WorldWideScience

Sample records for self-consistent microscopic theory

  1. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  2. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1980-01-01

    The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table

  3. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  4. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  5. Liking for Evaluators: Consistency and Self-Esteem Theories

    Science.gov (United States)

    Regan, Judith Weiner

    1976-01-01

    Consistency and self-esteem theories make contrasting predictions about the relationship between a person's self-evaluation and his liking for an evaluator. Laboratory experiments confirmed predictions about these theories. (Editor/RK)

  6. Parquet equations for numerical self-consistent-field theory

    International Nuclear Information System (INIS)

    Bickers, N.E.

    1991-01-01

    In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

  7. On microscopic theory of radiative nuclear reaction characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  8. Quantitative verification of ab initio self-consistent laser theory.

    Science.gov (United States)

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  9. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  10. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  11. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  12. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  13. Similarities between Prescott Lecky's theory of self-consistency and Carl Rogers' self-theory.

    Science.gov (United States)

    Merenda, Peter F

    2010-10-01

    The teachings of Prescott Lecky on the self-concept at Columbia University in the 1920s and 1930s and the posthumous publications of his book on self-consistency beginning in 1945 are compared with the many publications of Carl Rogers on the self-concept beginning in the early 1940s. Given that Rogers was a graduate student at Columbia in the 1920s and 1930s, the striking similarities between these two theorists, as well as claims attributed to Rogers by Rogers' biographers and writers who have quoted Rogers on his works relating to self-theory, strongly suggest that Rogers borrowed from Lecky without giving him the proper credit. Much of Rogers' writings on the self-concept included not only terms and concepts which were original with Lecky, but at times these were actually identical.

  14. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2011-01-01

    Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...

  15. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  16. Self-consistent Ginzburg-Landau theory for transport currents in superconductors

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2012-01-01

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi...... in principle also be used for general geometries in three-dimensional superconductors....

  17. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  18. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  19. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  20. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  1. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  2. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities

  3. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  4. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    Science.gov (United States)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  5. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  6. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles

    Science.gov (United States)

    Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  7. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    Science.gov (United States)

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  8. Thermodynamically self-consistent theory for the Blume-Capel model.

    Science.gov (United States)

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  9. Self-consistent field theory of polymer-ionic molecule complexation

    OpenAIRE

    Nakamura, Issei; Shi, An-Chang

    2010-01-01

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C_(i)^(a)(kΔ)(= 0 or 1), whose average determines the number of adsorbed molecules, nBI. Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for nBI are obtained, depending...

  10. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    electronic structure whereas the inertial polarization vector is not necessarily in equilibrium with the actual electronic structure. The electronic structure of the compound is described by a correlated electronic wave function - a multiconfigurational self-consistent field (MCSCF) wave function. This wave......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  11. General variational many-body theory with complete self-consistency for trapped bosonic systems

    International Nuclear Information System (INIS)

    Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2006-01-01

    In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states

  12. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  13. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  14. Electron confinement in quantum nanostructures: Self-consistent Poisson-Schroedinger theory

    International Nuclear Information System (INIS)

    Luscombe, J.H.; Bouchard, A.M.; Luban, M.

    1992-01-01

    We compute the self-consistent electron states and confining potential, V(r,T), for laterally confined cylindrical quantum wires at a temperature T from a numerical solution of the coupled Poisson and Schroedinger (PS) equations. Finite-temperature effects are included in the electron density function, n(r,T), via the single-particle density matrix in the grand-canonical ensemble using the self-consistent bound states. We compare our results for a GaAs quantum wire with those obtained previously [J. H. Luscombe and M. Luban, Appl. Phys. Lett. 57, 61 (1990)] from a finite-temperature Thomas-Fermi (TF) approximation. We find that the TF results agree well with those of the more realistic, but also more computationally intensive PS theory, except for low temperatures or for cases where the quantum wire is almost, but not totally, depleted due to a combination of either small geometry, surface boundary conditions, or low doping concentrations. In the latter situations, the number of subbands that are populated is relatively small, and both n(r,T) and V(r,T) exhibit Friedel-type oscillations. Otherwise the TF theory, which is based on free-particle states, is remarkably accurate. We also present results for the partial electron density functions associated with the angular momentum quantum numbers, and discuss their role in populating the quantum wire

  15. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD

  16. Self-consistency in Capital Markets

    Science.gov (United States)

    Benbrahim, Hamid

    2013-03-01

    Capital Markets are considered, at least in theory, information engines whereby traders contribute to price formation with their diverse perspectives. Regardless whether one believes in efficient market theory on not, actions by individual traders influence prices of securities, which in turn influence actions by other traders. This influence is exerted through a number of mechanisms including portfolio balancing, margin maintenance, trend following, and sentiment. As a result market behaviors emerge from a number of mechanisms ranging from self-consistency due to wisdom of the crowds and self-fulfilling prophecies, to more chaotic behavior resulting from dynamics similar to the three body system, namely the interplay between equities, options, and futures. This talk will address questions and findings regarding the search for self-consistency in capital markets.

  17. Self-consistent field theory of polymer-ionic molecule complexation.

    Science.gov (United States)

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  18. Self-consistent Random Phase Approximation applied to a schematic model of the field theory

    International Nuclear Information System (INIS)

    Bertrand, Thierry

    1998-01-01

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum

  19. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...

  20. Self-consistent description of the isospin mixing

    International Nuclear Information System (INIS)

    Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.

    1978-03-01

    The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions

  1. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  2. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  3. Self consistent field theory of virus assembly

    Science.gov (United States)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  4. Microscopic optical model potential based on Brueckner-Hartree-Fock theory

    International Nuclear Information System (INIS)

    Li Lulu; Zhao Enguang; Zhou Shangui; Li Zenghua; Zuo Wei; Bonaccorso, Angela; Lonbardo, Umberto

    2010-01-01

    The optical model is one of the most important models in the study of nuclear reactions. In the optical model, the elastic channel is considered to be dominant and the contributions of all other absorption channels are described by introducing an imaginary potential, Koning and Delaroche obtained empirically the so-called KDR optical potentials based on a best-fitting of massive experimental data on nucleon-nucleus scattering reactions. The volume part is found to be dominant in the real component of the OMP at low energies. Using the Bruckner-Hartree-Fock theory with Bonn B potential plus self consistent three body force, the nucleon-nucleus optical potential is studied in this thesis. In the Bruckner theory, the on-shell self energy, is corresponding to the depth of the volume part of the optical model potential (OMP) for nucleon-nucleus scattering. Using Bruckner-Hartree-Fock theory, the nucleon on-shell self energy is calculated based on Hughenoltz-Van Hove (HVH) theorem. The microscopic optical potentials thus obtained agree well with the volume part of the KDR potentials. Furthermore, the isospin splitting in the volume part of the OMP is also reproduced satisfactorily. The isospin effect in the volume part of the OMP is directly related to the isospin splitting of the effective mass of the nucleon. According to our results, the isospin splitting of neutron to proton effective mass is such that the neutron effective mass increases with isospin, whereas the proton effective mass decreases. The isovector potential U n (E) - U p (E) vanishes at energy E ≈ 200 MeV and then changes sign indicating a possible inversion in the effective mass isospin spitting. We also calculated from the Bruckner theory the imaginary part of the OMP, and the microscopic calculations predict that the isospin splitting exists also in the imaginary OMP whereas the empirical KDR potentials do not show this feature. The shape of the real component of the nucleon-nucleus OMP is

  5. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  6. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  7. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  8. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  9. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  10. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    Using self-consistent field theory, the Plumber's Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our

  11. Role of elasticity forces in thermodynamics of intercalation compounds : Self-consistent mean-field theory and Monte Carlo simulations

    NARCIS (Netherlands)

    Kalikmanov, V.I.; De Leeuw, S.W.

    2002-01-01

    We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on effective interactions between interstitials in the presence of the host atoms. In addition to short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present theory takes

  12. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  13. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    Science.gov (United States)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  14. Multifractality and quantum diffusion from self-consistent theory of localization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)

    2015-11-15

    Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.

  15. Self-consistent T-matrix theory of superconductivity

    Czech Academy of Sciences Publication Activity Database

    Šopík, B.; Lipavský, Pavel; Männel, M.; Morawetz, K.; Matlock, P.

    2011-01-01

    Roč. 84, č. 9 (2011), 094529/1-094529/13 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0212; GA ČR(CZ) GAP204/11/0015 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * T-matrix * superconducting gap * restricted self-consistency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  16. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: A self-consistent field theory

    NARCIS (Netherlands)

    Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.

    2008-01-01

    The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with

  17. Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China); Terentyev, Dmitry [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Yu, Long [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Jin, Zhaohui [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China)

    2016-08-15

    The thermo-mechanical behavior of non-irradiated (at 223 K, 302 K and 573 K) and neutron irradiated (at 573 K) Fe-2.5Cr, Fe-5Cr and Fe-9Cr alloys is studied by a self-consistent plasticity theory, which consists of constitutive equations describing the contribution of radiation defects at grain level, and the elastic-viscoplastic self-consistent method to obtain polycrystalline behaviors. Attention is paid to two types of radiation-induced defects: interstitial dislocation loops and solute rich clusters, which are believed to be the main sources of hardening in Fe-Cr alloys at medium irradiation doses. Both the hardening mechanism and microstructural evolution are investigated by using available experimental data on microstructures, and implementing hardening rules derived from atomistic data. Good agreement with experimental data is achieved for both the yield stress and strain hardening of non-irradiated and irradiated Fe-Cr alloys by treating dislocation loops as strong thermally activated obstacles and solute rich clusters as weak shearable ones. - Highlights: • A self-consistent plasticity theory is proposed for irradiated Fe-Cr alloys. • Both the irradiation-induced hardening and plastic flow evolution are studied. • Dislocation loops and solute rich clusters are considered as the main defects. • Numerical results of the proposed model match with corresponding experimental data.

  18. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  19. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density

    Science.gov (United States)

    Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.

    1988-01-01

    The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.

  20. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  1. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  2. Characterisation of poly(lactic acid): poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach

    NARCIS (Netherlands)

    Heald, C.R.; Stolnik, S.; Matteis, De C.; Garnett, M.C.; Illum, L.; Davis, S.S.; Leermakers, F.A.M.

    2003-01-01

    Self-consistent field (SCF) modelling studies can be used to predict the properties of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the theory developed by Scheutjens and Fleer. Good agreement in the results between experimental and modelled data has been observed previously

  3. Consistent microscopic and phenomenological analysis of composite particle opticle potential

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sheela; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    A microscopic calculation of composits particle optical potential has been done using a realistic nucleon-helion interaction and folding it with the density distribution of the targets. The second order effects were simulated by introducing a scaling factor which was searched on to reproduce the experimental scattering results. Composite particle optical potential was also derived from the nucleon-nucleus optical potential. The second order term was explicitly treated as a parameter. Elastic scattering of 20 MeV 3 H on targets ranging from 40 Ca to 208 Pb to 208 Pb have also been analysed using phenomenological optical model. Agreement of these results with the above calculations verified the consistency of the microscopic theory. But the equivalent sharp radius calculated with n-helion interaction was observed to be smaller than phenomenological value. This was attributed to the absence of saturation effects in the density-independent interaction used. Saturation has been introduced by a density dependent term of the form (1-c zetasup(2/3)), where zeta is the compound density of the target helion system. (author)

  4. Self-consistent theory of three-dimensional convection in the geomagnetic tail

    International Nuclear Information System (INIS)

    Birn, J.; Schindler, K.

    1983-01-01

    The self-consistent theory of time-dependent convection in the earth's magnetotail of Schindler and Birn (1982) is extended to three dimensions to include more realistic tail geometry and three-dimensional flow. We confirm that a steady state solution implies unrealistic tail geometry or large particle or energy losses that are unrealistic during quiet times and conclude therefore that as in the 2-dimensional case the magnetotail becomes time-dependent for typical convection electric fields. Explicit solutions are derived, even analytically, for the three-dimensional flow and the electric and magnetic field in a realistic tail geometry, and quantitative examples are presented. Consequences of time-dependent convection are demonstrated considering two idealized cases of magnetosphere response to solar wind changes: (1) uniform compression as the likely consequence of increasing (static, dynamic or magnetic) solar wind pressure; and (2) compression only in the z direction perpendicular to the plasma sheet as the probable consequence of a dawn to dusk external electric field (E/sub y/>0), corresponding to a southward interplanetary magnetic field component (B/sub z/ 0 with geomagnetic activity. Several other features, already present in the 2-dimensional theory, are confirmed

  5. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  6. Towards a unification of the hierarchical reference theory and the self-consistent Ornstein-Zernike approximation.

    Science.gov (United States)

    Reiner, A; Høye, J S

    2005-12-01

    The hierarchical reference theory and the self-consistent Ornstein-Zernike approximation are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as phase coexistence and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. As a first step towards this goal, we consider the problem of combining the lowest order gamma expansion result for the incorporation of a Fourier component of the interaction with the requirement of consistency between internal and free energies, leaving aside the compressibility relation. For simplicity, we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative behavior as more elaborate models. It turns out that the analytically tractable mean spherical approximation is a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows the potential for a practical scheme and yields necessary conditions that any closure to the Ornstein-Zernike relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution. These criteria are expected to remain valid for more general discrete and continuous systems, even if consistency with the compressibility route is also enforced where possible explicit solutions will require numerical evaluations.

  7. Self consistent solution of the tJ model in the overdoped regime

    Science.gov (United States)

    Shastry, B. Sriram; Hansen, Daniel

    2013-03-01

    Detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions, are presented. The theory is to second order in a parameter λ, and is valid in the overdoped regime of the tJ model. The solution reported here is from Ref, where relevant equations given in Ref are self consistently solved for the square lattice. Thermodynamic variables and the resistivity are displayed at various densities and T for two sets of band parameters. The momentum distribution function and the renormalized electronic dispersion, its width and asymmetry are reported along principal directions of the zone. The optical conductivity is calculated. The electronic spectral function A (k , ω) probed in ARPES, is detailed with different elastic scattering parameters to account for the distinction between LASER and synchrotron ARPES. A high (binding) energy waterfall feature, sensitively dependent on the band hopping parameter t' is noted. This work was supported by DOE under Grant No. FG02-06ER46319.

  8. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    Science.gov (United States)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by

  9. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    Science.gov (United States)

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  10. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity

    International Nuclear Information System (INIS)

    Tran, T.M.; Kreischer, K.E.; Temkin, R.J.

    1986-01-01

    In this paper, the energy extraction stage of the gyroklystron [in Advances in Electronics and Electron Physics, edited by C. Marton (Academic, New York, 1979), Vol. 1, pp. 1--54], with a minimum Q cavity is investigated by using a self-consistent radio-frequency (rf) field model. In the low-field, low-current limit, expressions for the self-consistent field and the resulting energy extraction efficiency are derived analytically for an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic results for the self-consistent field structure and efficiency of a gyrotron device. The large signal regime analysis is carried out by numerically integrating the coupled self-consistent equations. Several examples in this regime are presented

  11. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. (orig.)

  12. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.

    1995-01-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. ((orig.))

  13. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    Science.gov (United States)

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  14. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  15. Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. 1: Diffusion equation-based theory

    International Nuclear Information System (INIS)

    Zhang, H.; Rizwan-uddin; Dorning, J.J.

    1995-01-01

    A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation

  16. Self-consistent method for quantifying indium content from X-ray spectra of thick compound semiconductor specimens in a transmission electron microscope.

    Science.gov (United States)

    Walther, T; Wang, X

    2016-05-01

    Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Self-consistent Random Phase Approximation applied to a schematic model of the field theory; Approximation des phases aleatoires self-consistante appliquee a un modele schematique de la theorie des champs

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Thierry [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1998-12-11

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum 40 refs., 33 figs., 14 tabs.

  18. Relativistic four-component multiconfigurational self-consistent-field theory for molecules

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond

    1996-01-01

    A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...... the memory used by the largest nonrelativistic calculation in the equivalent basis, due to the complex arithmetic. The feasibility of the calculations is then determined more by the disk space for storage of integrals and N-particle expansion vectors....

  19. Microscopic analysis of nuclear collective motions in terms of the boson expansion theory. Pt. 1

    International Nuclear Information System (INIS)

    Sakamoto, Hideo; Kishimoto, Teruo

    1988-01-01

    A normal-ordered linked-cluster boson expansion theory, previously worked out by one of the authors (T.K.) and Tamura, has been developed further by reformulating it in a 'physical' quasiparticle subspace which contains no spurious particle-number excitation modes. The expansion coefficients of the collective hamiltonian for low-lying quadrupole motions are determined starting from a microscopic fermion hamiltonian including self-consistent higher-order (many-body) interactions derived in our previous work. The contributions from the non-collective states with all possible non-collective one-boson excitations having I π = 0 + -4 + , which can directly couple to the collective states with one or two phonons, are taken into account in a systematic and compact way. (orig.)

  20. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  1. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    DEFF Research Database (Denmark)

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels

    2013-01-01

    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  2. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    Science.gov (United States)

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  3. Self-consistent phonons in disordered systems

    International Nuclear Information System (INIS)

    Das, M.P.

    1990-01-01

    The time is now ripe for the development of a microscopic theory of the disordered systems in the context of phonons. The adiabatic approximation has helped to separate the electronic motion from that of the ions. In the microscopic dielectric formulation we have been able to obtain the interatomic forces for ordered systems by incorporating the effect of the electronic motion. The nature of the electronic states in disordered systems is now better understood with realistic coherent potential approximation calculations. Therefore, it will not be too ambitious to construct an average dielectric function for a disordered system. Then we can obtain a properly screened pair potential in terms of this dielectric function. In view of the availability of super fast computers, the development of the microscopic theories are expected to get a new direction. (author). 36 refs

  4. Biophysics and the microscopic theory of He II

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Ghassib, H.B.

    1985-08-01

    Bose-Einstein condensation and solitonic propagation have recently been shown to be intimately related in biosystems. From our previous demonstration of the existence of solitons in a dilute Bose gas we set out the basis for a full microscopic theory of He II. This is used to understand recent experiments in He II, which are in apparent contradiction. New experiments are suggested by the microscopic theory. (author)

  5. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Schindler, K.

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  6. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  7. Renormalization of self-consistent Schwinger-Dyson equations at finite temperature

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2002-01-01

    We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)

  8. Self-consistent collective coordinate method for large amplitude collective motions

    International Nuclear Information System (INIS)

    Sakata, F.; Hashimoto, Y.; Marumori, T.; Une, T.

    1982-01-01

    A recent development of the self-consistent collective coordinate method is described. The self-consistent collective coordinate method was proposed on the basis of the fundamental principle called the invariance principle of the Schroedinger equation. If this is formulated within a framework of the time dependent Hartree Fock (TDHF) theory, a classical version of the theory is obtained. A quantum version of the theory is deduced by formulating it within a framework of the unitary transformation method with auxiliary bosons. In this report, the discussion is concentrated on a relation between the classical theory and the quantum theory, and an applicability of the classical theory. The aim of the classical theory is to extract a maximally decoupled collective subspace out of a huge dimensional 1p - 1h parameter space introduced by the TDHF theory. An intimate similarity between the classical theory and a full quantum boson expansion method (BEM) was clarified. Discussion was concentrated to a simple Lipkin model. Then a relation between the BEM and the unitary transformation method with auxiliary bosons was discussed. It became clear that the quantum version of the theory had a strong relation to the BEM, and that the BEM was nothing but a quantum analogue of the present classical theory. The present theory was compared with the full TDHF calculation by using a simple model. (Kato, T.)

  9. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  10. A review of 20 Ne structure in a full microscopic self-consistent shell ...

    African Journals Online (AJOL)

    A set of single-particle energies together with a set of two-body matrix- elements derived in a selfconsistent manner from the Reid soft–core potential are used to calculate the energy levels of 20Ne. We used a harmonic oscillator wave function folded with two-body correlation functions in our calculation. It is found that the ...

  11. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1981-01-01

    The first part of this set of two seminars will consist of a review of several of the important accomplishments made in the last few years in the field of pion-nucleus physics. Next I discuss some questions raised by these accomplishments and show that for some very natural reasons the commonly employed theoretical methods cannot be applied to answer these questions. This situation leads to the idea of self-consistency, which is first explained in a general context. The remainder of the seminars are devoted to illustrating the idea within a simple multiple-scattering model for the case of pion scattering. An evaluation of the effectiveness of the self-consistent requirment to produce a solution to the model is made, and a few of the questions raised by recent accomplishments in the field of pion physics are addressed in the model. Finally, the results of the model calculation are compared to experimental data and implications of the results discussed. (orig./HSI)

  12. Self-consistent hybrid functionals for solids: a fully-automated implementation

    Science.gov (United States)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  13. Correlations and self-consistency in pion scattering. II

    International Nuclear Information System (INIS)

    Johnson, M.B.; Keister, B.D.

    1978-01-01

    In an attempt to overcome certain difficulties of summing higher order processes in pion multiple scattering theories, a new, systematic expansion for the interaction of a pion in nuclear matter is derived within the context of the Foldy-Walecka theory, incorporating nucleon-nucleon correlations and an idea of self-consistency. The first two orders in the expansion are evaluated as a function of the nonlocality range; the expansion appears to be rapidly converging, in contrast to expansion schemes previously examined. (Auth.)

  14. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...

  15. Microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.

    1990-10-01

    A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)

  16. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    -dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes......Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly...

  17. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  18. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    Science.gov (United States)

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  19. Self-consistent determination of quasiparticle properties in nuclear matter

    International Nuclear Information System (INIS)

    Oset, E.; Palanques-Mestre, A.

    1981-01-01

    The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)

  20. Relativistic fluid theories - Self organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Hazeltine, R.D.; Yoshida, Z.

    2003-01-01

    Developments in two distinct but related subjects are reviewed: 1) Formulation and investigation of closed fluid theories which transcend the limitations of standard magnetohydrodynamics (MHD), in particular, theories which are valid in the long mean free path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently, and 2) Exploitation of the two-fluid theories to derive new plasma configurations in which the flow-field is a co-determinant of the overall dynamics; some of these states belong to the category of self-organized relaxed states. Physical processes which may provide a route to self-organization and complexity are also explored. (author)

  1. Consistent guiding center drift theories

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-04-01

    Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)

  2. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  3. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  4. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    Science.gov (United States)

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  5. Microscopic theory for dynamics in entangled polymer nanocomposites

    Science.gov (United States)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that

  6. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  7. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  8. False memory production :effects of self-consistent false information and motivated cognition

    OpenAIRE

    Brown, Martha

    1996-01-01

    Remembrance of one's personal past and the development of false memories have recently received intense public scrutiny. Based upon self-schema (Markus, 1977) and selfverification (Swann, 1987) theories, two studies were conducted to investigate the hypothesis that a self-schema guides cognitive processing of self-relevant information and thereby influences the construction of a memory that includes false information, particularly more so if this information is self-schema consistent than ...

  9. Self-consistent nonlocal feedback theory for electrocatalytic swimmers with heterogeneous surface chemical kinetics

    Science.gov (United States)

    Nourhani, Amir; Crespi, Vincent H.; Lammert, Paul E.

    2015-06-01

    We present a self-consistent nonlocal feedback theory for the phoretic propulsion mechanisms of electrocatalytic micromotors or nanomotors. These swimmers, such as bimetallic platinum and gold rods catalyzing decomposition of hydrogen peroxide in aqueous solution, have received considerable theoretical attention. In contrast, the heterogeneous electrochemical processes with nonlocal feedback that are the actual "engines" of such motors are relatively neglected. We present a flexible approach to these processes using bias potential as a control parameter field and a locally-open-circuit reference state, carried through in detail for a spherical motor. While the phenomenological flavor makes meaningful contact with experiment easier, required inputs can also conceivably come from, e.g., Frumkin-Butler-Volmer kinetics. Previously obtained results are recovered in the weak-heterogeneity limit and improved small-basis approximations tailored to structural heterogeneity are presented. Under the assumption of weak inhomogeneity, a scaling form is deduced for motor speed as a function of fuel concentration and swimmer size. We argue that this form should be robust and demonstrate a good fit to experimental data.

  10. Diffusion and coupled fluxes in concentrated alloys under irradiation: a self-consistent mean-field approach

    International Nuclear Information System (INIS)

    Nastar, M.

    2008-01-01

    When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a 'broken bond model' such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. (author)

  11. Microscopic description of the nuclear-cluster theory

    International Nuclear Information System (INIS)

    Tang, Y.C.

    1980-01-01

    The purpose of this series of lectures is to explain the foundation of, the techniques used in, and the results obtained by microscopic cluster theory (MCT). In particular, the important role played by the Pauli principle in determining nuclear characteristics will be extensively discussed

  12. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Science.gov (United States)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  13. Master equations in the microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.

    1988-07-01

    In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)

  14. Self-consistent field theory for the interactions between keratin intermediate filaments

    International Nuclear Information System (INIS)

    Akinshina, Anna; Jambon-Puillet, Etienne; Warren, Patrick B; Noro, Massimo G

    2013-01-01

    Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region

  15. Multiplicative renormalizability and self-consistent treatments of the Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Brown, N.; Dorey, N.

    1989-11-01

    Many approximations to the Schwinger-Dyson equations place constraints on the renormalization constants of a theory. The requirement that the solutions to the equations be multiplicatively renormalizable also places constraints on these constants. Demanding that these two sets of constraints be compatible is an important test of the self-consistency of the approximations made. We illustrate this idea by considering the equation for the fermion propagator in massless quenched quantum electrodynamics, (QED), checking the consistency of various approximations. In particular, we show that the much used 'ladder' approximation is self-consistent, provided that the coupling constant is renormalized in a particular way. We also propose another approximation which satisfies this self-consistency test, but requires that the coupling be unrenormalized, as should be the case in the full quenched approximation. This new approximation admits an exact solution, which also satisfies the renormalization group equation for the quenched approximation. (author)

  16. Theory of a Quantum Scanning Microscope for Cold Atoms.

    Science.gov (United States)

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  17. On the history of creation of the microscopic theories of superfluidity and superconductivity

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Isaev, P.S.

    2002-01-01

    The history of creation of the microscopic theory of superfluidity (1947) and the microscopic theory of superconductivity (1957) is expounded. The paper is dedicated to the 90th anniversary of the birth of our genius contemporary Academician Nikolaj Nikolaevich Bogolyubov

  18. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  19. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  20. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  1. Meta-orbital transition in heavy-fermion systems. Analysis by dynamical mean field theory and self-consistent renormalization theory of orbital fluctuations

    International Nuclear Information System (INIS)

    Hattori, Kazumasa

    2010-01-01

    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)

  2. Self-consistent field theory of tethered polymers: one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions.

    Science.gov (United States)

    Suo, Tongchuan; Whitmore, Mark D

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  3. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ 1/3 scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ 1/3 . In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ 1/3 . We also compare the results for two different solvents with each other, and with earlier Θ solvent results

  4. Self-consistent gravitational self-force

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    I review the problem of motion for small bodies in general relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed. I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long time scales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.

  5. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Leermakers, F.A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  6. Self-consistent field variational cellular method as applied to the band structure calculation of sodium

    International Nuclear Information System (INIS)

    Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.

    1988-01-01

    The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt

  7. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  8. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  9. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  10. A finite element approach to self-consistent field theory calculations of multiblock polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, David M. [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Delaney, Kris; Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara (United States); Ganapathysubramanian, Baskar, E-mail: baskarg@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States)

    2017-02-15

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  11. Renormalization of self-consistent approximation schemes at finite temperature. II. Applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, Hendrik van; Knoll, Joern

    2002-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of φ 4 theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or the two-particle irreducible effective action concept

  12. Renormalization of self-consistent approximation schemes at finite temperature II: applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the φ 4 -theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or 2PI effective action concept. (orig.)

  13. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  14. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  15. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  16. A self-consistency check for unitary propagation of Hawking quanta

    Science.gov (United States)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  17. A microscopic theory of the nuclear collective motion

    International Nuclear Information System (INIS)

    Baranger, M.

    1975-01-01

    A microscopic theory of the nuclear collective model is reviewed, discussions being concentrated, mainly, on the shape motion. An adiabatic time dependent Hartree-Fock method is used. Kinetic energy using the cranking model is obtained. The generator coordinate method is discussed [pt

  18. On the microscopic foundation of scattering theory; Zur mikroskopischen Begruendung der Streutheorie

    Energy Technology Data Exchange (ETDEWEB)

    Moser, T.

    2007-02-26

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics {psi}{sub in} and {psi}{sub out} can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics.

  19. Generalized molecular orbital theory: a limited multiconfiguration self-consistent-field-theory

    International Nuclear Information System (INIS)

    Hall, M.B.

    1981-01-01

    The generalized molecular orbital (GMO) approach is a limited type of multiconfiguration self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubly occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The determination of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH 3 show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N 2 show that it is suitable near the equilibrium geometry. This paper describes the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space

  20. Consistent Quantum Theory

    Science.gov (United States)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  1. Effective Field Theories and the Role of Consistency in Theory Choice

    CERN Document Server

    Wells, James D

    2012-01-01

    Promoting a theory with a finite number of terms into an effective field theory with an infinite number of terms worsens simplicity, predictability, falsifiability, and other attributes often favored in theory choice. However, the importance of these attributes pales in comparison with consistency, both observational and mathematical consistency, which propels the effective theory to be superior to its simpler truncated version of finite terms, whether that theory be renormalizable (e.g., Standard Model of particle physics) or nonrenormalizable (e.g., gravity). Some implications for the Large Hadron Collider and beyond are discussed, including comments on how directly acknowledging the preeminence of consistency can affect future theory work.

  2. Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ito, K.; Sasakura, N.

    1997-01-01

    We study the low-energy effective theory in N=2 super Yang-Mills theories by microscopic and exact approaches. We calculate the one-instanton correction to the prepotential for any simple Lie group from the microscopic approach. We also study the Picard-Fuchs equations and their solutions in the semi-classical regime for classical gauge groups with rank r≤3. We find that for gauge groups G=A r , B r , C r (r≤3) the microscopic results agree with those from the exact solutions. (orig.)

  3. Pion condensation in a theory consistent with bulk properties of nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1980-01-01

    A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures

  4. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  5. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  6. Memory for performance feedback :a test of three self- motivation theories

    OpenAIRE

    Donlin, Joanne Mac

    1990-01-01

    The current study tests the adequacy of three self-motive theories to predict recall of performance feedback, memory sensitivity, and ratings of perceived accuracy. Self-enhancement (Jones, 1973) predicts individuals are motivated to maintain their self-esteem. Individuals will therefore recall positive relative to negative feedback and will rate positive feedback as more accurate. Self-consistency theory (Swann, 1985) predicts individuals are motivated to maintain their self-conceptions. The...

  7. Self-consistent theory of steady-state lamellar solidification in binary eutectic systems

    International Nuclear Information System (INIS)

    Nash, G.E.; Glicksman, M.E.

    1976-01-01

    The potential theoretic methods developed recently at NRL for solving the diffusion equation are applied to the free-boundary problem describing lamellar eutectic solidification. Using these techniques, the original boundary value problem is reduced to a set of coupled integro-differential equations for the shape of the solid/liquid interface and various quantities defined on the interface. The behavior of the solutions is discussed in a qualitative fashion, leading to some interesting inferences regarding the nature of the eutectic solidification process. Using the information obtained from the analysis referred to above, an approximate theory of the lamellar-rod transition is formulated. The predictions of the theory are shown to be in qualitative agreement with experimental observations of this transition. In addition, a simplified version of the general integro-differential equations is developed and is used to assess the effect of interface curvature on the interfacial solute concentrations, and to check the new theory for consistency with experiment

  8. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.

    2009-03-10

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  9. A behavior-analytic critique of Bandura's self-efficacy theory

    Science.gov (United States)

    Biglan, Anthony

    1987-01-01

    A behavior-analytic critique of self-efficacy theory is presented. Self-efficacy theory asserts that efficacy expectations determine approach behavior and physiological arousal of phobics as well as numerous other clinically important behaviors. Evidence which is purported to support this assertion is reviewed. The evidence consists of correlations between self-efficacy ratings and other behaviors. Such response-response relationships do not unequivocally establish that one response causes another. A behavior-analytic alternative to self-efficacy theory explains these relationships in terms of environmental events. Correlations between self-efficacy rating behavior and other behavior may be due to the contingencies of reinforcement that establish a correspondence between such verbal predictions and the behavior to which they refer. Such a behavior-analytic account does not deny any of the empirical relationships presented in support of self-efficacy theory, but it points to environmental variables that could account for those relationships and that could be manipulated in the interest of developing more effective treatment procedures. PMID:22477956

  10. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Leermakers, F.A.M.; Stuart, M.A.C.

    2006-01-01

    To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strong-stretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of

  11. Dynamical fusion thresholds in macroscopic and microscopic theories

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Sierk, A.J.; Nix, J.R.

    1983-01-01

    Macroscopic and microscopic results demonstrating the existence of dynamical fusion thresholds are presented. For macroscopic theories, it is shown that the extra-push dynamics is sensitive to some details of the models used, e.g. the shape parametrization and the type of viscosity. The dependence of the effect upon the charge and angular momentum of the system is also studied. Calculated macroscopic results for mass-symmetric systems are compared to experimental mass-asymmetric results by use of a tentative scaling procedure, which takes into account both the entrance-channel and the saddle-point regions of configuration space. Two types of dynamical fusion thresholds occur in TDHF studies: (1) the microscopic analogue of the macroscopic extra push threshold, and (2) the relatively high energy at which the TDHF angular momentum window opens. Both of these microscopic thresholds are found to be very sensitive to the choice of the effective two-body interaction

  12. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  13. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  14. Nuclear charge-exchange excitations in a self-consistent covariant approach

    International Nuclear Information System (INIS)

    Liang, Haozhao

    2010-01-01

    Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations could provide direct information on the spin and isospin properties of the in-medium nuclear interaction, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states (IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one to attack other kinds of problems outside the realm of nuclear structure, like the description of neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V ud via the nuclear 0 + → 0 + superallowed Fermi β decays. For all these reasons, it is important to develop the microscopic theories of charge-exchange excitations and it is the main motivation of the present work. In this work, a fully self-consistent charge-exchange relativistic random phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency is verified by the so-called IAS check. This approach is then applied to investigate the nuclear spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections. For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory agreement with the experimental data can be obtained without any readjustment of the energy functional. Furthermore, the isoscalar mesons are found to play an essential role in spin

  15. Microscopic Theory of Transconductivity

    Directory of Open Access Journals (Sweden)

    A. P. Jauho

    1998-01-01

    Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.

  16. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    International Nuclear Information System (INIS)

    Atenco A, N.; Perez R, F.; Makarov, N.M.

    2005-01-01

    A theory for calculating the relaxation frequency ν and the shift δ ω of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R C for the well width fluctuations is much larger than the exciton radius a 0 (R C >> a 0 ). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al 0.3 Ga 0.7 As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of ν and δ ω be quite realistic. In particular, the relaxation frequency ν for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency ω 0 , while the surface-induced resonance shift δ ω vanishes near ω 0 , and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs

  17. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....

  18. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  19. Consistency Over Flattery: Self-Verification Processes Revealed in Implicit and Behavioral Responses to Feedback

    OpenAIRE

    Ayduk, O; Gyurak, A; Akinola, M; Mendes, WB

    2013-01-01

    Negative social feedback is often a source of distress. However, self-verification theory provides the counterintuitive explanation that negative feedback leads to less distress when it is consistent with chronic self-views. Drawing from this work, the present study examined the impact of receiving self-verifying feedback on outcomes largely neglected in prior research: implicit responses (i.e., physiological reactivity, facial expressions) that are difficult to consciously regulate and downs...

  20. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    International Nuclear Information System (INIS)

    Rout, G C; Panda, S

    2009-01-01

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  1. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  2. Grasping the second law of thermodynamics at university: The consistency of macroscopic and microscopic explanations

    Directory of Open Access Journals (Sweden)

    Risto Leinonen

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] This study concentrates on evaluating the consistency of upper-division students’ use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N=48 focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data analysis was based on a qualitative content analysis where students’ responses to the macroscopic- and microscopic-level items were categorized to provide insight into the consistency of the students’ ideas; if students relied on the same idea at both levels, they ended up in the same category at both levels, and their use of the second law was consistent. The most essential finding is that a majority of students, 52%–69% depending on the physical system under evaluation, used the second law of thermodynamics consistently at macroscopic and microscopic levels; approximately 40% of the students used it correctly in terms of physics while others relied on erroneous ideas, such as the idea of conserving entropy. The most common inconsistency harbored by 10%–15% of the students (depending on the physical system under evaluation was students’ tendency to consider the number of accessible microstates to remain constant even if the entropy was stated to increase in a similar process; other inconsistencies were only seen in the answers of a few students. In order to address the observed inconsistencies, we would suggest that lecturers should utilize tasks that challenge students to evaluate phenomena at macroscopic and microscopic levels concurrently and tasks that would guide students in their search for contradictions in their thinking.

  3. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  4. Grasping the Second Law of Thermodynamics at University: The Consistency of Macroscopic and Microscopic Explanations

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-01-01

    This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…

  5. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  6. Problem of determination of the elementary hardon-nucleon interaction amplitude from Glauber-theory analysis of elastic hardon-nucleus scattering and self-consistent FFS nuclear densities

    International Nuclear Information System (INIS)

    Saperstein, E.E.

    1992-01-01

    The influence of the detailed behavior of the nuclear densities on the Glauber-theory description of hadron-nucleus scattering is discussed in connection with the problem of determination of elementary hadron-nucleon amplitudes from such analysis. Arguments are given in favor of using the self-consistent FFS nuclear densities for this purpose. 20 refs., 6 figs

  7. Modeling polymer-induced interactions between two grafted surfaces: comparison between interfacial statistical associating fluid theory and self-consistent field theory.

    Science.gov (United States)

    Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G

    2009-07-28

    The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.

  8. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  9. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  10. Consistent histories and operational quantum theory

    International Nuclear Information System (INIS)

    Rudolph, O.

    1996-01-01

    In this work a generalization of the consistent histories approach to quantum mechanics is presented. We first critically review the consistent histories approach to nonrelativistic quantum mechanics in a mathematically rigorous way and give some general comments about it. We investigate to what extent the consistent histories scheme is compatible with the results of the operational formulation of quantum mechanics. According to the operational approach, nonrelativistic quantum mechanics is most generally formulated in terms of effects, states, and operations. We formulate a generalized consistent histories theory using the concepts and the terminology which have proven useful in the operational formulation of quantum mechanics. The logical rule of the logical interpretation of quantum mechanics is generalized to the present context. The algebraic structure of the generalized theory is studied in detail

  11. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Atenco A, N.; Perez R, F. [lnstituto de Fisica, Universidad Autonoma de Puebla, A.P. J-48, 72570 Puebla (Mexico); Makarov, N.M. [lnstituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, 72050 Puebla (Mexico)

    2005-07-01

    A theory for calculating the relaxation frequency {nu} and the shift {delta} {omega} of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R{sub C} for the well width fluctuations is much larger than the exciton radius a{sub 0} (R{sub C} >> a{sub 0}). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al{sub 0.3} Ga{sub 0.7}As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of {nu} and {delta} {omega} be quite realistic. In particular, the relaxation frequency {nu} for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency {omega}{sub 0}, while the surface-induced resonance shift {delta} {omega} vanishes near {omega}{sub 0}, and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs.

  12. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    Science.gov (United States)

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  13. Predictors of consistent condom use among Chinese female sex workers: an application of the protection motivation theory.

    Science.gov (United States)

    Zhang, Liying; Li, Xiaoming; Zhou, Yuejiao; Lin, Danhua; Su, Shaobing; Zhang, Chen; Stanton, Bonita

    2015-01-01

    We utilized Protection Motivation Theory to assess predictors of intention and behavior of consistent condom use among Chinese female sex workers (FSWs). A self-administered questionnaire was used in a cross-sectional survey among 700 FSWs in Guangxi, China. Multivariate logistic regression analysis indicated that extrinsic and intrinsic rewards, self-efficacy, and response costs predicted consistent condom use intention and behavior among FSWs. Sexually transmitted infection/ HIV prevention programs need to reduce FSWs' perceptions of positive extrinsic rewards and intrinsic rewards for engaging in consistent condom use, reduce FSWs' perception of response costs for using a condom, and increase condom use self-efficacy among FSWs.

  14. Some Contributions of Self-Efficacy Research to Self-Concept Theory.

    Science.gov (United States)

    Gorrell, Jeffrey

    1990-01-01

    Self-efficacy theory and research contribute to self-concept theory primarily by supporting the enhancement model of belief change. This article describes current problems with self-concept theory, describes self-efficacy research, and suggests that self-efficacy theory and methodology present findings that strengthen the association between…

  15. Self-consistent electronic-structure calculations for interface geometries

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.

    1992-01-01

    This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method

  16. Nature of Microscopic Black Holes and Gravity in Theories with Particle Species

    CERN Document Server

    Dvali, Gia

    2010-01-01

    Relying solely on unitarity and the consistency with large-distance black hole physics, we derive model-independent properties of the microscopic black holes and of short-distance gravity in theories with N particle species. In this class of theories black holes can be as light as M_{Planck}/\\sqrt{N} and be produced in particle collisions above this energy. We show, that the micro black holes must come in the same variety as the species do, although their label is not associated with any conserved charge measurable at large distances. In contrast with big Schwarzschildian ones, the evaporation of the smallest black holes is maximally undemocratic and is biased in favor of particular species. With an increasing mass the democracy characteristic to the usual macro black holes is gradually regained. The lowest possible mass above which black holes become Einsteinian is \\sqrt{N} M_{Planck}. This fact uncovers the new fundamental scale (below the quantum gravity scale) above which gravity changes classically, and ...

  17. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  18. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    Science.gov (United States)

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  19. Quasiparticle self-consistent GW method: a short summary

    International Nuclear Information System (INIS)

    Kotani, Takao; Schilfgaarde, Mark van; Faleev, Sergey V; Chantis, Athanasios

    2007-01-01

    We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self-consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self-consistent perturbation; the non-interacting Green function G 0 , which is the starting point for GWA to obtain G, is determined self-consistently so as to minimize the perturbative correction generated by GWA. After self-consistency is attained, we have G 0 , W (the screened Coulomb interaction) and G self-consistently. This G 0 can be interpreted as the optimum non-interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e.g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the self-consistency including the off-diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects

  20. A pattern theory of self.

    Science.gov (United States)

    Gallagher, Shaun

    2013-01-01

    I argue for a pattern theory of self as a useful way to organize an interdisciplinary approach to discussions of what constitutes a self. According to the pattern theory, a self is constituted by a number of characteristic features or aspects that may include minimal embodied, minimal experiential, affective, intersubjective, psychological/cognitive, narrative, extended, and situated aspects. A pattern theory of self helps to clarify various interpretations of self as compatible or commensurable instead of thinking them in opposition, and it helps to show how various aspects of self may be related across certain dimensions. I also suggest that a pattern theory of self can help to adjudicate (or at least map the differences) between the idea that the self correlates to self-referential processing in the cortical midline structures of the brain and other narrower or wider conceptions of self.

  1. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.

    2015-01-01

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced

  2. A pattern theory of self

    Directory of Open Access Journals (Sweden)

    Shaun eGallagher

    2013-08-01

    Full Text Available I argue for a pattern theory of self as a useful way to organize an interdisciplinary approach to discussions of what constitutes a self. According to the pattern theory, a self is constituted by a number of characteristic features or aspects that may include minimal embodied, minimal experiential, affective, intersubjective, psychological/cognitive, narrative, extended and situated aspects. A pattern theory of self helps to clarify various interpretations of self as compatible or commensurable instead of thinking them in opposition, and it helps to show how various aspects of self may be related across certain dimensions. I also suggest that a pattern theory of self can help to adjudicate (or at least map the differences between the idea that the self correlates to self-referential processing in the cortical midline structures of the brain and other narrower or wider conceptions of self.

  3. Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory.

    Science.gov (United States)

    Suzuki, Jiro; Takano, Atsushi; Deguchi, Tetsuo; Matsushita, Yushu

    2009-10-14

    We studied equilibrium conformations of ring polymers in melt over the wide range of segment number N of up to 4096 with Monte-Carlo simulation and obtained N dependence of radius of gyration of chains R(g). The simulation model used is bond fluctuation model (BFM), where polymer segments bear excluded volume; however, the excluded volume effect vanishes at N-->infinity, and linear polymer can be regarded as an ideal chain. Simulation for ring polymers in melt was performed, and the nu value in the relationship R(g) proportional to N(nu) is decreased gradually with increasing N, and finally it reaches the limiting value, 1/3, in the range of N>or=1536, i.e., R(g) proportional to N(1/3). We confirmed that the simulation result is consistent with that of the self-consistent theory including the topological effect and the osmotic pressure of ring polymers. Moreover, the averaged chain conformation of ring polymers in equilibrium state was given in the BFM. In small N region, the segment density of each molecule near the center of mass of the molecule is decreased with increasing N. In large N region the decrease is suppressed, and the density is found to be kept constant without showing N dependence. This means that ring polymer molecules do not segregate from the other molecules even if ring polymers in melt have the relationship nu=1/3. Considerably smaller dimensions of ring polymers at high molecular weight are due to their inherent nature of having no chain ends, and hence they have less-entangled conformations.

  4. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  5. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    Science.gov (United States)

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  6. General fluid theories, variational principles and self-organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.

    2002-01-01

    This paper reports two distinct but related advances: (1) The development and application of fluid theories that transcend conventional magnetohydrodynamics (MHD), in particular, theories that are valid in the long-mean-free-path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently. (2) The discovery of new pressure-confining plasma configurations that are self-organized relaxed states. (author)

  7. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  8. The self-consistent dynamic pole tide in global oceans

    Science.gov (United States)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  9. Persistence length of wormlike micelles composed of ionic surfactants: self-consistent-field predictions

    NARCIS (Netherlands)

    Lauw, Y.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    The persistence length of a wormlike micelle composed of ionic surfactants CnEmXk in an aqueous solvent is predicted by means of the self-consistent-field theory where CnEm is the conventional nonionic surfactant and X-k is an additional sequence of k weakly charged (pH-dependent) segments. By

  10. SOCIAL COMPARISON, SELF-CONSISTENCY AND THE PRESENTATION OF SELF.

    Science.gov (United States)

    MORSE, STANLEY J.; GERGEN, KENNETH J.

    TO DISCOVER HOW A PERSON'S (P) SELF-CONCEPT IS AFFECTED BY THE CHARACTERISTICS OF ANOTHER (O) WHO SUDDENLY APPEARS IN THE SAME SOCIAL ENVIRONMENT, SEVERAL QUESTIONNAIRES, INCLUDING THE GERGEN-MORSE (1967) SELF-CONSISTENCY SCALE AND HALF THE COOPERSMITH SELF-ESTEEM INVENTORY, WERE ADMINISTERED TO 78 UNDERGRADUATE MEN WHO HAD ANSWERED AN AD FOR WORK…

  11. Communication: A difference density picture for the self-consistent field ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-04-07

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  12. Communication: A difference density picture for the self-consistent field ansatz

    International Nuclear Information System (INIS)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-01-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  13. Communication: A difference density picture for the self-consistent field ansatz

    Science.gov (United States)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-04-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  14. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  15. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    2017-10-25

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical and concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about

  16. Self Modeling: Expanding the Theories of Learning

    Science.gov (United States)

    Dowrick, Peter W.

    2012-01-01

    Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…

  17. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  18. An implicit theory of self-esteem: the consequences of perceived self-esteem for romantic desirability.

    Science.gov (United States)

    Zeigler-Hill, Virgil; Myers, Erin M

    2011-04-07

    The provision of information appears to be an important property of self-esteem as evidenced by previous research concerning the status-tracking and status-signaling models of self-esteem. The present studies examine whether there is an implicit theory of self-esteem that leads individuals to assume targets with higher levels of self-esteem possess more desirable characteristics than those with lower levels of self-esteem. Across 6 studies, targets with ostensibly higher levels of self-esteem were generally rated as more attractive and as more desirable relationship partners than those with lower levels of self- esteem. It is important to note, however, that this general trend did not consistently emerge for female targets. Rather, female targets with high self-esteem were often evaluated less positively than those with more moderate levels of self-esteem. The present findings are discussed in the context of an extended informational model of self-esteem consisting of both the status-tracking and status-signaling properties of self-esteem.

  19. An Implicit Theory of Self-Esteem: The Consequences of Perceived Self-Esteem for Romantic Desirability

    Directory of Open Access Journals (Sweden)

    Virgil Zeigler-Hill

    2011-04-01

    Full Text Available The provision of information appears to be an important property of self-esteem as evidenced by previous research concerning the status-tracking and status-signaling models of self-esteem. The present studies examine whether there is an implicit theory of self-esteem that leads individuals to assume targets with higher levels of self-esteem possess more desirable characteristics than those with lower levels of self-esteem. Across 6 studies, targets with ostensibly higher levels of self-esteem were generally rated as more attractive and as more desirable relationship partners than those with lower levels of self-esteem. It is important to note, however, that this general trend did not consistently emerge for female targets. Rather, female targets with high self-esteem were often evaluated less positively than those with more moderate levels of self-esteem. The present findings are discussed in the context of an extended informational model of self-esteem consisting of both the status-tracking and status-signaling properties of self-esteem.

  20. Analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field method

    Directory of Open Access Journals (Sweden)

    N.Yoshida

    2007-09-01

    Full Text Available An analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF method is presented. MOZ-SCF theory is one of the theories to considering the solvent effects on the solute electronic structure in solution. [Yoshida N. et al., J. Chem. Phys., 2000, 113, 4974] Molecular geometries of water, formaldehyde, acetonitrile and acetone in water are optimized by analytical energy gradient formula. The results are compared with those from the polarizable continuum model (PCM, the reference interaction site model (RISM-SCF and the three dimensional (3D RISM-SCF.

  1. Theories of the nuclear ground state beyond Hartree-Fock

    International Nuclear Information System (INIS)

    Gogny, D.

    1979-01-01

    Intensive efforts have been invested toward defining a microscopic approach, simple enough to render feasible systematic calculations of nuclear structure and of the some time sufficiently rich in information as to serve for updating traditional microscopic approaches to the collective excitations. Our starting point is the mean field approximation with density dependent effective forces. To describe the collective excitations we use the two well known extensions based on the H.F. theory namely the random phase approximation and the adiabatic approximation to the time dependent Hartree-Fock theory. The purpose of this paper is to show what sort of calculations can be effectively carried out in the frame of such fully self consistent approaches. (KBE) 891 KBE/KBE 892 ARA

  2. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  3. Microscopic theory of one-body dissipation

    International Nuclear Information System (INIS)

    Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.

    1977-01-01

    A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)

  4. On the consistent solution of the gap-equation for spontaneously broken λΦ4-theory

    International Nuclear Information System (INIS)

    Nachbagauer, H.

    1994-10-01

    A self-consistent solution of the finite temperature gap-equation for λΦ 4 theory beyond the Hartree-Fock approximation is presented using a composite operator effective action. It was found that in a spontaneously broken theory not only the so-called daisy and super daisy graphs contribute to the re summed mass, but also re summed non-local diagrams are of the same order, thus altering the effective mass for small values of the latter. (author). 10 refs., 3 figs., 1 tab

  5. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  6. A self-consistent formulation of quantum field theory on S4

    International Nuclear Information System (INIS)

    Harris, B.A.; Joshi, G.C.

    1991-01-01

    In this paper, a consistent formulation of field theory on a four-sphere was constructed and a method from which various amplitudes may be calculated is described. The standard results of quantum electrodynamics are derived, providing a valuable check on the validity of this approach, as well as allowing a direct comparison between this and previous work done in the area. It is believed that the matrix element approach offers a new way to deal with some of the more troublesome aspects of previous calculations. In particular one can easily handle the transverse part of the photon propagator which had made the (1 - α) gauge parts difficult to calculate. However the main advantage of this method is the ability to compute functions which involve the contraction of indices across different η integrals. This tends to happen when one has derivative couplings such as those in scalar electrodynamics. 12 refs., 3 figs

  7. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  8. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    Science.gov (United States)

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  9. Winners, Losers, Insiders, and Outsiders: Comparing Hierometer and Sociometer Theories of Self-Regard

    Science.gov (United States)

    Mahadevan, Nikhila; Gregg, Aiden P.; Sedikides, Constantine; de Waal-Andrews, Wendy G.

    2016-01-01

    What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard’s evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion), psychological (self-regard: self-esteem, narcissism), and behavioral (strategy: assertiveness, affiliativeness). Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression). We interpret our results in terms of a broader agency-communion framework. PMID:27065896

  10. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  11. Self-consistent cluster theories for alloys with diagonal and off-diagonal disorder

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1978-01-01

    The molecular coherent-potential approximation (MCPA) and other, simpler cluster approximations for disordered alloys are studied both analytically and numerically for alloys with diagonal and off-diagonal disorder (ODD). First, the MCPA for alloys with only diagonal disorder is rederived within the interactor formalism of Blackman, Esterling, and Berk. This formalism, which simplifies the numerical implementation of the MCPA, is then used to generalize the MCPA so as to take account of ODD. It is shown that the analytic properties of the MCPA are preserved under this generalization. Also, two computationally simple cluster approximations, the self-consistent central-site approximation (SCCSA) and the self-consistent boundary-site approximation (SCBSA), are generalized to include the effects of ODD. It is shown that for one-dimensional systems with only nearest-neighbor hopping the SCBSA yields Green's functions which are identical to those given by the MCPA and thus are analytic, even in the presence of ODD. Finally, the results of numerical calculations are reported for one-dimensional systems with only nearest-neighbor hopping but with both diagonal and off-diagonal disorder. These calculations were performed using the single-site approximation of Blackman, Esterling, and Berk and three different cluster approximations: the multishell method previously proposed by the authors, the SCCSA, and the SCBSA. The results of these calculations are compared with exact results and with previous results obtained using the truncated t-matix approximation and the recent method of Kaplan and Gray. These comparisons suggest that the multishell method and the generalization of the SCBSA given in this paper are more efficient and accurate for the calculation of densities of states for systems with ODD. On the other hand, as expected, the SCCSA was found to yield severely nonanalytic results for the values of band parameters used

  12. Self-determination theory and the welfare of employees

    Directory of Open Access Journals (Sweden)

    Ranđelović Kristina M.

    2013-01-01

    Full Text Available The objective of this article is to give an account of the psychological welfare of employees in the context of self-determination theory. SDT represents an approach to human motivation and personality that uses traditional empirical methods which make clear the importance of development of human innate abilities for personal development, integration and self-regulation. Self-determination theory emphasizes that welfare is an direct function with the satisfaction of basic psychological needs. According to the above mentioned theory self actualization (eudemonia represents the key aspect of psychological welfare. Namely, SDT aims to explain what it means to actualize oneself and how to schive that. The researches within self-determination theory are focused on the factors that allow or prevent psychological grouth, integrity and welfare. SDT is a theory with great prospect and it allows us not only to understand better the psychological processes in many aspects of use (sport, work, parenthood, education, etc. but also to direct programs and interventions that improve the circumstances in which people live. The theory has recently been applied in health-working psychology and few empirical findings have given support to its fundamental premises. SDT is a consistant theory that can be tested, it is applicable in almost all spheres of life (family, school system, health care, work, relationships among people ect. and it gives a broad spectrum of possible problems to research. It not only offers different social environments and his welfare, but the theory also offers directives how to improve the conditions in witch people live and work. The organizational context that allows the possibility to choose, make autonomous decisions, clear explanations of certain work assignments, as well as the appreciation of feelings and attitudes of the employees will bring about greater satisfaction of the innate needs for grouth. It is necessary, in our

  13. Pressure variation of the valence band width in Ge: A self-consistent GW study

    DEFF Research Database (Denmark)

    Modak, Paritosh; Svane, Axel; Christensen, Niels Egede

    2009-01-01

    . In the present work we report results of quasiparticle self-consistent GW  (QSGW) band calculations for diamond- as well as β-tin-type Ge under pressure. For both phases we find that the band width increases with pressure. For β-tin Ge this agrees with experiment and density-functional theory, but for diamond Ge...

  14. Self-Consistent-Field Method and τ-Functional Method on Group Manifold in Soliton Theory: a Review and New Results

    Directory of Open Access Journals (Sweden)

    Seiya Nishiyama

    2009-01-01

    Full Text Available The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD self-consistent field (SCF theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature C = 0. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e., υ (external parameter-dependent Hartree-Fock (HF theory. Toward such an ultimate goal, the υ-HF theory has been reconstructed on an affine Kac-Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent potential with a Υ-periodicity. A bilinear equation for the υ-HF theory has been transcribed onto the corresponding τ-function using the regular representation for the group and the Schur-polynomials. The υ-HF SCF theory on an infinite-dimensional Fock space F∞ leads to a dynamics on an infinite-dimensional Grassmannian Gr∞ and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a Gr

  15. Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics.

    Science.gov (United States)

    Kovalenko, Andriy; Gusarov, Sergey

    2018-01-31

    In this work, we will address different aspects of self-consistent field coupling of computational chemistry methods at different time and length scales in modern materials and biomolecular science. Multiscale methods framework yields dramatically improved accuracy, efficiency, and applicability by coupling models and methods on different scales. This field benefits many areas of research and applications by providing fundamental understanding and predictions. It could also play a particular role in commercialization by guiding new developments and by allowing quick evaluation of prospective research projects. We employ molecular theory of solvation which allows us to accurately introduce the effect of the environment on complex nano-, macro-, and biomolecular systems. The uniqueness of this method is that it can be naturally coupled with the whole range of computational chemistry approaches, including QM, MM, and coarse graining.

  16. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  17. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  18. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    Science.gov (United States)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  19. Winners, Losers, Insiders, and Outsiders: Comparing Hierometer and Sociometer Theories of Self-Regard

    Directory of Open Access Journals (Sweden)

    Nikhila eMahadevan

    2016-03-01

    Full Text Available What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard’s evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion, psychological (self-regard: self-esteem, narcissism, and behavioral (strategy: assertiveness, affiliativeness. Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression. We interpret our results in terms of a broader agency-communion framework.

  20. Comment on the consistency of truncated nonlinear integral equation based theories of freezing

    International Nuclear Information System (INIS)

    Cerjan, C.; Bagchi, B.; Rice, S.A.

    1985-01-01

    We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim--Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions

  1. The Microscope against Cell Theory: Cancer Research in Nineteenth-Century Parisian Anatomical Pathology.

    Science.gov (United States)

    Loison, Laurent

    2016-07-01

    This paper examines the reception of cell theory in the field of French anatomical pathology. This reception is studied under the lens of the concept of the cancer cell, which was developed in Paris in the 1840s. In the medical field, cell theory was quickly accessible, understood, and discussed. In the wake of research by Hermann Lebert, the cancer cell concept was supported by a wealth of high-quality microscopic observations. The concept was constructed in opposition to cell theory, which appears retrospectively paradoxical and surprising. Indeed, the biological atomism inherent in cell theory, according to which the cell is the elementary unit of all organs of living bodies, appeared at the time incompatible with the possible existence of pathological cells without equivalent in healthy tissues. Thus, the postulate of atomism was used as an argument by Parisian clinicians who denied the value of the cancer cell. This study shows that at least in the field of anatomical pathology, cell theory did not directly result from the use of the microscope but was actually hindered by it. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Self-dual gauge theories

    International Nuclear Information System (INIS)

    Zet, G.

    2002-01-01

    The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)

  3. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  4. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    Science.gov (United States)

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  5. Self-consistent description of isobaric 0+ states taking the one-particle continuum into account exactly

    International Nuclear Information System (INIS)

    Pyatov, N.I.; Salamov, D.I.; Fayans, S.A.

    1981-01-01

    The properties of discrete and resonance isobaric 0 + states of nuclei are studied within the framework of a self-consistent approach. The equations for the charge-exchange effective field are solved in the coordinate representation taking the one-particle continuum into account exactly. Microscopic estimates of the analog-state energies and the matrix elements, transition densities, and strength functions of the isospin-allowed and forbidden Fermi transitions are obtained together with the values of the isospin admixtures in the ground states of the parent nuclei and their analogs. The escape widths of the isobaric resonances are also discussed

  6. Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation

    International Nuclear Information System (INIS)

    von Barth, U.; Holm, B.

    1996-01-01

    With the aim of properly understanding the basis for and the utility of many-body perturbation theory as applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e., the one-electron Green function obtained from Dyson close-quote s equation is the same as that used to calculate the self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and equal to that of the random-phase approximation for the gas. We have found that the final results are marginally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the quasiparticles and the development of satellite structure (plasmons) gives, however, a markedly smaller dynamical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an even broader and structureless satellite spectrum in disagreement with experiment. copyright 1996 The American Physical Society

  7. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  8. Self-consistent approximations beyond the CPA: Part II

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1982-01-01

    This paper concentrates on a self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl. The construction of the augmented space formalism for a binary alloy is sketched, and the notation to be used derived. Using the operator methods of the augmented space, the self-consistent approximation is derived for the average Green's function, and for evaluating the self-energy, taking into account the scattering by clusters of excitations. The particular cluster approximation desired is derived by treating the scattering by the excitations with S /SUB T/ exactly. Fourier transforms on the disorder-space clustersite labels solve the self-consistent set of equations. Expansion to short range order in the alloy is also discussed. A method to reduce the problem to a computationally tractable form is described

  9. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  10. Microscopic theory of the current-voltage relationship across a normal-superconducting interface

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.; Watts-Tobin, R.J.

    1979-01-01

    Measurements by Pippard et al. have shown the existence of an extra resistance due to the penetration of an electrical potential into a superconductor. Previous theories of this effect are unable to explain the full temperature dependence of the extra resistance because they use oversimplified models of the normal--superconducting interface. We show that the microscopic theory for dirty superconductors leads to a good agreement with experiment over the whole temperature range

  11. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  12. A quantal transport theory for nuclear collective motion: the merits of a locally harmonic approximation

    International Nuclear Information System (INIS)

    Hofmann, H.

    1997-01-01

    A transport theory is developed for collective motion of systems such as an atomic nucleus, which may be considered as a typical representative of a self-bound micro-system. Albeit for pragmatic reasons, collective variables are introduced as shape parameters, self-consistency with respect to the nucleonic degrees of freedom has been implemented at various important stages. This feature leads to subsidiary conditions which are obeyed locally for both the average motion as well as for the quantized Hamiltonian constructed through a Bohm-Pines procedure. Furthermore, self-consistency governs the definition of the transport coefficients appearing in the equations for collective motion. The latter is associated to the time evolution of the density in collective phase space, for which the concept of the Wigner function is employed. Global motion is described by propagating the system in successive time laps which are macroscopically small, but microscopically large. This enables one to exploit linearization procedures and to take advantage of the benefits of linear response theory. A microscopic damping mechanism is introduced by dressing the energies of the independent particle model by complex self-energies, the parameters of which are determined from optical model considerations. Numerical evaluations of transport coefficients are described and tested for the case of fission in the light of recent experimental findings. The theory allows one to extend both Kramers' picture of this process as well as his equation for the density distribution into the quantum regime. (orig.)

  13. Self-consistent-field method and τ-functional method on group manifold in soliton theory. II. Laurent coefficients of soliton solutions for sln and for sun

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao

    2007-01-01

    To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space

  14. Testing Self-Determination Theory via Nigerian and Indian Adolescents

    Science.gov (United States)

    Sheldon, Kennon M.; Abad, Neetu; Omoile, Jessica

    2009-01-01

    We tested the generalizability of five propositions derived from Self-Determination Theory (SDT; Deci & Ryan, 2000) using school-aged adolescents living in India (N = 926) and Nigeria (N = 363). Consistent with past U.S. research, perceived teacher autonomy-support predicted students' basic need-satisfaction in the classroom and also predicted…

  15. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  16. Grüneisen Parameter and Thermal Expansion by the Self-Consistent Renormalization Theory of Spin Fluctuations

    Science.gov (United States)

    Watanabe, Shinji; Miyake, Kazumasa

    2018-03-01

    The thermal expansion coefficient α and the Grüneisen parameter Γ near the magnetic quantum critical point (QCP) are derived on the basis of the self-consistent renormalization (SCR) theory of spin fluctuations. From the SCR entropy, the specific heat CV, α, and Γ are shown to be expressed in a simple form as CV = Ca - Cb, α = αa + αb, and Γ = Γa + Γb, respectively, where Ci, αi, and Γi (i = a, b) are related with each other. As the temperature T decreases, Ca, αb, and Γb become dominant in CV, α, and Γ, respectively. The inverse susceptibility of spin fluctuation coupled to the volume V in Γb is found to give rise to the divergence of Γ at the QCP for each class of ferromagnetism and antiferromagnetism (AFM) in spatial dimensions d = 3 and 2. This V-dependent inverse susceptibility in αb and Γb contributes to the T dependences of α and Γ, and even affects their criticality in the case of the AFM QCP in d = 2. Γa is expressed as Γ a(T = 0) = - V/T0( {partial T0}/{partial V} )T = 0 with T0 being the characteristic temperature of spin fluctuation, which has an enhanced value in heavy electron systems.

  17. The effects of feedback self-consistency, therapist status, and attitude toward therapy on reaction to personality feedback.

    Science.gov (United States)

    Collins, David R; Stukas, Arthur A

    2006-08-01

    Individuals' reactions to interpersonal feedback may depend on characteristics of the feedback and the feedback source. The present authors examined the effects of experimentally manipulated personality feedback that they--in the guise of therapists--e-mailed to participants on the degree of their acceptance of the feedback. Consistent with Self-Verification Theory (W. B. Swann Jr., 1987), participants accepted feedback that was consistent with their self-views more readily than they did feedback that was inconsistent with their self-views. Furthermore, the authors found main effects for therapist's status and participant's attitude toward therapy. Significant interactions showed effects in which high-status therapists and positive client attitudes increased acceptance of self-inconsistent feedback, effects that were only partially mediated by clients' perceptions of therapist competence. The present results indicate the possibility that participants may be susceptible to self-concept change or to self-fulfilling prophecy effects in therapy when they have a positive attitude toward therapy or are working with a high-status therapist.

  18. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  19. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  20. Consistent Kaluza-Klein truncations via exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS,École Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07 (France)

    2015-01-26

    We present the generalized Scherk-Schwarz reduction ansatz for the full supersymmetric exceptional field theory in terms of group valued twist matrices subject to consistency equations. With this ansatz the field equations precisely reduce to those of lower-dimensional gauged supergravity parametrized by an embedding tensor. We explicitly construct a family of twist matrices as solutions of the consistency equations. They induce gauged supergravities with gauge groups SO(p,q) and CSO(p,q,r). Geometrically, they describe compactifications on internal spaces given by spheres and (warped) hyperboloides H{sup p,q}, thus extending the applicability of generalized Scherk-Schwarz reductions beyond homogeneous spaces. Together with the dictionary that relates exceptional field theory to D=11 and IIB supergravity, respectively, the construction defines an entire new family of consistent truncations of the original theories. These include not only compactifications on spheres of different dimensions (such as AdS{sub 5}×S{sup 5}), but also various hyperboloid compactifications giving rise to a higher-dimensional embedding of supergravities with non-compact and non-semisimple gauge groups.

  1. Microscopic theory of the liquid-solid interface of 4He

    International Nuclear Information System (INIS)

    Pederiva, F.; Fantoni, S.; Reatto, L.

    1995-01-01

    Based on the shadow wave function we have developed the first microscopic theory of the interface between a quantum liquid and solid. We overcome the difficulties present in other variational theories because no a priori equilibrium positions for the atoms have to be assumed and localization of particles is exclusively due to interparticle correlations. We find that the crystalline order parameters vary smoothly over the interface and the interface itself is mobile. We have extended the previous work to the interface of a fcc crystal of 4 He. The interfacial energy is 0.16 K/angstrom 2 , the width of the interface is about 15 angstrom and the local density has a dip on the liquid side

  2. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  3. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  4. Academic Self-Concept, Implicit Theories of Ability, and Self-Regulation Strategies

    Science.gov (United States)

    Ommundsen, Yngvar; Haugen, Richard; Lund, Thorleif

    2005-01-01

    The purpose of the present study is to explore how academic self-concept and implicit theories of ability are related to four self-regulation strategies--motivation/diligence, concentration, information processing, and self-handicapping. The hypothesis is that academic self-concept and an incremental theory of ability are (1) positively related to…

  5. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  6. Parent-Initiated Motivational Climate, Self-Esteem, and Autonomous Motivation in Young Athletes: Testing Propositions from Achievement Goal and Self-Determination Theories

    Directory of Open Access Journals (Sweden)

    Daniel J. O'Rourke

    2012-01-01

    Full Text Available Interactions with parents are known to have a significant impact on children's self-esteem. In this study, designed to test propositions derived from Achievement Goal Theory and Self-Determination Theory, we assessed the influence of perceived parent-initiated mastery and ego motivational climates on self-esteem and self-esteem change in competitive youth swimmers over the course of a 32-week sport season. At each of three measurement points (early, mid, and late season, mastery climate scores on the Parent-Initiated Motivational Climate Questionnaire-2 scale were positively related to global self-esteem scores and to a measure of relative motivational autonomy that reflects the intrinsic-extrinsic motivation continuum, whereas ego climate scores were negatively related to self-esteem and autonomy. Longitudinal analyses revealed that early-season mastery climate predicted positive changes in self-esteem over the course of the season, whereas ego climate predicted decreased self-esteem. Consistent with predictions derived from Self-Determination Theory, a meditational analysis revealed that these self-esteem changes were mediated by changes in autonomous motivation.

  7. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory.

    Directory of Open Access Journals (Sweden)

    Aliza B Rubenstein

    2017-06-01

    Full Text Available Multispecificity-the ability of a single receptor protein molecule to interact with multiple substrates-is a hallmark of molecular recognition at protein-protein and protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform structure-based prediction of multispecificity would aid in the identification of novel enzyme substrates, protein interaction partners, and enable design of novel enzymes targeted towards alternative substrates. The relatively slow speed of current biophysical, structure-based methods limits their use for prediction and, especially, design of multispecificity. Here, we develop a rapid, flexible-backbone self-consistent mean field theory-based technique, MFPred, for multispecificity modeling at protein-peptide interfaces. We benchmark our method by predicting experimentally determined peptide specificity profiles for a range of receptors: protease and kinase enzymes, and protein recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe robust recapitulation of known specificities for all receptor-peptide complexes, and comparison with other methods shows that MFPred results in equivalent or better prediction accuracy with a ~10-1000-fold decrease in computational expense. We find that modeling bound peptide backbone flexibility is key to the observed accuracy of the method. We used MFPred for predicting with high accuracy the impact of receptor-side mutations on experimentally determined multispecificity of a protease enzyme. Our approach should enable the design of a wide range of altered receptor proteins with programmed multispecificities.

  8. Microscopic Observation of Self-Propagation of Calcifying Nanoparticles (Nanobacteria)

    Science.gov (United States)

    Mathew, Grace; McKay, David S.; Ciftcioglu, Neva

    2007-01-01

    Biologists typically define living organisms as carbon and water-based cellular forms with :self-replication" as the fundamental trait of the life process. However, this standard dictionary definition of life does not help scientists to categorize self-replicators like viruses, prions, proteons and artificial life. CNP also named nanobacteria were discovered in early 1990s as about 100 nanometer-sized bacteria-like particles with unique apatite mineral-shells around them, and found to be associated with pathological-calcification related diseases. Although CNP have been isolated and cultured from mammalian blood and diseased calcified tissues, and their biomineralizing properties well established, their biological nature and self-replicating capability have always been severely challenged. The terms "self-replication", "self-assembly" or "self-propagation" have been widely used for all systems including nanomachines, crystals, computer viruses and memes. In a simple taxonomy, all biological and non-biological "self replicators", have been classified into "living" or "nonliving" based on the properties of the systems and the amount of support they require to self-replicate. To enhance our understanding about self-replicating nature of CNP, we have investigated their growth in specific culture conditions using conventional inverted light microscope and BioStation IM, Nikon s latest time-lapse imaging system. Their morphological structure was examined using scanning (SEM) and transmission (TEM) electron microscopy. This present study, in conjunction with previous findings of metabolic activity, antibiotic sensitivity, antibody specificity, morphological aspects and infectivity, all concomitantly validate CNP as living self-replicators.

  9. A self-consistent mean-field approach to the dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Hatsuda, Tetsuo.

    1984-01-01

    The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)

  10. Toward a microscopic theory of detonations in energetic crystals

    International Nuclear Information System (INIS)

    Peyrard, M.; Odiot, S.

    1991-01-01

    Investigations of microscopic structure of detonation waves are useful for extending our basic understanding of the solid state. In a detonation wave, a crystal cell can be compressed to one-half of its equilibrium size. As a result, detonations probe regions of the atom-atom interaction potential curves that can hardly be investigated by any other means. In this paper the authors describe the first investigations of energetic materials after discussing briefly the molecular dynamics techniques themselves and presenting their application to shock waves in solids. We then focus on two particular topics in which molecular dynamics has brought new insights to the propagation of a detonation wave in a crystal, the role of the crystal structure, and the effects of the different steps in the chemistry. Section V presents a new approach that combines a model for the chemistry with standard molecular dynamics techniques, an approach that extends the domain of investigation of the numerical simulations and provides a step toward a microscopic theory of the propagation of a detonation wave. Section VI discusses the results and the future of these approaches

  11. A Combined Self-Consistent Method to Estimate the Effective Properties of Polypropylene/Calcium Carbonate Composites

    Directory of Open Access Journals (Sweden)

    Zhongqiang Xiong

    2018-01-01

    Full Text Available In this work, trying to avoid difficulty of application due to the irregular filler shapes in experiments, self-consistent and differential self-consistent methods were combined to obtain a decoupled equation. The combined method suggests a tenor γ independent of filler-contents being an important connection between high and low filler-contents. On one hand, the constant parameter can be calculated by Eshelby’s inclusion theory or the Mori–Tanaka method to predict effective properties of composites coinciding with its hypothesis. On the other hand, the parameter can be calculated with several experimental results to estimate the effective properties of prepared composites of other different contents. In addition, an evaluation index σ f ′ of the interactional strength between matrix and fillers is proposed based on experiments. In experiments, a hyper-dispersant was synthesized to prepare polypropylene/calcium carbonate (PP/CaCO3 composites up to 70 wt % of filler-content with dispersion, whose dosage was only 5 wt % of the CaCO3 contents. Based on several verifications, it is hoped that the combined self-consistent method is valid for other two-phase composites in experiments with the same application progress as in this work.

  12. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  13. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    Science.gov (United States)

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).

  14. Understanding Self-Controlled Motor Learning Protocols through the Self-Determination Theory.

    Science.gov (United States)

    Sanli, Elizabeth A; Patterson, Jae T; Bray, Steven R; Lee, Timothy D

    2012-01-01

    The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT). Three micro-theories within the macro-theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory, and Organismic Integration Theory) are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  15. Understanding self-controlled motor learning protocols through the self determination theory

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Sanli

    2013-01-01

    Full Text Available The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT. Three micro theories within the macro theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory & Organismic Integration Theory are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  16. Microscopic and self-consistent description of nuclear properties by extended generator-coordinate method

    International Nuclear Information System (INIS)

    Didong, M.

    1976-01-01

    The extend generator-coordinated method is discussed and a procedure is given for the solution of the Hill-Wheeler equation. The HFB-theory, the particle-number and angular-momentum projections necessary for symmetry, and the modified surprice delta interaction are discussed. The described procedures are used to calculate 72 Ge, 70 Zn and 74 Ge properties. (BJ) [de

  17. A new mixed self-consistent field procedure

    Science.gov (United States)

    Alvarez-Ibarra, A.; Köster, A. M.

    2015-10-01

    A new approach for the calculation of three-centre electronic repulsion integrals (ERIs) is developed, implemented and benchmarked in the framework of auxiliary density functional theory (ADFT). The so-called mixed self-consistent field (mixed SCF) divides the computationally costly ERIs in two sets: far-field and near-field. Far-field ERIs are calculated using the newly developed double asymptotic expansion as in the direct SCF scheme. Near-field ERIs are calculated only once prior to the SCF procedure and stored in memory, as in the conventional SCF scheme. Hence the name, mixed SCF. The implementation is particularly powerful when used in parallel architectures, since all RAM available are used for near-field ERI storage. In addition, the efficient distribution algorithm performs minimal intercommunication operations between processors, avoiding a potential bottleneck. One-, two- and three-dimensional systems are used for benchmarking, showing substantial time reduction in the ERI calculation for all of them. A Born-Oppenheimer molecular dynamics calculation for the Na+55 cluster is also shown in order to demonstrate the speed-up for small systems achievable with the mixed SCF. Dedicated to Sourav Pal on the occasion of his 60th birthday.

  18. Microscopic and hydrodynamic theory of superfluidity in periodic solids

    International Nuclear Information System (INIS)

    Saslow, W.M.

    1977-01-01

    The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined excitations. One finds that the superfluid fraction is a tensor rho/sub s//sub b//sub β//rho 0 and that the fourth-sound velocity C 4 is a tensor (C 2 4 )/sub b//sub β/ = (partialrho 0 /partialμ 0 ) -1 rho/sub s//sub b//sub β/, where μ 0 and rho 0 are the spatially averaged values of the chemical potential (per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a periodic solid cannot be generated by a Galilean transformation, it is found that elastic waves are loaded by the average mass density of the system. This is in contrast to the result of Andreev and Lifshitz, which involves only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated to a non-negligible extent only when the crystal is imperfect (i.e., it has vacancies, interstitials, or impurities). On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterflow does not occur. Hence, it appears that rapid angular acceleration or deceleration would be the best technique for bringing the superfluid into rotation

  19. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  20. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Oz, Yaron

    2008-01-01

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them

  1. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    Science.gov (United States)

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  2. Relaxation phenomena in and microscopic transport theories of deeply inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1976-01-01

    Relaxation phenomena in deeply inelastic collisions are qualitatively discussed and compared with precompound reactions. Different approaches for describing these processes are reviewed, in particular the microscopic transport theories, which can be understood from a generalized master equation for macroscopic variables. The Markoff approximation and the classical limit for the relative motion lead to two coupled equations, the classical equation of relative motion with friction and a Pauli master equation for the internal degrees of freedom. The master equation approximated by the corresponding Fokker-Planck equation for mass transfer and energy dissipation is discussed in detail. Simple analytic expressions are derived for the transport coefficients as functions of excitation energy, total mass, mass fragmentation and relative angular momentum. Calculated transport coefficients are compared with experimental values. Problems and future developments in microscopic transport theories are outlined. (orig.) [de

  3. Effects of self-consistency in a Green's function description of saturation in nuclear matter

    International Nuclear Information System (INIS)

    Dewulf, Y.; Neck, D. van; Waroquier, M.

    2002-01-01

    The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy

  4. Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone's theorem and conservation laws

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2009-01-01

    Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.

  5. Weyl consistency conditions in non-relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Grinstein, Benjamín [Department of Physics, University of California,San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2+1 dimensions with anisotropic scaling exponent z=2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem in higher dimensions.

  6. Nuclear structure effects on heavy-ion reactions with microscopic theory

    Directory of Open Access Journals (Sweden)

    Vo-Phuoc K.

    2016-01-01

    Full Text Available The self-consistent mean-field Hartree–Fock (HF theory, both static and time-dependent (TDHF versions, is used to study static and dynamic properties of fusion reactions between even 40–54Ca isotopes and 116Sn. The bare nucleus-nucleus potential, calculated with the frozen HF approach, is affected by the groundstate density of the nuclei. However, once dynamical effects are included, as in TDHF, the static effects on the barrier are essentially washed out. Dynamic properties of the nuclei, including low-lying vibrational modes, are calculated with TDHF and selectively used in coupled-channels calculations to identify which modes have the most effect on the TDHF fusion threshold. Vibrations cannot fully explain the difference between the static HF and TDHF fusion barriers trend so other dynamical effects such as transfer are considered.

  7. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  8. Self-Reorientation Following Colorectal Cancer Treatment - A Grounded Theory Study.

    Science.gov (United States)

    Johansson, Ann-Caroline B; Axelsson, Malin; Berndtsson, Ina; Brink, Eva

    2015-01-01

    After colorectal cancer (CRC) treatment, people reorganize life in ways that are consistent with their understanding of the illness and their expectations for recovery. Incapacities and abilities that have been lost can initiate a need to reorient the self. To the best of our knowledge, no studies have explicitly focused on the concept of self-reorientation after CRC treatment. The aim of the present study was therefore to explore self-reorientation in the early recovery phase after CRC surgery. Grounded theory analysis was undertaken, using the method presented by Charmaz. The present results explained self-reorientation as the individual attempting to achieve congruence in self-perception. A congruent self-perception meant bringing together the perceived self and the self that was mirrored in the near environs. The results showed that societal beliefs and personal explanations are essential elements of self-reorientation, and that it is therefore important to make them visible.

  9. Self-consistent expansion for the molecular beam epitaxy equation.

    Science.gov (United States)

    Katzav, Eytan

    2002-03-01

    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.

  10. Odd-even mass differences from self-consistent mean field theory

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Bertulani, C. A.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.

    2009-01-01

    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A α . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences

  11. Consistency of direct microscopic examination and ELISA in detection of Giardia in stool specimen among children

    Directory of Open Access Journals (Sweden)

    Zohreh Torabi

    2014-09-01

    Full Text Available Objective: To investigate the consistency of direct microscopic examination and ELISA for determination of Giadia in stool specimen. Method: Study population consisted of children with any clinical symptoms of Giardia infestation since last two weeks. Fresh stool specimen was collected from each child. The stools specimens were assessed by two methods of direct microscopic examination and ELISA.The degree of agreement between direct stool exam and ELISA was calculated by Cohen's kappa coefficient. Results: In this study, 124 children with age range 2-12 years were investigated. A total of 64 (61.7% and 79 (65.7% of children had Giardia by direct stool exam and ELISA test respectively. There was association between frequency of constipation and Giardia infection (P=0.036. The Cohen's kappa coefficient calculated for degree of agreement between direct stool exam and ELISA showed κ=0.756 (P<0.001. Conclusions: The frequency of Giardia infection in symptomatic children was high and there was high agreement rate between ELISA and direct stool smear.

  12. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  13. A self-consistent turbulence generated scenario for L-H transition

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1992-10-01

    The turbulence-induced ion banana polarization current associated with steep ion temperature gradients is explored as a possible mechanism for generating poloidal momentum at the tokamak edge. In the light of a recently developed two-dimensional turbulence theory, one can obtain a simple closed expression relating this current (determined by turbulence levels) to the derivatives of the poloidal rotation speed. A self-consistent system, then, emerges, if we balance the turbulence-induced poloidal momentum with that dissipated by viscosity. Under suitable conditions this system may show a bifurcation controlled by a parameter dependent on temperature gradients. Both the bifurcation point, and the shear layer width are predicted for a prescribed flow in terms of a scale characterizing the nonlinearity of viscosity. The crucial relevance of the flow parity with the turbulence scenario is analyzed

  14. Self-consistent theory of normal-to-superconducting transition

    International Nuclear Information System (INIS)

    Radzihovsky, L.; Chicago Univ., IL

    1995-01-01

    I study the normal-to-superconducting (NS) transition within the Ginzburg-Landau (GL) model, taking into account the fluctuations in the m-component complex order parameter ψ α and the vector potential A in the arbitrary dimension d, for any m. I find that the transition is of second order and that the previous conclusion of the fluctuation-driven first-order transition is a possible artifact of the breakdown of the ε-expansion and the inaccuracy of the 1/m-expansion for physical values ε = 1, m 1. I compute the anomalous η(d, m) exponent at the NS transition, and find η(3, 1) ∼ -0.38. In the m → ∞ limit, η(d, m) becomes exact and agrees with the 1/m-expansion. Near d = 4 the theory is also in good agreement with the perturbative ε-expansion results for m > 183 and provides a sensible interpolation formula for arbitrary d and m. (orig.)

  15. Efficient self-consistency for magnetic tight binding

    Science.gov (United States)

    Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.

    2011-06-01

    Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very

  16. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Quantum theory and microscopic mechanics. I

    International Nuclear Information System (INIS)

    Yussouff, M.

    1984-08-01

    The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)

  18. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  19. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F. [DAM, CEA, Arpajon (France); Robin, C. [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2017-03-15

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  20. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Science.gov (United States)

    Pillet, N.; Robin, C.; Dupuis, M.; Hupin, G.; Berger, J.-F.

    2017-03-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ˜ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

  1. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    International Nuclear Information System (INIS)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F.; Robin, C.

    2017-01-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  2. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  3. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  4. Quantum chromodynamics and the derivation of a microscopic theory of the nucleus

    International Nuclear Information System (INIS)

    Sliv, L.A.; Strikman, M.I.; Frankfurt, L.L.

    1985-01-01

    The progress which has already been made in the construction of a microscopic theory of the nucleus on the basis of quantum chromodynamics, the problems remaining, and the outlook for future progress are analyzed. The problem of nuclear forces, the role played by a high-momentum component in the nuclear wave function, and the role played by relativistic effects in various hard nuclear processes are discussed

  5. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  6. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  7. Microscopic theory of ultrafast spin linear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G P, E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)

    2011-05-25

    A recent experiment (Vahaplar et al 2009 Phys. Rev. Lett. 103 117201) showed that a single femtosecond laser can reverse the spin direction without spin precession, or spin linear reversal (SLR), but its microscopic theory has been missing. Here we show that SLR does not occur naturally. Two generic spin models, the Heisenberg and Hubbard models, are employed to describe magnetic insulators and metals, respectively. We find analytically that the spin change is always accompanied by a simultaneous excitation of at least two spin components. The only model that has prospects for SLR is the Stoner single-electron band model. However, under the influence of the laser field, the orbital angular momenta are excited and are coupled to each other. If a circularly polarized light is used, then all three components of the orbital angular momenta are excited, and so are their spins. The generic spin commutation relation further reveals that if SLR exists, it must involve a complicated multiple state excitation.

  8. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations

    DEFF Research Database (Denmark)

    Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa

    2001-01-01

    Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....

  9. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  10. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    Science.gov (United States)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for

  11. Self-consistent equilibria in the pulsar magnetosphere

    International Nuclear Information System (INIS)

    Endean, V.G.

    1976-01-01

    For a 'collisionless' pulsar magnetosphere the self-consistent equilibrium particle distribution functions are functions of the constants of the motion ony. Reasons are given for concluding that to a good approximation they will be functions of the rotating frame Hamiltonian only. This is shown to result in a rigid rotation of the plasma, which therefore becomes trapped inside the velocity of light cylinder. The self-consistent field equations are derived, and a method of solving them is illustrated. The axial component of the magnetic field decays to zero at the plasma boundary. In practice, some streaming of particles into the wind zone may occur as a second-order effect. Acceleration of such particles to very high energies is expected when they approach the velocity of light cylinder, but they cannot be accelerated to very high energies near the star. (author)

  12. Statistical distribution of partial widths in the microscopic theory of nuclear reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ogloblin, S.G.

    1978-01-01

    Using the microscopic theory of nuclear reaction the distribution function of neutron reduced partial widths is obtained. It is shown that the distribution of reduced partial widths of a radiative transition is of the same form. The distribution obtained differs from the Porter-Thomas law for neutron widths only in the presence of intermediate structures. It is noteworthy that the presence of an intermediate structure leads to a greater dispersion

  13. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  14. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    International Nuclear Information System (INIS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-01-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given. (author)

  15. Geometric model from microscopic theory for nuclear absorption

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-07-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  16. Geometric model for nuclear absorption from microscopic theory

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  17. Microscopic Calabi-Yau black holes in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Saeid

    2011-07-22

    In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S{sup 2} of an AdS{sub 2} x S{sup 2} x CY{sub 3} geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS{sub 2}/QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS{sub 2} geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)

  18. Microscopic Calabi-Yau black holes in string theory

    International Nuclear Information System (INIS)

    Ansari, Saeid

    2011-01-01

    In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S 2 of an AdS 2 x S 2 x CY 3 geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS 2 /QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS 2 geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)

  19. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  20. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  1. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    Science.gov (United States)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-01-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  2. Traceable X,Y self-calibration at single nm level of an optical microscope used for coherence scanning interferometry

    Science.gov (United States)

    Ekberg, Peter; Mattsson, Lars

    2018-03-01

    Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175  ×  175 µm2 FOV of ~2.3 nm (1σ) using the 50×  objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.

  3. Self-consistent Bayesian analysis of space-time symmetry studies

    International Nuclear Information System (INIS)

    Davis, E.D.

    1996-01-01

    We introduce a Bayesian method for the analysis of epithermal neutron transmission data on space-time symmetries in which unique assignment of the prior is achieved by maximisation of the cross entropy and the imposition of a self-consistency criterion. Unlike the maximum likelihood method used in previous analyses of parity-violation data, our method is freed of an ad hoc cutoff parameter. Monte Carlo studies indicate that our self-consistent Bayesian analysis is superior to the maximum likelihood method when applied to the small data samples typical of symmetry studies. (orig.)

  4. Self-consistent RPA based on a many-body vacuum

    International Nuclear Information System (INIS)

    Jemaï, M.; Schuck, P.

    2011-01-01

    Self-Consistent RPA is extended in a way so that it is compatible with a variational ansatz for the ground-state wave function as a fermionic many-body vacuum. Employing the usual equation-of-motion technique, we arrive at extended RPA equations of the Self-Consistent RPA structure. In principle the Pauli principle is, therefore, fully respected. However, the correlation functions entering the RPA matrix can only be obtained from a systematic expansion in powers of some combinations of RPA amplitudes. We demonstrate for a model case that this expansion may converge rapidly.

  5. Consistency of the Self-Schema in Depression.

    Science.gov (United States)

    Ross, Michael J.; Mueller, John H.

    Depressed individuals may filter or distort environmental information in direct relationship to their self perceptions. To investigate the degree of uncertainty about oneself and others, as measured by consistent/inconsistent responses, 72 college students (32 depressed and 40 nondepressed) rated selected adjectives from the Derry and Kuiper…

  6. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  7. Consistent superstrings as solutions of the D=26 bosonic string theory

    International Nuclear Information System (INIS)

    Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.

    1985-01-01

    Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)

  8. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  9. Self-management programs based on the social cognitive theory for Koreans with chronic disease: a systematic review.

    Science.gov (United States)

    Jang, Yeonsoo; Yoo, Hyera

    2012-02-01

    Self-management programs based on social cognitive theory are useful to improve health care outcomes for patients with chronic diseases in Western culture. The purpose of this review is to identify and synthesize published research on the theory to enhance self-efficacy in disease management and examine its applicability to Korean culture regarding the learning strategies used. Ultimately, it was to identify the optimal use of these learning strategies to improve the self-efficacy of Korean patients in self-management of their hypertension and diabetic mellitus. The authors searched the Korean and international research databases from January 2000 to September 2009. Twenty studies were selected and reviewed. The most frequently used learning strategies of social cognitive theory was skill mastery by practice and feedback (N = 13), followed by social or verbal persuasion by group members (N = 7) and, however, observation learning and reinterpretation of symptoms by debriefing or discussion were not used any of the studies. Eight studies used only one strategy to enhance self-efficacy and six used two. A lack of consistency regarding the content and clinical efficacy of the self-efficacy theory-based self-management programs is found among the reviewed studies on enhancing self-efficacy in Koreans with hypertension and diabetes mellitus. Further research on the effectiveness of these theory-based self-management programs for patients with chronic diseases in Korea and other countries is recommended.

  10. Are prescription drug insurance choices consistent with expected utility theory?

    Science.gov (United States)

    Bundorf, M Kate; Mata, Rui; Schoenbaum, Michael; Bhattacharya, Jay

    2013-09-01

    To determine the extent to which people make choices inconsistent with expected utility theory when choosing among prescription drug insurance plans and whether tabular or graphical presentation format influences the consistency of their choices. Members of an Internet-enabled panel chose between two Medicare prescription drug plans. The "low variance" plan required higher out-of-pocket payments for the drugs respondents usually took but lower out-of-pocket payments for the drugs they might need if they developed a new health condition than the "high variance" plan. The probability of a change in health varied within subjects and the presentation format (text vs. graphical) and the affective salience of the clinical condition (abstract vs. risk related to specific clinical condition) varied between subjects. Respondents were classified based on whether they consistently chose either the low or high variance plan. Logistic regression models were estimated to examine the relationship between decision outcomes and task characteristics. The majority of respondents consistently chose either the low or high variance plan, consistent with expected utility theory. Half of respondents consistently chose the low variance plan. Respondents were less likely to make discrepant choices when information was presented in graphical format. Many people, although not all, make choices consistent with expected utility theory when they have information on differences among plans in the variance of out-of-pocket spending. Medicare beneficiaries would benefit from information on the extent to which prescription drug plans provide risk protection. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Quantum Theories of Self-Localization

    Science.gov (United States)

    Bernstein, Lisa Joan

    In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.

  12. Self-consistent many-body perturbation theory in range-separated density-functional theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2008-01-01

    effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...

  13. Self-consistent field theory simulations of polymers on arbitrary domains

    Energy Technology Data Exchange (ETDEWEB)

    Ouaknin, Gaddiel, E-mail: gaddielouaknin@umail.ucsb.edu [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Laachi, Nabil; Delaney, Kris [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Materials, University of California, Santa Barbara, CA 93106-5050 (United States); Gibou, Frederic [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Department of Computer Science, University of California, Santa Barbara, CA 93106-5110 (United States)

    2016-12-15

    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refine the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.

  14. The role of self-determination theory and cognitive evaluation theory in home education

    OpenAIRE

    Gina Riley

    2016-01-01

    This article explores the theories of Self-Determination, Cognitive Evaluation, and Intrinsic Motivation as it applies to home education. According to Self-Determination Theory, intrinsic motivation is innate. However, the maintenance and enhancement of intrinsic motivation depends upon the social and environmental conditions surrounding the individual. Deci and Ryan’s Cognitive Evaluation Theory specifically addresses the social and environmental factors that facilitate versus undermine intr...

  15. The Role of Self-Determination Theory and Cognitive Evaluation Theory in Home Education

    Science.gov (United States)

    Riley, Gina

    2016-01-01

    This article explores the theories of Self-Determination, Cognitive Evaluation, and Intrinsic Motivation as it applies to home education. According to Self-Determination Theory, intrinsic motivation is innate. However, the maintenance and enhancement of intrinsic motivation depends upon the social and environmental conditions surrounding the…

  16. Nonstatic, self-consistent πN t matrix in nuclear matter

    International Nuclear Information System (INIS)

    Van Orden, J.W.

    1984-01-01

    In a recent paper, a calculation of the self-consistent πN t matrix in nuclear matter was presented. In this calculation the driving term of the self-consistent equation was chosen to be a static approximation to the free πN t matrix. In the present work, the earlier calculation is extended by using a nonstatic, fully-off-shell free πN t matrix as a starting point. Right-hand pole and cut contributions to the P-wave πN amplitudes are derived using a Low expansion and include effects due to recoil of the interacting πN system as well as the transformation from the πN c.m. frame to the nuclear rest frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify the pole and cut contributions to the t matrix separately. The self-consistent πN t matrix is calculated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contribution to the optical potential is found to be broadened by 20% to 50% depending on pion momentum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order optical potential. Modifications to the nucleon pole contribution are found to be negligible

  17. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  18. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  19. Calculation of TC in a normal-superconductor bilayer using the microscopic-based Usadel theory

    International Nuclear Information System (INIS)

    Martinis, John M.; Hilton, G.C.; Irwin, K.D.; Wollman, D.A.

    2000-01-01

    The Usadel equations give a theory of superconductivity, valid in the diffusive limit, that is a generalization of the microscopic equations of the BCS theory. Because the theory is expressed in a tractable and physical form, even experimentalists can analytically and numerically calculate detailed properties of superconductors in physically relevant geometries. Here, we describe the Usadel equations and review their solution in the case of predicting the transition temperature T C of a thin normal-superconductor bilayer. We also extend this calculation for thicker bilayers to show the dependence on the resistivity of the films. These results, which show a dependence on both the interface resistance and heat capacity of the films, provide important guidance on fabricating bilayers with reproducible transition temperatures

  20. Bootstrapping gravity: A consistent approach to energy-momentum self-coupling

    International Nuclear Information System (INIS)

    Butcher, Luke M.; Hobson, Michael; Lasenby, Anthony

    2009-01-01

    It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod. Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor for this graviton is calculated explicitly and shown to supply the correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative expansions of metric-based gravitational theories is then developed, and these techniques employed to demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant surface term). The perturbative formalism is extended to include matter and a cosmological constant, and interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to develop a nonvanishing 'mass-term' in the action.

  1. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  2. Rediscovering Rogers’s Self Theory and Personality

    Directory of Open Access Journals (Sweden)

    Nik Ahmad Hisham Ismail

    2015-12-01

    Full Text Available Abstract This study examined the self theory of Carl Rogers in depth. There are some important concepts illuminated well, considering one's personality development. Its main focus was positive regard, self-worth and actualizing tendency, proposed by Rogers. To explain them in brief, positive regard was studied through self-image, ideal self and congruence. Self-worth is described as conditional and unconditional to cope with challenges in life, tolerate failures and sadness at times. Actualizing tendency was expounded into fully functioning or self-actualizing. These all concepts indicated that having a tendency on human behavior and concentrating on the capacity of individuals to think intentionally and soundly, to control their biological urges, are significantly main elements to evaluate one’s self. Therefore, in the humanistic perspective, individuals have the opportunity and will to change their states of mind and behavior. This study might be a guide to some certain aspect of self related studies for other researchers to benefit accordingly and also to develop a new scale related to self using Rogers’s theory.

  3. Consistent constraints on the Standard Model Effective Field Theory

    International Nuclear Information System (INIS)

    Berthier, Laure; Trott, Michael

    2016-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  4. Humanistic Education and Self-Actualization Theory.

    Science.gov (United States)

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  5. Cosmological consistency tests of gravity theory and cosmic acceleration

    Science.gov (United States)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  6. MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA

    International Nuclear Information System (INIS)

    Silva, T.F.; Rodrigues, C.L.; Mayer, M.; Moro, M.V.; Trindade, G.F.; Aguirre, F.R.; Added, N.; Rizzutto, M.A.; Tabacniks, M.H.

    2016-01-01

    Highlights: • MultiSIMNRA enables the self-consistent analysis of multiple ion beam techniques. • Self-consistent analysis enables unequivocal and reliable modeling of the sample. • Four different computational algorithms available for model optimizations. • Definition of constraints enables to include prior knowledge into the analysis. - Abstract: SIMNRA is widely adopted by the scientific community of ion beam analysis for the simulation and interpretation of nuclear scattering techniques for material characterization. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that uses multiple parallel sessions of SIMNRA to perform self-consistent analysis of data obtained by different ion beam techniques or in different experimental conditions of a given sample. In this paper, we present a result using MultiSIMNRA for a self-consistent multi-elemental analysis of a thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility using MultiSIMNRA.

  7. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  8. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    Science.gov (United States)

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  9. Quantum self-consistency of AdSxΣ brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol

    2003-01-01

    Continuing our previous work, we consider a class of higher dimensional brane models with the topology of AdS D 1 +1 xΣ, where Σ is a one-parameter compact manifold and two branes of codimension one are located at the orbifold fixed points. We consider a setup where such a solution arises from Einstein-Yang-Mills theory and evaluate the one-loop effective potential induced by gauge fields and by a generic bulk scalar field. We show that this type of brane model resolves the gauge hierarchy between the Planck and electroweak scales through redshift effects due to the warp factor a=e -πkr . The value of a is then fixed by minimizing the effective potential. We find that, as in the Randall-Sundrum case, the gauge field contribution to the effective potential stabilizes the hierarchy without fine-tuning as long as the Laplacian Δ Σ on Σ has a zero eigenvalue. Scalar fields can stabilize the hierarchy depending on the mass and the nonminimal coupling. We also address the quantum self-consistency of the solution, showing that the classical brane solution is not spoiled by quantum effects

  10. Culture Studies and Self-Actualization Theory.

    Science.gov (United States)

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  11. Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    International Nuclear Information System (INIS)

    Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas

    2006-01-01

    Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models

  12. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  13. Defensiveness versus remediation: self-theories and modes of self-esteem maintenance.

    Science.gov (United States)

    Nussbaum, A David; Dweck, Carol S

    2008-05-01

    How people maintain and repair their self-esteem has been a topic of widespread interest. In this article, the authors ask, What determines whether people will use direct, remedial actions, or defensive actions? In three studies, they tested the hypothesis that a belief in fixed intelligence (entity theory) would produce defensiveness, whereas a belief in improvable intelligence (incremental theory) would foster remediation. In each study, participants assigned to the entity condition opted for defensive self-esteem repair (downward comparison in Studies 1 and 3; a tutorial on already mastered material in Study 2), but those in the incremental condition opted for self-improvement (upward comparison in Studies 1 and 3; a tutorial on unmastered material in Study 2). Experiment 3 also linked these strategies to self-esteem repair; remedial strategies were the most effective in recovering lost self-esteem for those in the incremental condition, whereas defensive strategies were most effective for those in the entity condition.

  14. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  15. Diffractive stacks of metamaterial lattices with a complex unit cell : Self-consistent long-range bianisotropic interactions in experiment and theory

    NARCIS (Netherlands)

    Kwadrin, A.; Koenderink, A.F.

    2014-01-01

    Metasurfaces and metamaterials promise arbitrary rerouting of light using two-dimensional (2D) planar arrangements of electric and magnetic scatterers, respectively, 3D stacks built out of such 2D planes. An important problem is how to self-consistently model the response of these systems in a

  16. A Systematic Review Exploring the Social Cognitive Theory of Self-Regulation as a Framework for Chronic Health Condition Interventions.

    Directory of Open Access Journals (Sweden)

    Michelle E Tougas

    Full Text Available Theory is often recommended as a framework for guiding hypothesized mechanisms of treatment effect. However, there is limited guidance about how to use theory in intervention development.We conducted a systematic review to provide an exemplar review evaluating the extent to which use of theory is identified and incorporated within existing interventions. We searched electronic databases PubMed, PsycINFO, CENTRAL, and EMBASE from inception to May 2014. We searched clinicaltrials.gov for registered protocols, reference lists of relevant systematic reviews and included studies, and conducted a citation search in Web of Science. We included peer-reviewed publications of interventions that referenced the social cognitive theory of self-regulation as a framework for interventions to manage chronic health conditions. Two reviewers independently assessed articles for eligibility. We contacted all authors of included studies for information detailing intervention content. We describe how often theory mechanisms were addressed by interventions, and report intervention characteristics used to address theory.Of 202 articles that reported using the social cognitive theory of self-regulation, 52% failed to incorporate self-monitoring, a main theory component, and were therefore excluded. We included 35 interventions that adequately used the theory framework. Intervention characteristics were often poorly reported in peer-reviewed publications, 21 of 35 interventions incorporated characteristics that addressed each of the main theory components. Each intervention addressed, on average, six of eight self-monitoring mechanisms, two of five self-judgement mechanisms, and one of three self-evaluation mechanisms. The self-monitoring mechanisms 'Feedback' and 'Consistency' were addressed by all interventions, whereas the self-evaluation mechanisms 'Self-incentives' and 'External rewards' were addressed by six and four interventions, respectively. The present review

  17. A Systematic Review Exploring the Social Cognitive Theory of Self-Regulation as a Framework for Chronic Health Condition Interventions.

    Science.gov (United States)

    Tougas, Michelle E; Hayden, Jill A; McGrath, Patrick J; Huguet, Anna; Rozario, Sharlene

    2015-01-01

    Theory is often recommended as a framework for guiding hypothesized mechanisms of treatment effect. However, there is limited guidance about how to use theory in intervention development. We conducted a systematic review to provide an exemplar review evaluating the extent to which use of theory is identified and incorporated within existing interventions. We searched electronic databases PubMed, PsycINFO, CENTRAL, and EMBASE from inception to May 2014. We searched clinicaltrials.gov for registered protocols, reference lists of relevant systematic reviews and included studies, and conducted a citation search in Web of Science. We included peer-reviewed publications of interventions that referenced the social cognitive theory of self-regulation as a framework for interventions to manage chronic health conditions. Two reviewers independently assessed articles for eligibility. We contacted all authors of included studies for information detailing intervention content. We describe how often theory mechanisms were addressed by interventions, and report intervention characteristics used to address theory. Of 202 articles that reported using the social cognitive theory of self-regulation, 52% failed to incorporate self-monitoring, a main theory component, and were therefore excluded. We included 35 interventions that adequately used the theory framework. Intervention characteristics were often poorly reported in peer-reviewed publications, 21 of 35 interventions incorporated characteristics that addressed each of the main theory components. Each intervention addressed, on average, six of eight self-monitoring mechanisms, two of five self-judgement mechanisms, and one of three self-evaluation mechanisms. The self-monitoring mechanisms 'Feedback' and 'Consistency' were addressed by all interventions, whereas the self-evaluation mechanisms 'Self-incentives' and 'External rewards' were addressed by six and four interventions, respectively. The present review establishes that

  18. Self-consistent simulation of the CSR effect

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisogano, J.J.

    1998-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces, may cause serious emittance degradation. In this paper, the authors present a self-consistent simulation for the study of the impact of CSR on beam optics. The dynamics of the bunch under the influence of the CSR forces is simulated using macroparticles, where the CSR force in turn depends on the history of bunch dynamics in accordance with causality. The simulation is benchmarked with analytical results obtained for a rigid-line bunch. Here they present the algorithm used in the simulation, along with the simulation results obtained for bending systems in the Jefferson Lab (JLab) free-electron-laser (FEL) lattice

  19. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    Science.gov (United States)

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  20. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  1. Two new integrable couplings of the soliton hierarchies with self-consistent sources

    International Nuclear Information System (INIS)

    Tie-Cheng, Xia

    2010-01-01

    A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s-tilde l(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra s-tilde l(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources. (general)

  2. Temperament and Personality Theory: The Perspective of Cognitive-Experiential Self-Theory.

    Science.gov (United States)

    Teglasi, Hedwig; Epstein, Seymour

    1998-01-01

    Illustrates the applicability of temperamental constructs to personality theory by mapping key temperament constructs onto Cognitive-Experiential Self-Theory (CEST). Examines the role of temperament in shaping experiences, and looks at the implications for education and socialization that stem from the synthesis of temperament constructs and…

  3. The utility of theory of planned behavior in predicting consistent ...

    African Journals Online (AJOL)

    admin

    disease. Objective: To examine the utility of theory of planned behavior in predicting consistent condom use intention of HIV .... (24-25), making subjective norms as better predictors of intention ..... Organizational Behavior and Human Decision.

  4. Self-consistent calculation of steady-state creep and growth in textured zirconium

    International Nuclear Information System (INIS)

    Tome, C.N.; So, C.B.; Woo, C.H.

    1993-01-01

    Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic axis in each individual grain. Several methods have been attempted to model such dimensional changes, taking into account the development of intergranular stresses. In this paper, we compare the predictions of several such models, namely the upper-bound, the lower-bound, the isotropic K* self-consistent (analytical) and the fully self-consistent (numerical) models. For given single-crystal creep compliances and growth factors, the polycrystal compliances predicted by the upper- and lower-bound models are unreliable. The predictions of the two self-consistent approaches are usually similar. The analytical isotropic K* approach is simple to implement and can be used to estimate the creep and growth rates of the polycrystal in many cases. The numerical fully self-consistent approach should be used when an accurate prediction of polycrystal creep is required, particularly for the important case of a closed-end internally pressurized tube. In most cases, the variations in grain shape introduce only minor corrections to the behaviour of polycrystalline materials. (author)

  5. A new k-epsilon model consistent with Monin-Obukhov similarity theory

    DEFF Research Database (Denmark)

    van der Laan, Paul; Kelly, Mark C.; Sørensen, Niels N.

    2017-01-01

    A new k-" model is introduced that is consistent with Monin–Obukhov similarity theory (MOST). The proposed k-" model is compared with another k-" model that was developed in an attempt to maintain inlet profiles compatible with MOST. It is shown that the previous k-" model is not consistent with ...

  6. Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2013-10-28

    We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.

  7. An Evaluation of the Self-Efficacy Theory in Agricultural Education

    Science.gov (United States)

    McKim, Aaron J.; Velez, Jonathan J.

    2016-01-01

    This research sought to evaluate the use of the self-efficacy theory in agricultural education. A total of 30 studies, published between 1997 and 2013 using self-efficacy as a theoretical foundation were compiled and analyzed. The findings of these studies were compared to expected outcomes identified by the self-efficacy theory, specifically the…

  8. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  9. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz

    2015-11-03

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

  10. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  11. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  12. Implicit theories about willpower predict self-regulation and grades in everyday life.

    Science.gov (United States)

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2015-04-01

    Laboratory research shows that when people believe that willpower is an abundant (rather than highly limited) resource they exhibit better self-control after demanding tasks. However, some have questioned whether this "nonlimited" theory leads to squandering of resources and worse outcomes in everyday life when demands on self-regulation are high. To examine this, we conducted a longitudinal study, assessing students' theories about willpower and tracking their self-regulation and academic performance. As hypothesized, a nonlimited theory predicted better self-regulation (better time management and less procrastination, unhealthy eating, and impulsive spending) for students who faced high self-regulatory demands. Moreover, among students taking a heavy course load, those with a nonlimited theory earned higher grades, which was mediated by less procrastination. These findings contradict the idea that a limited theory helps people allocate their resources more effectively; instead, it is people with the nonlimited theory who self-regulate well in the face of high demands. (c) 2015 APA, all rights reserved).

  13. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  14. Interfacial self-healing of nanocomposite hydrogels: Theory and experiment

    Science.gov (United States)

    Wang, Qiming; Gao, Zheming; Yu, Kunhao

    2017-12-01

    Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers.

  15. MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.

    Science.gov (United States)

    Ünlü, Ali; Dettweiler, Ulrich

    2015-12-01

    Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure.

  16. Possibility for a self-consistent treatment of transport processes in a turbulent plasma

    International Nuclear Information System (INIS)

    Mondt, J.P.

    1985-06-01

    All commonly used models of plasma dynamics share a common flaw in their a priori validity. In particular, a solid foundation of plasma modelling on microscopic dynamics, as exists for moderately dilute gases, is obscured because of the difficulties inherent in the treatment of the potentially very important interplay between plasma waves and collisional processes. The present report briefly discusses the nature of these difficulties and presents a possible approach towards the establishment of a plasma theory founded on the microscopic particle dynamics. The essence of this approach is the realization that only discrete particle interactions can create correlations. These therefore come into being on different spatial scales depending on their cluster number, after which collective effects magnify them analogous to the growth of intial perturbations in an unstable system. Truncation of the Born-Bogolyubov-Green-Kirkwood-Yvon ('BBGKY') hierarchy thereby becomes a possibility through the introduction of a small parameter in intial conditions although the dynamical system in itself does not contain a uniformly small parameter

  17. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  18. The role of self-determination theory and cognitive evaluation theory in home education

    Directory of Open Access Journals (Sweden)

    Gina Riley

    2016-12-01

    Full Text Available This article explores the theories of Self-Determination, Cognitive Evaluation, and Intrinsic Motivation as it applies to home education. According to Self-Determination Theory, intrinsic motivation is innate. However, the maintenance and enhancement of intrinsic motivation depends upon the social and environmental conditions surrounding the individual. Deci and Ryan’s Cognitive Evaluation Theory specifically addresses the social and environmental factors that facilitate versus undermine intrinsic motivation and points to three significant psychological needs that must be present in the individual in order to foster self-motivation. These needs are competence, autonomy, and relatedness. Because of curriculum and time constraints, intrinsic motivation may be difficult to facilitate within the traditional classroom. This loss of intrinsic motivation for learning prompts some parents to homeschool their children. One of the most impressive strengths of home education lies in the fact that in many cases, the entire process revolves around a child’s intrinsic motivation to learn.

  19. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  20. Using Item Response Theory to Develop Measures of Acquisitive and Protective Self-Monitoring From the Original Self-Monitoring Scale.

    Science.gov (United States)

    Wilmot, Michael P; Kostal, Jack W; Stillwell, David; Kosinski, Michal

    2017-07-01

    For the past 40 years, the conventional univariate model of self-monitoring has reigned as the dominant interpretative paradigm in the literature. However, recent findings associated with an alternative bivariate model challenge the conventional paradigm. In this study, item response theory is used to develop measures of the bivariate model of acquisitive and protective self-monitoring using original Self-Monitoring Scale (SMS) items, and data from two large, nonstudent samples ( Ns = 13,563 and 709). Results indicate that the new acquisitive (six-item) and protective (seven-item) self-monitoring scales are reliable, unbiased in terms of gender and age, and demonstrate theoretically consistent relations to measures of personality traits and cognitive ability. Additionally, by virtue of using original SMS items, previously collected responses can be reanalyzed in accordance with the alternative bivariate model. Recommendations for the reanalysis of archival SMS data, as well as directions for future research, are provided.

  1. Self-consistent chaos in the beam-plasma instability

    International Nuclear Information System (INIS)

    Tennyson, J.L.; Meiss, J.D.

    1993-01-01

    The effect of self-consistency on Hamiltonian systems with a large number of degrees-of-freedom is investigated for the beam-plasma instability using the single-wave model of O'Neil, Winfrey, and Malmberg.The single-wave model is reviewed and then rederived within the Hamiltonian context, which leads naturally to canonical action- angle variables. Simulations are performed with a large (10 4 ) number of beam particles interacting with the single wave. It is observed that the system relaxes into a time asymptotic periodic state where only a few collective degrees are active; namely, a clump of trapped particles oscillating in a modulated wave, within a uniform chaotic sea with oscillating phase space boundaries. Thus self-consistency is seen to effectively reduce the number of degrees- of-freedom. A simple low degree-of-freedom model is derived that treats the clump as a single macroparticle, interacting with the wave and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the waterbag boundaries correspond approximately to invariant tori. This low degree-of-freedom model is seen to compare well with the simulation

  2. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  3. To have or to be? A comparison of materialism-based theories and self-determination theory as explanatory frameworks of prejudice.

    Science.gov (United States)

    Van Hiel, Alain; Cornelis, Ilse; Roets, Arne

    2010-06-01

    The present study aimed to delineate the psychological structure of materialism and intrinsic and extrinsic value pursuit. Moreover, we compared models based on self-determination theory (SDT), Fromm's marketing character, and Inglehart's theory of social change to account for racial prejudice. In a sample of undergraduate students (n=131) and adults (n=176) it was revealed that the extrinsic value pursuit Financial Success/Materialism could be distinguished from the extrinsic value scales Physical Appeal and Social Recognition, and Community Concern could be distinguished from the intrinsic value pursuit scales Self-acceptance and Affiliation. Moreover, Financial Success/Materialism and Community Concern were consistently and significantly related to prejudice, whereas the other SDT facet scales yielded weaker relationships with prejudice. Structural models based on SDT and Inglehart were not corroborated, but instead the present data supported a mediation model based on Fromm's work in which the effect of Community Concern was mediated by Financial Success/Materialism. Broader implications for SDT are critically assessed.

  4. Consistency between Self-Reported and Recorded Values for Clinical Measures

    OpenAIRE

    III, Joseph Thomas; Paulet, Mindy; Rajpura, Jigar R.

    2016-01-01

    Objectives. This study evaluated consistency between self-reported values for clinical measures and recorded clinical measures. Methods. Self-reported values were collected for the clinical measures: systolic blood pressure, diastolic blood pressure, glucose level, height, weight, and cholesterol from health risk assessments completed by enrollees in a privately insured cohort. Body mass index (BMI) was computed from reported height and weight. Practitioner recorded values for the clinical me...

  5. The Situation-Specific Theory of Heart Failure Self-Care: Revised and Updated.

    Science.gov (United States)

    Riegel, Barbara; Dickson, Victoria Vaughan; Faulkner, Kenneth M

    2016-01-01

    Since the situation-specific theory of heart failure (HF) self-care was published in 2008, we have learned much about how and why patients with HF take care of themselves. This knowledge was used to revise and update the theory. The purpose of this article was to describe the revised, updated situation-specific theory of HF self-care. Three major revisions were made to the existing theory: (1) a new theoretical concept reflecting the process of symptom perception was added; (2) each self-care process now involves both autonomous and consultative elements; and (3) a closer link between the self-care processes and the naturalistic decision-making process is described. In the revised theory, HF self-care is defined as a naturalistic decision-making process with person, problem, and environmental factors that influence the everyday decisions made by patients and the self-care actions taken. The first self-care process, maintenance, captures those behaviors typically referred to as treatment adherence. The second self-care process, symptom perception, involves body listening, monitoring signs, as well as recognition, interpretation, and labeling of symptoms. The third self-care process, management, is the response to symptoms when they occur. A total of 5 assumptions and 8 testable propositions are specified in this revised theory. Prior research illustrates that all 3 self-care processes (ie, maintenance, symptom perception, and management) are integral to self-care. Further research is greatly needed to identify how best to help patients become experts in HF self-care.

  6. Island of stability for consistent deformations of Einstein's gravity.

    Science.gov (United States)

    Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin

    2012-03-30

    We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.

  7. When is identity congruent with the self? A self-determination theory perspective

    OpenAIRE

    Soenens, Bart; Vansteenkiste, Maarten

    2011-01-01

    Within the identity literature, self and identity are often used as interchangeable terms. By contrast, in Self-Determination Theory (SDT; Ryan & Deci, 2003) both terms have a differentiated meaning and it is maintained that identities may vary in the extent to which they are congruent with the basic growth tendencies of the self that are fueled by the basic psychological needs for autonomy, competence, and relatedness. Specifically, the level of congruence between identities and the self is ...

  8. Induced boson self couplings in four-fermion and Yukawa theories

    International Nuclear Information System (INIS)

    Tamvakis, K.K.

    1978-01-01

    Theories of self-interacting fermion fields are expanded in a mean field expansion in terms of boson collective variables. Divergences can be absorbed in a renormalized mass and a renormalized Yukawa-type coupling to all orders in the mean field expansion. The cubic and quartic collective boson self-couplings required by renormalization are fixed in terms of the renormalized Yukawa coupling. This fixing is demonstrated by use of the Callan-Symanzik equations. These theories are formally equivalent to Yukawa-type theories, expanded the same way, with the boson self-couplings constrained to be functions of the Yukawa coupling

  9. Wave optical theory for fast self-focusing of laser beams in plasmas

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.; Ghatak, A.K.; Indian Inst. of Tech., New Delhi. Dept. of Physics)

    1983-01-01

    A theory based on the field and non-linearity expansions in terms of Laguerre-Gauss functions is presented. The theory is useful when very fast self focusing occurs, as in the case of relativistic self focusing. Results for self trapping with a saturable non-linearity are closer to the numerical results than those obtained by any other theory. (author)

  10. Self-consistent studies of magnetic thin film Ni (001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations

  11. Effective medium approximation for elastic constants of porous solids with microscopic heterogeneity

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1986-01-01

    Formulas for the scattering from an inhomogeneous sphere in a fluid-saturated porous medium are used to construct a self-consistent effective medium approximation for the coefficients in Biot's equations of poroelasticity [J. Acoust. Soc. Am. 28, 168 (1956)] when the material constituting the porous solid frame is not homogeneous on the microscopic scale. The discussion is restricted to porous materials exhibiting both macroscopic and microscopic isotropy. Brown and Korringa [Geophysics 40, 608 (1975)] have previously found the general form of these coefficients. The present results give explicit estimates of all the coefficients in terms of the moduli of the solid constituents. The results are also shown to be completely consistent with the well-known results of Gassmann and of Biot and Willis, as well as those of Brown and Korringa

  12. Self-consistent potential variations in magnetic wells

    International Nuclear Information System (INIS)

    Kesner, J.; Knorr, G.; Nicholson, D.R.

    1981-01-01

    Self-consistent electrostatic potential variations are considered in a spatial region of weak magnetic field, as in the proposed tandem mirror thermal barriers (with no trapped ions). For some conditions, equivalent to ion distributions with a sufficiently high net drift speed along the magnetic field, the desired potential depressions are found. When the net drift speed is not high enough, potential depressions are found only in combination with strong electric fields on the boundaries of the system. These potential depressions are not directly related to the magnetic field depression. (author)

  13. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  14. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  15. Electron - A fortran programme for the coupled channel calculation of nuclear electromagnetic (e,e') form factors and cross sections in the self-consistent random-phase approximation

    International Nuclear Information System (INIS)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1984-01-01

    Description is given of the Electron programme for IBM 370/168 computer, written in Fortran 4. language. The programme calculates (e,e') cross-sections and longitudinal/transverse form factors for closed shell nuclei in the framework of a self-consistent RPA theory

  16. Self-consistent electronic structure of disordered Fe/sub 0.65/Ni/sub 0.35/

    International Nuclear Information System (INIS)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-01-01

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality

  17. Foldscope: origami-based paper microscope.

    Directory of Open Access Journals (Sweden)

    James S Cybulski

    Full Text Available Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  18. Agreeable fancy or disagreeable truth? Reconciling self-enhancement and self-verification.

    Science.gov (United States)

    Swann, W B; Pelham, B W; Krull, D S

    1989-11-01

    Three studies asked why people sometimes seek positive feedback (self-enhance) and sometimes seek subjectively accurate feedback (self-verify). Consistent with self-enhancement theory, people with low self-esteem as well as those with high self-esteem indicated that they preferred feedback pertaining to their positive rather than negative self-views. Consistent with self-verification theory, the very people who sought favorable feedback pertaining to their positive self-conceptions sought unfavorable feedback pertaining to their negative self-views, regardless of their level of global self-esteem. Apparently, although all people prefer to seek feedback regarding their positive self-views, when they seek feedback regarding their negative self-views, they seek unfavorable feedback. Whether people self-enhance or self-verify thus seems to be determined by the positivity of the relevant self-conceptions rather than their level of self-esteem or the type of person they are.

  19. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  20. Academic Self-Esteem and Perceived Validity of Grades: A Test of Self-Verification Theory.

    Science.gov (United States)

    Okun, Morris A.; Fournet, Lee M.

    1993-01-01

    The hypothesis derived from self-verification theory that semester grade point average would be positively related to perceived validity of grade scores among high self-esteem undergraduates and inversely related for low self-esteem students was not supported in a study with 281 undergraduates. (SLD)

  1. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    Science.gov (United States)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  2. Link between self-consistent pressure profiles and electron internal transport barriers in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Razumova, K A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Andreev, V F [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Donne, A J H [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hogeweij, G M D [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Lysenko, S E [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Shelukhin, D A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Spakman, G W [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Vershkov, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Zhuravlev, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation)

    2006-09-15

    Tokamak plasmas have a tendency to self-organization: the plasma pressure profiles obtained in different operational regimes and even in various tokamaks may be represented by a single typical curve, called the self-consistent pressure profile. About a decade ago local zones with enhanced confinement were discovered in tokamak plasmas. These zones are referred to as internal transport barriers (ITBs) and they can act on the electron and/or ion fluid. Here the pressure gradients can largely exceed the gradients dictated by profile consistency. So the existence of ITBs seems to be in contradiction with the self-consistent pressure profiles (this is also often referred to as profile resilience or profile stiffness). In this paper we will discuss the interplay between profile consistency and ITBs. A summary of the cumulative information obtained from T-10, RTP and TEXTOR is given, and a coherent explanation of the main features of the observed phenomena is suggested. Both phenomena, the self-consistent profile and ITB, are connected with the density of rational magnetic surfaces, where the turbulent cells are situated. The distance between these cells determines the level of their interaction, and therefore the level of the turbulent transport. This process regulates the plasma pressure profile. If the distance is wide, the turbulent flux may be diminished and the ITB may be formed. In regions with rarefied surfaces the steeper pressure gradients are possible without instantaneously inducing pressure driven instabilities, which force the profiles back to their self-consistent shapes. Also it can be expected that the ITB region is wider for lower dq/d{rho} (more rarefied surfaces)

  3. Generation of static solutions of self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown

  4. Mean field theories and dual variation mathematical structures of the mesoscopic model

    CERN Document Server

    Suzuki, Takashi

    2015-01-01

    Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics.  spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature.  The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.

  5. Predicting heavy episodic drinking using an extended temporal self-regulation theory.

    Science.gov (United States)

    Black, Nicola; Mullan, Barbara; Sharpe, Louise

    2017-10-01

    Alcohol consumption contributes significantly to the global burden from disease and injury, and specific patterns of heavy episodic drinking contribute uniquely to this burden. Temporal self-regulation theory and the dual-process model describe similar theoretical constructs that might predict heavy episodic drinking. The aims of this study were to test the utility of temporal self-regulation theory in predicting heavy episodic drinking, and examine whether the theoretical relationships suggested by the dual-process model significantly extend temporal self-regulation theory. This was a predictive study with 149 Australian adults. Measures were questionnaires (self-report habit index, cues to action scale, purpose-made intention questionnaire, timeline follow-back questionnaire) and executive function tasks (Stroop, Tower of London, operation span). Participants completed measures of theoretical constructs at baseline and reported their alcohol consumption two weeks later. Data were analysed using hierarchical multiple linear regression. Temporal self-regulation theory significantly predicted heavy episodic drinking (R 2 =48.0-54.8%, ptheory and the extended temporal self-regulation theory provide good prediction of heavy episodic drinking. Intention, behavioural prepotency, planning ability and inhibitory control may be good targets for interventions designed to decrease heavy episodic drinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  7. Self-consistent imbedding and the ellipsoidal model model for porous rocks

    International Nuclear Information System (INIS)

    Korringa, J.; Brown, R.J.S.; Thompson, D.D.; Runge, R.J.

    1979-01-01

    Equations are obtained for the effective elastic moduli for a model of an isotropic, heterogeneous, porous medium. The mathematical model used for computation is abstract in that it is not simply a rigorous computation for a composite medium of some idealized geometry, although the computation contains individual steps which are just that. Both the solid part and pore space are represented by ellipsoidal or spherical 'grains' or 'pores' of various sizes and shapes. The strain of each grain, caused by external forces applied to the medium, is calculated in a self-consistent imbedding (SCI) approximation, which replaces the true surrounding of any given grain or pore by an isotropic medium defined by the effective moduli to be computed. The ellipsoidal nature of the shapes allows us to use Eshelby's theoretical treatment of a single ellipsoidal inclusion in an infiinte homogeneous medium. Results are compared with the literature, and discrepancies are found with all published accounts of this problem. Deviations from the work of Wu, of Walsh, and of O'Connell and Budiansky are attributed to a substitution made by these authors which though an identity for the exact quantities involved, is only approximate in the SCI calculation. This reduces the validity of the equations to first-order effects only. Differences with the results of Kuster and Toksoez are attributed to the fact that the computation of these authors is not self-consistent in the sense used here. A result seems to be the stiffening of the medium as if the pores are held apart. For spherical grains and pores, their calculated moduli are those given by the Hashin-Shtrikman upper bounds. Our calculation reproduces, in the case of spheres, an early result of Budiansky. An additional feature of our work is that the algebra is simpler than in earlier work. We also incorporate into the theory the possibility that fluid-filled pores are interconnected

  8. On the consistency of risk acceptance criteria with normative theories for decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, E.B. [University of Stavanger, 4036 Stavanger (Norway)], E-mail: eirik.abrahamsen@uis.no; Aven, T. [University of Stavanger, 4036 Stavanger (Norway)

    2008-12-15

    In evaluation of safety in projects it is common to use risk acceptance criteria to support decision-making. In this paper, we discuss to what extent the risk acceptance criteria is in accordance with the normative theoretical framework of the expected utility theory and the rank-dependent utility theory. We show that the use of risk acceptance criteria may violate the independence axiom of the expected utility theory and the comonotonic independence axiom of the rank-dependent utility theory. Hence the use of risk acceptance criteria is not in general consistent with these theories. The level of inconsistency is highest for the expected utility theory.

  9. On the consistency of risk acceptance criteria with normative theories for decision-making

    International Nuclear Information System (INIS)

    Abrahamsen, E.B.; Aven, T.

    2008-01-01

    In evaluation of safety in projects it is common to use risk acceptance criteria to support decision-making. In this paper, we discuss to what extent the risk acceptance criteria is in accordance with the normative theoretical framework of the expected utility theory and the rank-dependent utility theory. We show that the use of risk acceptance criteria may violate the independence axiom of the expected utility theory and the comonotonic independence axiom of the rank-dependent utility theory. Hence the use of risk acceptance criteria is not in general consistent with these theories. The level of inconsistency is highest for the expected utility theory

  10. Self-consistent ab initio Calculations for Photoionization and Electron-Ion Recombination Using the R-Matrix Method

    Science.gov (United States)

    Nahar, S. N.

    2003-01-01

    Most astrophysical plasmas entail a balance between ionization and recombination. We present new results from a unified method for self-consistent and ab initio calculations for the inverse processes of photoionization and (e + ion) recombination. The treatment for (e + ion) recombination subsumes the non-resonant radiative recombination and the resonant dielectronic recombination processes in a unified scheme (S.N. Nahar and A.K. Pradhan, Phys. Rev. A 49, 1816 (1994);H.L. Zhang, S.N. Nahar, and A.K. Pradhan, J.Phys.B, 32,1459 (1999)). Calculations are carried out using the R-matrix method in the close coupling approximation using an identical wavefunction expansion for both processes to ensure self-consistency. The results for photoionization and recombination cross sections may also be compared with state-of-the-art experiments on synchrotron radiation sources for photoionization, and on heavy ion storage rings for recombination. The new experiments display heretofore unprecedented detail in terms of resonances and background cross sections and thereby calibrate the theoretical data precisely. We find a level of agreement between theory and experiment at about 10% for not only the ground state but also the metastable states. The recent experiments therefore verify the estimated accuracy of the vast amount of photoionization data computed under the OP, IP and related works. features. Present work also reports photoionization cross sections including relativistic effects in the Breit-Pauli R-matrix (BPRM) approximation. Detailed features in the calculated cross sections exhibit the missing resonances due to fine structure. Self-consistent datasets for photoionization and recombination have so far been computed for approximately 45 atoms and ions. These are being reported in a continuing series of publications in Astrophysical J. Supplements (e.g. references below). These data will also be available from the electronic database TIPTOPBASE (http://heasarc.gsfc.nasa.gov)

  11. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  12. Microscopic theory of linear and nonlinear terahertz spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Johannes

    2008-12-09

    This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation process is not modelled but a realistic initial many-body state is assumed. In particular, the linear THz response is reviewed and it is demonstrated that correlated quasi-particles such as excitons and plasmons can be unambiguously detected via THz spectroscopy. The focus of the investigations, however, is on situations where the optically-excited many-body state is excited by intense THz fields. While weak pulses detect the many-body state, strong THz pulses control and manipulate the quasi-particles in a way that is not accessible via conventional techniques. The nonlinear THz dynamics of exciton populations is especially interesting because similarities and differences to optics with atomic systems can be studied. (orig.)

  13. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  14. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  15. Self-Determination Theory With Application to Employee Health Settings.

    Science.gov (United States)

    Ross, Brenda M; Barnes, Donelle M

    2018-01-01

    Occupational health nurses motivate employees to engage in healthy behaviors. Both clinicians and researchers need strong theories on which to base decisions for health programs (e.g., healthy diet) and experimental interventions (e.g., workplace walking). The self-determination theory could be useful as it includes concepts of individual autonomy, competence to perform healthy behaviors, and relationships as predictors of health behaviors and outcomes. In this article, the self-determination theory is described and evaluated using Walker and Avant's criteria. The theory is applied to a population of federal employees who smoke. By increasing employees' ability to autonomously choose smoking cessation programs, support their competence to stop smoking, and improve their relationships with both others who smoke and employee health services, smoking cessation should increase.

  16. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  17. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  18. Self-consistent calculation of 208Pb spectrum

    International Nuclear Information System (INIS)

    Pal'chik, V.V.; Pyatov, N.I.; Fayans, S.A.

    1981-01-01

    The self-consistent model with exact accounting for one-particle continuum is applied to calculate all discrete particle-hole natural parity states with 2 208 Pb nucleus (up to the neutron emission threshold, 7.4 MeV). Contributions to the energy-weighted sum rules S(EL) of the first collective levels and total contributions of all discrete levels are evaluated. Most strongly the collectivization is manifested for octupole states. With multipolarity growth L contributions of discrete levels are sharply reduced. The results are compared with other models and the experimental data obtained in (e, e'), (p, p') reactions and other data [ru

  19. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  20. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  1. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    Science.gov (United States)

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  2. Seniors' self-preservation by maintaining established self and defying deterioration - A grounded theory.

    Science.gov (United States)

    Eriksson, Jeanette Källstrand; Hildingh, Cathrine; Buer, Nina; Thulesius, Hans

    2016-01-01

    The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of "remaining themselves as who they used to be" by self-preservation. Within this category, the strategies maintaining the established self and defying deterioration emerged as the most prominent in our data. The theme maintaining the established self is mostly guided by change inertia and includes living the past (retaining past activities, reminiscing, and keeping the home intact) and facading (hiding impairment, leading to avoidance of becoming a burden and to risk juggling). Defying deterioration is a proactive scheme and involves moving (by exercising, adapting activities, using walking aids, driving), adapting (by finding new ways), and networking by sustaining old support networks or finding new networks. Self-preservation is generic human behavior and modifying this theory to other fields may therefore be worthwhile. In addition, health care providers may have use for the theory in fall preventive planning.

  3. Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy

    International Nuclear Information System (INIS)

    Gatti, R; UhlIk, F; Montalenti, F

    2008-01-01

    We present a novel computational method for finding the concentration profile which minimizes the elastic energy stored in heteroepitaxial islands. Based on a suitable combination of continuum elasticity theory and configurational Monte Carlo, we show that such profiles can be readily found by a simple, yet fully self-consistent, iterative procedure. We apply the method to SiGe/Si islands, considering realistic three-dimensional shapes (pyramids, domes and barns), finding strongly non-uniform distributions of Si and Ge atoms, in qualitative agreement with several experiments. Moreover, our simulated selective-etching profiles display, in some cases, a remarkable resemblance to the experimental ones, opening intriguing questions on the interplay between kinetic, entropic and elastic effects

  4. Microscopic theory of normal liquid 3He

    International Nuclear Information System (INIS)

    Nafari, N.; Doroudi, A.

    1994-03-01

    We have used the self-consistent scheme proposed by Singwi, Tosi, Land and Sjoelander (STLS) to study the properties of normal liquid 3 He. By employing the Aziz potential (HFD-B) and some other realistic pairwise interactions, we have calculated the static structure factor, the pair-correlation function, the zero sound frequencies as a function of wave-vector, and the Landau parameter F s 0 for different densities. Our results show considerable improvement over the Ng-Singwi's model potential of a hard core plus an attractive tail. Agreement between our results and the experimental data for the static structure factor and the zero sound frequencies is fairly good. (author). 30 refs, 6 figs, 2 tabs

  5. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind.

    Science.gov (United States)

    van Veluw, Susanne J; Chance, Steven A

    2014-03-01

    The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.

  6. Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response

    International Nuclear Information System (INIS)

    Perez-Moreno, Javier; Hung, Sheng-Ting; Kuzyk, Mark G.; Zhou, Juefei; Ramini, Shiva K.; Clays, Koen

    2011-01-01

    We show that a combination of linear absorption spectroscopy, hyper-Rayleigh scattering, and a theoretical analysis using sum rules to reduce the size of the parameter space leads to a prediction of the imaginary part of the second hyperpolarizability of the dye AF-455 that agrees with the experimental data gathered through two-photon absorption spectroscopy. Our procedure, which demands self-consistency between several measurement techniques and does not use adjustable parameters, provides a means for determining transition moments between the dominant excited states based strictly on experimental characterization. This is made possible by our new approach that uses sum rules and molecular symmetry to rigorously reduce the number of required physical quantities.

  7. A Simple Metric for Determining Resolution in Optical, Ion, and Electron Microscope Images.

    Science.gov (United States)

    Curtin, Alexandra E; Skinner, Ryan; Sanders, Aric W

    2015-06-01

    A resolution metric intended for resolution analysis of arbitrary spatially calibrated images is presented. By fitting a simple sigmoidal function to pixel intensities across slices of an image taken perpendicular to light-dark edges, the mean distance over which the light-dark transition occurs can be determined. A fixed multiple of this characteristic distance is then reported as the image resolution. The prefactor is determined by analysis of scanning transmission electron microscope high-angle annular dark field images of Si. This metric has been applied to optical, scanning electron microscope, and helium ion microscope images. This method provides quantitative feedback about image resolution, independent of the tool on which the data were collected. In addition, our analysis provides a nonarbitrary and self-consistent framework that any end user can utilize to evaluate the resolution of multiple microscopes from any vendor using the same metric.

  8. Regular and chaotic dynamics in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.

    1997-01-01

    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society

  9. Quasiparticle Lagrangian for the binding energies and self-consistent fields of nuclei in the Fermi-liquid approach

    International Nuclear Information System (INIS)

    Sapershtein, E.E.; Khodel', V.A.

    1981-01-01

    The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established

  10. Thought analysis on self-organization theories of MHD plasma

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Sato, Tetsuya.

    1992-08-01

    A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)

  11. Self-dual monopoles in a seven-dimensional gauge theory

    International Nuclear Information System (INIS)

    Yang Yisong

    1990-01-01

    The existence of self-dual or anti-self-dual monopoles of a seven-dimensional generalized Yang-Mills-Higgs theory is proved using the second-order equations of motion. The behavior of solutions can be used to recognize self- or anti-self-duality. Moreover, it is shwon that, in the class of the field configurations under discussion, the solutions are, in fact, unique. (orig.)

  12. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  13. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites.

    Science.gov (United States)

    Ganesan, Venkat; Jayaraman, Arthi

    2014-01-07

    Polymer nanocomposites are a class of materials that consist of a polymer matrix filled with inorganic/organic nanoscale additives that enhance the inherent macroscopic (mechanical, optical and electronic) properties of the polymer matrix. Over the past few decades such materials have received tremendous attention from experimentalists, theoreticians, and computational scientists. These studies have revealed that the macroscopic properties of polymer nanocomposites depend strongly on the (microscopic) morphology of the constituent nanoscale additives in the polymer matrix. As a consequence, intense research efforts have been directed to understand the relationships between interactions, morphology, and the phase behavior of polymer nanocomposites. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level features of the polymer and nanoparticle additives to the resulting morphology within the composite. In this article we review recent theory and simulation studies, presenting briefly the methodological developments underlying PRISM theories, density functional theory, self-consistent field theory approaches, and atomistic and coarse-grained molecular simulations. We first discuss the studies on polymer nanocomposites with bare or un-functionalized nanoparticles as additives, followed by a review of recent work on composites containing polymer grafted or functionalized nanoparticles as additives. We conclude each section with a brief outlook on some potential future directions.

  14. Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields

    International Nuclear Information System (INIS)

    Nair, V.P.; Schiff, J.

    1992-01-01

    Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)

  15. Contiguity and quantum theory of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.S. [Adelaide Univ., SA (Australia). Dept. of Mathematical Physics]|[Adelaide Univ., SA (Australia). Dept. of Physics

    1995-12-31

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs.

  16. Contiguity and quantum theory of measurement

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1995-01-01

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs

  17. DO SELF-THEORIES EXPLAIN OVERCONFIDENCE AND FINANCIAL RISK TAKING? A field experiment.

    OpenAIRE

    Bertrand Koebel; André Schmitt; Sandrine Spaeter

    2015-01-01

    How people develop beliefs about themselves (self-theories) plays an important role on motivation and achievement as shown by Carol Dweck’s life-long research. In this paper, we conduct a field experiment to investigate whether self-theories impact overconfidence and risk taking. Self-theories deal with how an individual perceives some of her attributes such as intelligence, personality or moral character. In this paper, we are interested by how people perceive their mindset (fixed or growth)...

  18. Self-accelerating universe in scalar-tensor theories after GW170817

    Science.gov (United States)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  19. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Bosons system with finite repulsive interaction: self-consistent field method

    International Nuclear Information System (INIS)

    Renatino, M.M.B.

    1983-01-01

    Some static properties of a boson system (T = zero degree Kelvin), under the action of a repulsive potential are studied. For the repulsive potential, a model was adopted consisting of a region where it is constant (r c ), and a decay as 1/r (r > r c ). The self-consistent field approximation used takes into account short range correlations through a local field corrections, which leads to an effective field. The static structure factor S(q-vector) and the effective potential ψ(q-vector) are obtained through a self-consistent calculation. The pair-correlation function g(r-vector) and the energy of the collective excitations E(q-vector) are also obtained, from the structure factor. The density of the system and the parameters of the repulsive potential, that is, its height and the size of the constant region were used as variables for the problem. The results obtained for S(q-vector), g(r-vector) and E(q-vector) for a fixed ratio r o /r c and a variable λ, indicates the raising of a system structure, which is more noticeable when the potential became more repulsive. (author)

  1. A simplified density matrix minimization for linear scaling self-consistent field theory

    International Nuclear Information System (INIS)

    Challacombe, M.

    1999-01-01

    A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics

  2. General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.

    Science.gov (United States)

    Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini

    2015-12-01

    General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.

  3. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  4. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    Science.gov (United States)

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  5. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  6. On the consistency and high-energy behavior of string theory

    International Nuclear Information System (INIS)

    Mende, P.F.

    1988-01-01

    In Part I, it is shown that the heterotic string is free of gauge and gravitational anomalies by showing that (a) unless the gauge group is E S x E S or Spin(32)/Z 2 or a subgroup, the internal sector partition function vanishes so there is no consistent theory; and (b) for E 8 x E 8 and Spin(32)/Z 2 compactifications, the longitudinal modes of the massless gauge particles decouple, as required by gauge invariance. We discuss the geometric interpretation for string theory when the action is invariant under a modular subgroup. In Part II, the high-energy behavior of string scattering amplitudes is studied to all orders in perturbation theory, with the aim of exploring the short-distance structure of string theory. It is shown that the sum over all Riemann surfaces is dominated by a saddle point. Consequently, the high-energy limit is universal and simple to calculate. In this limit the amplitudes fall off much faster than allowed by field theory. The dominant saddle points are identified as coming from world sheets which are Z G+1 symmetric algebraic curves, and their contribution to the scattering amplitude is evaluated for the bosonic to all orders and for the heterotic string to two-loop order. An interesting spacetime picture of the high-energy limit emerges. The issue of summing the perturbation expansion is addressed

  7. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  8. Fostering Personal Meaning and Self-Relevance: A Self-Determination Theory Perspective on Internalization

    Science.gov (United States)

    Vansteenkiste, Maarten; Aelterman, Nathalie; De Muynck, Gert-Jan; Haerens, Leen; Patall, Erika; Reeve, Johnmarshall

    2018-01-01

    Central to self-determination theory (SDT) is the notion that autonomously motivated learning relates to greater learning benefits. While learners' intrinsic motivation has received substantial attention, learners also display volitional learning when they come to endorse the personal meaning or self-relevance of the learning task. In Part I of…

  9. Compatible quantum theory

    International Nuclear Information System (INIS)

    Friedberg, R; Hohenberg, P C

    2014-01-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The

  10. Ion beam nanopatterning of III-V semiconductors: consistency of experimental and simulation trends within a chemistry-driven theory.

    Science.gov (United States)

    El-Atwani, O; Norris, S A; Ludwig, K; Gonderman, S; Allain, J P

    2015-12-16

    Several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends on several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.

  11. Generation of static solutions of the self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations

  12. Quantum consistency of open string theories

    International Nuclear Information System (INIS)

    Govaerts, J.

    1989-01-01

    We discuss how Virasoro anomalies in open string theories uniquely select the gauge group SO(2 D/2 ) independently of any regularisation, although the cancellation of these anomalies does not occur in tachyonic theories, and regulators can always be chosen to make these theories (one-loop) finite for any SO(n) and USp(n) gauge group. The discussion is mainly restricted to open bosonic strings. These results open new perspectives for the recent suggestion made by Sagnotti, the generalisations of which allow for the construction of new open string theories in less than ten dimensions. (orig.)

  13. Nucleon self-energy in the relativistic Brueckner theory

    Energy Technology Data Exchange (ETDEWEB)

    Waindzoch, T; Fuchs, C; Faessler, A [Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany)

    1998-06-01

    The self-energy of the nucleon in nuclear matter is calculated in the relativistic Brueckner theory. We solve the Thompson equation for the two nucleon scattering in the medium using different Bonn potentials. The self-energy has a rather strong momentum dependence while the equation of state compares well with previous calculations. (orig.)

  14. Nucleon self-energy in the relativistic Brueckner theory

    International Nuclear Information System (INIS)

    Waindzoch, T.; Fuchs, C.; Faessler, A.

    1998-01-01

    The self-energy of the nucleon in nuclear matter is calculated in the relativistic Brueckner theory. We solve the Thompson equation for the two nucleon scattering in the medium using different Bonn potentials. The self-energy has a rather strong momentum dependence while the equation of state compares well with previous calculations. (orig.)

  15. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  16. Effects of Broken Symmetry in Tokamaks: Global Braking of Toroidal Rotation and Self-consistent Determination of Neoclassical Magnetic Islands Velocity

    International Nuclear Information System (INIS)

    Lazzaro, Enzo

    2009-01-01

    Established results of neoclassical kinetic theory are used in a fluid model to show that in low collisionality regimes (ν and 1/ν) the propagation velocity of Neoclassical Tearing Modes (NTM) magnetic islands of sufficient width is determined self-consistently by the Neoclassical Toroidal Viscosity (NTV) appearing because of broken symmetry. The NTV effect on bulk plasma rotation, may also explain recent observations on momentum transport. At the same time this affects the role of the neoclassical ion polarization current on neoclassical tearing modes (NTM) stability.

  17. A new self-consistent model for thermodynamics of binary solutions

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.

    2015-01-01

    Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015

  18. Self-interaction corrections in density functional theory

    International Nuclear Information System (INIS)

    Tsuneda, Takao; Hirao, Kimihiko

    2014-01-01

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds

  19. Parents' Role in Early Adolescent Self-Injury: An Application of Self-Determination Theory

    Science.gov (United States)

    Emery, A. Ann; Heath, Nancy L.; Rogers, Maria

    2017-01-01

    Objective: We applied self-determination theory to examine a model whereby perceived parental autonomy support directly and indirectly affects nonsuicidal self-injury (NSSI) through difficulties in emotion regulation. Method: 639 participants (53% female) with a mean age of 13.38 years (SD 0.51) completed the How I Deal with Stress Questionnaire…

  20. Non-Born-Oppenheimer trajectories with self-consistent decay of mixing

    International Nuclear Information System (INIS)

    Zhu Chaoyuan; Jasper, Ahren W.; Truhlar, Donald G.

    2004-01-01

    A semiclassical trajectory method, called the self-consistent decay of mixing (SCDM) method, is presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a modification of the semiclassical Ehrenfest (SE) method (also called the semiclassical time-dependent self-consistent-field method) that solves the problem of unphysical mixed final states by including decay-of-mixing terms in the equations for the evolution of the electronic state populations. These terms generate a force, called the decoherent force (or dephasing force), that drives the electronic component of each trajectory toward a pure state. Results for several mixed quantum-classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and several trajectory surface hopping methods, are compared to the results of accurate quantum mechanical calculations for 12 cases involving five different fully dimensional triatomic model systems. The SCDM method is found to be the most accurate of the methods tested. The method should be useful for the simulation of photochemical reactions

  1. The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons

    International Nuclear Information System (INIS)

    Lin Runliang; Peng Hua; Manas, Manuel

    2010-01-01

    Based on the eigenfunction symmetry constraint of the q-deformed modified KP hierarchy, a q-deformed mKP hierarchy with self-consistent sources (q-mKPHSCSs) is constructed. The q-mKPHSCSs contain two types of q-deformed mKP equation with self-consistent sources. By the combination of the dressing method and the method of variation of constants, a generalized dressing approach is proposed to solve the q-deformed KP hierarchy with self-consistent sources (q-KPHSCSs). Using the gauge transformation between the q-KPHSCSs and the q-mKPHSCSs, the q-deformed Wronskian solutions for the q-KPHSCSs and the q-mKPHSCSs are obtained. The one-soliton solutions for the q-deformed KP (mKP) equation with a source are given explicitly.

  2. Bridging Theory: Where Cultures Meet in Self and Science

    Science.gov (United States)

    Jensen, Lene Arnett

    2012-01-01

    In this chapter, I argue that Dialogical Self Theory (DST) represents a compelling answer to how to conceptualize the psychology of the self in today's world, when people increasingly are aware of more than one way to think, feel, and relate to others. DST envisions a self of plural voices. The chapters in this volume show intriguing applications…

  3. Utilizing Rogers' Theory of Self-Concept in mental health nursing.

    Science.gov (United States)

    Hosking, P

    1993-06-01

    The work of mental health nurse is interactive in nature, the priority of which is the effective development and maintenance of a therapeutic relationship with clients. This field of nursing bases its practice on theories from many schools of thought in order to provide clients with the highest quality of care. One such theory is that of Carl Rogers whose practice as a psychotherapist was based on his Theory of Self-Concept. This paper examines the development of the Theory of Self-Concept from the works of Cooley, Mead, Allport and Rogers and relates to the therapeutic alliance between a primary nurse and a client who has been medically diagnosed as being 'depressed'. The implications for practice are considered and some of the difficulties of utilizing Rogers' theory on an in-patient unit are explored. The paper emphasizes the need for nurses to be aware of the use of such theories in order to enrich the care that clients receive. It also highlights the need for nurses to be aware of their own 'self' when working with clients, a state that can only be achieved if the nurses themselves have adequate clinical supervision and an environment which is supportive of such work.

  4. Implicit theory of athletic ability and self-handicapping in college students.

    Science.gov (United States)

    Chen, Lung Hung; Chen, Mei-Yen; Lin, Meng-Shyan; Kee, Ying Hwa; Kuo, Chin Fang; Shui, Shang-Hsueh

    2008-10-01

    Self-handicapping is a maladaptive behavior which undermines students' achievements, but the antecedents of self-handicapping are not well studied in physical education. The aim was to examine the relations of implicit theory of abilities and self-handicapping in physical education. 264 college students, whose mean age was 20.3 yr. (SD = 1.7), completed the Conceptions of the Nature of Athletic Ability Questionnaire-2 and Self-handicapping Scale for Sport. Analysis indicated entity beliefs positively predicted reduced effort and making excuses. Also, incremental beliefs negatively predicted reduced effort. Results are discussed in terms of implicit theory of ability and self-handicapping. Directions for research and implications are stated.

  5. The development of the five mini-theories of self-determination theory: an historical overview, emerging trends, and future directions

    OpenAIRE

    Vansteenkiste, Maarten; Niemiec, Christopher P; Soenens, Bart

    2010-01-01

    Self-determination theory is a macro-theory of human motivation, emotion, and personality that has been under development for 40 years following the seminal work of Edward Deci and Richard Ryan. Self-determination theory (SDT; Deci & Ryan, 1985b, 2000; Niemiec, Ryan, & Deci, in press; Ryan & Deci, 2000; Vansteenkiste, Ryan, & Deci, 2008) has been advanced in a cumulative, research-driven manner, as new ideas have been naturally and steadily integrated into the theory following sufficient empi...

  6. Effects of Dzyaloshinsky–Moriya interaction on magnetism in nanodisks from a self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaosen, E-mail: liuzhsnj@yahoo.com [Nanjing University of Information Science and Technology, Department of Applied Physics (China); Ian, Hou, E-mail: houian@umac.mo [University of Macau, Institute of Applied Physics and Materials Engineering, FST (China)

    2016-01-15

    We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky–Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

  7. An Implicit Theory of Self-Esteem: The Consequences of Perceived Self-Esteem for Romantic Desirability

    OpenAIRE

    Virgil Zeigler-Hill; Erin M. Myers

    2011-01-01

    The provision of information appears to be an important property of self-esteem as evidenced by previous research concerning the status-tracking and status-signaling models of self-esteem. The present studies examine whether there is an implicit theory of self-esteem that leads individuals to assume targets with higher levels of self-esteem possess more desirable characteristics than those with lower levels of self-esteem. Across 6 studies, targets with ostensibly higher levels of self-esteem...

  8. Negative self-regard at work – Frustrating the need for self-enhancement and self-consistency

    Directory of Open Access Journals (Sweden)

    Marcus Credé

    2003-10-01

    Full Text Available A positive and consistent sense of self is a key requirement for psychological well-being. Thirteen South African police officers and five police psychologists were interviewed to investigate the prevalence of negative social feedback received by officers and the consequences of such feedback on their sense of self. Negative social feedback and perceived lack of support from police management, courts, and government were widely prevalent and were seen to impact strongly on police officers. Officers had a largely negative view of themselves, their organisation, and the social context in which they operated. They engaged in dysfunctional and self-destructive behaviour and experienced significant discrepancies between their work and non-work selves. Opsomming Aanduidings uit die literatuur is dat navorsing aangaande bevoegdheidsevaluering gebrekkig is aan ’n teoretiese ondertoon. Ondersoek word ingestel na die kognitiewe prosesse wat plaasvind gedurende beoordeling wat aanduidend kan wees van die hoë persentasie variansie tussen evalueerders. Die beginsels van vyf verskillende kognitiewe teorieë word bespreek om moontlike verklarings te ondersoek, naamlik kognitiewe keuse-, kognitiewe evaluering-, sosiaal kognitieweteorieë, meta-kognitiewe- en die nuwe paradigma- benaderings.

  9. Seniors’ self-preservation by maintaining established self and defying deterioration – A grounded theory

    Science.gov (United States)

    Eriksson, Jeanette Källstrand; Hildingh, Cathrine; Buer, Nina; Thulesius, Hans

    2016-01-01

    The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of “remaining themselves as who they used to be” by self-preservation. Within this category, the strategies maintaining the established self and defying deterioration emerged as the most prominent in our data. The theme maintaining the established self is mostly guided by change inertia and includes living the past (retaining past activities, reminiscing, and keeping the home intact) and facading (hiding impairment, leading to avoidance of becoming a burden and to risk juggling). Defying deterioration is a proactive scheme and involves moving (by exercising, adapting activities, using walking aids, driving), adapting (by finding new ways), and networking by sustaining old support networks or finding new networks. Self-preservation is generic human behavior and modifying this theory to other fields may therefore be worthwhile. In addition, health care providers may have use for the theory in fall preventive planning. PMID:27172511

  10. Seniors’ self-preservation by maintaining established self and defying deterioration – A grounded theory

    Directory of Open Access Journals (Sweden)

    Jeanette Källstrand Eriksson

    2016-05-01

    Full Text Available The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of “remaining themselves as who they used to be” by self-preservation. Within this category, the strategies maintaining the established self and defying deterioration emerged as the most prominent in our data. The theme maintaining the established self is mostly guided by change inertia and includes living the past (retaining past activities, reminiscing, and keeping the home intact and facading (hiding impairment, leading to avoidance of becoming a burden and to risk juggling. Defying deterioration is a proactive scheme and involves moving (by exercising, adapting activities, using walking aids, driving, adapting (by finding new ways, and networking by sustaining old support networks or finding new networks. Self-preservation is generic human behavior and modifying this theory to other fields may therefore be worthwhile. In addition, health care providers may have use for the theory in fall preventive planning.

  11. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  12. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  13. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    Science.gov (United States)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  14. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)

    2004-06-01

    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  15. Self-consistent study of local and nonlocal magnetoresistance in a YIG/Pt bilayer

    Science.gov (United States)

    Wang, Xi-guang; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2018-03-01

    We present a self-consistent study of the local spin Hall magnetoresistance (SMR) and nonlocal magnon-mediated magnetoresistance (MMR) in a heavy-metal/magnetic-insulator heterostructure at finite temperature. We find that the thermal fluctuation of magnetization significantly affects the SMR. It appears unidirectional with respect to the direction of electrical current (or magnetization). The unidirectionality of SMR originates from the asymmetry of creation or annihilation of thermal magnons induced by the spin Hall torque. Also, a self-consistent model can well describe the features of MMR.

  16. Tunneling in a self-consistent dynamic image potential

    International Nuclear Information System (INIS)

    Rudberg, B.G.R.; Jonson, M.

    1991-01-01

    We have calculated the self-consistent effective potential for an electron tunneling through a square barrier while interacting with surface plasmons. This potential reduces to the classical image potential in the static limit. In the opposite limit, when the ''velocity'' of the tunneling electron is large, it reduces to the unperturbed square-barrier potential. For a wide variety of parameters the dynamic effects on the transmission coefficient T=|t 2 | can, for instance, be related to the Buettiker-Landauer traversal time for tunneling, given by τ BL =ℎ|d lnt/dV|

  17. Self-interaction error in density functional theory: a mean-field correction for molecules and large systems

    International Nuclear Information System (INIS)

    Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry

    2005-01-01

    Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems

  18. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  19. The internal consistency of the standard gamble: tests after adjusting for prospect theory.

    Science.gov (United States)

    Oliver, Adam

    2003-07-01

    This article reports a study that tests whether the internal consistency of the standard gamble can be improved upon by incorporating loss weighting and probability transformation parameters in the standard gamble valuation procedure. Five alternatives to the standard EU formulation are considered: (1) probability transformation within an EU framework; and, within a prospect theory framework, (2) loss weighting and full probability transformation, (3) no loss weighting and full probability transformation, (4) loss weighting and no probability transformation, and (5) loss weighting and partial probability transformation. Of the five alternatives, only the prospect theory formulation with loss weighting and no probability transformation offers an improvement in internal consistency over the standard EU valuation procedure.

  20. Valence nucleons in self-consistent fields

    International Nuclear Information System (INIS)

    Di Toro, M.; Lomnitz-Adler, J.

    1978-01-01

    An iterative approach to determine directly the best Hartree-Fock one-body density rho is extended by expressing rho in terms of a core and a valence part and allowing for general crossings of occupied and unoccupied levels in the valence part. Results are shown for 152 Sm and a microscopic analysis of the core structure of deformed light nuclei is carried out. (author)

  1. Rewarding my Self. The role of Self Esteem and Self Determination in Motivation Crowding Theory

    OpenAIRE

    Bruno, B.

    2010-01-01

    The paper aims to reconcile different explanations (and consequences) of the motivation crowding theory in a unique theoretical framework where the locus of control is introduced in a one period maximisation problem and the intrinsic motivation is assumed as an exogenous psychological attitude. The analysis is based on the distinction among different types of objectives of the intrinsic motivation. For each type of objective, the different role of self esteem and self determination mechanisms...

  2. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  3. Mind-Sets Matter: A Meta-Analytic Review of Implicit Theories and Self-Regulation

    Science.gov (United States)

    Burnette, Jeni L.; O'Boyle, Ernest H.; VanEpps, Eric M.; Pollack, Jeffrey M.; Finkel, Eli J.

    2013-01-01

    This review builds on self-control theory (Carver & Scheier, 1998) to develop a theoretical framework for investigating associations of implicit theories with self-regulation. This framework conceptualizes self-regulation in terms of 3 crucial processes: goal setting, goal operating, and goal monitoring. In this meta-analysis, we included…

  4. The self-perceived survival ability and reproductive fitness (SPFit) theory of substance use disorders.

    Science.gov (United States)

    Newlin, David B

    2002-04-01

    A new theory of substance use disorders is proposed-the SPFit theory-that is based on evolutionary biology and adaptive systems. Self-perceived survival ability and reproductive fitness (SPFit) is proposed as a human psychobiological construct that prioritizes and organizes (i.e. motivates) behavior, but is highly vulnerable to temporary, artificial activation by drugs of abuse. Autoshaping/sign-tracking/feature positive phenomena are proposed to underlie the development of craving and expectations about drugs as the individual learns that abused drugs will easily and reliably inflate SPFit. The cortico-mesolimbic dopamine system and its modulating interconnections are viewed as the biological substrate of SPFit; it is proposed to be a survival and reproductive motivation system rather than a reward center or reward pathway. Finally, the concept of modularity of mind is applied to the SPFit construct. Although considerable empirical data are consistent with the theory, new research is needed to test specific hypotheses derived from SPFit theory.

  5. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  6. Electronic symmetry breaking in polyatomic molecules. Multiconfiguration self-consistent field study of the cyclopropenyl radical C3H3

    International Nuclear Information System (INIS)

    Hoffmann, M.R.; Laidig, W.D.; Kim, K.S.; Fox, D.J.; Schaefer, H.F. III

    1984-01-01

    For equilateral triangle geometries (point group D/sub 3h/), the C 3 H 3 radical has a degenerate 2 E'' electronic ground state. Although the 2 A 2 and 2 B 1 components separate in energy for C/sub 2v/ geometries, these two components should have identical energies for equilateral triangle structures. In fact, when approximate wave functions are used and the orbitals not required to transform according to the D/sub 3h/ irreducible representations, an energy separation between the 2 A 2 and 2 B 1 components is observed. At the single configuration self-consistent field (SCF) level of theory this separation is 2.8 kcal with a double-zeta basis set and 2.4 kcal with double-zeta plus polarization. It has been demonstrated that this spurious separation may be greatly reduced using multiconfiguration self-consistent field (up to 7474 variationally optimum configurations) and configuration interaction (up to 60 685 space and spin adapted configurations) techniques. Configurations differing by three and four electrons from the Hartree--Fock reference function are found necessary to reduce the 2 A 2 - 2 B 1 separation to below 0.5 kcal

  7. The self-consistent calculation of the edge states in bilayer quantum Hall bar

    International Nuclear Information System (INIS)

    Kavruk, A E; Orzturk, T; Orzturk, A; Atav, U; Yuksel, H

    2011-01-01

    In this study, we present the spatial distributions of the edge channels for each layer in bilayer quantum Hall bar geometry for a wide range of applied magnetic fields. For this purpose, we employ a self-consistent Thomas-Fermi-Poisson approach to obtain the electron density distributions and related screened potential distributions. In order to have a more realistic description of the system we solve three dimensional Poisson equation numerically in each iteration step to obtain self consistency in the Thomas-Fermi-Poisson approach instead of employing a 'frozen gate' approximation.

  8. Motivation to Speak English: A Self-Determination Theory Perspective

    Science.gov (United States)

    Dincer, Ali; Yesilyurt, Savas

    2017-01-01

    Based on a modern motivation theory of learning, self-determination theory (SDT), this study aimed to investigate the relationships between English as a foreign language (EFL) learners' motivation to speak, autonomous regulation, autonomy support from teachers, and classroom engagement, with both quantitative and qualitative approaches. The…

  9. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  10. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  11. A CVAR scenario for a standard monetary model using theory-consistent expectations

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...

  12. [Effects of a Multi-disciplinary Approached, Empowerment Theory Based Self-management Intervention in Older Adults with Chronic Illness].

    Science.gov (United States)

    Park, Chorong; Song, Misoon; Cho, Belong; Lim, Jaeyoung; Song, Wook; Chang, Heekyung; Park, Yeon-Hwan

    2015-04-01

    The purpose of this study was to develop a multi-disciplinary self-management intervention based on empowerment theory and to evaluate the effectiveness of the intervention for older adults with chronic illness. A randomized controlled trial design was used with 43 Korean older adults with chronic illness (Experimental group=22, Control group=21). The intervention consisted of two phases: (1) 8-week multi-disciplinary, team guided, group-based health education, exercise session, and individual empowerment counseling, (2) 16-week self-help group activities including weekly exercise and group discussion to maintain acquired self-management skills and problem-solving skills. Baseline, 8-week, and 24-week assessments measured health empowerment, exercise self-efficacy, physical activity, and physical function. Health empowerment, physical activity, and physical function in the experimental group increased significantly compared to the control group over time. Exercise self-efficacy significantly increased in experimental group over time but there was no significant difference between the two groups. The self-management program based on empowerment theory improved health empowerment, physical activity, and physical function in older adults. The study finding suggests that a health empowerment strategy may be an effective approach for older adults with multiple chronic illnesses in terms of achieving a sense of control over their chronic illness and actively engaging self-management.

  13. Research on the quantum multistep theory for pre-equilibrium nuclear reaction

    CERN Document Server

    Su Zong Di; Abdurixit, A; Wang Shu Nuan; Li Bao Xian; Huang Zhong; Liu Jian Feng; Zhang Benai; Zhu Yao Yin; Li Zhi Wen

    2002-01-01

    The Feshbach-Kerman-Koonin (FKK) quantum multistep theory of the pre-equilibrium reaction is further improved and perfected. A unified description for the multistep compound (MSC) process of the pre-equilibrium reaction and the compound nucleus (CN) process of full equilibrium reaction can be presented. This formula can integrate MSC and CN theories with the optical model and Hauser-Feshbach formula, and can get self-consistent expression. In multistep direct (MSD) process of the pre-equilibrium reaction, the mu-step cross section can be expressed by the convolution of mu one-step cross section. And the one step cross section for continuum can be written as the product of an averaged DWBA matrix element and the state density. For calculating the multistep direct reaction cross section, two methods, the state densities and full microscopic model, are used and compared. Some typical experiments are analyzed by using the work mentioned above. The calculated results are reasonable and in good agreement with the e...

  14. An Overview of Self-Concept Theory for Counselors. Highlights: An ERIC/CAPS Digest.

    Science.gov (United States)

    Purkey, William W.

    This overview of the self-concept theory describes how people organize and interpret their personal existence. It discusses the beginnings and recent history of the self-concept theory, and presents three major qualities of self-concept: that it is learned, organized, and dynamic. It asserts that individuals have relatively boundless potential for…

  15. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  16. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  17. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  18. Principals' Leadership and Teachers' Motivation: Self-Determination Theory Analysis

    Science.gov (United States)

    Eyal, Ori; Roth, Guy

    2011-01-01

    Purpose: The purpose of this paper is to investigate the relationship between educational leadership and teacher's motivation. The research described here was anchored in the convergence of two fundamental theories of leadership and motivation: the full range model of leadership and self-determination theory. The central hypotheses were that…

  19. Effective theory of bosonic superfluids

    International Nuclear Information System (INIS)

    Schakel, A.M.J.

    1994-01-01

    The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given

  20. Correlated density matrix theory of spatially inhomogeneous Bose fluids

    International Nuclear Information System (INIS)

    Gernoth, K.A.; Clark, J.W.; Ristig, M.L.

    1994-06-01

    In this paper, the variational Hartree-Jastrow theory of the ground state of spatially inhomogeneous Bose systems is extended to finite temperatures. The theory presented here is a generalization also in the sense that it extends the correlated density matrix approach, formulated previously for uniform Bose fluids, to systems with nonuniform density profiles. The method provides a framework in which the effects of thermal excitations on the spatial structure of a Bose fluid, as represented by the density profile and the two-body distribution functions, may be discussed on the basis on an ab initio microscopic description of the system. Thermal excitations make their appearance through self-consistently determined one-body and two-body potentials which enter the nonlinear, coupled Euler-Lagrange equations for the one-body density and for the pair distribution function. Since back-flow correlations are neglected, the excitations are described by a Feynman eigenvalue equation, suitably generalized to nonzero temperatures. The only external quantities entering the correlated density matrix theory elaborated here are the bare two-body interaction potential and, in actual applications, the boundary conditions to be imposed on the one-body density. 30 refs

  1. Facilitating internalization: the self-determination theory perspective.

    Science.gov (United States)

    Deci, E L; Eghrari, H; Patrick, B C; Leone, D R

    1994-03-01

    Self-determination theory (Deci & Ryan, 1985) posits that (a) people are inherently motivated to internalize the regulation of uninteresting though important activities; (b) there are two different processes through which such internalization can occur, resulting in qualitatively different styles of self-regulation; and (c) the social context influences which internalization process and regulatory style occur. The two types of internalization are introjection, which entails taking in a value or regulatory process but not accepting it as one's own, and integration, through which the regulation is assimilated with one's core sense of self. Introjection results in internally controlling regulation, whereas integration results in self-determination. An experiment supported our hypothesis that three facilitating contextual factors--namely, providing a meaningful rationale, acknowledging the behaver's feelings, and conveying choice--promote internalization, as evidenced by the subsequent self-regulation of behavior. This experiment also supported our expectation that when the social context supports self-determination, integration tends to occur, whereas when the context does not support self-determination, introjection tends to occur.

  2. Self-determination theory and understanding of student motivation in physical education instruction

    Directory of Open Access Journals (Sweden)

    Đorđić Višnja

    2010-01-01

    Full Text Available Physical education is considered to be a favorable context for accomplishment of important educational outcomes and promotion of physical activity in children and youth. The real scope of physical education instruction largely depends on student motivation. Self-determination theory, as a specific macrotheory of motivation, offers a rewarding framework for understanding student motivation in physical education instruction. The paper presents the basic tenets of self-determination theory, the most important studies in the domain of physical education and didactic and methodical implications. Two mini-theories within the self-determination theory are analyzed in more detail, the cognitive evaluation theory and the organismic integration theory. Empirical verification of the theoretical tenets indicates the existence of typical motivational profiles of students in physical education instruction, the basic psychological needs as mediators of influence of social and interpersonal factors on student motivation, followed by the importance of motivational climate, students' goal orientations and teaching style for self-determination of students' behavior in physical education instruction. Didactic and methodical implications refer to the need for developing a more flexible curriculum of physical education, encouraging a motivational climate, task-focused goal orientations, and, especially, encouraging the perceived moving competence of the student.

  3. Self-consistent model calculations of the ordered S-matrix and the cylinder correction

    International Nuclear Information System (INIS)

    Millan, J.

    1977-11-01

    The multiperipheral ordered bootstrap of Rosenzweig and Veneziano is studied by using dual triple Regge couplings exhibiting the required threshold behavior. In the interval -0.5 less than or equal to t less than or equal to 0.8 GeV 2 self-consistent reggeon couplings and propagators are obtained for values of Regge slopes and intercepts consistent with the physical values for the leading natural-parity Regge trajectories. Cylinder effects on planar pole positions and couplings are calculated. By use of an unsymmetrical planar π--rho reggeon loop model, self-consistent solutions are obtained for the unnatural-parity mesons in the interval -0.5 less than or equal to t less than or equal to 0.6 GeV 2 . The effects of other Regge poles being neglected, the model gives a value of the π--eta splitting consistent with experiment. 24 figures, 1 table, 25 references

  4. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  5. A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Donev, A; Alder, B J; Garcia, A L

    2009-08-03

    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.

  6. The individual-oriented and social-oriented Chinese bicultural self: testing the theory.

    Science.gov (United States)

    Lu, Luo

    2008-06-01

    The author proposes a bicultural self theory for contemporary Chinese individuals, encompassing 2 main components: the individual-oriented self and the social-oriented self. The social orientation is rooted in traditional Chinese conceptualization of the self, whereas the individual orientation has evolved and developed under Western influences along with recent societal modernization. The author conducted a series of 5 studies to test the theory and relate the model to important issues in current personality and social psychological research, such as cultural individualism-collectivism, self-construals, motivation, cognition, emotion, and well-being. A total of 977 university students in Taiwan participated. The author found that contrasting self-aspects were differentially associated with the aforementioned constructs, as theoretically predicted. This evidence thus generally supported the bicultural self model.

  7. Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory

    International Nuclear Information System (INIS)

    Janda, A.

    2006-01-01

    We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)

  8. Spontaneous symmetry breaking and self-consistent equations for the free-energy

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1980-03-01

    A variational procedure for the free-energy is used to derive self-consistent equations that allow for spontaneous symmetry breaking. For an N-component phi 4 -model the equations are identical to those obtained by summing all loops to order 1/N. (author)

  9. A Middle-Range Theory for Diabetes Self-management Mastery.

    Science.gov (United States)

    Fearon-Lynch, Jennifer A; Stover, Caitlin M

    2015-01-01

    Diabetes mellitus is the seventh leading cause of death in America and affects 382 million people worldwide. Individuals with diabetes must manage the complexity of the disease, its treatment, and complications to avert deleterious consequences associated with the illness. However, not all patients with diabetes successfully gain mastery to positively impact self-management. A new middle-range theory is proposed that merges 2 extant theories, theory of mastery and organismic integration theory, to better understand this human response. The theories' philosophical, theoretical, and conceptual perspectives were examined and relational properties synthesized to provide a conceptual representation of the phenomenon of interest.

  10. Self-complementary circular codes in coding theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  11. Microscopic approaches to quantum nonequilibriumthermodynamics and information

    Science.gov (United States)

    2018-02-09

    perspective on quantum thermalization for Science [8]. Wrote a joint experiment- theory paper on studying connections between quantum and classical chaos in...on the random matrix theory (eigenstate thermalization) and macroscopic phenomena (both equilibrium and non-equilibrium). Understanding thermodynamics...information. Specific questions to be addressed: connections of microscopic description of quantum chaotic systems based on the random matrix theory

  12. Introduction to nonequilibrium statistical mechanics with quantum field theory

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2010-01-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with

  13. Study of the diffraction in the microscope: Annular condenser

    International Nuclear Information System (INIS)

    Ciocci, L; Echarri, R M; Simon, J M

    2011-01-01

    In this work we study the diffraction in the microscope when an annular condenser is used to illuminate the object. We calculate the point spread function (PSF) for a pinhole in an opaque screen illuminated with an annular condenser, consisting in an 1D array of incoherent point sources. We compare it with the PSF for a self-luminous point object, finding that the central disk of the diffraction pattern is narrower and the first intensity minimum is deeper for illuminated objects. We also analyze the resolution of the system by means of the intensity profile produced by two points objects, finding that two self luminous point objects are better resolved than two illuminated objects at the same distance. This suggests that the correlation introduced in the object diminishes the resolution in the former case.

  14. Self-regulation theory: applications to medical education: AMEE Guide No. 58.

    Science.gov (United States)

    Sandars, John; Cleary, Timothy J

    2011-01-01

    Self-regulation theory, as applied to medical education, describes the cyclical control of academic and clinical performance through several key processes that include goal-directed behaviour, use of specific strategies to attain goals, and the adaptation and modification to behaviours or strategies to optimise learning and performance. Extensive research across a variety of non-medical disciplines has highlighted differences in key self-regulation processes between high- and low-achieving learners and performers. Structured identification of key self-regulation processes can be used to develop specific remediation approaches that can improve performance in academic and complex psycho-motor skills. General teaching approaches that are guided by a self-regulation perspective can also enhance academic performance. Self-regulation theory offers an exciting potential for improving academic and clinical performance in medical education.

  15. The quantal theory of how the immune system discriminates between "self and non-self"

    Science.gov (United States)

    Smith, Kendall A

    2004-12-17

    In the past 50 years, immunologists have accumulated an amazing amount of information as to how the immune system functions. However, one of the most fundamental aspects of immunity, how the immune system discriminates between self vs. non-self, still remains an enigma. Any attempt to explain this most intriguing and fundamental characteristic must account for this decision at the level of the whole immune system, but as well, at the level of the individual cells making up the immune system. Moreover, it must provide for a molecular explanation as to how and why the cells behave as they do. The "Quantal Theory", proposed herein, is based upon the "Clonal Selection Theory", first proposed by Sir McFarland Burnet in 1955, in which he explained the remarkable specificity as well as diversity of recognition of everything foreign in the environment. The "Quantal Theory" is built upon Burnet's premise that after antigen selection of cell clones, a proliferative expansion of the selected cells ensues. Furthermore, it is derived from experiments which indicate that the proliferation of antigen-selected cell clones is determined by a quantal, "all-or-none", decision promulgated by a critical number of cellular receptors triggered by the T Cell Growth Factor (TCGF), interleukin 2 (IL2). An extraordinary number of experiments reported especially in the past 20 years, and detailed herein, indicate that the T cell Antigen Receptor (TCR) behaves similarly, and also that there are several critical numbers of triggered TCRs that determine different fates of the T cells. Moreover, the fates of the cells appear ultimately to be determined by the TCR triggering of the IL2 and IL2 receptor (IL2R) genes, which are also expressed in a very quantal fashion. The "Quantal Theory" states that the fundamental decisions of the T cell immune system are dependent upon the cells receiving a critical number of triggered TCRs and IL2Rs and that the cells respond in an all-or-none fashion. The

  16. Financial Literacy; Strategies and Concepts in Understanding the Financial Planning With Self-EfficacyTheory and Goal SettingTheory of Motivation Approach

    OpenAIRE

    Mu’izzuddin, -; Taufik, -; Ghasarma, Reza; Putri, Leonita; Adam, Mohamad

    2017-01-01

    This article discusses the strategies and concepts in understanding the financial literacy with the approach of self-efficacy theory and goal setting theory of motivation. The discussion begins with the concept of behavioral finance that discusses links between financial concepts to the behavior, and then proceed with the concept and measurement of financial literacy of individuals altogether with some approaches and factors that may affect it. Self-efficacy theory and goal setting theory of ...

  17. The function of self-esteem in terror management theory and sociometer theory: comment on Pyszczynski et al. (2004).

    Science.gov (United States)

    Leary, Mark R

    2004-05-01

    By applying different standards of evidence to sociometer theory than to terror management theory (TMT), T. Pyszczynski, J. Greenberg, S. Solomon, J. Arndt, and J. Schimel's (2004) review offers an imbalanced appraisal of the theories' merits. Many of Pyszczynski et al.'s (2004) criticisms of sociometer theory apply equally to TMT. and others are based on misconstruals of the theory or misunderstandings regarding how people respond when rejected. Furthermore, much of their review is only indirectly relevant to TMT's position on the function of self-esteem, and the review fails to acknowledge logical and empirical challenges to TMT. A more balanced review suggests that each theory trumps the other in certain respects, both have difficulty explaining all of the evidence regarding self-esteem, and the propositions of each theory can be roughly translated into the concepts of the other. For these reasons, declaring a theoretical winner at this time is premature. ((c) 2004 APA, all rights reserved)

  18. Play as Self-Realization: Toward a General Theory of Play

    Science.gov (United States)

    Henricks, Thomas S.

    2014-01-01

    In a wide-ranging essay that reviews the major theories of plays and relates them to significant notions of the self, the author addresses the question of why we play. He does so to argue that play is a biologically driven project of self-understanding and self-realization, one that humans--although they also share the experience with other…

  19. The theory of quantum liquids

    CERN Document Server

    Nozières, Philippe

    1999-01-01

    Originally published as two separate volumes, The Theory of Quantum Liquids is a classic text that attempts to describe the qualitative and unifying aspects of an extremely broad and diversified field. Volume I deals with 'normal' Fremi liquids, such as 3He and electrons in metals. Volume II consists of a detailed treatment of Bose condensation and liquid 4He, including the development of a Bose liquid theory and a microscopic basis for the two-fluid model, and the description of the elementary excitations of liquid HeII.

  20. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...