WorldWideScience

Sample records for self-consistent charge transport

  1. Self-consistent study of space-charge-dominated beams in a misaligned transport system

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V.S.

    2013-01-01

    A self-consistent particle-in-cell (PIC) simulation method is developed to investigate the dynamics of space-charge-dominated beams through a misaligned solenoid based transport system. Evolution of beam centroid, beam envelope and emittance is studied as a function of misalignment parameters for various types of beam distributions. Simulation results performed up to 40 mA of proton beam indicate that centroid oscillations induced by the displacement and rotational misalignments of solenoids do not depend of the beam distribution. It is shown that the beam envelope around the centroid is independent of the centroid motion for small centroid oscillation. In addition, we have estimated the loss of beam during the transport caused by the misalignment for various beam distributions

  2. Secondary electron emission and self-consistent charge transport in semi-insulating samples

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, H.-J. [Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18051 Rostock (Germany); Touzin, M. [Unite Materiaux et Transformations, UMR CNRS 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France)

    2011-08-15

    Electron beam induced self-consistent charge transport and secondary electron emission (SEE) in insulators are described by means of an electron-hole flight-drift model (FDM) now extended by a certain intrinsic conductivity (c) and are implemented by an iterative computer simulation. Ballistic secondary electrons (SE) and holes, their attenuation to drifting charge carriers, and their recombination, trapping, and field- and temperature-dependent detrapping are included. As a main result the time dependent ''true'' secondary electron emission rate {delta}(t) released from the target material and based on ballistic electrons and the spatial distributions of currents j(x,t), charges {rho}(x,t), field F(x,t), and potential V(x,t) are obtained where V{sub 0} = V(0,t) presents the surface potential. The intrinsic electronic conductivity limits the charging process and leads to a conduction sample current to the support. In that case the steady-state total SE yield will be fixed below the unit: i.e., {sigma} {eta} + {delta} < 1.

  3. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  4. Electron beam charging of insulators: A self-consistent flight-drift model

    International Nuclear Information System (INIS)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Fitting, H.-J.

    2006-01-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges ρ(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate σ(t) and the surface potential V 0 (t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and σ=1. Especially for low electron beam energies E 0 G of a vacuum grid in front of the target surface. For high beam energies E 0 =10, 20, and 30 keV high negative surface potentials V 0 =-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected

  5. Self-consistent simulation studies of periodically focused intense charged-particle beams

    International Nuclear Information System (INIS)

    Chen, C.; Jameson, R.A.

    1995-01-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos

  6. Self-consistency constraints on turbulent magnetic transport and relaxation in collisionless plasma

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.; Hahm, T.S.

    1985-10-01

    Novel constraints on collisionless relaxation and transport in drift-Alfven turbulence are reported. These constraints arise due to the consideration of mode coupling and incoherent fluctuations and the proper application of self-consistency conditions. The result that electrostatic fluctuations alone regulate transport in drift-Alfven turbulence follows directly. Quasilinear transport predictions are discussed in light of these constraints

  7. A Self Consistent Multiprocessor Space Charge Algorithm that is Almost Embarrassingly Parallel

    International Nuclear Information System (INIS)

    Nissen, Edward; Erdelyi, B.; Manikonda, S.L.

    2012-01-01

    We present a space charge code that is self consistent, massively parallelizeable, and requires very little communication between computer nodes; making the calculation almost embarrassingly parallel. This method is implemented in the code COSY Infinity where the differential algebras used in this code are important to the algorithm's proper functioning. The method works by calculating the self consistent space charge distribution using the statistical moments of the test particles, and converting them into polynomial series coefficients. These coefficients are combined with differential algebraic integrals to form the potential, and electric fields. The result is a map which contains the effects of space charge. This method allows for massive parallelization since its statistics based solver doesn't require any binning of particles, and only requires a vector containing the partial sums of the statistical moments for the different nodes to be passed. All other calculations are done independently. The resulting maps can be used to analyze the system using normal form analysis, as well as advance particles in numbers and at speeds that were previously impossible.

  8. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  9. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  10. Nuclear charge-exchange excitations in a self-consistent covariant approach

    International Nuclear Information System (INIS)

    Liang, Haozhao

    2010-01-01

    Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations could provide direct information on the spin and isospin properties of the in-medium nuclear interaction, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states (IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one to attack other kinds of problems outside the realm of nuclear structure, like the description of neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V ud via the nuclear 0 + → 0 + superallowed Fermi β decays. For all these reasons, it is important to develop the microscopic theories of charge-exchange excitations and it is the main motivation of the present work. In this work, a fully self-consistent charge-exchange relativistic random phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency is verified by the so-called IAS check. This approach is then applied to investigate the nuclear spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections. For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory agreement with the experimental data can be obtained without any readjustment of the energy functional. Furthermore, the isoscalar mesons are found to play an essential role in spin

  11. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  12. Self-consistent electric field effect on electron transport of ECH plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Murakami, S.

    1999-02-01

    An algorithm is proposed which treats the ECH generated potential in a self-consistent way, by extending the Monte-Carlo Fokker-Planck method used by Murakami [S. Murakami et al., Proc. 17th IAEA Fusion Energy Conference, Yokohama, 1998 (International Atomic Energy Agency, Vienna, in press), paper CN-69/TH2/1]. The additional physics is expected to influence the transport of both thermal and suprathermal electrons in a helical toroidal system. (author)

  13. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  14. Link between self-consistent pressure profiles and electron internal transport barriers in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Razumova, K A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Andreev, V F [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Donne, A J H [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hogeweij, G M D [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Lysenko, S E [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Shelukhin, D A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Spakman, G W [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Vershkov, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Zhuravlev, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation)

    2006-09-15

    Tokamak plasmas have a tendency to self-organization: the plasma pressure profiles obtained in different operational regimes and even in various tokamaks may be represented by a single typical curve, called the self-consistent pressure profile. About a decade ago local zones with enhanced confinement were discovered in tokamak plasmas. These zones are referred to as internal transport barriers (ITBs) and they can act on the electron and/or ion fluid. Here the pressure gradients can largely exceed the gradients dictated by profile consistency. So the existence of ITBs seems to be in contradiction with the self-consistent pressure profiles (this is also often referred to as profile resilience or profile stiffness). In this paper we will discuss the interplay between profile consistency and ITBs. A summary of the cumulative information obtained from T-10, RTP and TEXTOR is given, and a coherent explanation of the main features of the observed phenomena is suggested. Both phenomena, the self-consistent profile and ITB, are connected with the density of rational magnetic surfaces, where the turbulent cells are situated. The distance between these cells determines the level of their interaction, and therefore the level of the turbulent transport. This process regulates the plasma pressure profile. If the distance is wide, the turbulent flux may be diminished and the ITB may be formed. In regions with rarefied surfaces the steeper pressure gradients are possible without instantaneously inducing pressure driven instabilities, which force the profiles back to their self-consistent shapes. Also it can be expected that the ITB region is wider for lower dq/d{rho} (more rarefied surfaces)

  15. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: A self-consistent field theory

    NARCIS (Netherlands)

    Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.

    2008-01-01

    The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with

  16. Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance

    International Nuclear Information System (INIS)

    Batygin, Yuri K.

    2001-01-01

    A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given

  17. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  18. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  19. Self-consistent coupling of atomic orbitals to a moving charge

    International Nuclear Information System (INIS)

    Da Costa, H.F.M.; Micha, D.A.

    1994-01-01

    The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small

  20. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Directory of Open Access Journals (Sweden)

    Li Wan

    2014-03-01

    Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied

  1. Self-consistent Vlasov-Maxwell description of the longitudinal dynamics of intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2004-02-01

    Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r

  2. Efficient mixing scheme for self-consistent all-electron charge density

    Science.gov (United States)

    Shishidou, Tatsuya; Weinert, Michael

    2015-03-01

    In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.

  3. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    Science.gov (United States)

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  4. Self-consistent Ginzburg-Landau theory for transport currents in superconductors

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2012-01-01

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi...... in principle also be used for general geometries in three-dimensional superconductors....

  5. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  6. Theoretical study of ion bunching for pellet fusion in self-consistent time dependent space charge fields

    International Nuclear Information System (INIS)

    Lu, P.C.

    1977-01-01

    The use of intense ion beams as a heating source for the fusion reaction in pellets of D-T appears to have several potential advantages over the use of electron beams. If ion bunching can be accomplished, then existing technology can be used to achieve the required power, energy and time scales for pellet fusion. A scheme to be considered is that of a pre-formed nonuniform plasma adjacent to a partially transparent anode through which a space charge limited electron beam is injected from the terminals of a convergent spherical geometry with a finite (or zero) rise-time. At the instant of beam injection, the virtual cathode is formed. Due to the space charge fields set up by the beam, the plasma ions are accelerated towards the region beyond the virtual cathode. A self-consistent transient analysis of the interactions between the electron beam and the background plasma is performed. The numerical calculations show that by specifying the target plasma for perfect bunching the ions can be made to bunch nearly perfectly. Also, by considering the depletion of initial plasma and accounting for the fact that the virtual anode-virtual cathode gap region is moving opposite to the direction of the ions, one can considerably enhance the instantaneous power delivered to the target over that which is injected at the terminals of the device, even with a finite rise-time on the current pulse

  7. Self-consistent quasi-static radial transport during the substorm growth phase

    Science.gov (United States)

    Le Contel, O.; Pellat, R.; Roux, A.

    2000-06-01

    We develop a self-consistent description of the slowly changing magnetic configuration of the near-Earth plasma sheet (NEPS) during substorm growth phase. This new approach is valid for quasi-static fluctuations ωcurrent. The quasi-neutrality condition (QNC) is solved via an expansion in the small parameter Te/Ti (Te/Ti is the ratio between the electronic and ionic temperatures). To the lowest order in Te/Ti, we find that the enforcement of QNC implies the presence of a global electrostatic potential which is constant for a given magnetic field line but varies across the magnetic field. The corresponding electric field shields the effect of the inductive component of the electric field, thereby producing a partial reduction of the motion that would correspond to the inductive electric field. Furthermore, we show that enforcing the QNC implies a field-aligned potential drop which is computed to the next order in Te/Ti in a companion paper [Le Contel et al., this issue]. In the present paper, we show that the direction of the azimuthal electric field varies along the field line, thus the equatorial electric field cannot be mapped onto the ionosphere. Furthermore during the growth phase, the (total) azimuthal electric field is directed eastward, close to the equator, and westward, off-equator. Thus large equatorial pitch angle particles drift tailward, whereas small pitch angle particles drift earthward.

  8. Self Consistent Ambipolar Transport and High Frequency Oscillatory Transient in Graphene Electronics

    Science.gov (United States)

    2015-08-17

    scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies...whereas strong Coulomb scattering arising from the charged dopants would offset the effect. In graphene, the absence of an energy gap guarantees carriers...carrier dynamics, as long as the Coulomb scattering (dopant concentration) can be kept weak, as shown in Ref. 68 and later on in this analysis. Note

  9. Magnetic fluctuations can contribute to plasma transport, ''self-consistency constraints'' notwithstanding

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kim, Chang-Bae.

    1987-09-01

    The recent conclusion that in a turbulent, collisionless plasma ''magnetic transport including quasilinear magnetic flutter transport ... does not contribute to the relaxation of (f), and thus is not responsible for electron energy or momentum transport'' is shown to be incorrect for a variety of situations of physical interest, including saturation by quasilinear plateau formation, induced scattering, and, most importantly, conventional mode coupling. The well-established theory of the mean infinitesimal response function and the spectral balance equation provides a unifying framework for understanding the above conclusion. In particular, the cancellations which lead to their conclusion are special cases of well-known relationships between the response function, particle propagator, and dielectric function. A more general, concise, and manifestly gauge-invariant algebraic derivation of the cancellations is given. Though the cancellations occur in a certain limit, these conclusions do not follow in general: The picture of steady-state turbulence as consisting of small-scale ''incoherent'' ballistic ''clumps'' shielded by long-wavelength ''coherent'' dielectric response is physically misleading and mathematically incomplete, as it ignores or mistreates the often dominant process of renormalized n-wave coupling. Thus, when ion nonlinearities are considered, formulas for the magnetic contribution to transport emerge which are quite similar to the quasilinear one. Furthermore, limits are possible in which all or part of the noise can be negligible, yet in which the total fluctuation spectrum remains finite. 56 refs

  10. Self-consistent computation of transport barrier formation by fluid drift turbulence in tokamak geometry

    International Nuclear Information System (INIS)

    Scott, B.; Jenko, F.; Peeters, A.G.; Teo, A.C.Y.

    1999-01-01

    (1) Computations of turbulence from the electromagnetic gyro fluid model are performed in a flux surface geometry representing the actual MHD equilibrium of the ASDEX Upgrade edge flux surfaces. The transition to ideal ballooning seen in simple geometries as the plasma beta rises is suppressed, leaving the transport at quantitatively realistic levels. Computations for core parameters at half-radius geometry show significant contribution due to the finite beta electron dynamics, possibly removing the standard ITG threshold. (2) Strong inward vorticity transport in edge turbulence, resulting from ion diamagnetic flows, may lead to a build up of mean ExB vorticity fast enough to cause an H-mode transition. (3) Friction of mean ion flows against neutrals involves both toroidal and poloidal flow components, leading to a finite radial current due to a given ExB profile even with zero poloidal rotation. (author)

  11. Self-consistent computation of transport barrier formation by fluid drift turbulence in tokamak geometry

    International Nuclear Information System (INIS)

    Scott, B.; Jenko, F.; Peeters, A.; Teo, A.C-Y.

    2001-01-01

    (1) Computations of turbulence from the electromagnetic gyrofluid model are performed in a flux surface geometry representing the actual MHD equilibrium of the ASDEX Upgrade edge flux surfaces. The transition to ideal ballooning seen in simple geometries as the plasma beta rises is suppressed, leaving the transport at quantitatively realistic levels. Computations for core parameters at half-radius geometry show significant contribution due to the finite beta electron dynamics, possibly removing the standard ITG threshold. (2) Strong inward vorticity transport in edge turbulence, resulting from ion diamagnetic flows, may lead to a build up of mean ExB vorticity fast enough to cause an H-mode transition. (3) Friction of mean ion flows against neutrals involves both toroidal and poloidal flow components, leading to a finite radial current due to a given ExB profile even with zero poloidal rotation. (author)

  12. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  13. ANTHEM: a two-dimensional multicomponent self-consistent hydro-electron transport code for laser-matter interaction studies

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    The ANTHEM code for the study of CO 2 -laser-generated transport is outlined. ANTHEM treats the background plasma as coupled Eulerian thermal and ion fluids, and the suprathermal electrons as either a third fluid or a body of evolving collisional PIC particles. The electrons scatter off the ions; the suprathermals drag against the thermal background. Self-consistent E- and B-fields are computed by the Implicit Moment Method. The current status of the code is described. Typical output from ANTHEM is discussed with special application to Augmented-Return-Current CO 2 -laser-driven targets

  14. Development of a self-consistent model of dust grain charging at elevated pressures using the method of moments

    International Nuclear Information System (INIS)

    Filippov, A.V.; Dyatko, N.A.; Pal', A.F.; Starostin, A.N.

    2003-01-01

    A model of dust grain charging is constructed using the method of moments. The dust grain charging process in a weakly ionized helium plasma produced by a 100-keV electron beam at atmospheric pressure is studied theoretically. In simulations, the beam current density was varied from 1 to 10 6 μA/cm 2 . It is shown that, in a He plasma, dust grains of radius 5 μm and larger perturb the electron temperature only slightly, although the reduced electric field near the grain reaches 8 Td, the beam current density being 10 6 μA/cm 2 . It is found that, at distances from the grain that are up to several tens or hundreds of times larger than its radius, the electron and ion densities are lower than their equilibrium values. Conditions are determined under which the charging process may be described by a model with constant electron transport coefficients. The dust grain charge is shown to be weakly affected by secondary electron emission. In a beam-produced helium plasma, the dust grain potential calculated in the drift-diffusion model is shown to be close to that calculated in the orbit motion limited model. It is found that, in the vicinity of a body perturbing the plasma, there may be no quasineutral plasma presheath with an ambipolar diffusion of charged particles. The conditions for the onset of this presheath in a beam-produced plasma are determined

  15. Self-consistent transport coefficients for average collective motion at moderately high temperatures

    International Nuclear Information System (INIS)

    Yamaji, Shuhei; Hofmann, H.; Samhammer, R.

    1987-01-01

    Linear response theory is applied to compute the coefficients for inertia, friction and local stiffness for slow, large scale nuclear collective motion. It is shown how these coefficients can be defined within a locally harmonic approximation. The latter allows to study the implications arising from a finite local collective frequency. It is only for temperatures around 2 MeV that the zero frequency limit becomes a fair approximation. Friction is found to have a marked temperature dependence. The numerical computations are performed on the basis of a two-center shell model, but allowing the particles and holes to become dressed through effects of the medium. The dependence of the transport coefficients on the parameters of these self-energies is studied. It is argued that the uncertainties are smaller than a factor of 2. (orig.)

  16. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  17. Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients

    Science.gov (United States)

    Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team

    2017-12-01

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  18. Aharonov-Casher effect and quantum transport in graphene based nano rings: A self-consistent Born approximation

    Science.gov (United States)

    Ghaderzadeh, A.; Rahbari, S. H. Ebrahimnazhad; Phirouznia, A.

    2018-03-01

    In this study, Rashba coupling induced Aharonov-Casher effect in a graphene based nano ring is investigated theoretically. The graphene based nano ring is considered as a central device connected to semi-infinite graphene nano ribbons. In the presence of the Rashba spin-orbit interaction, two armchair shaped edge nano ribbons are considered as semi-infinite leads. The non-equilibrium Green's function approach is utilized to obtain the quantum transport characteristics of the system. The relaxation and dephasing mechanisms within the self-consistent Born approximation is scrutinized. The Lopez-Sancho method is also applied to obtain the self-energy of the leads. We unveil that the non-equilibrium current of the system possesses measurable Aharonov-Casher oscillations with respect to the Rashba coupling strength. In addition, we have observed the same oscillations in dilute impurity regimes in which amplitude of the oscillations is shown to be suppressed as a result of the relaxations.

  19. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    Science.gov (United States)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  20. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  1. Dynamical nature of inviscid power law for two dimensional turbulences and self-consistent spectrum and transport of plasma filaments

    International Nuclear Information System (INIS)

    Zhnag, Y.Z.; Mahajan, S.M.

    1994-01-01

    On basis of equal-time correlation theory (a non-perturbative approach) inviscid power laws of 2D isotropic plasma turbulences with one Lagrangian inviscid constant of motion are unambiguously solved by determining the dynamical characteristics. Two distinct types of induced transport according to the divergence of the inverse correlation length in the inviscid limit are revealed. This analysis also suggests a physically reasonable closure. The self-consistent system (a set of integral equations) for plasma filaments is investigated in detail, and is found to be a nonlinear differential eigenvalue problem for diffusion coefficient D, whereon the Dyson-like (integral) equation plays a role of boundary condition. This new type of transport is non-Bohm-like, and is very much like the quasilinear formula even in the strong turbulence regime. Physically, it arises from synchronization of shrinking squared correlation length with decorrelation time, for which the ''mixing-length'' breaks down. The shrinkage of correlation length is a characteristic pertaining to the new type of turbulence; its relationship with the turbulence observed in supershot regime on TFTR is commented on. (author). 12 refs, 2 figs

  2. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  3. Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell

    International Nuclear Information System (INIS)

    Kim, H.C.; Yang, S.S.; Lee, J.K.

    2003-01-01

    In plasma display panels (PDPs), the resonance radiation trapping is one of the important processes. In order to incorporate this effect in a PDP cell, a three-dimensional radiation transport model is self-consistently coupled with a fluid simulation. This model is compared with the conventional trapping factor method in gas mixtures of neon and xenon. It shows the differences in the time evolutions of spatial profile and the total number of resonant excited states, especially in the afterglow. The generation rates of UV light are also compared for the two methods. The visible photon flux reaching the output window from the phosphor layers as well as the total UV photon flux arriving at the phosphor layer from the plasma region are calculated for resonant and nonresonant excited species. From these calculations, the time-averaged spatial profiles of the UV flux on the phosphor layers and the visible photon flux through the output window are obtained. Finally, the diagram of the energy efficiency and the contribution of each UV light are shown

  4. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  5. Self-consistent Kinetic Simulation of RMP-driven Transport: Collisionality and Rotation Effects on RMP Penetration and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Jeon, Y.; Kim, J., E-mail: gypark@nfri.re.kr [NFRI, Daejeon (Korea, Republic of); Chang, C. [Princeton Plasma Physics Laboratory, Princeton (United States)

    2012-09-15

    Full text: Control of the edge localized modes (ELMs) is one of the most critical issues for a more successful operation of ITER and the future tokamak fusion reactors. This paper reports ITER relevant simulation results from the XGC0 drift-kinetic code, with respect to the collisionality, plasma density, and rotation dependence of the RMP penetration and the RMP-driven transport in diverted DIII-D geometry with neutral recycling. The simulation results are consistent with the experimental results, and contribute to the physics understanding needed for more confident extrapolation of the present RMP experiments to ITER. It is found that plasma-responded stochasticity becomes weaker as the collisionality gets higher and RMP-driven transport (i.e., density pump-out) is much weaker in the high collisionality case compared with that in the low collisionality one, which is consistent with the recent experimental results on DIII-D and ASDEX-U tokamaks. As for rotation effect, low rotation is found not to affect the stochasticity much in the edge region, while high rotation significantly suppresses the RMPs in the core. The clear difference in RMP behavior between the low and high collisionality regimes can be understood by examining the perturbed current Fourier amplitude profiles within the range of resonant poloidal mode numbers (m = 8 - 15, n = 3). It can be seen that primary shielding currents are strongly concentrated around the steep pedestal region just inside the separatrix, which naturally produces very strong suppression of RMPs there, in low collisionality case. However, in high collisionality case, primary shielding currents are very weak and accumulating toward inner radii leading to the shielding of RMPs further into the plasma. Our kinetic simulation method is also applied to the modeling of RMP ELM control experiments on KSTAR tokamak and the results will be presented together. (author)

  6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  7. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  8. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    Science.gov (United States)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  9. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Schindler, K.

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  10. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    Science.gov (United States)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  11. A self-consistent transport model for molecular conduction based on extended Huckel theory with full three-dimensional electrostatics

    DEFF Research Database (Denmark)

    Zahid, F.; Paulsson, Magnus; Polizzi, E.

    2005-01-01

    overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode...

  12. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  13. Plasma confinement in self-consistent, one-dimensional transport equilibria in the collisionless-ion regime of EBT operation

    International Nuclear Information System (INIS)

    Chang, C.S.; Miller, R.L.

    1983-01-01

    It has long been recognized that if an EBT-confined plasma could be maintained in the collisionless-ion regime, characterized by positive ambipolar potential and positive radial electric field, the particle loss rates could be reduced by a large factor. The extent to which the loss rate of energy could be reduced has not been as clearly determined, and has been investigated recently using a one-dimensional, time-dependent transport code developed for this purpose. We find that the energy confinement can be improved by roughly an order of magnitude by maintaining a positive radial electric field that increases monotonically with radius, giving a large ExB drift near the outer edge of the core plasma. The radial profiles of heat deposition required to sustain these equilibria will be presented, and scenarios for obtaining dynamical access to the equilibria will be discussed

  14. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  15. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  16. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  17. Charge transport problem

    International Nuclear Information System (INIS)

    Lee, E.P.

    1977-01-01

    In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop

  18. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  19. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    Science.gov (United States)

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  20. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  1. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  2. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction

    International Nuclear Information System (INIS)

    Bourdier, A.

    1999-01-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  3. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  4. Does the low hole transport mass in and Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    Science.gov (United States)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon , , and square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high and valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in and wires. The channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  5. Charge transport in organic semiconductors.

    Science.gov (United States)

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  6. Linking the plasma code EDGE2D to the neutral code NIMBUS for a self consistent transport model of the boundary

    International Nuclear Information System (INIS)

    De Matteis, A.

    1987-01-01

    This report describes the fully automatic linkage between the finite difference, two-dimensional code EDGE2D, based on the classical Braginskii partial differential equations of ion transport, and the Monte Carlo code NIMBUS, which solves the integral form of the stationary, linear Boltzmann equation for neutral transport in a plasma. The coupling has been performed for the real poloidal geometry of JET with two belt-limiters and real magnetic configurations with or without a single-null point. The new integrated system starts from the magnetic geometry computed by predictive or interpretative equilibrium codes and yields the plasma and neutrals characteristics in the edge

  7. Modeling charge transport properties of cyano-substituted PPV

    International Nuclear Information System (INIS)

    Correia, Helena M.G.; Ramos, Marta M.D.

    2003-01-01

    In recent years, poly (p-phenylenevinylene) (PPV) and its derivatives have attracted much interest due to their applications in light-emitting diodes (LEDs). One of the issues that determine device performance is the transport of charge carriers along the polymer strands. For that reason, we investigate the influence of cyano substitution on geometry and electronic behaviour of PPV chains using self-consistent quantum molecular dynamics simulations. Our results suggest that substitution by cyano groups induce distortion in the PPV chains and a charge rearrangement among the polymer atoms. Specifically addressed is the issue concerning estimates of charge (electron and hole) mobility by computer experiments. Significant differences have been found both in the strength of the electric field needed to move positive and negative charge carriers along the polymer chain as well as in charge mobility

  8. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  9. Longitudinal and transverse space charge limitations on transport of maximum power beams

    International Nuclear Information System (INIS)

    Khoe, T.K.; Martin, R.L.

    1977-01-01

    The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams

  10. Charge transport in organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ortmann, Frank

    2009-07-01

    The understanding of charge transport is one of the central goals in the research on semiconducting crystals. For organic crystals this is particularly complicated due to the strength of the electron-phonon interaction which requires the description of a seamless transition between the limiting cases of a coherent band-transport mechanism and incoherent hopping. In this thesis, charge transport phenomena in organic crystals are studied by theoretical means. A theory for charge transport in organic crystals is developed which covers the whole temperature range from low T, where it reproduces an expression from the Boltzmann equation for band transport, via elevated T, where it generalizes Holstein's small-polaron theory to finite bandwidths, up to high T, for which a temperature dependence equal to Marcus' electron-transfer theory is obtained. Thereby, coherent band transport and thermally induced hopping are treated on equal footing while simultaneously treating the electron-phonon interaction non-perturbatively. By avoiding the approximation of narrow polaron bands the theory allows for the description of large and small polarons and serves as a starting point for computational studies. The theoretical description is completed by using ab initio material parameters for the selected crystals under study. These material parameters are taken from density functional theory calculations for durene, naphthalene, and guanine crystals. Besides the analysis of the transport mechanism, special focus is put on the study of the relationship between mobility anisotropy and structure of the crystals. This study is supported by a 3D-visualization method for the transport channels in such crystals which has been derived in this thesis. (orig.)

  11. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  12. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  13. Diffusive charge transport in graphene

    Science.gov (United States)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  14. Trap-controlled charge transport in corona-charged Teflon

    International Nuclear Information System (INIS)

    Gross, B.; Giacometti, J.A.; Ferreira, G.F.L.; Moreno A, R.A.

    1980-01-01

    The stability of negatively charged Teflon electrets is discussed. It is stated that it can only be explained by the assumption that the transport of excess charge is trap - controlled rather than mobility - controlled. (I.C.R.) [pt

  15. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  16. Self consistent field theory of virus assembly

    Science.gov (United States)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  17. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  18. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  19. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  20. Self-consistent studies of magnetic thin film Ni (001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations

  1. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  2. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  3. Self-consistency in Capital Markets

    Science.gov (United States)

    Benbrahim, Hamid

    2013-03-01

    Capital Markets are considered, at least in theory, information engines whereby traders contribute to price formation with their diverse perspectives. Regardless whether one believes in efficient market theory on not, actions by individual traders influence prices of securities, which in turn influence actions by other traders. This influence is exerted through a number of mechanisms including portfolio balancing, margin maintenance, trend following, and sentiment. As a result market behaviors emerge from a number of mechanisms ranging from self-consistency due to wisdom of the crowds and self-fulfilling prophecies, to more chaotic behavior resulting from dynamics similar to the three body system, namely the interplay between equities, options, and futures. This talk will address questions and findings regarding the search for self-consistency in capital markets.

  4. Optimization of nanowire DNA sensor sensitivity using self-consistent simulation

    KAUST Repository

    Baumgartner, S; Vasicek, M; Bulyha, A; Heitzinger, C

    2011-01-01

    In order to facilitate the rational design and the characterization of nanowire field-effect sensors, we have developed a model based on self-consistent charge-transport equations combined with interface conditions for the description of the biofunctionalized surface layer at the semiconductor/electrolyte interface. Crucial processes at the interface, such as the screening of the partial charges of the DNA strands and the influence of the angle of the DNA strands with respect to the nanowire, are computed by a Metropolis Monte Carlo algorithm for charged molecules at interfaces. In order to investigate the sensing mechanism of the device, we have computed the current-voltage characteristics, the electrostatic potential and the concentrations of electrons and holes. Very good agreement with measurements has been found and optimal device parameters have been identified. Our approach provides the capability to study the device sensitivity, which is of fundamental importance for reliable sensing. © IOP Publishing Ltd.

  5. Optimization of nanowire DNA sensor sensitivity using self-consistent simulation

    KAUST Repository

    Baumgartner, S

    2011-09-26

    In order to facilitate the rational design and the characterization of nanowire field-effect sensors, we have developed a model based on self-consistent charge-transport equations combined with interface conditions for the description of the biofunctionalized surface layer at the semiconductor/electrolyte interface. Crucial processes at the interface, such as the screening of the partial charges of the DNA strands and the influence of the angle of the DNA strands with respect to the nanowire, are computed by a Metropolis Monte Carlo algorithm for charged molecules at interfaces. In order to investigate the sensing mechanism of the device, we have computed the current-voltage characteristics, the electrostatic potential and the concentrations of electrons and holes. Very good agreement with measurements has been found and optimal device parameters have been identified. Our approach provides the capability to study the device sensitivity, which is of fundamental importance for reliable sensing. © IOP Publishing Ltd.

  6. Role of molecular charge in nucleocytoplasmic transport.

    Directory of Open Access Journals (Sweden)

    Alexander Goryaynov

    Full Text Available Transport of genetic materials and proteins between the nucleus and cytoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs. A selective barrier formed by phenylalanine-glycine (FG nucleoporins (Nups with net positive charges in the NPC allows for passive diffusion of signal-independent small molecules and transport-receptor facilitated translocation of signal-dependent cargo molecules. Recently, negative surface charge was postulated to be another essential criterion for selective passage through the NPC. However, the charge-driven mechanism in determining the transport kinetics and spatial transport route for either passive diffusion or facilitated translocation remains obscure. Here we employed high-speed single-molecule fluorescence microscopy with an unprecedented spatiotemporal resolution of 9 nm and 400 µs to uncover these mechanistic fundamentals for nuclear transport of charged substrates through native NPCs. We found that electrostatic interaction between negative surface charges on transiting molecules and the positively charged FG Nups, although enhancing their probability of binding to the NPC, never plays a dominant role in determining their nuclear transport mode or spatial transport route. A 3D reconstruction of transport routes revealed that small signal-dependent endogenous cargo protein constructs with high positive surface charges that are destined to the nucleus, rather than repelled from the NPC as suggested in previous models, passively diffused through an axial central channel of the NPC in the absence of transport receptors. Finally, we postulated a comprehensive map of interactions between transiting molecules and FG Nups during nucleocytoplasmic transport by combining the effects of molecular size, signal and surface charge.

  7. Self-consistent field variational cellular method as applied to the band structure calculation of sodium

    International Nuclear Information System (INIS)

    Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.

    1988-01-01

    The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt

  8. Self-consistent gravitational self-force

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    I review the problem of motion for small bodies in general relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed. I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long time scales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.

  9. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  10. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  11. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  12. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  13. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  14. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  15. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  16. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  17. Self-consistent simulation of the CSR effect

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisogano, J.J.

    1998-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces, may cause serious emittance degradation. In this paper, the authors present a self-consistent simulation for the study of the impact of CSR on beam optics. The dynamics of the bunch under the influence of the CSR forces is simulated using macroparticles, where the CSR force in turn depends on the history of bunch dynamics in accordance with causality. The simulation is benchmarked with analytical results obtained for a rigid-line bunch. Here they present the algorithm used in the simulation, along with the simulation results obtained for bending systems in the Jefferson Lab (JLab) free-electron-laser (FEL) lattice

  18. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  19. Efficient self-consistency for magnetic tight binding

    Science.gov (United States)

    Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.

    2011-06-01

    Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very

  20. Macroscopic acoustoelectric charge transport in graphene

    Science.gov (United States)

    Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-09-01

    We demonstrate macroscopic acoustoelectric transport in graphene, transferred onto piezoelectric lithium niobate substrates, between electrodes up to 500 μm apart. Using double finger interdigital transducers we have characterised the acoustoelectric current as a function of both surface acoustic wave intensity and frequency. The results are consistent with a relatively simple classical relaxation model, in which the acoustoelectric current is proportional to both the surface acoustic wave intensity and the attenuation of the wave caused by the charge transport.

  1. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  2. Understanding charge transport in molecular electronics.

    Science.gov (United States)

    Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R

    2003-12-01

    For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction.

  3. Charge transport through DNA based electronic barriers

    Science.gov (United States)

    Patil, Sunil R.; Chawda, Vivek; Qi, Jianqing; Anantram, M. P.; Sinha, Niraj

    2018-05-01

    We report charge transport in electronic 'barriers' constructed by sequence engineering in DNA. Considering the ionization potentials of Thymine-Adenine (AT) and Guanine-Cytosine (GC) base pairs, we treat AT as 'barriers'. The effect of DNA conformation (A and B form) on charge transport is also investigated. Particularly, the effect of width of 'barriers' on hole transport is investigated. Density functional theory (DFT) calculations are performed on energy minimized DNA structures to obtain the electronic Hamiltonian. The quantum transport calculations are performed using the Landauer-Buttiker framework. Our main findings are contrary to previous studies. We find that a longer A-DNA with more AT base pairs can conduct better than shorter A-DNA with a smaller number of AT base pairs. We also find that some sequences of A-DNA can conduct better than a corresponding B-DNA with the same sequence. The counterions mediated charge transport and long range interactions are speculated to be responsible for counter-intuitive length and AT content dependence of conductance of A-DNA.

  4. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  5. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  6. Theory and simulation of charge transport in disordered organic semiconductors

    NARCIS (Netherlands)

    Bobbert, P.A.; Kondov, I.; Sutman, G.

    2013-01-01

    Charge transport in polymeric or small-molecule organic semiconductors used in organic light-emitting diodes (OLEDs) occurs by hopping of charges between sites at which the charges are localized. The energetic disorder in these semiconductors has a profound influence on the charge transport: charges

  7. Generation of static solutions of the self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations

  8. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  9. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  10. Variational multiscale models for charge transport

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  11. Transportation charges in the gas industry

    International Nuclear Information System (INIS)

    Price, C.

    1994-01-01

    British Gas was privatized in 1986, a monopoly with no direct competition and only very light regulation of the tariff market. The regulator had an obligation to enable competition to develop in the unregulated, large-quantity, contract market. Competitors required access to the BG-owned transportation network. The government has recently rejected the recommendation of divestiture of the supply business, but has accelerated the advent of competition to the domestic market. This paper considers the role of BG's transport charges in these developments, using its past behaviour as a guide, and identifying the issues for future regulation and development of the gas market. (Author)

  12. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  13. Ultrafast Microscopy of Energy and Charge Transport

    Science.gov (United States)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  14. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  15. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  16. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  17. A self-consistent upward leader propagation model

    International Nuclear Information System (INIS)

    Becerra, Marley; Cooray, Vernon

    2006-01-01

    The knowledge of the initiation and propagation of an upward moving connecting leader in the presence of a downward moving lightning stepped leader is a must in the determination of the lateral attraction distance of a lightning flash by any grounded structure. Even though different models that simulate this phenomenon are available in the literature, they do not take into account the latest developments in the physics of leader discharges. The leader model proposed here simulates the advancement of positive upward leaders by appealing to the presently understood physics of that process. The model properly simulates the upward continuous progression of the positive connecting leaders from its inception to the final connection with the downward stepped leader (final jump). Thus, the main physical properties of upward leaders, namely the charge per unit length, the injected current, the channel gradient and the leader velocity are self-consistently obtained. The obtained results are compared with an altitude triggered lightning experiment and there is good agreement between the model predictions and the measured leader current and the experimentally inferred spatial and temporal location of the final jump. It is also found that the usual assumption of constant charge per unit length, based on laboratory experiments, is not valid for lightning upward connecting leaders

  18. Conformation sensitive charge transport in conjugated polymers

    International Nuclear Information System (INIS)

    Mattias Andersson, L.; Hedström, Svante; Persson, Petter

    2013-01-01

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells

  19. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  20. Manipulation of charge transport in thermoelectrics

    Science.gov (United States)

    Zhang, Xinyue; Pei, Yanzhong

    2017-12-01

    While numerous improvements have been achieved in thermoelectric materials by reducing the lattice thermal conductivity (κL), electronic approaches for enhancement can be as effective, or even more. A key challenge is decoupling Seebeck coefficient (S) from electrical conductivity (σ). The first order approximation - a single parabolic band assumption with acoustic scattering - leads the thermoelectric power factor (S2σ) to be maximized at a constant reduced Fermi level (η 0.67) and therefore at a given S of 167 μV/K. This simplifies the challenge of maximization of σ at a constant η, leading to a large number of degenerate transport channels (band degeneracy, Nv) and a fast transportation of charges (carrier mobility, μ). In this paper, existing efforts on this issue are summarized and future prospectives are given.

  1. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  2. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  3. Self-consistent treatment of transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1993-01-01

    A theory is developed for the dynamics of tokamak plasmas considering the influence of combinations of simultaneous heating processes (alpha particle, auxiliary and ohmic), thermal conduction and particle diffusion, thermal and particle pinches, thermalization of alpha particles as well as the effects of boundary conditions. The analysis is based on a generalization of the central expansion technique which transforms the partial differential equations to a set of nonlinear coupled equations in time for the dynamic variables. Oscillatory solutions are found, but only in the presence of alpha particle heating. Examples of extensive computer simulations are included which support and complete the analytic results. (26 refs.)

  4. Persistence length of wormlike micelles composed of ionic surfactants: self-consistent-field predictions

    NARCIS (Netherlands)

    Lauw, Y.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    The persistence length of a wormlike micelle composed of ionic surfactants CnEmXk in an aqueous solvent is predicted by means of the self-consistent-field theory where CnEm is the conventional nonionic surfactant and X-k is an additional sequence of k weakly charged (pH-dependent) segments. By

  5. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  6. Fractal like charge transport in polyaniline nanostructures

    International Nuclear Information System (INIS)

    Nath, Chandrani; Kumar, A.

    2013-01-01

    The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping

  7. Quasiparticle self-consistent GW method: a short summary

    International Nuclear Information System (INIS)

    Kotani, Takao; Schilfgaarde, Mark van; Faleev, Sergey V; Chantis, Athanasios

    2007-01-01

    We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self-consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self-consistent perturbation; the non-interacting Green function G 0 , which is the starting point for GWA to obtain G, is determined self-consistently so as to minimize the perturbative correction generated by GWA. After self-consistency is attained, we have G 0 , W (the screened Coulomb interaction) and G self-consistently. This G 0 can be interpreted as the optimum non-interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e.g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the self-consistency including the off-diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects

  8. Charge Transport in LDPE Nanocomposites Part II—Computational Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available A bipolar charge transport model is employed to investigate the remarkable reduction in dc conductivity of low-density polyethylene (LDPE based material filled with uncoated nanofillers (reported in the first part of this work. The effect of temperature on charge transport is considered and the model outcomes are compared with measured conduction currents. The simulations reveal that the contribution of charge carrier recombination to the total transport process becomes more significant at elevated temperatures. Among the effects caused by the presence of nanoparticles, a reduced charge injection at electrodes has been found as the most essential one. Possible mechanisms for charge injection at different temperatures are therefore discussed.

  9. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  10. Generation of static solutions of self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown

  11. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    Science.gov (United States)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by

  12. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  13. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  14. Parquet equations for numerical self-consistent-field theory

    International Nuclear Information System (INIS)

    Bickers, N.E.

    1991-01-01

    In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

  15. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  16. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  17. Charge Transport Along Phenylenevinylene Molecular Wires

    OpenAIRE

    2006-01-01

    Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...

  18. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  19. Charge transport in single photochromic molecular junctions

    Science.gov (United States)

    Kim, Youngsang; Pietsch, T.; Scheer, Elke; Hellmuth, T.; Pauly, F.; Sysoiev, D.; Huhn, T.; Exner, T.; Groth, U.; Steiner, U.; Erbe, A.

    2012-02-01

    Recently, photoswitchable molecules, i.e. diarylethene, gained significant interest due to their applicability in data storage media, as optical switches, and in novel logic circuits [1]. Diarylethene-derivative molecules are the most promising candidates to design electronic functional elements, because of their excellent thermal stability, high fatigue resistance, and negligible change upon switching [1]. Here, we present the preferential conductance of specifically designed sulfur-free diarylethene molecules [2] bridging the mechanically controlled break-junctions at low temperatures [3]. The molecular energy levels and electrode couplings are obtained by evaluating the current-voltage characteristics using the single-level model [4]. The charge transport mechanism of different types of diarylethene molecules is investigated, and the results are discussed within the framework of novel theoretical predictions. [4pt] [1] M. Del Valle etal., Nat Nanotechnol 2, 176 (2007) S. J. van der Molen etal., Nano. Lett. 9, 76 (2009).[0pt] [2] D. Sysoiev etal., Chem. Eur. J. 17, 6663 (2011).[0pt] [3] Y. Kim etal., Phys. Rev. Lett. 106, 196804 (2011).[0pt] [4] Y. Kim etal., Nano Lett. 11, 3734 (2011). L. Zotti etal., Small 6, 1529 (2010).

  20. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  1. 31 CFR 337.2 - Transportation charges and risks.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Transportation charges and risks. 337... FEDERAL HOUSING ADMINISTRATION DEBENTURES Certificated Debentures § 337.2 Transportation charges and risks... to book-entry form, must be delivered at the expense and risk of the holder. Debentures bearing...

  2. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  3. The effect of ketone defects on the charge transport and charge recombination in polyfluorenes

    NARCIS (Netherlands)

    Kuik, M.; Wetzelaer, G.-J.A.H.; Laddé, J.G.; Nicolai, H.T.; Wildeman, J.; Sweelssen, J.; Blom, P.W.M.

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  4. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  5. A self-consistent first-principle based approach to model carrier mobility in organic materials

    International Nuclear Information System (INIS)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang

    2015-01-01

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC

  6. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  7. Self-consistent approximations beyond the CPA: Part II

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1982-01-01

    This paper concentrates on a self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl. The construction of the augmented space formalism for a binary alloy is sketched, and the notation to be used derived. Using the operator methods of the augmented space, the self-consistent approximation is derived for the average Green's function, and for evaluating the self-energy, taking into account the scattering by clusters of excitations. The particular cluster approximation desired is derived by treating the scattering by the excitations with S /SUB T/ exactly. Fourier transforms on the disorder-space clustersite labels solve the self-consistent set of equations. Expansion to short range order in the alloy is also discussed. A method to reduce the problem to a computationally tractable form is described

  8. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  9. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  10. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  11. SOCIAL COMPARISON, SELF-CONSISTENCY AND THE PRESENTATION OF SELF.

    Science.gov (United States)

    MORSE, STANLEY J.; GERGEN, KENNETH J.

    TO DISCOVER HOW A PERSON'S (P) SELF-CONCEPT IS AFFECTED BY THE CHARACTERISTICS OF ANOTHER (O) WHO SUDDENLY APPEARS IN THE SAME SOCIAL ENVIRONMENT, SEVERAL QUESTIONNAIRES, INCLUDING THE GERGEN-MORSE (1967) SELF-CONSISTENCY SCALE AND HALF THE COOPERSMITH SELF-ESTEEM INVENTORY, WERE ADMINISTERED TO 78 UNDERGRADUATE MEN WHO HAD ANSWERED AN AD FOR WORK…

  12. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  13. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  14. Self-consistent description of the isospin mixing

    International Nuclear Information System (INIS)

    Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.

    1978-03-01

    The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions

  15. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  16. Molecular Level Manipulation of Interfacial Charge Transport

    Science.gov (United States)

    Song, Charles Kiseok

    The bulk-heterojunction organic (BHJ) photovoltaics (OPVs) and lithium ion battery (LiB) have been extensively studied. Power conversion efficiency (PCE) of an OPV greater than 10% and utilizing group 4 elements as the anode to accommodate high capacity for LiBs are the goals of many studies. However, the currently ubiquitous hole-collecting layer of OPVs limit device performance and durability, and group 4 elements are unstable and brittle to be commercially produced. Thus, my thesis has focused on developing functional and durable interfacial layers (IFLs) for OPVs and characterizing flexible artificial solid-electrolyte interphase (SEI) for LiBs. In Chapter 2, a series of robust organosilane-based dipolar self-assembled monolayer (SAM) IFLs on the tin-doped indium oxide (ITO) anodes of OPVs are developed. These hydrophobic and amorphous IFLs modify anode work functions from 4.66 to 5.27 eV. Two series of Glass/ITO/SAM IFL/Active Layer/LiF/Al BHJ OPVs are fabricated, and a strong positive correlation between the electrochemically-derived heterogeneous electron transport rate constants (ks) and OPV PCEs are observed due to enhanced anode carrier extraction. In Chapter 3, a series of unusually denser organosilane-based SAM IFLs on ITO anodes of OPVs are developed. Precursor mixtures having short and long tail groups were simultaneously deposited to minimize sterical encumbrance and denser SAM IFLs are achieved. These heterogeneous supersaturated SAMs (SHSAMs), with PCE (7.62%) exceeding that of PEDOT:PSS IFL, are found to be 17% denser and enhances PCE by 54% versus comparable devices with homogeneous SAM IFLs due to enhanced charge selectivity and collection. In Chapter 4, libraries of electron affinities (EAs) of widely used conductive polymers are constructed by cyclic voltammetry (CV) in conventional and LiB media. The EAs of the conductive polymer films measured via CV in conventional (EAC) and Li+ battery (EAB) media could be linearly correlated by EAB = (1

  17. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  18. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  19. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  20. Two-Dimensional Charge Transport in Disordered Organic Semiconductors

    NARCIS (Netherlands)

    Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.

    2012-01-01

    We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides

  1. The charge transport in an electrostatic belt generator

    NARCIS (Netherlands)

    Vermeer, A.; Strasters, B.A.

    1975-01-01

    The fluctuations in the charge transport system of an EN Tandem Van de Graaff accelerator have been investigated by means of a frequency spectrum analyser. Frequency spectra of the terminal ripple, the short-circuit current and the voltage at the belt charge screen have been measured. Also the

  2. Charge injection and transport in quantum confined and disordered systems

    NARCIS (Netherlands)

    Houtepen, A.J.

    2007-01-01

    Quantum dots and conducting polymers are modern semiconductors with a high potential for applications such as lasers, LEDs, displays, solar cells etc. These applications require the controlled addition of charge carriers into the material and knowledge of the details of charge transport. This thesis

  3. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization.

  4. Percolative transport in the vicinity of charge-order ferromagnetic ...

    Indian Academy of Sciences (India)

    field driven charge transport in the system is modelled on the basis of an inhomogeneous medium consisting of ... The charge-ordered phase for incommensurate distribution of man- ganese ions (i.e. ... position x = 0.35 measured in a constant voltage mode. The electric ... a drop in resistance on decreasing the temperature.

  5. Quantitative verification of ab initio self-consistent laser theory.

    Science.gov (United States)

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  6. Self-consistent equilibria in the pulsar magnetosphere

    International Nuclear Information System (INIS)

    Endean, V.G.

    1976-01-01

    For a 'collisionless' pulsar magnetosphere the self-consistent equilibrium particle distribution functions are functions of the constants of the motion ony. Reasons are given for concluding that to a good approximation they will be functions of the rotating frame Hamiltonian only. This is shown to result in a rigid rotation of the plasma, which therefore becomes trapped inside the velocity of light cylinder. The self-consistent field equations are derived, and a method of solving them is illustrated. The axial component of the magnetic field decays to zero at the plasma boundary. In practice, some streaming of particles into the wind zone may occur as a second-order effect. Acceleration of such particles to very high energies is expected when they approach the velocity of light cylinder, but they cannot be accelerated to very high energies near the star. (author)

  7. Self-consistent T-matrix theory of superconductivity

    Czech Academy of Sciences Publication Activity Database

    Šopík, B.; Lipavský, Pavel; Männel, M.; Morawetz, K.; Matlock, P.

    2011-01-01

    Roč. 84, č. 9 (2011), 094529/1-094529/13 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0212; GA ČR(CZ) GAP204/11/0015 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * T-matrix * superconducting gap * restricted self-consistency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  8. Charge transport in electrically doped amorphous organic semiconductors.

    Science.gov (United States)

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  10. Charge transport parameters of HBC at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Marcon, V.; Kremer, K.; Andrienko, D. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Nelson, J. [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2008-05-15

    We study the dependence on temperature of the charge transport parameters for hexabenzocoronene (HBC). Following from Marcus theory, two charge transport parameters will be calculated: the transfer integral and the difference in site energies. These parameters are strongly dependent on the orientation and position of molecules. Position and orientation of molecules are determined using molecular dynamics. Transfer integrals are calculated from a simplified INDO method. A technique to compute energetic disorder, that is the spread in site energies for the charge carriers, is developed. In the herringbone phase transfer integrals are higher, but so is energetic disorder. We consider three derivatives of HBC with different side chains, which lead to different phase behaviour and distributions of charge transport parameters. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Self-consistent ECCD calculations with bootstrap current

    International Nuclear Information System (INIS)

    Decker, J.; Bers, A.; Ram, A. K; Peysson, Y.

    2003-01-01

    To achieve high performance, steady-state operation in tokamaks, it is increasingly important to find the appropriate means for modifying and sustaining the pressure and magnetic shear profiles in the plasma. In such advanced scenarios, especially in the vicinity of internal transport barrier, RF induced currents have to be calculated self-consistently with the bootstrap current, thus taking into account possible synergistic effects resulting from the momentum space distortion of the electron distribution function f e . Since RF waves can cause the distribution of electrons to become non-Maxwellian, the associated changes in parallel diffusion of momentum between trapped and passing particles can be expected to modify the bootstrap current fraction; conversely, the bootstrap current distribution function can enhance the current driven by RF waves. For this purpose, a new, fast and fully implicit solver has been recently developed to carry out computations including new and detailed evaluations of the interactions between bootstrap current (BC) and Electron Cyclotron current drive (ECCD). Moreover, Ohkawa current drive (OKCD) appears to be an efficient method for driving current when the fraction of trapped particles is large. OKCD in the presence of BC is also investigated. Here, results are illustrated around projected tokamak parameters in high performance scenarios of AlcatorC-MOD. It is shown that by increasing n // , the EC wave penetration into the bulk of the electron distribution is greater, and since the resonance extends up to high p // values, this situation is the usual ECCD based on the Fisch-Boozer mechanism concerning passing particles. However, because of the close vicinity of the trapped boundary at r/a=0.7, this process is counterbalanced by the Ohkawa effect, possibly leading to a negative net current. Therefore, by injecting the EC wave in the opposite toroidal direction (n // RF by OKCD may be 70% larger than that of ECCD, with a choice of EC

  12. Self-consistent beam halo studies ampersand halo diagnostic development in a continuous linear focusing channel

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1994-01-01

    Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed

  13. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations

    DEFF Research Database (Denmark)

    Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa

    2001-01-01

    Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....

  14. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  15. Self-consistent potential variations in magnetic wells

    International Nuclear Information System (INIS)

    Kesner, J.; Knorr, G.; Nicholson, D.R.

    1981-01-01

    Self-consistent electrostatic potential variations are considered in a spatial region of weak magnetic field, as in the proposed tandem mirror thermal barriers (with no trapped ions). For some conditions, equivalent to ion distributions with a sufficiently high net drift speed along the magnetic field, the desired potential depressions are found. When the net drift speed is not high enough, potential depressions are found only in combination with strong electric fields on the boundaries of the system. These potential depressions are not directly related to the magnetic field depression. (author)

  16. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  17. The self-consistent dynamic pole tide in global oceans

    Science.gov (United States)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  18. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  19. Correlations and self-consistency in pion scattering. II

    International Nuclear Information System (INIS)

    Johnson, M.B.; Keister, B.D.

    1978-01-01

    In an attempt to overcome certain difficulties of summing higher order processes in pion multiple scattering theories, a new, systematic expansion for the interaction of a pion in nuclear matter is derived within the context of the Foldy-Walecka theory, incorporating nucleon-nucleon correlations and an idea of self-consistency. The first two orders in the expansion are evaluated as a function of the nonlocality range; the expansion appears to be rapidly converging, in contrast to expansion schemes previously examined. (Auth.)

  20. A self-consistent model of an isothermal tokamak

    Science.gov (United States)

    McNamara, Steven; Lilley, Matthew

    2014-10-01

    Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.

  1. Self-consistent calculation of 208Pb spectrum

    International Nuclear Information System (INIS)

    Pal'chik, V.V.; Pyatov, N.I.; Fayans, S.A.

    1981-01-01

    The self-consistent model with exact accounting for one-particle continuum is applied to calculate all discrete particle-hole natural parity states with 2 208 Pb nucleus (up to the neutron emission threshold, 7.4 MeV). Contributions to the energy-weighted sum rules S(EL) of the first collective levels and total contributions of all discrete levels are evaluated. Most strongly the collectivization is manifested for octupole states. With multipolarity growth L contributions of discrete levels are sharply reduced. The results are compared with other models and the experimental data obtained in (e, e'), (p, p') reactions and other data [ru

  2. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  3. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  4. Self-consistent electronic-structure calculations for interface geometries

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.

    1992-01-01

    This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method

  5. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  6. Tunneling in a self-consistent dynamic image potential

    International Nuclear Information System (INIS)

    Rudberg, B.G.R.; Jonson, M.

    1991-01-01

    We have calculated the self-consistent effective potential for an electron tunneling through a square barrier while interacting with surface plasmons. This potential reduces to the classical image potential in the static limit. In the opposite limit, when the ''velocity'' of the tunneling electron is large, it reduces to the unperturbed square-barrier potential. For a wide variety of parameters the dynamic effects on the transmission coefficient T=|t 2 | can, for instance, be related to the Buettiker-Landauer traversal time for tunneling, given by τ BL =ℎ|d lnt/dV|

  7. On the hydrodynamic limit of self-consistent field equations

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1980-01-01

    As an approximation to the nuclear many-body problem, the hydrodynamical limit of self-consistent field equations is worked out and applied to the treatment of vibrational and rotational motion. Its validity is coupled to the value of a smallness parameter, behaving as 20Asup(-2/3) with the number of nucleons. For finite nuclei, this number is not small enough as compared to 1, and indeed one observes a discrepancy of roughly a factor of 5 between the hydrodynamic frequencies and the relevant experimental numbers. (orig.)

  8. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    electronic structure whereas the inertial polarization vector is not necessarily in equilibrium with the actual electronic structure. The electronic structure of the compound is described by a correlated electronic wave function - a multiconfigurational self-consistent field (MCSCF) wave function. This wave......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  9. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  10. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  11. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  12. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Luchini, A.; Petricoin, E.F.; Geho, D.H.; Liotta, L.A.; Long, D.P.; Vaisman, I.I.

    2008-01-01

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  13. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Self-consistent chaos in the beam-plasma instability

    International Nuclear Information System (INIS)

    Tennyson, J.L.; Meiss, J.D.

    1993-01-01

    The effect of self-consistency on Hamiltonian systems with a large number of degrees-of-freedom is investigated for the beam-plasma instability using the single-wave model of O'Neil, Winfrey, and Malmberg.The single-wave model is reviewed and then rederived within the Hamiltonian context, which leads naturally to canonical action- angle variables. Simulations are performed with a large (10 4 ) number of beam particles interacting with the single wave. It is observed that the system relaxes into a time asymptotic periodic state where only a few collective degrees are active; namely, a clump of trapped particles oscillating in a modulated wave, within a uniform chaotic sea with oscillating phase space boundaries. Thus self-consistency is seen to effectively reduce the number of degrees- of-freedom. A simple low degree-of-freedom model is derived that treats the clump as a single macroparticle, interacting with the wave and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the waterbag boundaries correspond approximately to invariant tori. This low degree-of-freedom model is seen to compare well with the simulation

  15. Transportable charge in a periodic alternating gradient system

    International Nuclear Information System (INIS)

    Lee, E.P.; Fessenden, T.J.; Laslett, L.J.

    1985-05-01

    A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of +-2%, while the smooth limit values are in error by up to +-30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (greater than or equal to 2 MeV) is required to realize this limit, independent of particle mass

  16. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  17. Charge transport across bulk heterojunction organic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, Genene [University of Kwazulu-Natal, School of Physics, Scottsville (South Africa); Addis Ababa University, Department of Physics, Addis Ababa (Ethiopia)

    2012-01-15

    The transport of charges in organic photo-active film has been the focus of tremendous research in the past few decades with the view to understand the physics of the polymers. Bulk heterojunction type devices are particularly more interesting because of their high power conversion efficiency. We have fabricated organic PV cell based on sandwich type ITO/PEDOT:PSS/APFO green-6:PCBM/LiF/Al device structure. The space charge limited currents were investigated to be able to derive important transport parameters of the devices. The measured current agrees very well with trap free space charge limited transport theory. The zero field mobility and field activation factor found from the data were {mu} {sub 0}=(3.39{+-}0.2) x 10{sup -6} m{sup 2}/V sec and {gamma}=(8.3{+-}0.3) x 10{sup -4} (m/V){sup 1/2}, respectively. (orig.)

  18. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  19. The concept of coupling impedance in the self-consistent plasma wake field excitation

    International Nuclear Information System (INIS)

    Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.

    2016-01-01

    Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.

  20. Charge transport and structure in semimetallic polymers

    DEFF Research Database (Denmark)

    Rudd, Sam; Franco-Gonzalez, Juan F.; Kumar Singh, Sandeep

    2017-01-01

    Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low......-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping...... that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices....

  1. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Manchon, Aurelien; Praetorius, Dirk; Suess, Dieter

    2016-01-01

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  2. Self-consistent determination of quasiparticle properties in nuclear matter

    International Nuclear Information System (INIS)

    Oset, E.; Palanques-Mestre, A.

    1981-01-01

    The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)

  3. Self-Consistent Dynamical Model of the Broad Line Region

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, Bozena [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Sredzinska, Justyna; Hryniewicz, Krzysztof [Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Panda, Swayam [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Wildy, Conor [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Karas, Vladimir, E-mail: bcz@cft.edu.pl [Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic)

    2017-06-22

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  4. Self-consistent expansion for the molecular beam epitaxy equation.

    Science.gov (United States)

    Katzav, Eytan

    2002-03-01

    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.

  5. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Science.gov (United States)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  6. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    International Nuclear Information System (INIS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-01-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter

  7. Self-consistent, relativistic, ferromagnetic band structure of gadolinium

    International Nuclear Information System (INIS)

    Harmon, B.N.; Schirber, J.; Koelling, D.D.

    1977-01-01

    An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed

  8. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  9. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  10. Self-Consistent Dynamical Model of the Broad Line Region

    Directory of Open Access Journals (Sweden)

    Bozena Czerny

    2017-06-01

    Full Text Available We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  11. A self-consistent nuclear energy supply system

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Morita, T.; Kawakami, H.; Arie, K.; Suzuki, M.; Iida, M.; Yamazaki, H.

    1992-01-01

    A self-consistent nuclear energy supply system (SCNESS) is investigated for a Fast Reactor. SCNESS is proposed as a future stable energy supplier with no harmful influence on humans or environment for the ultimate goal of nuclear energy development. SCNESS should be inherently safe, be able to breed fissionable material, and transmute long-lived radioactive nuclides (i.e., minor actinides and long-lived fission products). The relationship between these characteristics and the spatial assignment of excess neutrons (v-1) for each characteristic are analyzed. The analysis shows that excess neutrons play an intrinsic role in realizing SCNESS. The reactor concept of SCNESS is investigated by considering utilization of excess neutrons. Results show that a small-size axially double-layered annular core with metal fuel is a choice candidate for SCNESS. SCNESS is concluded feasible. (author). 4 refs., 9 figs

  12. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...

  13. Investigating anomalous transport of electrolytes in charged porous media

    Science.gov (United States)

    Skjøde Bolet, Asger Johannes; Mathiesen, Joachim

    2017-04-01

    Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.

  14. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  15. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  16. Modeling of the 3RS tau protein with self-consistent field method and Monte Carlo simulation

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Jho, Y.S.; Zhulina, E.B.

    2010-01-01

    Using a model with amino acid resolution of the 196 aa N-terminus of the 3RS tau protein, we performed both a Monte Carlo study and a complementary self-consistent field (SCF) analysis to obtain detailed information on conformational properties of these moieties near a charged plane (mimicking the

  17. Microscopic origins of charge transport in triphenylene systems

    Science.gov (United States)

    Thompson, Ian R.; Coe, Mary K.; Walker, Alison B.; Ricci, Matteo; Roscioni, Otello M.; Zannoni, Claudio

    2018-06-01

    We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of ≈9000 hexa-octyl-thio-triphenylene discotic mesogens with dimensions of ≈20 ×20 ×60 nm3 . Ordered (columnar) and disordered isotropic morphologies are obtained from a combination of atomistic and coarse-grained molecular-dynamics simulations. Electronic structure codes are used to find charge hopping rates at the microscopic level. Energetic disorder is included through the Thole model. Kinetic Monte Carlo simulations then predict charge mobilities. We reproduce the large increase in mobility in going from an isotropic to a columnar morphology. To understand how these mobilities depend on the morphology and hopping rates, we employ graph theory to analyze charge trajectories by representing the film as a charge-transport network. This approach allows us to identify spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to ensure good transport characteristics or may otherwise act as traps. Our analysis is straightforward to implement and will be a useful tool in linking materials to device performance, for example, to investigate the influence of local inhomogeneities in the current density. Our mobility-field curves show an increasing mobility with field, as would be expected for an organic semiconductor.

  18. Diffusive charge transport in graphene on SiO 2

    Science.gov (United States)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  19. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  20. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  1. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  2. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Kužel, Petr; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-01-01

    Roč. 91, č. 19 (2015), "195443-1"-"195443-10" ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : silicon nanocrystals * charge transport * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  3. Magnetoresistance and charge transport in graphene governed by nitrogen dopants.

    Science.gov (United States)

    Rein, Markus; Richter, Nils; Parvez, Khaled; Feng, Xinliang; Sachdev, Hermann; Kläui, Mathias; Müllen, Klaus

    2015-02-24

    We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a 6-fold increase in the charge carrier concentration up to 4 × 10(13) cm(-2) at room temperature, indicating highly effective doping. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centers.

  4. On the Structure of the Fixed Charge Transportation Problem

    Science.gov (United States)

    Kowalski, K.

    2005-01-01

    This work extends the theory of the fixed charge transportation problem (FCTP), currently based mostly on a forty-year-old publication by Hirsch and Danzig. This paper presents novel properties that need to be considered by those using existing, or those developing new methods for optimizing FCTP. It also defines the problem in an easier way,…

  5. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  6. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is

  7. Ambipolar charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Smits, E.C.P.; Anthopoulos, T.D.; Setayesh, S.; Veenendaal, van E.; Coehoorn, R.; Blom, P.W.M.; Boer, de B.; Leeuw, de D.M.

    2006-01-01

    A model describing charge transport in disordered ambipolar organic field-effect transistors is presented. The basis of this model is the variable-range hopping in an exponential density of states developed for disordered unipolar organic transistors. We show that the model can be used to calculate

  8. Charge transport in conjugated polymers: a multiscale picture

    Science.gov (United States)

    Ruehle, Victor; Kirkpatrick, James; Kremer, Kurt; Andrienko, Denis

    2009-03-01

    A framework to study charge transport in conjugated polymers using realistic morphologies is developed. First, the atomistic force field is refined using first-principles calculations. Systematic coarse graining is then performed to extend simulation times and system sizes accessible to molecular dynamics simulations. Material morphologies are generated using the coarse grained and atomistic models. Finally, the charge mobility is obtained using temperature activated hopping picture for charge transport [1]. The framework is tested on neutral and oxidized polypyrrole with different structural ordering [2]. [4pt] [1] J. Kirkpatrick, V. Marcon, J. Nelson, K. Kremer, D. Andrienko, Phys. Rev. Lett. 98, 227402 (2007)[0pt] [2] V. Ruehle, J. Kirkpatrick, K. Kremer, D. Andrienko, Phys. Stat. Solidi B, 245, 844 (2008)

  9. Disorder-tuned charge transport in organic semiconductors

    Science.gov (United States)

    Xu, Feng; Qiu, Dong; Yan, Dadong

    2013-02-01

    We propose that the polaron transport in organic semiconductors is remarkably tuned by the fluctuation of polarization energy. The tuning effect of energetic fluctuation not only causes a continuous transition from non-Arrhenius to Arrhenius temperature activated charge transport with increasing moderate disorder strengths but also results in a band-like conduction in the low disorder regime which benefits from the enhanced mobilities in shallow trap states. As a result, a unified description of polaron transport is obtained for a set of typical organic semiconductors.

  10. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  11. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    Science.gov (United States)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  12. Transport and matching of low energy space charge dominated beams

    International Nuclear Information System (INIS)

    Pandit, V.S.

    2013-01-01

    The transport and matching of low energy high intensity beams from the ion source to the subsequent accelerating structure are of considerable interest in recent years for variety of applications such as Accelerator driven system (ADSS), transmutation of nuclear waste, spallation neutron sources etc. It is essential to perform detailed simulations with experimentation to predict the beam evolution in the presence of nonlinear self as well as external fields before the design of the next accelerating structure is finalized. In order to study and settle various physics and technical issues related with transport of space charge dominated beams we have developed a 2.45 GHz microwave ion source at VECC which is now delivering more than 10 mA proton beam current at 80 keV. We have successfully transported well collimated 8 mA proton beam through the solenoid based 3 meter long transport line and studied various beam properties. We have also studied the transport of beam through spiral inflector at low beam current ∼ 1mA. In this article we will discuss the beam transport issues and describe a technique for simulation of beam envelopes in presence of linear space charge effects. We use canonical description of the motion of a single particle and then obtain first order differential equations for evolution of the moments of beam ensemble by assuming uniform distribution of the beam. We will also discuss the methodology used in the simulations to understand the observed beam behaviour during transport. (author)

  13. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    Science.gov (United States)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  14. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  15. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  16. Organic n-type materials for charge transport and charge storage applications.

    Science.gov (United States)

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  17. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  18. A new mixed self-consistent field procedure

    Science.gov (United States)

    Alvarez-Ibarra, A.; Köster, A. M.

    2015-10-01

    A new approach for the calculation of three-centre electronic repulsion integrals (ERIs) is developed, implemented and benchmarked in the framework of auxiliary density functional theory (ADFT). The so-called mixed self-consistent field (mixed SCF) divides the computationally costly ERIs in two sets: far-field and near-field. Far-field ERIs are calculated using the newly developed double asymptotic expansion as in the direct SCF scheme. Near-field ERIs are calculated only once prior to the SCF procedure and stored in memory, as in the conventional SCF scheme. Hence the name, mixed SCF. The implementation is particularly powerful when used in parallel architectures, since all RAM available are used for near-field ERI storage. In addition, the efficient distribution algorithm performs minimal intercommunication operations between processors, avoiding a potential bottleneck. One-, two- and three-dimensional systems are used for benchmarking, showing substantial time reduction in the ERI calculation for all of them. A Born-Oppenheimer molecular dynamics calculation for the Na+55 cluster is also shown in order to demonstrate the speed-up for small systems achievable with the mixed SCF. Dedicated to Sourav Pal on the occasion of his 60th birthday.

  19. Self-consistent approach for neutral community models with speciation

    Science.gov (United States)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  20. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Self-consistent removal of sawtooth oscillations from transient plasma data by generalized singular value decomposition

    International Nuclear Information System (INIS)

    Erba, M.; Mattioli, M.; Segui, J.L.

    1997-10-01

    This paper addresses the problem of removing sawtooth oscillations from multichannel plasma data in a self-consistent way, thereby preserving transients that have a different physical origin. The technique which does this is called the Generalized Singular Value Decomposition (GSVD), and its properties are discussed. Using the GSVD, we analyze spatially resolved electron temperature measurements from the Tore Supra tokamak, made in transient regimes that are perturbed either by the laser blow-off injection of impurities or by pellet injection. Non-local transport issues are briefly discussed. (author)

  2. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei; Gao, Nan; Lu, Congyan; Wang, Wei; Ji, Zhuoyu; Bi, Chong; Han, Zhiheng; Lu, Nianduan; Yang, Guanhua; Li, Yuan; Liu, Qi; Li, Ling; Liu, Ming

    2018-01-01

    , the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I

  3. Self-consistent field theory for the interactions between keratin intermediate filaments

    International Nuclear Information System (INIS)

    Akinshina, Anna; Jambon-Puillet, Etienne; Warren, Patrick B; Noro, Massimo G

    2013-01-01

    Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region

  4. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  5. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  6. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  7. Charge transport in non-irradiated and irradiated silicon detectors

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.L.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    A model describing the transport of the charge carriers generated in n-type silicon detectors by ionizing particles is presented. In order to reproduce the experimental current pulse responses induced by α and β particles in non-irradiated and irradiated detectors up to fluences (PHI) much beyond the n to p-type inversion, an n-type region 15 μm deep is introduced on the p + side of the diode. This model also gives mobilities which decrease linearly up to fluences of around 5x10 13 particles/cm 2 and beyond, converging to saturation values of about 1000 and 450 cm 2 /V s for electrons and holes, respectively. The charge carrier lifetime degradation with increased fluence, due to trapping, is responsible for a predicted charge collection deficit for β particles and for α particles which is found to agree with direct CCE measurements. (author)

  8. An alternative approach to charge transport in semiconducting electrodes

    Science.gov (United States)

    Thomchick, J.; Buoncristiani, A. M.

    1980-01-01

    The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.

  9. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  10. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  11. Charge-carrier transport in large-area epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, Ferdinand; Popp, Matthias; Weber, Heiko B. [Lehrstuhl fuer Angewandte Physik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany); Jobst, Johannes [Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University (Netherlands); Shallcross, Sam [Lehrstuhl fuer theoretische Festkoerperphysik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany)

    2017-11-15

    We present an overview of recent charge carrier transport experiments in both monolayer and bilayer graphene, with emphasis on the phenomena that appear in large-area samples. While many aspects of transport are based on quantum mechanical concepts, in the large-area limit classical corrections dominate and shape the magnetoresistance and the tunneling conductance. The discussed phenomena are very general and can, with little modification, be expected in any atomically thin 2D conductor. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Adiabatic and Nonadiabatic Charge Transport in Li-S Batteries

    DEFF Research Database (Denmark)

    Park, Haesun; Kumar, Nitin; Melander, Marko

    2018-01-01

    The insulating nature of the redox end members in Li-S batteries, -S and Li2S, has the potential to limit the capacity and efficiency of this emerging energy storage system. Nevertheless, the mechanisms responsible for ionic and electronic transport in these materials remain a matter of debate...... studies, we conclude that low equilibrium carrier concentrations are responsible for sluggish charge transport in -S and Li2S. Thus, a potential strategy for improving the performance of Li-S batteries is to increase the concentrations of holes in these redox end members....

  13. Intrinsic Charge Transport in Organic Field-Effect Transistors

    Science.gov (United States)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  14. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available This work presents results of bulk conductivity and surface potential decay measurements on low-density polyethylene and its nanocomposites filled with uncoated MgO and Al2O3, with the aim to highlight the effect of the nanofillers on charge transport processes. Material samples at various filler contents, up to 9 wt %, were prepared in the form of thin films. The performed measurements show a significant impact of the nanofillers on reduction of material’s direct current (dc conductivity. The investigations thus focused on the nanocomposites having the lowest dc conductivity. Various mechanisms of charge generation and transport in solids, including space charge limited current, Poole-Frenkel effect and Schottky injection, were utilized for examining the experimental results. The mobilities of charge carriers were deduced from the measured surface potential decay characteristics and were found to be at least two times lower for the nanocomposites. The temperature dependencies of the mobilities were compared for different materials.

  15. Observation of quantum interference in molecular charge transport

    DEFF Research Database (Denmark)

    Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels

    2012-01-01

    for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface......, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire....

  16. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-consistent Modeling of Elastic Anisotropy in Shale

    Science.gov (United States)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  18. Charge transport through molecular rods with reduced pi-conjugation.

    Science.gov (United States)

    Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike

    2008-10-24

    A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.

  19. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  20. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  1. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  2. Anharmonic phonons and second-order phase-transitions by the stochastic self-consistent harmonic approximation

    Science.gov (United States)

    Mauri, Francesco

    Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.

  3. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  4. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  5. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  6. Self-consistent simulation of the CSR effect on beam emittance

    CERN Document Server

    Li, R

    1999-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in t...

  7. Self-consistent simulation of the CSR effect on beam emittance

    International Nuclear Information System (INIS)

    Li, R.

    1999-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in the Jefferson Lab FEL lattice

  8. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  9. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  10. Self-consistent unstirred layers in osmotically driven flows

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Bohr, Tomas; Bruus, Henrik

    2010-01-01

    It has long been recognized that the osmotic transport characteristics of membranes may be strongly influenced by the presence of unstirred concentration boundary layers adjacent to the membrane. Previous experimental as well as theoretical works have mainly focused on the case where the solutions...

  11. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  12. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2018-01-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  13. Longitudinal halo in beam bunches with self-consistent 6-D distributions

    International Nuclear Information System (INIS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.

    1998-01-01

    We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation

  14. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  15. Self-consistent analysis of radial electric field and fast ion losses in CHS Torsatron/Heliotron

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Itoh, S.

    1992-09-01

    A self-consistent analysis is developed to determine the radial electric field and loss cone boundary in Torsatron/Heliotron plasmas under the influence of non-classical ion losses such as the loss cone loss ans charge exchange loss of fast ions with neutrals. Analysis is applied to the NBI heated plasmas in the Compact Helical System (CHS) device. Comparison is made between theoretical results and experimental observations. The increased ion particle losses caused by the orbit loss and charge exchange loss with neutrals make the radial electric field more negative than the value of purely neoclassical calculation. The partition of the injection energy among the shine through, direct orbit loss, change exchange loss and bulk heating is evaluated by using the self-consistent electric field profile. On-going experiments in the CHS device are briefly introduced. (author)

  16. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  17. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  18. Stochastic approach and fluctuation theorem for charge transport in diodes

    Science.gov (United States)

    Gu, Jiayin; Gaspard, Pierre

    2018-05-01

    A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.

  19. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model

  20. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-01-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  1. Charge transportation in polyaniline/V2O5 composites

    International Nuclear Information System (INIS)

    Huguenin, Fritz; Torresi, Roberto M.

    2004-01-01

    In this work, composites formed from a mixture of V 2 O 5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI] 0.3 V 2 O 5 nanocomposite is achieved predominantly by Li + migration. However, the charge compensation in the [PANI]V 2 O 5 microcomposite occurs by Li + and Cl O 4 - transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties. (author)

  2. Charge and Spin Transport in Dilute Magnetic Semiconductors. Final report

    International Nuclear Information System (INIS)

    Ullrich, Carsten A.

    2009-01-01

    This proposal to the DOE outlines a three-year plan of research in theoretical and computational condensed-matter physics, with the aim of developing a microscopic theory for charge and spin dynamics in disordered materials with magnetic impurities. Important representatives of this class of materials are the dilute magnetic semiconductors (DMS), which have attracted great attention as a promising basis for spintronics devices. There is an intense experimental effort underway to study the transport properties of ferromagnetic DMS such as (Ga,Mn)As, and a number of interesting features have emerged: negative magnetoresistance, anomalous Hall effect, non-Drude dynamical conductivity, and resistivity maxima at the Curie temperature. Available theories have been able to account for some of these features, but at present we are still far away from a systematic microscopic understanding of transport in DMS. We propose to address this challenge by developing a theory of charge and spin dynamics based on a combination of the memory-function formalism and time-dependent density functional theory. This approach will be capable of dealing with two important issues: (a) the strong degree of correlated disorder in DMS, close to the localization transition (which invalidates the usual relaxation-time approximation to the Boltzmann equation), (b) the essentially unknown role of dynamical many-body effects such as spin Coulomb drag. We will calculate static and dynamical conductivities in DMS as functions of magnetic order and carrier density, which will advance our understanding of recent transport and infrared absorption measurements. Furthermore, we will study collective plasmon excitations in DMS (3D, 2D and quantum wells), whose linewidths could constitute a new experimental probe of the correlation of disorder, many-body effects and charge and spin dynamics in these materials.

  3. Noise And Charge Transport In Carbon Nanotube Devices

    Science.gov (United States)

    Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel, Jennifer; Rinzler, Andrew G.

    2005-11-01

    The charge transport and noise properties of three terminal, gated devices containing multiple, single wall, metallic and semiconductor carbon nanotubes have been measured as a function of gate and drain bias at 300K. Using pulsed bias the metallic tubes could be burned sequentially enabling the separation of measured conductance and low frequency excess noise into metallic and semiconductor contributions. The relative low frequency excess noise of the metallic tubes was about a factor 100 lower than that of the semiconductor tubes, whereas the conductance of the metallic tubes was significantly higher (10 to 50 times) than that of the semiconductor tubes.

  4. The solution of the Poisson-Boltzmann's equation for self-consistent potential of infinite, random, nonlinear and non-uniform system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu

    1998-01-01

    A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)

  5. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  6. Chemical disorder and charge transport in ferromagnetic manganites

    International Nuclear Information System (INIS)

    Pickett, W.E.; Singh, D.J.

    1997-01-01

    Disorder broadening due to randomly distributed La 3+ and A 2+ (A=Ca,Sr,Ba) cations is combined with a virtual-crystal treatment of the average system to evaluate the effects on both majority and minority transport in the ferromagnetic La 2/3 A 1/3 MnO 3 system. The low-density minority carriers which lie in the band tail are localized by disorder, while the majority carriers retain long mean free paths reflected in the observed strongly metallic conductivity. In addition to obtaining transport parameters, we provide evidence that local distortions are due to nearby ionic charges rather than to ion size considerations. copyright 1997 The American Physical Society

  7. Mass and charge transport in micro and nanofluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Okkels, Fridolin

    2007-01-01

    and charge transport coefficients that satisfy Onsager relations. In the limit of nonoverlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radiusR ¼ 2A=P with Aand P being the cross-sectional area and perimeter......, respectively. In particular, we consider the limits of thin nonoverlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electrohydrodynamic interactions.......We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electroosmosis. We use aHilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass...

  8. Simulating charge transport to understand the spectral response of Swept Charge Devices

    Science.gov (United States)

    Athiray, P. S.; Sreekumar, P.; Narendranath, S.; Gow, J. P. D.

    2015-11-01

    Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims: The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods: Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results: We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at

  9. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  10. Charge transport properties in microcrystalline KDyFe(China)6

    International Nuclear Information System (INIS)

    Aubert, P.H.; Goubard, F.; Chevrot, C.; Tabuteau, A.

    2007-01-01

    Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures. - Graphical abstract: Dy and Fe polyhedra packing in the cell of KDyFe(China) 6 .3.5H 2 O shows occluded water molecules and potassium ions forming a pseudohexagonal 2D sub-lattice connected to each other by diffusion channels

  11. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2016-10-01

    Full Text Available Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer (D1 manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one (D2 displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1, in a three-layer organic light emitting diode (OLED by solution processing gave a pure blue emission with Commission Internationale de l’Éclairage 1931 CIE xy = (0.16, 0.12, a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m2. This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  12. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.

    Science.gov (United States)

    Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus

    2016-10-20

    Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  13. Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    International Nuclear Information System (INIS)

    Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter

    2012-01-01

    A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at x E ≡ 0 towards the plasma bulk. An arbitrary endpoint x B is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at x B and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [x E , x B ] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at x B until they reach the electrode at x E , utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes n im (x) of the ion density n i (x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the

  14. Simulations of charge transport in organic light emitting diodes

    International Nuclear Information System (INIS)

    Martin, Simon James

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for the observed temperature and electric field dependence of carrier mobilities in disordered organic semiconductors. A hopping transport model has been developed which accounts explicitly for the structure in highly ordered films of rigid rod liquid-crystalline conjugated polymers. Chapter 2 discusses the formation of metal-semiconductor contacts, and current injection processes in OLEDs. If the barrier to carrier injection at a metal-semiconductor contact is small, or the contact is Ohmic, then the current may be space charge limited; this second limiting regime of current flow for OLEDs is also described. The remainder of Chapter 2 describes the drift-diffusion model used in this work in some detail. Chapter 3 contains results obtained from modelling the J-V characteristics of single-layer OLEDs, which are compared to experimental data in order to validate the drift-diffusion model. Chapter 4 contains results of simulating bi-layer OLEDs; rather than examining J

  15. 19 CFR 351.515 - Internal transport and freight charges for export shipments.

    Science.gov (United States)

    2010-04-01

    ... shipments. 351.515 Section 351.515 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... Internal transport and freight charges for export shipments. (a) Benefit—(1) In general. In the case of internal transport and freight charges on export shipments, a benefit exists to the extent that the charges...

  16. Charge transport through image charged stabilized states in a single molecule single electron transistor device

    International Nuclear Information System (INIS)

    Hedegard, Per; Bjornholm, Thomas

    2005-01-01

    The present paper gives an elaborate theoretical description of a new molecular charge transport mechanism applying to a single molecule trapped between two macroscopic electrodes in a solid state device. It is shown by a Hubbard type model of the electronic and electrostatic interactions, that the close proximity of metal electrodes may allow electrons to tunnel from the electrode directly into very localized image charge stabilized states on the molecule. Due to this mechanism, an exceptionally large number of redox states may be visited within an energy scale which would normally not allow the molecular HOMO-LUMO gap to be transversed. With a reasonable set of parameters, a good fit to recent experimental values may be obtained. The theoretical model is furthermore used to search for the physical boundaries of this effect, and it is found that a rather narrow geometrical space is available for the new mechanism to work: in the specific case of oligophenylenevinylene molecules recently explored in such devices several atoms in the terminal benzene rings need to be at van der Waal's distance to the electrode in order for the mechanism to work. The model predicts, that chemisorption of the terminal benzene rings too gold electrodes will impede the image charge effect very significantly because the molecule is pushed away from the electrode by the covalent thiol-gold bond

  17. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    Science.gov (United States)

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  18. Pulling it all together: the self-consistent distribution of neutral tori in Saturn's Magnetosphere based on all Cassini observations

    Science.gov (United States)

    Smith, H. T.; Richardson, J. D.

    2017-12-01

    Saturn's magnetosphere is unique in that the plumes from the small icy moon, Enceladus, serve at the primary source for heavy particles in Saturn's magnetosphere. The resulting co-orbiting neutral particles interact with ions, electrons, photons and other neutral particles to generate separate H2O, OH and O tori. Characterization of these toroidal distributions is essential for understanding Saturn magnetospheric sources, composition and dynamics. Unfortunately, limited direct observations of these features are available so modeling is required. A significant modeling challenge involves ensuring that either the plasma and neutral particle populations are not simply input conditions but can provide feedback to each population (i.e. are self-consistent). Jurac and Richardson (2005) executed such a self-consistent model however this research was performed prior to the return of Cassini data. In a similar fashion, we have coupled a 3-D neutral particle model (Smith et al. 2004, 2005, 2006, 2007, 2009, 2010) with a plasma transport model (Richardson 1998; Richardson & Jurac 2004) to develop a self-consistent model which is constrained by all available Cassini observations and current findings on Saturn's magnetosphere and the Enceladus plume source resulting in much more accurate neutral particle distributions. We present a new self-consistent model of the distribution of the Enceladus-generated neutral tori that is validated by all available observations. We also discuss the implications for source rate and variability.

  19. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  20. Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides.

    Science.gov (United States)

    Liu, Yuan; Guo, Jian; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Ding, Mengning; Shakir, Imran; Gambin, Vincent; Huang, Yu; Duan, Xiangfeng

    2017-09-13

    Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS 2 , WSe 2 ). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.

  1. Ionic charge transport in strongly structured molten salts

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Amoruso, M.; Tosi, M.P.

    1999-08-01

    Data on the d.c. ionic conductivity for strongly structured molten halides of divalent and trivalent metals near freezing are interpreted as mainly reflecting charge transport by the halogen ions. On this assumption the Nernst-Einstein relation allows an estimate of the translational diffusion coefficient D tr of the halogen. In at least one case (molten ZnCl 2 ) D tr is much smaller than the measured diffusion coefficient, pointing to substantial diffusion via neutral units. The values of D tr estimated from the Nernst-Einstein relation are analyzed on the basis of a model involving two parameters, i.e. a bond-stretching frequency ω and an average waiting time τ. With the help of Raman scattering data for ω, the values of τ are evaluated and found to mostly lie in the range 0.02 - 0.3 ps for a vast class of materials. (author)

  2. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  3. Quantized charge transport in chiral Majorana edge modes

    Science.gov (United States)

    Rachel, Stephan; Mascot, Eric; Cocklin, Sagen; Vojta, Matthias; Morr, Dirk K.

    2017-11-01

    Majorana fermions can be realized as quasiparticles in topological superconductors, with potential applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited on the surface of s -wave superconductors—Shiba lattices—have been proposed as a new platform for topological superconductivity. These systems possess the great advantage that they are accessible via scanning-probe techniques and thus enable the local manipulation and detection of Majorana modes. Using a nonequilibrium Green's function technique we demonstrate that the topological Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport properties. Most remarkably, these Majorana modes possess a quantized charge conductance that is proportional to the topological Chern number, C , and carry a supercurrent whose chirality reflects the sign of C . These results establish nanoscopic Shiba islands as promising components in future topology-based devices.

  4. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  5. DNA Charge Transport: From Chemical Principles to the Cell

    Science.gov (United States)

    Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2016-01-01

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  6. The thermoballistic transport model a novel approach to charge carrier transport in semiconductors

    CERN Document Server

    Lipperheide, Reinhard

    2014-01-01

    The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic  models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms  the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detai...

  7. Charge injection and transport properties of an organic light-emitting diode

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2016-01-01

    Full Text Available The charge behavior of organic light emitting diode (OLED is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport.

  8. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed

    2017-07-10

    Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide-bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo-generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.

  9. New organic photorefractive material composed of a charge-transporting dendrimer and a stilbene chromophore

    Science.gov (United States)

    Bai, Jaeil; Ducharme, Stephen; Leonov, Alexei G.; Lu, Liu; Takacs, James M.

    1999-10-01

    In this report, we introduce new organic photorefractive composites consisting of charge transporting den-drimers highly doped with a stilbene nonlinear optic chromophore, The purpose of making these composites is to improve charge transport, by reducing inhomogeneity when compared to ordinary polymer-based systems. Because the structure of this material gives us freedom to control the orientation of charge transport agents synthetically, we can study the charge transport mechanism more systematically than in polymers. We discuss this point and present the characterization results for this material.

  10. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  11. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  12. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    Bina, M.

    2014-01-01

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  13. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  14. Self-Consistent simulations of High-Intensity Beams and E-Clouds with WARP POSINST

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friendman, A.; Grote, D.P.

    2006-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC codeWARP and the 2-D ''slice'' ecloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). In earlier papers, we described the capabilities and presented recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). We concentrate here on the description of the implementation of the ''quasi-static'' mode of operation, for comparison with other codes, and introduce a new consideration on the estimate of computing time between the quasi-static and the fully self-consistent modes

  15. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  16. Self-consistent description of isobaric 0+ states taking the one-particle continuum into account exactly

    International Nuclear Information System (INIS)

    Pyatov, N.I.; Salamov, D.I.; Fayans, S.A.

    1981-01-01

    The properties of discrete and resonance isobaric 0 + states of nuclei are studied within the framework of a self-consistent approach. The equations for the charge-exchange effective field are solved in the coordinate representation taking the one-particle continuum into account exactly. Microscopic estimates of the analog-state energies and the matrix elements, transition densities, and strength functions of the isospin-allowed and forbidden Fermi transitions are obtained together with the values of the isospin admixtures in the ground states of the parent nuclei and their analogs. The escape widths of the isobaric resonances are also discussed

  17. Application of a general self-consistency scheme in the linear combination of atomic orbitals formalism to the electronic and structural properties of Si and W

    International Nuclear Information System (INIS)

    Chan, C.T.; Vanderbilt, D.; Louie, S.G.; Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)

    1986-01-01

    We present a general self-consistency procedure formulated in momentum space for electronic structure and total-energy calculations of crystalline solids. It is shown that both the charge density and the change in the Hamiltonian matrix elements in each iteration can be calculated in a straight-forward fashion once a set of overlap matrices is computed. The present formulation has the merit of bringing the self-consistency problem for different basis sets to the same footing. The scheme is used to extend a first-principles pseudopotential linear combination of Gaussian orbitals method to full point-by-point self-consistency, without refitting of potentials. It is shown that the set of overlap matrices can be calculated very efficiently if we exploit the translational and space-group symmetries of the system under consideration. This scheme has been applied to study the structural and electronic properties of Si and W, prototypical systems of very different bonding properties. The results agree well with experiment and other calculations. The fully self-consistent results are compared with those obtained by a variational procedure [J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984)]. We find that the structural properties for bulk Si and W (both systems have no interatomic charge transfer) can be treated accurately by the variational procedure. However, full self-consistency is needed for an accurate description of the band energies

  18. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program

    Science.gov (United States)

    Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi

    2013-01-01

    Random Phase Approximation (RPA) calculations are nowadays an indispensable tool in nuclear physics studies. We present here a complete version implemented with Skyrme-type interactions, with the spherical symmetry assumption, that can be used in cases where the effects of pairing correlations and of deformation can be ignored. The full self-consistency between the Hartree-Fock mean field and the RPA excitations is enforced, and it is numerically controlled by comparison with energy-weighted sum rules. The main limitations are that charge-exchange excitations and transitions involving spin operators are not included in this version. Program summaryProgram title: skyrme_rpa (v 1.00) Catalogue identifier: AENF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5531 No. of bytes in distributed program, including test data, etc.: 39435 Distribution format: tar.gz Programming language: FORTRAN-90/95; easily downgradable to FORTRAN-77. Computer: PC with Intel Celeron, Intel Pentium, AMD Athlon and Intel Core Duo processors. Operating system: Linux, Windows. RAM: From 4 MBytes to 150 MBytes, depending on the size of the nucleus and of the model space for RPA. Word size: The code is written with a prevalent use of double precision or REAL(8) variables; this assures 15 significant digits. Classification: 17.24. Nature of problem: Systematic observations of excitation properties in finite nuclear systems can lead to improved knowledge of the nuclear matter equation of state as well as a better understanding of the effective interaction in the medium. This is the case of the nuclear giant resonances and low-lying collective excitations, which can be described as small amplitude collective motions in the framework of

  19. STM and transport measurements of highly charged ion modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Gillaspy, J.D.

    2007-01-01

    Careful measurements of highly charged ions (HCIs) colliding with gases and surfaces have provided glimpses of intense electronic interactions, but a comprehensive model for the interaction mechanisms, time scales, and resultant nano-features that bridges materials systems is yet to be realized. At the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility, new apparatus is now connected to the HCI beamline to allow preparation of clean, atomically flat surfaces of single crystals, e.g. gold, tungsten and silicon, and deposition and patterning of thin films, e.g. high resistivity oxides, ferromagnetic metals, normal metals and superconductors. Experiments reported here focus on the electronic and morphological structure of HCI induced nano-features. Current activities are focused on using in situ scanning tunneling microscope (STM) on Au(1 1 1) and (separately) ex situ transport measurements to study electronic properties within HCI modified magnetic multilayer systems. Specifically, we are fabricating magnetic multilayers similar to magnetic tunnel junctions (MTJs) (important in advanced magnetic field sensors and superconducting Josephson junction devices) and using HCIs to adjust critical electronic properties. The electrical response of the tunnel junction to HCIs provides a novel approach to performing HCI-induced nanostructure ensemble measurements

  20. Controllable spin-charge transport in strained graphene nanoribbon devices

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  1. Mass and charge transport in IPMC actuators with fractal interfaces

    Science.gov (United States)

    Chang, Longfei; Wu, Yucheng; Zhu, Zicai; Li, Heng

    2016-04-01

    Ionic Polymer-Metal Composite (IPMC) actuators have been attracting a growing interest in extensive applications, which consequently raises the demands on the accuracy of its theoretical modeling. For the last few years, rough landscape of the interface between the electrode and the ionic membrane of IPMC has been well-documented as one of the key elements to ensure a satisfied performance. However, in most of the available work, the interface morphology of IPMC was simplified with structural idealization, which lead to perplexity in the physical interpretation on its interface mechanism. In this paper, the quasi-random rough interface of IPMC was described with fractal dimension and scaling parameters. And the electro-chemical field was modeled by Poisson equation and a properly simplified Nernst-Planck equation set. Then, by simulation with Finite Element Method, a comprehensive analysis on he inner mass and charge transportation in IPMC actuators with different fractal interfaces was provided, which may be further adopted to instruct the performance-oriented interface design for ionic electro-active actuators. The results also verified that rough interface can impact the electrical and mechanical response of IPMC, not only from the respect of the real surface increase, but also from mass distribution difference caused by the complexity of the micro profile.

  2. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  3. Charge and energy transports via poly-phenylacetylene based dendrimers

    Science.gov (United States)

    Shin, Yongwoo; Li, Minghai; Lin, Xi

    2010-03-01

    Poly-Phenylacetylene (PPA) is widely used in photoconductivity, photoluminescence, and light harvesting applications. In this work, we investigate the charge and exciton transport energetics and mechanisms in the PPA-based dendrimers using our recently developed adapted Su-Schrieffer-Heeger (SSH) model Hamiltonians and ab initio Hartree-Fock (HF) calculations. We found both doping and photo-excitation lead to the formation of optical phonon dressed pi electron states, namely the self-localized polarons, in the energy gap. Independent from their origins, these polarons can be self-trapped at multiple lattice locations along the PPA chain, and migrate from one to the next with an activation barrier of ˜0.006 eV, slightly higher than the corresponding barrier found in trans-polyacetylene. The PPA-based dendrimers can be constructed via the meta-positions of phenyl rings. In this case, we found the dendrimer junctions form attractive potential wells for both polarons and excitons, and the width and height of these junction potential wells can be controlled by the geometry of the dendrimers.

  4. Spokes and charged particle transport in HiPIMS magnetrons

    International Nuclear Information System (INIS)

    Brenning, N; Lundin, D; Minea, T; Vitelaru, C; Costin, C

    2013-01-01

    Two separate scientific communities are shown to have studied one common phenomenon, azimuthally rotating dense plasma structures, also called spokes, in pulsed-power E × B discharges, starting from quite different approaches. The first body of work is motivated by fundamental plasma science and concerns a phenomenon called the critical ionization velocity, CIV, while the other body of work is motivated by the applied plasma science of high power impulse magnetron sputtering (HiPIMS). Here we make use of this situation by applying experimental observations, and theoretical analysis, from the CIV literature to HiPIMS discharges. For a practical example, we take data from observed spokes in HiPIMS discharges and focus on their role in charged particle transport, and in electron energization. We also touch upon the closely related questions of how they channel the cross-B discharge current, how they maintain their internal potential structure and how they influence the energy spectrum of the ions? New particle-in-cell Monte Carlo collisional simulations that shed light on the azimuthal drift and expansion of the spokes are also presented. (paper)

  5. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  6. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  7. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-08

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  8. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  9. The self-consistent effective medium approximation (SEMA): New tricks from an old dog

    International Nuclear Information System (INIS)

    Bergman, David J.

    2007-01-01

    The fact that the self-consistent effective medium approximation (SEMA) leads to incorrect values for the percolation threshold, as well as for the critical exponents which characterize that threshold, has led to a decline in using that approximation. In this article I argue that SEMA has the unique capability, which is lacking in other approximation schemes for macroscopic response of composite media, of leading to the discovery or prediction of new critical points. This is due to the fact that SEMA can often lead to explicit equations for the macroscopic response of a composite medium, even when that medium has a rather complicated character. In such cases, the SEMA equations are usually coupled and nonlinear, often even transcendental in character. Thus there is no question of finding exact solutions. Nevertheless, a useful ansatz, leading to a closed form asymptotic solution, can often be made. In this way, singularities in the macroscopic response can be identified from a theoretical or mathematical treatment of the physical problem. This is demonstrated for two problems of magneto-transport in a composite medium, where the SEMA equations are solved using asymptotic analysis, leading to new types of critical points and critical behavior

  10. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  11. Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors

    Science.gov (United States)

    Kadashchuk, Andrey; Tong, Fei; Janneck, Robby; Fishchuk, Ivan I.; Mityashin, Alexander; Pavlica, Egon; Köhler, Anna; Heremans, Paul; Rolin, Cedric; Bratina, Gvido; Genoe, Jan

    2017-09-01

    We demonstrate that the degree of charge delocalization has a strong impact on polarization energy and thereby on the position of the transport band edge in organic semiconductors. This gives rise to long-range potential fluctuations, which govern the electronic transport through delocalized states in organic crystalline layers. This concept is employed to formulate an analytic model that explains a negative field dependence coupled with a positive temperature dependence of the charge mobility observed by a lateral time-of-flight technique in a high-mobility crystalline organic layer. This has important implications for the further understanding of the charge transport via delocalized states in organic semiconductors.

  12. Elastic constants of the hard disc system in the self-consistent free volume approximation

    International Nuclear Information System (INIS)

    Wojciechowski, K.W.

    1990-09-01

    Elastic moduli of the two dimensional hard disc crystal are determined exactly within the Kirkwood self-consistent free volume approximation and compared with the Monte Carlo simulation results. (author). 22 refs, 1 fig., 1 tab

  13. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity

    International Nuclear Information System (INIS)

    Tran, T.M.; Kreischer, K.E.; Temkin, R.J.

    1986-01-01

    In this paper, the energy extraction stage of the gyroklystron [in Advances in Electronics and Electron Physics, edited by C. Marton (Academic, New York, 1979), Vol. 1, pp. 1--54], with a minimum Q cavity is investigated by using a self-consistent radio-frequency (rf) field model. In the low-field, low-current limit, expressions for the self-consistent field and the resulting energy extraction efficiency are derived analytically for an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic results for the self-consistent field structure and efficiency of a gyrotron device. The large signal regime analysis is carried out by numerically integrating the coupled self-consistent equations. Several examples in this regime are presented

  14. Self-consistent hybrid functionals for solids: a fully-automated implementation

    Science.gov (United States)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  15. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  16. Renormalization of self-consistent approximation schemes at finite temperature. II. Applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, Hendrik van; Knoll, Joern

    2002-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of φ 4 theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or the two-particle irreducible effective action concept

  17. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  18. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  19. Renormalization of self-consistent approximation schemes at finite temperature II: applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the φ 4 -theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or 2PI effective action concept. (orig.)

  20. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. E., E-mail: moiseenk@ipp.kharkov.ua; Stadnik, Yu. S., E-mail: stadnikys@kipt.kharkov.ua [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine); Lysoivan, A. I., E-mail: a.lyssoivan@fz-juelich.de [Royal Military Academy, EURATOM-Belgian State Association, Laboratory for Plasma Physics (Belgium); Korovin, V. B. [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine)

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell’s equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell’s equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell’s equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell’s equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  1. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  2. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    Science.gov (United States)

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  4. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  5. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  6. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  7. Semiconductor drift chamber: an application of a novel charge transport scheme

    International Nuclear Information System (INIS)

    Gatti, E.; Rehak, P.

    1983-08-01

    The purpose of this paper is to describe a novel charge tranport scheme in semiconductors in which the field responsible for the charge transport is independent of the depletion field. The application of the novel charge transport scheme leads to the following new semiconductor detectors: (1) Semiconductor Draft Chamber; (2) Ultra low capacitance - large semiconductor x-ray spectrometers and photodiodes; and (3) Fully depleted thick CCD. Special attention is paid to the concept of the Semiconductor Draft Chamber as a position sensing detector for high energy charged particles. Position resolution limiting factors are considered, and the values of the resolutions are given

  8. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  9. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure

    International Nuclear Information System (INIS)

    Hai-Hong, Li; Dong-Mei, Li; Yuan, Li; Kun, Gao; De-Sheng, Liu; Shi-Jie, Xie

    2008-01-01

    Using the tight-binding Su–Schrieffer–Heeger model and a nonadiabatic dynamic evolution method, we study the dynamic processes of the charge injection and transport in a metal/two coupled conjugated polymer chains/metal structure. It is found that the charge interchain transport is determined by the strength of the electric field and the magnitude of the voltage bias applied on the metal electrode. The stronger electric field and the larger voltage bias are both in favour of the charge interchain transport. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...

  11. Modelling the effect of nonplanarity on charge transport along conjugated polymer chains

    International Nuclear Information System (INIS)

    Correia, Helena M.G.; Ramos, Marta M.D.

    2007-01-01

    Conjugated polymers show interesting properties that make them appropriated for nanoelectronics. Several studies of poly(p-phenylene vinylene) (PPV) have suggested that each polymer chain consists of several planar segments, with conjugation length of nanoscale dimension, linked by twists or kinks. A pronounced twist between two planar segments in a PPV chain not only causes loss of main-chain conjugation but it may also alter electron and hole mobility along the chain, which has further implications for the percolation of charge through the polymer film. We used self-consistent quantum molecular dynamics calculations to provide information on the electric field needed to move the injected charges (either electrons or holes) along the planar segments of PPV and to cross the twist between two planar segments perpendicular to each other. Field-dependent charge mobility was also estimated for conjugated segments of various lengths. Our results suggest that electrons can cross the twist between adjacent planar segments for lower applied electric fields than holes if there is no more than one electronic charge (electron or hole) on the PPV chain, otherwise similar fields are needed

  12. Transport of Cryptosporidium parvum Oocysts in Charge Heterogeneous Porous Media: Microfluidics Experiment and Numerical Simulation

    Science.gov (United States)

    Liu, Y.; Meng, X.; Guo, Z.; Zhang, C.; Nguyen, T. H.; Hu, D.; Ji, J.; Yang, X.

    2017-12-01

    Colloidal attachment on charge heterogeneous grains has significant environmental implications for transport of hazardous colloids, such as pathogens, in the aquifer, where iron, manganese, and aluminium oxide minerals are the major source of surface charge heterogeneity of the aquifer grains. A patchwise surface charge model is often used to describe the surface charge heterogeneity of the grains. In the patchwise model, the colloidal attachment efficiency is linearly correlated with the fraction of the favorable patches (θ=λ(θf - θu)+θu). However, our previous microfluidic study showed that the attachment efficiency of oocysts of Cryptosporidium parvum, a waterborne protozoan parasite, was not linear correlated with the fraction of the favorable patches (λ). In this study, we developed a pore scale model to simulate colloidal transport and attachment on charge heterogeneous grains. The flow field was simulated using the LBM method and colloidal transport and attachment were simulated using the Lagrange particle tracking method. The pore scale model was calibrated with experimental results of colloidal and oocyst transport in microfluidic devices and was then used to simulate oocyst transport in charge heterogeneous porous media under a variety of environmental relative conditions, i.e. the fraction of favorable patchwise, ionic strength, and pH. The results of the pore scale simulations were used to evaluate the effect of surface charge heterogeneity on upscaling of oocyst transport from pore to continuum scale and to develop an applicable correlation between colloidal attachment efficiency and the fraction of the favorable patches.

  13. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  14. Poly(silylene)s: Charge carrier photogeneration and transport

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Eckhardt, A.

    2001-01-01

    Roč. 12, č. 7 (2001), s. 427-440 ISSN 1042-7147 R&D Projects: GA AV ČR IAA4050603; GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : charge photogeneration * charge-transfer * ion-pair Subject RIV: CC - Organic Chemistry Impact factor: 0.701, year: 2001

  15. MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA

    International Nuclear Information System (INIS)

    Silva, T.F.; Rodrigues, C.L.; Mayer, M.; Moro, M.V.; Trindade, G.F.; Aguirre, F.R.; Added, N.; Rizzutto, M.A.; Tabacniks, M.H.

    2016-01-01

    Highlights: • MultiSIMNRA enables the self-consistent analysis of multiple ion beam techniques. • Self-consistent analysis enables unequivocal and reliable modeling of the sample. • Four different computational algorithms available for model optimizations. • Definition of constraints enables to include prior knowledge into the analysis. - Abstract: SIMNRA is widely adopted by the scientific community of ion beam analysis for the simulation and interpretation of nuclear scattering techniques for material characterization. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that uses multiple parallel sessions of SIMNRA to perform self-consistent analysis of data obtained by different ion beam techniques or in different experimental conditions of a given sample. In this paper, we present a result using MultiSIMNRA for a self-consistent multi-elemental analysis of a thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility using MultiSIMNRA.

  16. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  17. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities

  18. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  19. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  20. Possibility for a self-consistent treatment of transport processes in a turbulent plasma

    International Nuclear Information System (INIS)

    Mondt, J.P.

    1985-06-01

    All commonly used models of plasma dynamics share a common flaw in their a priori validity. In particular, a solid foundation of plasma modelling on microscopic dynamics, as exists for moderately dilute gases, is obscured because of the difficulties inherent in the treatment of the potentially very important interplay between plasma waves and collisional processes. The present report briefly discusses the nature of these difficulties and presents a possible approach towards the establishment of a plasma theory founded on the microscopic particle dynamics. The essence of this approach is the realization that only discrete particle interactions can create correlations. These therefore come into being on different spatial scales depending on their cluster number, after which collective effects magnify them analogous to the growth of intial perturbations in an unstable system. Truncation of the Born-Bogolyubov-Green-Kirkwood-Yvon ('BBGKY') hierarchy thereby becomes a possibility through the introduction of a small parameter in intial conditions although the dynamical system in itself does not contain a uniformly small parameter

  1. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions

    DEFF Research Database (Denmark)

    Strange, M.; Rostgaard, Carsten; Hakkinen, H.

    2011-01-01

    suggest that more complex gold-thiolate structures where the thiolate anchors are chemically passivated by Au adatoms are responsible for the measured conductance. Analysis of the energy level alignment obtained with DFT, Hartree-Fock, and GW reveals the importance of self-interaction corrections...

  2. The Role of Shape on Electronic Structure and Charge Transport in Faceted PbSe Nanocrystals

    KAUST Repository

    Kaushik, Ananth P.; Lukose, Binit; Clancy, Paulette

    2014-01-01

    We have determined the effect of shape on the charge transport characteristics of nanocrystals. Our study looked at the explicit determination of the electronic properties of faceted nanocrystals that essentially probe the limit of current

  3. Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport

    KAUST Repository

    Burnett, Edmund K.

    2018-02-26

    Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new

  4. Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport

    KAUST Repository

    Burnett, Edmund K.; Ly, Jack; Niazi, Muhammad Rizwan; Zhang, Lei; McCuskey, Samantha R.; Amassian, Aram; Smilgies, Detlef-M.; Mannsfeld, Stefan C. B.; Briseno, Alejandro L.

    2018-01-01

    Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new

  5. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-01-01

    for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic

  6. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  7. Electrification Opportunities in the Transportation Sector and Impact of Residential Charging

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-04

    This presentation provides an overview of electrification opportunities in the transportation sector and present results of a study assessing the impact of residential charging on residential power demand and electric power distribution infrastructure.

  8. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  9. Symmetry properties of the transport coefficients of charged particles in disordered materials

    International Nuclear Information System (INIS)

    Baird, J.K.

    1979-01-01

    The transport coefficients of a charged particle in an isotropic material are shown to be even functions of the applied electric field. We discuss the limitation which this result and its consequences place upon formulae used to represent these coefficients

  10. First-row diatomics: Calculation of the geometry and energetics using self-consistent gradient-functional approximations

    International Nuclear Information System (INIS)

    Kutzler, F.W.; Painter, G.S.

    1992-01-01

    A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li 2 through F 2 . Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient corrections reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li 2 , the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities

  11. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  12. Multiplicative renormalizability and self-consistent treatments of the Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Brown, N.; Dorey, N.

    1989-11-01

    Many approximations to the Schwinger-Dyson equations place constraints on the renormalization constants of a theory. The requirement that the solutions to the equations be multiplicatively renormalizable also places constraints on these constants. Demanding that these two sets of constraints be compatible is an important test of the self-consistency of the approximations made. We illustrate this idea by considering the equation for the fermion propagator in massless quenched quantum electrodynamics, (QED), checking the consistency of various approximations. In particular, we show that the much used 'ladder' approximation is self-consistent, provided that the coupling constant is renormalized in a particular way. We also propose another approximation which satisfies this self-consistency test, but requires that the coupling be unrenormalized, as should be the case in the full quenched approximation. This new approximation admits an exact solution, which also satisfies the renormalization group equation for the quenched approximation. (author)

  13. Two new integrable couplings of the soliton hierarchies with self-consistent sources

    International Nuclear Information System (INIS)

    Tie-Cheng, Xia

    2010-01-01

    A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s-tilde l(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra s-tilde l(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources. (general)

  14. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  15. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  16. Optimal block-tridiagonalization of matrices for coherent charge transport

    International Nuclear Information System (INIS)

    Wimmer, Michael; Richter, Klaus

    2009-01-01

    Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms require the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered Hamiltonian can lead to significant performance gains in transport calculations, and allows to apply conventional two-terminal algorithms to arbitrarily complex geometries, including multi-terminal structures. The block-tridiagonalization algorithm can thus be the foundation for a generic quantum transport code, applicable to arbitrary tight-binding systems. We demonstrate the power of this approach by applying the block-tridiagonalization algorithm together with the recursive Green's function algorithm to various examples of mesoscopic transport in two-dimensional electron gases in semiconductors and graphene.

  17. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  18. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  19. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  20. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  1. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  2. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD

    NARCIS (Netherlands)

    Buis, B.; Koomen, G. C.; Imholz, A. L.; Struijk, D. G.; Reddingius, R. E.; Arisz, L.; Krediet, R. T.

    1996-01-01

    BACKGROUND: Controversy exists as to whether electric charges of plasma proteins influence their transport across the peritoneal membrane during CAPD. Fixed negative charges in the peritoneal membrane are diminished during peritonitis in rats. METHODS: Peritoneal clearances of 10 proteins and their

  3. Charge transport in amorphous InGaZnO thin-film transistors

    NARCIS (Netherlands)

    Germs, W.C.; Adriaans, W.H.; Tripathi, A.K.; Roelofs, W.S.C.; Cobb, B.; Janssen, R.A.J.; Gelinck, G.H.; Kemerink, M.

    2012-01-01

    We investigate the mechanism of charge transport in indium gallium zinc oxide (a-IGZO), an amorphous metal-oxide semiconductor. We measured the field-effect mobility and the Seebeck coefficient (S=ΔV/ΔT) of a-IGZO in thin-film transistors as a function of charge-carrier density for different

  4. Charge transport in amorphous InGaZnO thin film transistors

    NARCIS (Netherlands)

    Germs, W.C.; Adriaans, W.H.; Tripathi, A.K.; Roelofs, W.S.C.; Cobb, B.; Janssen, R.A.J.; Gelinck, G.H.; Kemerink, M.

    2012-01-01

    We investigate the mechanism of charge transport in indium gallium zinc oxide (a-IGZO), an amorphous metal-oxide semiconductor. We measured the field-effect mobility and the Seebeck coefficient (S=¿V/¿T) of a-IGZO in thin-film transistors as a function of charge-carrier density for different

  5. Self-consistent RPA based on a many-body vacuum

    International Nuclear Information System (INIS)

    Jemaï, M.; Schuck, P.

    2011-01-01

    Self-Consistent RPA is extended in a way so that it is compatible with a variational ansatz for the ground-state wave function as a fermionic many-body vacuum. Employing the usual equation-of-motion technique, we arrive at extended RPA equations of the Self-Consistent RPA structure. In principle the Pauli principle is, therefore, fully respected. However, the correlation functions entering the RPA matrix can only be obtained from a systematic expansion in powers of some combinations of RPA amplitudes. We demonstrate for a model case that this expansion may converge rapidly.

  6. Self-consistent Bayesian analysis of space-time symmetry studies

    International Nuclear Information System (INIS)

    Davis, E.D.

    1996-01-01

    We introduce a Bayesian method for the analysis of epithermal neutron transmission data on space-time symmetries in which unique assignment of the prior is achieved by maximisation of the cross entropy and the imposition of a self-consistency criterion. Unlike the maximum likelihood method used in previous analyses of parity-violation data, our method is freed of an ad hoc cutoff parameter. Monte Carlo studies indicate that our self-consistent Bayesian analysis is superior to the maximum likelihood method when applied to the small data samples typical of symmetry studies. (orig.)

  7. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  8. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    Science.gov (United States)

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  9. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  10. Self-consistent study of local and nonlocal magnetoresistance in a YIG/Pt bilayer

    Science.gov (United States)

    Wang, Xi-guang; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2018-03-01

    We present a self-consistent study of the local spin Hall magnetoresistance (SMR) and nonlocal magnon-mediated magnetoresistance (MMR) in a heavy-metal/magnetic-insulator heterostructure at finite temperature. We find that the thermal fluctuation of magnetization significantly affects the SMR. It appears unidirectional with respect to the direction of electrical current (or magnetization). The unidirectionality of SMR originates from the asymmetry of creation or annihilation of thermal magnons induced by the spin Hall torque. Also, a self-consistent model can well describe the features of MMR.

  11. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  12. The self-consistent calculation of the edge states in bilayer quantum Hall bar

    International Nuclear Information System (INIS)

    Kavruk, A E; Orzturk, T; Orzturk, A; Atav, U; Yuksel, H

    2011-01-01

    In this study, we present the spatial distributions of the edge channels for each layer in bilayer quantum Hall bar geometry for a wide range of applied magnetic fields. For this purpose, we employ a self-consistent Thomas-Fermi-Poisson approach to obtain the electron density distributions and related screened potential distributions. In order to have a more realistic description of the system we solve three dimensional Poisson equation numerically in each iteration step to obtain self consistency in the Thomas-Fermi-Poisson approach instead of employing a 'frozen gate' approximation.

  13. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  14. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  15. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  16. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  17. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  18. Self-consistent electronic structure of the refractory metal ZrB2, a pseudographite intercalation compound

    International Nuclear Information System (INIS)

    Johnson, D.L.; Harmon, B.N.; Liu, S.H.

    1980-01-01

    The self-consistent band structure of ZrB 2 has been evaluated using the KKR method. It is noted that a large charge transfer is not necessary to explain many of the experimental results which can be understood in terms of the band structure and the bonding nature of the wave functions. X-ray photoemission spectra and optical reflectance measurements are compared with the calculated density of states and joint density of states, respectively. The calculations are also discussed with reference to nuclear quadrupole experiments, Hall effect measurements, and the electronic specific heat. The similarities to intercalated graphite and related compounds are discussed and the strong bonding as reflected in the hardness and high melting point is considered

  19. Self-consistent electronic structure of disordered Fe/sub 0.65/Ni/sub 0.35/

    International Nuclear Information System (INIS)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-01-01

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality

  20. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  1. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  2. Total energy calculation of perovskite, BaTiO3, by self-consistent

    Indian Academy of Sciences (India)

    Unknown

    rgy, lattice constant, density of states, band structure etc using self-consistent tight binding method. ... share the paraelectric simple-cubic perovskite structure .... of neighbouring ions. In order to find the ground state, we solve the variation problem, minimizing Etot with respect to the coefficients, .*,λµ ic. The final equation is.

  3. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  4. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  5. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Leermakers, F.A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  6. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    International Nuclear Information System (INIS)

    Li Li

    2011-01-01

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  7. Integrating the Toda Lattice with Self-Consistent Source via Inverse Scattering Method

    International Nuclear Information System (INIS)

    Urazboev, Gayrat

    2012-01-01

    In this work, there is shown that the solutions of Toda lattice with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator. For the considered problem the one-soliton solution is obtained.

  8. Self-consistent approximation for muffin-tin models of random substitutional alloys with environmental disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1984-01-01

    The self-consistent approximation of Kaplan, Leath, Gray, and Diehl is applied to models for substitutional random alloys with muffin-tin potentials. The particular advantage of this approximation is that, in addition to including cluster scattering, the muffin-tin potentials in the alloy can depend on the occupation of the surrounding sites (i.e., environmental disorder is included)

  9. Nonstatic, self-consistent πN t matrix in nuclear matter

    International Nuclear Information System (INIS)

    Van Orden, J.W.

    1984-01-01

    In a recent paper, a calculation of the self-consistent πN t matrix in nuclear matter was presented. In this calculation the driving term of the self-consistent equation was chosen to be a static approximation to the free πN t matrix. In the present work, the earlier calculation is extended by using a nonstatic, fully-off-shell free πN t matrix as a starting point. Right-hand pole and cut contributions to the P-wave πN amplitudes are derived using a Low expansion and include effects due to recoil of the interacting πN system as well as the transformation from the πN c.m. frame to the nuclear rest frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify the pole and cut contributions to the t matrix separately. The self-consistent πN t matrix is calculated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contribution to the optical potential is found to be broadened by 20% to 50% depending on pion momentum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order optical potential. Modifications to the nucleon pole contribution are found to be negligible

  10. The accuracy of the time-dependent self-consistent-field approximation for inelastic collisions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    We study the accuracy of the time-dependent self-consistent-field approximation for collinear inelastic collisions between an atom and a diatomic molecule. Individual state-to-state transition probabilities, total energy transfer. and the global description of the wavefunction is considered...

  11. A new self-consistent model for thermodynamics of binary solutions

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.

    2015-01-01

    Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015

  12. Spontaneous symmetry breaking and self-consistent equations for the free-energy

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1980-03-01

    A variational procedure for the free-energy is used to derive self-consistent equations that allow for spontaneous symmetry breaking. For an N-component phi 4 -model the equations are identical to those obtained by summing all loops to order 1/N. (author)

  13. Pressure variation of the valence band width in Ge: A self-consistent GW study

    DEFF Research Database (Denmark)

    Modak, Paritosh; Svane, Axel; Christensen, Niels Egede

    2009-01-01

    . In the present work we report results of quasiparticle self-consistent GW  (QSGW) band calculations for diamond- as well as β-tin-type Ge under pressure. For both phases we find that the band width increases with pressure. For β-tin Ge this agrees with experiment and density-functional theory, but for diamond Ge...

  14. Structure of disordered alloys - II: self-consistent CCPA calculations for III-V semiconducting alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Chaudhry, V.

    1980-09-01

    Using the chemical pseudopotential approach of Anderson and Bullett we have generated from first principles pseudo-Hamiltonians for heteropolar alloys. The one-electron density of states has been generated for Gasub(x)Insub(1-x)As using a self-consistent cluster CPA introduced earlier by one of us. Off-diagonal disorder has also been incorporated. (author)

  15. Self-consistent calculation of steady-state creep and growth in textured zirconium

    International Nuclear Information System (INIS)

    Tome, C.N.; So, C.B.; Woo, C.H.

    1993-01-01

    Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic axis in each individual grain. Several methods have been attempted to model such dimensional changes, taking into account the development of intergranular stresses. In this paper, we compare the predictions of several such models, namely the upper-bound, the lower-bound, the isotropic K* self-consistent (analytical) and the fully self-consistent (numerical) models. For given single-crystal creep compliances and growth factors, the polycrystal compliances predicted by the upper- and lower-bound models are unreliable. The predictions of the two self-consistent approaches are usually similar. The analytical isotropic K* approach is simple to implement and can be used to estimate the creep and growth rates of the polycrystal in many cases. The numerical fully self-consistent approach should be used when an accurate prediction of polycrystal creep is required, particularly for the important case of a closed-end internally pressurized tube. In most cases, the variations in grain shape introduce only minor corrections to the behaviour of polycrystalline materials. (author)

  16. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Leermakers, F.A.M.; Stuart, M.A.C.

    2006-01-01

    To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strong-stretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of

  17. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD

  18. Renormalization of self-consistent Schwinger-Dyson equations at finite temperature

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2002-01-01

    We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)

  19. Self-consistency condition and high-density virial theorem in relativistic many-particle systems

    International Nuclear Information System (INIS)

    Kalman, G.; Canuto, V.; Datta, B.

    1976-01-01

    In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit

  20. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  1. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2011-03-14

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  2. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed; Sheikh, Arif D.; Guan, Xinwei; Wu, Tao

    2017-01-01

    . In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment

  3. Direct Imaging of Minority Charge Carrier Transport in Luminescent Semiconductors

    National Research Council Canada - National Science Library

    Luber, David R

    2005-01-01

    .... The measured values are in excellent agreement with theoretical calculations. The imaging transport technique is also employed to image the nature of the generation region as a function of beam energy probe current and sample atomic number...

  4. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    Science.gov (United States)

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  5. Phenomena of charged particles transport in variable magnetic fields

    International Nuclear Information System (INIS)

    Savane, Sy Y.; Faza Barry, M.; Vladmir, L.; Diaby, I.

    2002-11-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock. (author)

  6. Electronic structure of thin films by the self-consistent numerical-basis-set linear combination of atomic orbitals method: Ni(001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete variational method for treating the electronic structure of thin films. As in the case of bulk solids, this method provides for thin films accurate solutions of the one-particle local density equations with a non-muffin-tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-dimensional numerical Diophantine integration scheme. Application of this method is made to the self-consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core wave functions. The self-consistent potential is obtained iteratively within the superposition of overlapping spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic potentials and, correspondingly, the local density Kohn-Sham (α = 2/3) potential is determined from a superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are calculated using an analytic linear energy triangle method (presented as an Appendix) generalized from the tetrahedron scheme for bulk systems. Distinct differences are obtained between the surface and central plane local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni obtained by Wang and Callaway. Only a very small surplus charge (0.03 electron/atom) is found on the surface planes, in agreement with jellium model calculations

  7. A general relationship between disorder, aggregation and charge transport in conjugated polymers

    KAUST Repository

    Noriega, Rodrigo

    2013-08-04

    Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. © 2013 Macmillan Publishers Limited. All rights reserved.

  8. A general relationship between disorder, aggregation and charge transport in conjugated polymers

    KAUST Repository

    Noriega, Rodrigo; Rivnay, Jonathan; Vandewal, Koen; Koch, Felix P. V.; Stingelin, Natalie; Smith, Paul; Toney, Michael F.; Salleo, Alberto

    2013-01-01

    Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. © 2013 Macmillan Publishers Limited. All rights reserved.

  9. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  10. A reduced-cost iterated local search heuristic for the fixed-charge transportation problem

    NARCIS (Netherlands)

    Buson, Erika; Roberti, Roberto; Toth, Paolo

    2014-01-01

    The fixed-charge transportation problem (FCTP) is a generalization of the transportation problem where an additional fixed cost is paid for sending a flow from an origin to a destination. We propose an iterated local search heuristic based on the utilization of reduced costs for guiding the restart

  11. Temperature-dependent charge transport mechanisms in carbon sphere/polyaniline composite

    Science.gov (United States)

    Nieves, Cesar A.; Martinez, Luis M.; Meléndez, Anamaris; Ortiz, Margarita; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya

    2017-12-01

    Charge transport in the temperature range 80 K electrons between polymeric chains in PANi-filled gaps between CS is the predominant transport mechanism through CS/PANi composites. The high conductivity of the CS/PANi composite makes the material attractive for the fabrication of devices and sensors.

  12. Nonlinear charge transport in bipolar semiconductors due to electron heating

    International Nuclear Information System (INIS)

    Molina-Valdovinos, S.; Gurevich, Yu.G.

    2016-01-01

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  13. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  14. Study of Charge Carrier Transport in GaN Sensors

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-01-01

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects. PMID:28773418

  15. Charge Carrier Transport Properties of Vacuum Evaporated Anthrylvinylbenzene Thin Films

    Directory of Open Access Journals (Sweden)

    Haikel HRICHI

    2014-05-01

    Full Text Available The charge carrier conduction processes and dielectric properties of two new materials based on anthracene core structure, 1-(9 anthrylvinyl-4-benzyloxybenzene (AVB and 1,4- bis(9-anthrylvinylbenzene (AV2B diodes have been investigated using dc current density–voltage (J–V and AC impedance spectroscopy (100 Hz–10 MHz. The DC electrical properties of ITO/anthracene derivative /Al device showing an ohmic behavior at low voltages and switches to space charge limited current (SCLC conduction with exponential trap distribution at higher voltages. The best performance device was achieved from ITO/AVB/Al structure showing the high charge carrier mobility which has also been evaluated from SCLC as 6.55´10-6 cm/Vs. According to the impedance spectroscopy results the structures were modeled by equivalent circuit designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The evolution of the electrical parameters with frequency and bias voltage of these anthracene-based systems has been discussed. The conductivity s(w evolution with frequency and bias voltage was studied for ITO/anthracene derivatives/Al devices. The dc conductivity sdc for these devices has been determined. The ac conductivity sac showed a variation in angular frequency as A.ws with a critical exponent s< 1 suggesting a hopping conduction mechanism at high frequency.

  16. An LP-based heuristic for the fixed charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2007-01-01

    The fixed charge transportation problem consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported, transportation costs also include a fixed charge. The paper describes a linear programming based heuristic...... approach for computing lower and upper bounds on the minimal cost. To this end, the LP relaxation is iteratively strengthened by means of adding cuts; in each iteration the current LP solution is then used to guide a local search heuristic. In addition to standard polyhedral cuts as lifted cover...

  17. Iterated local search and record-to-record travel applied to the fixed charge transportation problem

    DEFF Research Database (Denmark)

    Andersen, Jeanne; Klose, Andreas

    The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported......, transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single...

  18. Electric Field Mediated Ion Transport Through Charged Mesoporous Membranes

    NARCIS (Netherlands)

    Schmuhl, R.; de Lint, W.B.S.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Burganos, Vasilis N.; Noble, Richard D.; Asaeda, Masashi; Ayral, Andre; LeRoux, Johann D.

    2003-01-01

    The transport of ions from aqueous solutions through a stacked Au/alpha-alumina/gamma-alumina/Au membrane under the influence of a dc potential difference is reported. The membrane shows high cation permselectivity at ionic strengths of ~1 mM at pH 4.3-6.5, which is associated with a combination of

  19. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    International Nuclear Information System (INIS)

    Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  20. Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Eisel, Matthias; Kolbe, Lutz M.

    2014-01-01

    A key reason for the low sales volumes of electric vehicles is their significantly higher purchasing price in comparison to conventional vehicles. However, various charging strategies can be applied to make these vehicles more profitable. In this paper, controlled charging concepts are transferred to commercial fleets operating in closed transport systems, as we found this field of application particularly well suited for the implementation of charging strategies. We analyzed data gathered in a field experiment conducted in a European port using electric vehicles in combination with a battery-swapping station to calculate the economic potentials of three charging scenarios: (1) optimizing energy procurement (2) trading load-shifting potential on control markets, and (3) a combination of the two. The findings indicate that all approaches are appropriate for reducing economic disadvantages of electric transport vehicles. Furthermore, we find that adjusting charging processes to avoid price peaks is more profitable than offering control reserve. Finally, focusing on the combination of both strategies seems to be most promising from an economic perspective. In this context, operational cost savings of more than 65% can be achieved compared to a similar dieselpowered vehicle when applying this strategy. - Highlights: • We model various charging strategies for electric transport vehicles. • The economic assessment is based on a field experiment with a port operator. • We consider the special market design of spot and ancillary service markets. • All charging strategies presented provide substantial cost-saving potentials. • Optimizing energy procurement is more profitable than offering control reserve

  1. Charge transport in transparent single-wall carbon nanotube networks

    International Nuclear Information System (INIS)

    Jaiswal, Manu; Wang, Wei; Fernando, K A Shiral; Sun Yaping; Menon, Reghu

    2007-01-01

    We report the electric-field effects and magnetotransport in transparent networks of single-wall carbon nanotubes (SWNT). The temperature dependence of conductance of the network indicates a 2D Mott variable-range hopping (VRH) transport mechanism. Electric field and temperature are shown to have similar effects on the carrier hops and identical exponents for the conductance of the network are obtained from the high electric field and temperature dependences. A power-law temperature dependence with an exponent 3/2 for the threshold field is obtained and explained as a result of the competing contributions from electric field and phonons to the carrier hop. A negative magnetoresistance (MR) is observed at low temperatures, which arises from a forward interference scattering mechanism in the weak scattering limit, consistent with the VRH transport

  2. Influence of functional groups on charge transport in molecular junctions

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Jones, Glenn; Thygesen, Kristian Sommer

    2008-01-01

    Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis...... demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can...... be predicted from its known electronic effect (whether it is sigma/pi donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than...

  3. Muonium formation via charge transport in solids and liquids

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G.; Brewer, Jess H.; Cox, Stephen F.J.

    1997-01-01

    We review our recent experimental studies on delayed muonium formation in insulators and semiconductors. This involves the positive muon capturing one of the excess electrons liberated in its own ionization track and competes with recombination or escape of the electrons. The muon is generally found to thermalise well 'downstream' from the center of the electron distribution, so that the transport mechanism of the electrons is a crucial factor. This is discussed in terms of the different tendencies to localization (as polarons in solids or in bubbles in liquids) vs. band-like propagation. Studies of Van der Waals cryocrystals and cryoliquids are reviewed and some preliminary results reported for sapphire and silicon. Transport distances and times are determined from the variation of μSR signal amplitudes with applied electric and magnetic fields, respectively, enabling the development of a new technique for measuring electron mobilities on a microscopic scale

  4. Non-equilibrium spin and charge transport in superconducting heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2015-07-01

    Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.

  5. Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone's theorem and conservation laws

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2009-01-01

    Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.

  6. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  7. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1980-01-01

    The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table

  8. Relativistic four-component multiconfigurational self-consistent-field theory for molecules

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond

    1996-01-01

    A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...... the memory used by the largest nonrelativistic calculation in the equivalent basis, due to the complex arithmetic. The feasibility of the calculations is then determined more by the disk space for storage of integrals and N-particle expansion vectors....

  9. Self-consistent model calculations of the ordered S-matrix and the cylinder correction

    International Nuclear Information System (INIS)

    Millan, J.

    1977-11-01

    The multiperipheral ordered bootstrap of Rosenzweig and Veneziano is studied by using dual triple Regge couplings exhibiting the required threshold behavior. In the interval -0.5 less than or equal to t less than or equal to 0.8 GeV 2 self-consistent reggeon couplings and propagators are obtained for values of Regge slopes and intercepts consistent with the physical values for the leading natural-parity Regge trajectories. Cylinder effects on planar pole positions and couplings are calculated. By use of an unsymmetrical planar π--rho reggeon loop model, self-consistent solutions are obtained for the unnatural-parity mesons in the interval -0.5 less than or equal to t less than or equal to 0.6 GeV 2 . The effects of other Regge poles being neglected, the model gives a value of the π--eta splitting consistent with experiment. 24 figures, 1 table, 25 references

  10. Communication: A difference density picture for the self-consistent field ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-04-07

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  11. Communication: A difference density picture for the self-consistent field ansatz

    International Nuclear Information System (INIS)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-01-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  12. Communication: A difference density picture for the self-consistent field ansatz

    Science.gov (United States)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-04-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  13. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    Science.gov (United States)

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  14. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  15. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  16. Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2007-05-01

    A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications. (orig.)

  17. Self-consistent quasi-particle RPA for the description of superfluid Fermi systems

    CERN Document Server

    Rahbi, A; Chanfray, G; Schuck, P

    2002-01-01

    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situation and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtaining. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.

  18. Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jonathan, E-mail: engelj@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Mustonen, M. T., E-mail: mika.mustonen@yale.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06052 (United States)

    2016-06-21

    We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.

  19. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    Science.gov (United States)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  20. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  2. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Science.gov (United States)

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  3. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  4. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    Science.gov (United States)

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  5. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  6. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    International Nuclear Information System (INIS)

    Atenco A, N.; Perez R, F.; Makarov, N.M.

    2005-01-01

    A theory for calculating the relaxation frequency ν and the shift δ ω of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R C for the well width fluctuations is much larger than the exciton radius a 0 (R C >> a 0 ). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al 0.3 Ga 0.7 As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of ν and δ ω be quite realistic. In particular, the relaxation frequency ν for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency ω 0 , while the surface-induced resonance shift δ ω vanishes near ω 0 , and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs

  7. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan; Diemer, Peter J.; Niazi, Muhammad Rizwan; Hallani, Rawad K.; Jarolimek, Karol; Day, Cynthia S.; Risko, Chad; Anthony, John E.; Amassian, Aram; Jurchescu, Oana D.

    2017-01-01

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials

  8. Absence of ballistic charge transport in the half-filled 1D Hubbard model

    Science.gov (United States)

    Carmelo, J. M. P.; Nemati, S.; Prosen, T.

    2018-05-01

    Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2 Sηz/L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.

  9. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...

  10. A common pathway for charge transport through voltage-sensing domains.

    Science.gov (United States)

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  11. Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating

    Science.gov (United States)

    Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.

    2018-04-01

    Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.

  12. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture

    International Nuclear Information System (INIS)

    Yuan Jianmin

    2002-01-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented

  13. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    Science.gov (United States)

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  14. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  15. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  16. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  17. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    Science.gov (United States)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  18. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  19. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  20. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  1. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  2. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  3. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    Science.gov (United States)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  4. Charge transport properties of a twisted DNA molecule: A renormalization approach

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-10-20

    In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.

  5. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    International Nuclear Information System (INIS)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-01-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  6. Algorithms for solving the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2006-01-01

    The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration...... are revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...

  7. Study of the charge transport characteristics of dendrimer molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C., E-mail: jcli@mail.neu.edu.cn; Han, N.; Wang, S.S.; Ba, D.C.

    2011-05-31

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  8. Study of the charge transport characteristics of dendrimer molecular thin films

    International Nuclear Information System (INIS)

    Li, J.C.; Han, N.; Wang, S.S.; Ba, D.C.

    2011-01-01

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  9. Charge transport in polyguanine-polycytosine DNA molecules

    International Nuclear Information System (INIS)

    Wei, J H; Chan, K S

    2007-01-01

    A double chain tight-binding model is proposed to interpret the experimental I-V curves for polyguanine-polycytosine DNA molecules reported in Porath et al (2000 Nature 493 635). The proposed model includes the salient features of existing transport models of DNA molecules. The proposed double chain model fits excellently with the experimental I-V curves and provides a theoretical interpretation of features found in the I-V curves, which so far do not have a satisfactory explanation. Steps in the I-V curves are explained as the result of transmission gaps caused by hybridization with reservoirs and inter-chain coupling. Variations in I-V curves are due to the variation of inter-chain and intra-chain hopping parameters caused by structural changes in the DNA molecules

  10. Modeling of charge transport in ion bipolar junction transistors.

    Science.gov (United States)

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  11. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  12. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  13. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    Science.gov (United States)

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  14. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles

    Science.gov (United States)

    Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  15. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  16. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  17. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    Science.gov (United States)

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  18. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Atenco A, N.; Perez R, F. [lnstituto de Fisica, Universidad Autonoma de Puebla, A.P. J-48, 72570 Puebla (Mexico); Makarov, N.M. [lnstituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, 72050 Puebla (Mexico)

    2005-07-01

    A theory for calculating the relaxation frequency {nu} and the shift {delta} {omega} of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R{sub C} for the well width fluctuations is much larger than the exciton radius a{sub 0} (R{sub C} >> a{sub 0}). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al{sub 0.3} Ga{sub 0.7}As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of {nu} and {delta} {omega} be quite realistic. In particular, the relaxation frequency {nu} for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency {omega}{sub 0}, while the surface-induced resonance shift {delta} {omega} vanishes near {omega}{sub 0}, and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs.

  19. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    Science.gov (United States)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  20. RPA method based on the self-consistent cranking model for 168Er and 158Dy

    International Nuclear Information System (INIS)

    Kvasil, J.; Cwiok, S.; Chariev, M.M.; Choriev, B.

    1983-01-01

    The low-lying nuclear states in 168 Er and 158 Dy are analysed within the random phase approximation (RPA) method based on the self-consistent cranking model (SCCM). The moment of inertia, the value of chemical potential, and the strength constant k 1 have been obtained from the symmetry condition. The pairing strength constants Gsub(tau) have been determined from the experimental values of neutron and proton pairing energies for nonrotating nuclei. A quite good agreement with experimental energies of states with positive parity was obtained without introducing the two-phonon vibrational states