the attacker does not know the random hyperchaotic dynamics and cannot decode the message. Furthermore, the high sensitivity to the symmetry of the coupling structure makes the attacker very difficult to obtain any useful message from the channel
Bursting synchronization in scale-free networks
International Nuclear Information System (INIS)
Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.
2009-01-01
Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.
A large electrically excited synchronous generator
DEFF Research Database (Denmark)
2014-01-01
This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....
Social argumentation in online synchronous communication
Angiono, Ivan
In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.
Synchronous motor with HTS-2G wires
Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.
2014-05-01
One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.
Synchronization of Integrated Systems on a Chip
Directory of Open Access Journals (Sweden)
González-Díaz O.
2012-04-01
Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.
Hidden imperfect synchronization of wall turbulence.
Tardu, Sedat F
2010-03-01
Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. The local amplitude is globally highly intermittent, but not in the phase locked regions wherein it varies smoothly. These behaviors are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type I intermittency behavior, in concordance with saddle-node bifurcation, and the periodic orbits of saddle nature recently identified in Couette turbulence. The imperfect synchronization is related to the footprint of coherent Reynolds shear stress producing eddies convecting in the low buffer.
A Shared Scratchpad Memory with Synchronization Support
DEFF Research Database (Denmark)
Hansen, Henrik Enggaard; Maroun, Emad Jacob; Kristensen, Andreas Toftegaard
2017-01-01
Multicore processors usually communicate via shared memory, which is backed up by a shared level 2 cache and a cache coherence protocol. However, this solution is not a good fit for real-time systems, where we need to provide tight guarantees on execution and memory access times. In this paper, we...... propose a shared scratchpad memory as a time-predictable communication and synchronization structure, instead of the level 2 cache. The shared on-chip memory is accessed via a time division multiplexing arbiter, isolating the execution time of load and store instructions between processing cores....... Furthermore, the arbiter supports an extended time slot where an atomic load and store instruction can be executed to implement synchronization primitives. In the evaluation we show that a shared scratchpad memory is an efficient communication structure for a small number of processors; in our setup, 9 cores...
Sensorless Control of Permanent Magnet Synchronous Machines
DEFF Research Database (Denmark)
Matzen, Torben N.
Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...
Simulation of an HTS Synchronous Superconducting Generator
DEFF Research Database (Denmark)
Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad
2012-01-01
In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings...... of the rotor. Finally, heating losses are computed as a response to the electric load. The model is used to evaluate the transient response of the generator. © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of the Guest Editors....
Simulation of an HTS Synchronous Superconducting Generator
DEFF Research Database (Denmark)
In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...... element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed...
Phase synchronization of instrumental music signals
Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.
2014-06-01
Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.
Static Deadlock Detection in MPI Synchronization Communication
Ming-Xue, Liao; Xiao-Xin, He; Zhi-Hua, Fan
2007-01-01
It is very common to use dynamic methods to detect deadlocks in MPI programs for the reason that static methods have some restrictions. To guarantee high reliability of some important MPI-based application software, a model of MPI synchronization communication is abstracted and a type of static method is devised to examine deadlocks in such modes. The model has three forms with different complexity: sequential model, single-loop model and nested-loop model. Sequential model is a base for all ...
Distributed Time Synchronization Algorithms and Opinion Dynamics
Manita, Anatoly; Manita, Larisa
2018-01-01
We propose new deterministic and stochastic models for synchronization of clocks in nodes of distributed networks. An external accurate time server is used to ensure convergence of the node clocks to the exact time. These systems have much in common with mathematical models of opinion formation in multiagent systems. There is a direct analogy between the time server/node clocks pair in asynchronous networks and the leader/follower pair in the context of social network models.
Reversible thyristor converters of brushless synchronous compensators
Directory of Open Access Journals (Sweden)
А.М.Galynovskiy
2013-12-01
Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.
Synchronization of workshops, using facilities planning
Zineb, Britel; Abdelghani, Cherkaoui
2017-08-01
In this paper, we will present a methodology used for the synchronization of two workshops of a sheet metal department. These two workshops have a supplier-customer relationship. The aim of the study is to synchronise the two workshops as a step towards creating a better material flow, reduced inventory and achieving Just in time and lean production. To achieve this, we used a different set of techniques: SMED, Facilities planning…
An alternative method for Plasmodium culture synchronization.
Lelièvre, J; Berry, A; Benoit-Vical, F
2005-03-01
Since the synchronization of Plasmodium falciparum has become an essential tool in research, we have investigated the use of a commercial gelatine solution, Plasmion, to replace Plasmagel, which is now difficult to obtain. This method also avoids the use of techniques based on Percoll-glucose gradients. The Plasmion-based technique proved to be a good method and could become an alternative to Plasmagel.
Synchronous colonic tumours of dual pathology.
Basu, S; Selvachandran, S N; Cade, D
2001-05-01
Synchronous colonic tumours of dual pathology are extremely rare. A review of the literature revealed that few cases have been reported to date. Because of their rarity and lack of specific symptoms, preoperative diagnosis is not easy and there is no protocol as yet for the ideal management of these cases. We present such a case which was treated by a combination of surgery and chemotherapy.
Business Cycle Synchronization and Regional Integration
Fiess, Norbert
2007-01-01
Deeper trade integration between Central America and the United States, as envisaged under the Central American Free Trade Agreement, is likely to lead to closer links between Central American and U.S. business cycles. This article assesses the degree of business cycle synchronization between Central America and the United States—relevant not only for a better understanding of the influence of important trading partners on the business cycle fluctuations in the domestic economy but for evalua...
Stock Price Synchronicity and Material Sustainability Information
Grewal, Jody; Hauptmann, Clarissa; Serafeim, Georgios
2017-01-01
We examine if, and under what conditions, disclosure of sustainability information identified as investor relevant by market-driven innovations in accounting standard-setting, is associated with stock prices reflecting more firm-specific information and thereby lower synchronicity with market and industry returns. We find that firms voluntarily disclosing more sustainability information, identified as material by the Sustainability Accounting Standards Board (SASB), have lower stock price syn...
Method for emulation of synchronous machine
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to electric energy sources, such as a single wind power turbine or wind power plant, that are interfaced with the utility grid through power electronic converters. In particular, the present invention relates to specific techniques and methodologies for power...... electronic converters for stabilizing the utility grid during transient conditions and for providing similar stability mechanisms that are inherently present in electric synchronous generators while maintaining the possibility for fast and decoupled following of set points for generated active and...
Dobutamine Stress Echocardiography and Tissue Synchronization Imaging
Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule
2008-01-01
Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging. PMID:25610034
A denotational theory of synchronous reactive systems
Benveniste , Albert; Le Guernic , Paul; Sorel , Yves; Sorine , Michel
1992-01-01
International audience; In this paper, systems which interact permanently with their environments are considered. Such systems are encountered, for instance, in real-time control or signal processing systems, C3-systems, and man-machine interfaces, to mention just a few cases. The design and implementation of such systems require a concurrent programming language which can be used to verify and synthesize the synchronization mechanisms, and to perform transformations of the concurrent source ...
Synchronization in networks with multiple interaction layers
del Genio, Charo I.; Gómez-Gardeñes, Jesús; Bonamassa, Ivan; Boccaletti, Stefano
2016-01-01
The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network. PMID:28138540
Synchronous behavior of two coupled electronic neurons
International Nuclear Information System (INIS)
Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.
2000-01-01
We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society
Anticipatory synchronization via low-dimensional filters
International Nuclear Information System (INIS)
Pyragiene, T.; Pyragas, K.
2017-01-01
An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.
Anticipatory synchronization via low-dimensional filters
Energy Technology Data Exchange (ETDEWEB)
Pyragiene, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.
2017-06-15
An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.
The synchronous active neutron detection assay system
International Nuclear Information System (INIS)
Pickrell, M.M.; Kendall, P.K.
1994-01-01
We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design
Inter-brain synchronization during social interaction.
Directory of Open Access Journals (Sweden)
Guillaume Dumas
Full Text Available During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction.
Symbol synchronization for the TDRSS decoder
Costello, D. J., Jr.
1983-01-01
Each 8 bits out of the Viterbi decoder correspond to one symbol of the R/S code. Synchronization must be maintained here so that each 8-bit symbol delivered to the R/S decoder corresponds to an 8-bit symbol from the R/S encoder. Lack of synchronization, would cause an error in almost every R/S symbol since even a - 1-bit sync slip shifts every bit in each 8-bit symbol by one position, therby confusing the mapping betweeen 8-bit sequences and symbols. The error correcting capability of the R/S code would be exceeded. Possible ways to correcting this condition include: (1) designing the R/S decoder to recognize the overload and shifting the output sequence of the inner decoder to establish a different sync state; (2) using the characteristics of the inner decoder to establish symbol synchronization for the outer code, with or without a deinterleaver and an interleaver; and (3) modifying the encoder to alternate periodically between two sets of generators.
Synchronous multicentric osteosarcoma: the case for metastases
International Nuclear Information System (INIS)
Daffner, R.H.; Kennedy, S.L.; Fox, K.R.; Crowley, J.J.; Sauser, D.D.; Cooperstein, L.A.
1997-01-01
Objective. There is a current debate whether multicentric osteosarcoma represents synchronous multiple primary osteosarcomas or metastatic disease. The purpose of this report is to evaluate the etiology, presentation, and classification of this entity. Design and patients. Six patients ranging in age from 7 to 29 years were studied. The clinical, radiographic, and pathologic findings are reported. In addition, a review of the literature was undertaken. Results. The clinical courses of our six patients as well as a review of the literature suggest that multicentric osteosarcoma represent one extreme of a continuous scale of metastatic osteosarcoma rather than multiple synchronous primary tumors. The presentation is unusual and the clinical behavior distinctive, but the mechanism of spread remains the same: blood-borne and lymphatic-borne. Conclusions. Our experience with these six patients supports the concept in the recent literature that synchronous osteosarcoma is one extreme of the spectrum of metastatic osteosarcoma. Its unique features are: (1) multiple radiodense lesions that present simultaneously with or without pulmonary metastases; (2) a single ''dominant'' lesion with multiple smaller lesions; and (3) a uniformly rapid, fatal prognosis. Osteosarcoma should be regarded as a metastatic disease, even when only a single primary lesion is found at the initial presentation. (orig.)
Painleve-Gullstrand synchronizations in spherical symmetry
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
A Painleve-Gullstrand synchronization is a slicing of the spacetime by a family of flat space-like 3-surfaces. For spherically symmetric spacetimes, we show that a Painleve-Gullstrand synchronization only exists in the region where (dr) 2 ≤ 1, r being the curvature radius of the isometry group orbits (2-spheres). This condition states that the Misner-Sharp gravitational energy of these 2-spheres is not negative and has an intrinsic meaning in terms of the norm of the mean extrinsic curvature vector. It also provides an algebraic inequality involving the Weyl curvature scalar and the Ricci eigenvalues. We prove that the energy and momentum densities associated with the Weinberg complex of a Painleve-Gullstrand slice vanish in these curvature coordinates, and we give a new interpretation of these slices by using semi-metric Newtonian connections. It is also outlined that, by solving the vacuum Einstein's equations in a coordinate system adapted to a Painleve-Gullstrand synchronization, the Schwarzschild solution is directly obtained in a whole coordinate domain that includes the horizon and both its interior and exterior regions.
Deng, Zhenhua; Shang, Jing; Nian, Xiaohong
2015-11-01
In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang
2004-06-01
Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.
Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.
Chen, Qiang; Ren, Xuemei; Na, Jing
2015-09-01
In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Melfi, Michael J.
2015-10-20
A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.
Directory of Open Access Journals (Sweden)
Xuefei Wu
2014-01-01
Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.
Coevolution of Synchronization and Cooperation in Costly Networked Interactions
Antonioni, Alberto; Cardillo, Alessio
2017-06-01
Despite the large number of studies on synchronization, the hypothesis that interactions bear a cost for involved individuals has seldom been considered. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring any cost, waiting for others to get synchronized to his or her state. Thus, the emergence of synchronization may be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit-to-cost ratio they accrued in the past. We study the onset of cooperation and synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We also display how different classes of topology foster synchronization differently both at microscopic and macroscopic levels.
Perfect synchronization in networks of phase-frustrated oscillators
Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki
2017-11-01
Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.
Mixed synchronization in chaotic oscillators using scalar coupling
Energy Technology Data Exchange (ETDEWEB)
Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)
2012-07-23
We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.
Detection of generalized synchronization using echo state networks
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.
Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C
2017-07-01
Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.
Synchronization of ;light-sensitive; Hindmarsh-Rose neurons
Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk
2018-04-01
The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).
Master-Slave Synchronization of 4D Hyperchaotic Rabinovich Systems
Directory of Open Access Journals (Sweden)
Ke Ding
2018-01-01
Full Text Available This paper is concerned with master-slave synchronization of 4D hyperchaotic Rabinovich systems. Compared with some existing papers, this paper has two contributions. The first contribution is that the nonlinear terms of error systems remained which inherit nonlinear features from master and slave 4D hyperchaotic Rabinovich systems, rather than discarding nonlinear features of original hyperchaotic Rabinovich systems and eliminating those nonlinear terms to derive linear error systems as the control methods in some existing papers. The second contribution is that the synchronization criteria of this paper are global rather than local synchronization results in some existing papers. In addition, those synchronization criteria and control methods for 4D hyperchaotic Rabinovich systems are extended to investigate the synchronization of 3D chaotic Rabinovich systems. The effectiveness of synchronization criteria is illustrated by three simulation examples.
Synchronized control of spiral CT scan for security inspection device
International Nuclear Information System (INIS)
Wang Jue; Jiang Zenghui; Wang Fuquan
2008-01-01
In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)
Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos
Directory of Open Access Journals (Sweden)
Bin Wang
2015-01-01
Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.
Synchronization of hypernetworks of coupled dynamical systems
International Nuclear Information System (INIS)
Sorrentino, Francesco
2012-01-01
We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)
Synchronous monitoring of muscle dynamics and electromyogram
Zakir Hossain, M.; Grill, Wolfgang
2011-04-01
A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.
Capture and playback synchronization in video conferencing
Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song
1995-03-01
Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.
Leader emergence through interpersonal neural synchronization.
Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming
2015-04-07
The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.
Function Projective Synchronization of Two Identical New Hyperchaotic Systems
International Nuclear Information System (INIS)
Li Xin; Chen Yong
2007-01-01
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
Time and data synchronization methods in competition monitoring systems
Kerys, Julijus
2005-01-01
Information synchronization problems are analyzed in this thesis. Two aspects are being surveyed – clock synchronization, algorithms and their use, and data synchronization and maintaining the functionality of software at the times, when connection with database is broken. Existing products, their uses, cons and pros are overviewed. There are suggested models, how to solve these problems, which were implemented in “Distributed basketball competition registration and analysis software system”,...
Synchronization of Phase Oscillators in Networks with Certain Frequency Sequence
International Nuclear Information System (INIS)
Feng Yuan-Yuan; Wu Liang; Zhu Shi-Qun
2014-01-01
Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be balanced out nicely by choosing the correlation parameter appropriately. (general)
High precision synchronization of time and frequency and its applications
International Nuclear Information System (INIS)
Wang Lijun
2014-01-01
We discuss the concept and methods for remote synchronization of time and frequency. We discuss a recent experiment that demonstrated time and frequency synchronization via a commercial fiber network, reaching accuracy of 7 × 10 -15 /s, 5 × 10 -19 /day, and a maximum time uncertainty of less than 50 femtoseconds. We discuss synchronization methods applicable to different topologies and their important scientific applications. (authors)
Micelle-stabilized room-temperature phosphorescence with synchronous scanning
International Nuclear Information System (INIS)
Femia, R.A.; Love, L.J.C.
1984-01-01
The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables
Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.
Wang, Xiao Fan
2002-06-01
We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.
Electrical implementation of a complete synchronization dynamic system
International Nuclear Information System (INIS)
Goncalves, C; Neto, L G
2011-01-01
This work presents an electrical implementation of complete synchronization systems, proposing a master/slave synchronization of two identical particle-in-a-box electronic circuits, exhibiting a rich chaotic behaviour. This behaviour was measured, and also emulated, and the results were compared. Just a few works in literature describe experimental measurements of chaotic systems. The master/slave electronic circuits employed have a very simple electronic implementation and results show a complete synchronization of the system.
Detection of generalized synchronization using echo state networks
Ibáñez-Soria, D.; García Ojalvo, Jordi; Soria Frisch, Aureli; Ruffini, G.
2018-01-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences i...
Review of available synchronization and time distribution techniques
Hall, R. G.; Lieberman, T. N.; Stone, R. R.
1974-01-01
The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed.
Synchronous Condenser Allocation for Improving System Short Circuit Ratio
DEFF Research Database (Denmark)
Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde
2018-01-01
With converter-based renewable energy sources increasingly integrated into power systems and conventional power plants gradually phased out, future power systems will experience reduced short circuit strength. The deployment of synchronous condensers can serve as a potential solution. This paper...... presents an optimal synchronous condenser allocation method for improving system short circuit ratio at converter point of common coupling using a modified short circuit analysis approach. The total cost of installing new synchronous condensers is minimized while the system short circuit ratios...
Global synchronization of a class of delayed complex networks
International Nuclear Information System (INIS)
Li Ping; Yi Zhang; Zhang Lei
2006-01-01
Global synchronization of a class of complex networks with time-varying delays is investigated in this paper. Some sufficient conditions are derived. These conditions show that the synchronization of delayed complex networks can be determined by their topologies. In addition, these conditions are simply represented in terms of the networks coupling matrix and are easy to be checked. A typical example of complex networks with chaotic nodes is employed to illustrate the obtained global synchronization results
Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco
2015-02-01
We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.
Contributions to time-frequency synchronization in wireless systems
Koivisto, Tommi
2015-01-01
Time and frequency synchronization is an indispensable task for all wireless transceivers and systems. In modern wireless systems, such as 4G and future 5G systems, new wireless technologies set new challenges also to synchronization. In particular, new solutions for time and frequency synchronization are needed in multiantenna and cooperative systems. New research areas arise also in context of interference cancellation and cognitive radio systems where the transmission parameters of the sig...
Synchronization of complex chaotic systems in series expansion form
International Nuclear Information System (INIS)
Ge Zhengming; Yang Chenghsiung
2007-01-01
This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy
Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks
Directory of Open Access Journals (Sweden)
Chengrong Xie
2013-01-01
Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.
Timing subsystem development: Network synchronization experiments
Backe, K. R.
1983-01-01
This paper describes a program in which several experimental timing subsystem prototypes were designed, fabricated, and field tested using a small network of troposcatter and microwave digital communication links. This equipment was responsible for modem/radio interfacing, time interval measurement, clock adjustment and distribution, synchronization technique, and node to node information exchange. Presented are discussions of the design approach, measurement plan, and performance assessment methods. Recommendations are made based on the findings of the test program and an evaluation of the design of both the hardware and software elements of the timing subsystem prototypes.
Regenerative braking system of PM synchronous motor
Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli
2018-04-01
Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.
Process Synchronization with Readers and Writers Revisited
Kawash, Jalal
2005-01-01
The readers-writers problem is one of the very well known problems in concurrency theory. It was first introduced by Courtois et.al. in 1971 [1] and requires the synchronization of processes trying to read and write a shared resource. Several readers are allowed to access the resource simultaneously, but a writer must be given exclusive access to that resource. Courtois et.al. gave semaphore-based solutions to what they called the first and second readers-writers problems. Both of their solut...
Atmospheric dynamics of tidally synchronized extrasolar planets.
Cho, James Y-K
2008-12-13
Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.
Low energy plasma observations at synchronous orbit
International Nuclear Information System (INIS)
Reasoner, D.L.; Lennartsson, W.
1977-08-01
The University of California at San Diego Auroral Particles Experiment on the ATS-6 Satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and plasma sheet populations. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods, this low energy plasma is often observed flowing sunward. In the dusk sector, enhanced plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection. (author)
Permanent-magnet-less synchronous reluctance system
Hsu, John S
2012-09-11
A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.
Flow-synchronous field motion refrigeration
Hassen, Charles N.
2017-08-22
An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.
Prosody and synchronization in cognitive neuroscience
Directory of Open Access Journals (Sweden)
Orsucci Franco
2013-12-01
Full Text Available We introduce our methodological study with a short review of the main literature on embodied language, including some recent studies in neuroscience. We investigated this component of natural language using Recurrence Quantification Analysis (RQA. RQA is a relatively new statistical methodology, particularly effective in complex systems. RQA provided a reliable quantitative description of recurrences in text sequences at the orthographic level. In order to provide examples of the potential impact of this methodology, we used RQA to measure structural coupling and synchronization in natural and clinical verbal interactions. Results show the efficacy of this methodology and possible implications.
Impulsive Cluster Synchronization in Community Network with Nonidentical Nodes
International Nuclear Information System (INIS)
Deng Liping; Wu Zhaoyan
2012-01-01
In this paper, cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated. Community networks with two kinds of topological structure are investigated. Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization. Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers. Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory, several simple and useful synchronization criteria are derived. Finally, numerical simulations are provided to verify the effectiveness of the derived results.
Time Optimal Synchronization Procedure and Associated Feedback Loops
Angoletta, Maria Elena; CERN. Geneva. ATS Department
2016-01-01
A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.
Remote synchronization reveals network symmetries and functional modules.
Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito
2013-04-26
We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Partial synchronization of different chaotic oscillators using robust PID feedback
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco, 02200 Mexico, D.F. (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx
2007-07-15
This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology.
Partial synchronization of different chaotic oscillators using robust PID feedback
International Nuclear Information System (INIS)
Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael
2007-01-01
This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology
Function projective lag synchronization of fractional-order chaotic systems
International Nuclear Information System (INIS)
Wang Sha; Yu Yong-Guang; Wang Hu; Rahmani Ahmed
2014-01-01
Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme. (general)
Spontaneous group synchronization of movements and respiratory rhythms.
Directory of Open Access Journals (Sweden)
Erwan Codrons
Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Structural damage detection robust against time synchronization errors
International Nuclear Information System (INIS)
Yan, Guirong; Dyke, Shirley J
2010-01-01
Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab
Synchronization of EEG activity in patients with bipolar disorder
International Nuclear Information System (INIS)
Panischev, O Yu; Demin, S A; Muhametshin, I G; Yu Demina, N
2015-01-01
In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome. (paper)
Synchronization of EEG activity in patients with bipolar disorder
Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu
2015-12-01
In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.
A note on synchronization between two different chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.
2009-01-01
In this paper, a new control method based on the Lyapunov method and linear matrix inequality framework is proposed to design a stabilizing controller for synchronizing two different chaotic systems. The feedback controller is consisted of two parts: linear dynamic control law and nonlinear control one. By this control law, the exponential stability for synchronization between two different chaotic systems is guaranteed. As applications of proposed method, synchronization problem between Genesio-Tesi system and Chen system has been investigated, and then the similar approach is applied to the synchronization problem between Roessler system and Lorenz system.
H∞ synchronization of chaotic systems via dynamic feedback approach
International Nuclear Information System (INIS)
Lee, S.M.; Ji, D.H.; Park, Ju H.; Won, S.C.
2008-01-01
This Letter considers H ∞ synchronization of a general class of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance to an H ∞ norm constraint. A dynamic feedback control scheme is proposed for H ∞ synchronization in chaotic systems for the first time. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme
Comparison of Interpolation Methods as Applied to Time Synchronous Averaging
National Research Council Canada - National Science Library
Decker, Harry
1999-01-01
Several interpolation techniques were investigated to determine their effect on time synchronous averaging of gear vibration signals and also the effects on standard health monitoring diagnostic parameters...
Chaos synchronization basing on symbolic dynamics with nongenerating partition.
Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen
2009-06-01
Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.
Global chaos synchronization with channel time-delay
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing; Chen Guanrong
2004-01-01
This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved
Systems and methods for self-synchronized digital sampling
Samson, Jr., John R. (Inventor)
2008-01-01
Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.
On the theoretical gap between synchronous and asynchronous MPC protocols
DEFF Research Database (Denmark)
Beerliová-Trubíniová, Zuzana; Hirt, Martin; Nielsen, Jesper Buus
2010-01-01
that in the cryptographic setting (with setup), the sole reason for it is the distribution of inputs: given an oracle for input distribution, cryptographically-secure asynchronous MPC is possible with the very same condition as synchronous MPC, namely t ..., we show that such an input-distribution oracle can be reduced to an oracle that allows each party to synchronously broadcast one single message. This means that when one single round of synchronous broadcast is available, then asynchronous MPC is possible at the same condition as synchronous MPC...
Synchronization of generalized Henon map by using adaptive fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn
2003-08-01
In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.
Synchronization of generalized Henon map by using adaptive fuzzy controller
International Nuclear Information System (INIS)
Xue Yueju; Yang Shiyuan
2003-01-01
In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization
Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks
DEFF Research Database (Denmark)
Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio
2015-01-01
reductions in the data connectivity interruption time at each handover, no need for random access in the target cell, and reduced overall handover execution time. Laboratory handover measurement results, using commercial LTE equipment, are presented and analyzed to justify the latency benefits......Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant...
Lag synchronization of hyperchaos with application to secure communications
International Nuclear Information System (INIS)
Li Chuandong; Liao Xiaofeng; Wong Kwokwo
2005-01-01
In this paper, hyperchaotic lag synchronization is restated as a nonlinear and lag-in-time observer design issue. This approach leads to a systematic tool, which guarantees the lag synchronization of a wide class of chaotic or hyperchaotic systems via a scalar signal. By exploiting this result, we propose a hyperchaos-based cryptosystem scheme that combines the conventional cryptographic methods and the lag synchronization of chaotic circuits. The computer simulation results show that the lag synchronization scheme and the cryptosystem proposed in this paper are both feasible
Energy Technology Data Exchange (ETDEWEB)
Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)
2005-10-01
Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)
Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo
2006-10-01
Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of
A fiber optic synchronization system for LUX
International Nuclear Information System (INIS)
Wilcox, R.B.; Staples, J.W.; Doolittle, L.R.
2004-01-01
The LUX femtosecond light source concept would support pump-probe experiments that need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50 fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high frequency clock signal is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and mode-locked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10 kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. Time delay through the fibers will be stabilized by comparing a retro-reflected pulse from the experimenter endstation end with a reference pulse from the sending en d, and actively controlling the fiber length
Inside black holes with synchronized hair
Energy Technology Data Exchange (ETDEWEB)
Brihaye, Yves, E-mail: yves.brihaye@umons.ac.be [Physique-Mathématique, Universite de Mons-Hainaut, Mons (Belgium); Herdeiro, Carlos; Radu, Eugen [Departamento de Física da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)
2016-09-10
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Observability and synchronization of neuron models
Aguirre, Luis A.; Portes, Leonardo L.; Letellier, Christophe
2017-10-01
Observability is the property that enables recovering the state of a dynamical system from a reduced number of measured variables. In high-dimensional systems, it is therefore important to make sure that the variable recorded to perform the analysis conveys good observability of the system dynamics. The observability of a network of neuron models depends nontrivially on the observability of the node dynamics and on the topology of the network. The aim of this paper is twofold. First, to perform a study of observability using four well-known neuron models by computing three different observability coefficients. This not only clarifies observability properties of the models but also shows the limitations of applicability of each type of coefficients in the context of such models. Second, to study the emergence of phase synchronization in networks composed of neuron models. This is done performing multivariate singular spectrum analysis which, to the best of the authors' knowledge, has not been used in the context of networks of neuron models. It is shown that it is possible to detect phase synchronization: (i) without having to measure all the state variables, but only one (that provides greatest observability) from each node and (ii) without having to estimate the phase.
Chaos Synchronization in Navier-Stokes Turbulence
Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory
2013-03-01
Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530
Inside black holes with synchronized hair
Directory of Open Access Journals (Sweden)
Yves Brihaye
2016-09-01
Full Text Available Recently, various examples of asymptotically flat, rotating black holes (BHs with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1 the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2 before an inner horizon is reached, the spacetime curvature grows (apparently without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Inside black holes with synchronized hair
International Nuclear Information System (INIS)
Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen
2016-01-01
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Nutrition for synchronized swimming: a review.
Lundy, Bronwen
2011-10-01
Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.
Synchronization and survival of connected bacterial populations
Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff
Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.
Synchronous transmission circuit breaker development. Final report
Energy Technology Data Exchange (ETDEWEB)
Garzon, R D
1976-08-01
The need for the development of a synchronous transmission breaker is discussed and the basic preliminary specifications for such a circuit breaker are established and tabulated. The initial exploratory work designed to establish the preferred designs for a synchronous pulse generator, (or current zero predictor), for an operating mechanism and for a suitable interrupter are described in detail. The experimental results obtained with vacuum interrupters and with axial blast interrupters using pure SF/sub 6/, mixtures of SF/sub 6/ and N/sub 2/, and high pressure liquid SF/sub 6/ are reported. The results are then evaluated and the performances obtained with each interrupting media are compared arriving at the end to a choice of a preferred design. This preferred design, an interrupter that uses SF/sub 6/ in the liquid state at pressures of 13.8 megapascals (2000 psi), is completely described. The results obtained in a series of experiments designed to establish limits of performance for this interrupter are also discussed.
DEFF Research Database (Denmark)
Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.
2008-01-01
This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...
Robust Timing Synchronization in Aeronautical Mobile Communication Systems
Xiong, Fu-Qin; Pinchak, Stanley
2004-01-01
This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Directory of Open Access Journals (Sweden)
Jinhwan Kwon
Full Text Available Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head