WorldWideScience

Sample records for self-assembly possibly involving

  1. Exploring the properties and possibilities of self-assembling

    DEFF Research Database (Denmark)

    Andersen, Karsten Brandt; Castillo, Jaime

    2013-01-01

    structures ranging from piezo electricity over semi conductance to fluorescence. If such peptide nanotubes could be controlled and incorporated in sensors such as a biological field effect transistor it would greatly reduce the fabrication costs while at the same time providing researchers with new...... and exciting possibilities. The major driving forces supporting the interest in the peptide nanotubes is the fast and simple assembly process combined with their remarkable stability towards alcohols, organic solvents, and biological analytes that was presented shortly after the self-assembling properties...... and illustrated their potential use as sensitive temperature sensor....

  2. Selection of conformational states in surface self-assembly for a molecule with eight possible pairs of surface enantiomers

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Schultz-Falk, Vickie; Lind Cramer, Jacob

    2016-01-01

    Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self-assembly of lamel......Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self......-assembly of lamellae structures. From statistical analysis of Scanning Tunnelling Microscopy (STM) data we observe a clear selection of specific conformational states after self-assembly. Using Density Functional Theory (DFT) calculations we rationalise how this selection is correlated to the orientation of the alkyl...

  3. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain......: the medium composition in terms of ionic strengths and the medium physical parameters, such as temperature, significantly influence the formation of structures, as well as their subsequent stability. In addition, membranes composed of a single amphiphile type seem to be implausible as no potential amphiphile...... source studied to date can supply one single type of amphiphile at concentrations conducive to self-assembly. Mixtures of single-chain amphiphiles were therefore proposed to better model primitive membranes and potentially enhance their structural integrity1-3. Recently, we have established that complex...

  4. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  5. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  6. Self-assembling block copolymer systems involving competing length scales : A route toward responsive materials

    NARCIS (Netherlands)

    Nap, R; Erukhimovich, [No Value; ten Brinke, G; Erukhimovich, Igor

    2004-01-01

    The phase behavior of block copolymers melts involving competing length scales, i.e., able to microphase separate on two different length scales, is theoretically investigated using a self-consistent field approach. The specific block copolymers studied consist of a linear A-block linked to an

  7. Inverse Problem in Self-assembly

    Science.gov (United States)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  8. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Macroscopic magnetic Self assembly

    NARCIS (Netherlands)

    Löthman, Per Arvid

    2018-01-01

    Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the

  10. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  11. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  12. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    Science.gov (United States)

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  13. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  14. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  15. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...

  16. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  17. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  18. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  19. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  20. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Oxide nanostructures through self-assembly

    Science.gov (United States)

    Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.

    2001-03-01

    A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.

  2. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  3. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  5. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  6. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  7. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...... dynamics simulation of this self-assembly behaviour....

  8. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  9. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  10. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  11. Self-assembled ordered carbon-nanotube arrays and membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  12. Self-assembling hybrid diamond–biological quantum devices

    International Nuclear Information System (INIS)

    Albrecht, A; B Plenio, M; Koplovitz, G; Yochelis, S; Paltiel, Y; Retzker, A; Nevo, Y; Shoseyov, O; Jelezko, F; Porath, D

    2014-01-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio–nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications. (papers)

  13. Self-assembling hybrid diamond-biological quantum devices

    Science.gov (United States)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  14. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  15. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  16. Self-Assembly of Colloidal Particles

    Indian Academy of Sciences (India)

    is self-assembly where one engineers interaction between nanoscopic building blocks so ..... big question in the field how this microscopic chirality of the virus gets translated ... shape emerges due to a competition between the surface tension.

  17. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  18. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  19. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  20. Narcissistic self-sorting in self-assembled cages of rare Earth metals and rigid ligands.

    Science.gov (United States)

    Johnson, Amber M; Wiley, Calvin A; Young, Michael C; Zhang, Xing; Lyon, Yana; Julian, Ryan R; Hooley, Richard J

    2015-05-04

    Highly selective, narcissistic self-sorting can be achieved in the formation of self-assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high-fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-assembled nanostructures in oxide ceramics

    Science.gov (United States)

    Ansari, Haris Masood

    Self-assembled nanoislands in the gadolinia-doped ceria (GDC)/ yttria-stabilized zirconia (YSZ) system have recently been discovered. This dissertation is an attempt to study the mechanism by which these nanoislands form. Nanoislands in the GDC/YSZ system form via a strain based mechanism whereby the stress accumulated in the GDC-doped surface layer on the YSZ substrate is relieved by creation of self-assembled nanoislands by a mechanism similar to the ATG instability. Unlike what was previously believed, a modified surface layer is not required prior to annealing, that is, this modification can occur during annealing by surface diffusion of dopants from the GDC sources (distributed on the YSZ surface in either lithographically defined patch or powder form) with simultaneous breakup, which occurs at the hold temperature independent of the subsequent cooling. Additionally, we have developed a simple powder based process of producing nanoislands which bypasses lithography and thin film deposition setups. The versatility of the process is apparent in the fact that it allows us to study the effect of experimental parameters such as soak time, temperature, cooling rate and the effect of powder composition on nanoisland properties in a facile way. With the help of this process, we have shown that nanoislands are not peculiar to Gd containing oxide source materials on YSZ substrates and can also be produced with other source materials such as La2O3, Nd2O3, Sm 2O3, Eu2O3, Tb2O3 and even Y2O3, which is already present in the substrate and hence simplifies the system further. We have extended our work to include YSZ substrates of the (110) surface orientation and have found that instead of nanoisland arrays, we obtain an array of parallel nanobars which have their long axes oriented along the [1-10] direction on the YSZ-(110) surface. STEM EDS performed on both the bars and the nanoislands has revealed that they are solid YSZ-rich solid solutions with the dopant species and

  2. Predicting supramolecular self-assembly on reconstructed metal surfaces

    Science.gov (United States)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  3. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  4. Classification of coordination polygons and polyhedra according to their mode of self-assembly.

    Science.gov (United States)

    Swiegers, G F; Malefetse, T J

    2001-09-03

    This work extends techniques for the controlled formation of synthetic molecular containers by metal-mediated self-assembly. A new classification system based on the self-assembly of such species is proposed. The system: 1) allows a systematic identification of suitable acceptor-donor combinations, 2) widens the variety of design possibilities available, 3) allows a ready comparison of the self-assembly of different compounds, 4) reveals useful commonalities between different compounds, 5) aids in the development of novel architectures, and 6) permits identification of systems capable of being switched back-and-forth between architectures.

  5. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  6. Proton electroinsertion in self-assembled materials for neutralization pseudocapacitors.

    Science.gov (United States)

    Facci, Tiago; Gomes, Wellington J A S; Bravin, Bruno; Araújo, Diógenes M; Huguenin, Fritz

    2014-01-14

    We propose novel pseudocapacitors that can store energy related to the partial entropy change associated with proton concentration variations following neutralization reactions. In this situation, it is possible to obtain electrochemical energy after the complete charge/discharge cycle conducted in electrolytic solutions with different proton concentrations. To this end, we prepared modified electrodes from phosphomolybdic acid (PMA), poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and polyallylamine (PAH) by the layer-by-layer (LbL) method and investigated their electrochemical behavior, aiming to use them in these neutralization pseudocapacitors. We analyzed the potentiodynamic profile of the current density at several scan rates, to evaluate the reversibility of the proton electroinsertion process, which is crucial to maximum energy storage efficiency. On the basis of the proposed reaction mechanism and by using frequency-domain measurements and models, we determined rate constants at different potentials. Our results demonstrated that the conducting polymer affects the self-assembled matrixes, ensuring that energy storage is high (22.5 kJ mol(-1)). The process involved neutralization of a hydrochloric acid solution from pH = 1 to pH = 6, which corresponds to 40% of the neutralization enthalpy.

  7. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  8. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  9. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  10. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  11. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  12. Self-assembled nanogaps for molecular electronics.

    Science.gov (United States)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  13. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  14. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  15. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  16. Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Wiesler, Uwe-Martin; Weil, Tanja; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    A second-generation polyphenylene dendrimer 1 self-assembles into nanofibers on various substrates such as HOPG, silicon, glass, and mica from different solvents. The investigation with noncontact atomic force microscopy (NCAFM) and scanning electron microscopy (SEM) shows that the morphology of the

  17. Optical orientation in self assembled quantum dots

    International Nuclear Information System (INIS)

    Stevens, Gregory C.

    2002-01-01

    We examined Zeeman splitting in a series of ln x Ga (1-x) As/GaAs self assembled quantum dots (SAQD's) with different pump polarisations. All these measurements were made in very low external magnetic fields where direct determination of the Zeeman splitting energy is impossible due to its small value in comparison to the photoluminescence linewidths. The use of a technique developed by M. J. Snelling allowed us to obtain the Zeeman splitting and hence the excitonic g-factors indirectly. We observed a linear low field splitting, becoming increasingly non-linear at higher fields. We attribute this non-linearity to field induced level mixing. It is believed these are the first low field measurements in these structures. A number of apparent nuclear effects in the Zeeman splitting measurements led us onto the examination of nuclear effects in these structures. The transverse and oblique Hanie effects then allowed us to obtain the sign of the electronic g-factors in two of our samples, for one sample, a (311) grown In 0.5 Ga 0.5 As/GaAs SAQD sample, we were able to ascertain the spin relaxation time, the maximum value of the nuclear field, and provide evidence of the existence of nuclear spin freezing in at least one of our samples. We have then used a novel technique investigated by D. J. Guerrier, to examine optically detected nuclear magnetic resonance in our samples. We believe this is the first such study on these structures. We could not ascertain the dipolar indium resonance signal, even though all other isotopes were seen. We have therefore suggested a number of possible mechanisms that may be responsible for the lack of an indium resonance signal. (author)

  18. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    Science.gov (United States)

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  19. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  20. Self-assembled nanomaterials based on beta (β"3) tetrapeptides

    International Nuclear Information System (INIS)

    Seoudi, Rania S; Hinds, Mark G; Wilson, David J D; Adda, Christopher G; Mechler, Adam; Del Borgo, Mark; Aguilar, Marie-Isabel; Perlmutter, Patrick

    2016-01-01

    β "3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β "3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β "3-tetrapeptides Ac-β "3Ala-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[ALIA]), Ac-β "3Ser-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[SLIA]) and Ac-β "3Lys-β "3Leu-β "3Ile-β "3Glu (Ac-β"3[KLIE]). β "3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β "3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β "3[SLIA] and Ac-β "3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm. (paper)

  1. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  2. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  3. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  4. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  5. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  6. Self-assembled biomimetic nanoreactors I: Polymeric template

    Science.gov (United States)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  7. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    Science.gov (United States)

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  8. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  9. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation.

    Science.gov (United States)

    Du, Wei; Hu, Xiaomu; Wei, Weichen; Liang, Gaolin

    2018-04-18

    Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.

  10. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    Hollow materials with interiors or voids and pores are a class of lightweight nanostructured matters that promise many future technological applications, and they have received significant research attention in recent years. On the basis of well-known physicochemical phenomena and principles, for example, several solution-based protocols have been developed for the general preparation of these complex materials under mild reaction conditions. This article is thus a short introductory review on the synthetic aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases, both synthesis and self-assembly are involved in the above processes. Further combinations of these methodologies appear to be very important, as they will allow one to prepare functional materials at a higher level of complexity and precision. The synthetic strategies are introduced through some simple case studies with schematic illustrations. Salient features of the methods developed have been summarized, and some urgent issues of this field have also been indicated. © 2011 The Royal Society of Chemistry.

  11. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  12. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components

    Science.gov (United States)

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng

    2017-12-01

    Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can

  13. [Self-assembly tissue engineering fibrocartilage model of goat temporomandibular joint disc].

    Science.gov (United States)

    Kang, Hong; Li, Zhen-Qiang; Bi, Yan-Da

    2011-06-01

    To construct self-assembly fibrocartilage model of goat temporomandibular joint disc and observe the biological characteristics of the self-assembled fibrocartilage constructs, further to provide a basis for tissue engineering of the temporomandibular joint disc and other fibrocartilage. Cells from temporomandibular joint discs of goats were harvested and cultured. 5.5 x 10(6) cells were seeded in each agarose well with diameter 5 mm x depth 10 mm, daily replace of medium, cultured for 2 weeks. One day after seeding, goat temporomandibular joint disc cells in agarose wells were gathered and began to self-assemble into a disc-shaped base, then gradually turned into a round shape. When cultured for 2 weeks, hematoxylin-eosin staining was conducted and observed that cells were round and wrapped around by the matrix. Positive Safranin-O/fast green staining for glycosaminoglycans was observed throughout the entire constructs, and picro-sirius red staining was examined and distribution of numerous type I collagen was found. Immunohistochemistry staining demonstrated brown yellow particles in cytoplasm and around extracellular matrix, which showed self-assembly construct can produce type I collagen as native temporomandibular joint disc tissue. Production of extracellular matrix in self-assembly construct as native temporomandibular joint disc tissue indicates that the use of agarose wells to construct engineered temporomandibular joint disc will be possible and practicable.

  14. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  15. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  16. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi

    2015-08-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

  17. Multifunctional Materials Based on Self Assembly of Molecular Nanostructures

    National Research Council Canada - National Science Library

    Stupp, Samuel

    2001-01-01

    .... The objective was to integrate self assembly, encoded in the triblock structure, luminescent properties, and the properties characteristic of materials that have macroscopically polar structure...

  18. Self-assembled software and method of overriding software execution

    Science.gov (United States)

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  19. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  20. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  1. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  2. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  3. Large-scale molecular dynamics simulations of self-assembling systems.

    Science.gov (United States)

    Klein, Michael L; Shinoda, Wataru

    2008-08-08

    Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.

  4. Engineering self-assembled bioreactors from protein microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Univ. of California, Berkeley, CA (United States)

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  5. Controlled doping by self-assembled dendrimer-like macromolecules

    Science.gov (United States)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  6. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  7. Communication: Programmable self-assembly of thin-shell mesostructures

    Science.gov (United States)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2017-10-01

    We study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C20 and C60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced "alphabet" of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bond as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.

  8. Multicomponent and Dissipative Self-Assembly Approaches : Towards functional materials

    NARCIS (Netherlands)

    Boekhoven, J.

    2012-01-01

    The use of self-assembly has proven to be a powerful approach to create smart and functional materials and has led to a vast variety of successful examples. However, the full potential of self-assembly has not been reached. Despite the number of successful artificial materials based on

  9. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  10. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  11. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  12. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  13. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  14. Toward a molecular programming language for algorithmic self-assembly

    Science.gov (United States)

    Patitz, Matthew John

    Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is

  15. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Signatures of self-assembly in size distributions of wood members in dam structures of Castor canadensis

    Directory of Open Access Journals (Sweden)

    David M. Blersch

    2014-12-01

    Full Text Available Beavers (Castor canadensis construct dams on rivers throughout most of their historical range in North America, and their impact on water patterns in the landscape is considerable. Dam formation by beavers involves two processes: (1 intentional construction through the selection and placement of wood and sediment, which facilitates (2 the passive capture and accretion of suspended wood and sediment. The second process is a self-assembly mechanism that the beavers leverage by utilizing energy subsidies of watershed transport processes. The relative proportion of beaver activity to self-assembly processes in dam construction, however, is unknown. Here we show that lotic self-assembly processes account for a substantial portion of the work expended in beaver dam construction. We found through comprehensive measurement of the stick dimensions that the distributions for diameter, length, and volume are log-normal. By noting evidence of teeth markings, we determined that size distributions skewed significantly larger for wood handled by beavers compared to those that were not. Subsequent mass calculations suggest that beavers perform 50%–70% of the work of wood member placement for dam assembly, with riparian self-assembly processes contributing the remainder. Additionally, our results establish a benchmark for assessing the proportion of self-assembly work in similar riparian structures. Keywords: Beaver dam, Construction, Castor canadensis, Self-assembly, Distribution, Wood

  17. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  18. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  19. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  20. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Self-Assembled Nanostructured Health Monitoring Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  2. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  3. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  4. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were...... synthesized in moderate to quantitative yields by divergent solid-phase synthesis (SPS) employing an aldehyde linker. The self-assembling properties of the dendrons in aqueous solutions were studied by small angle neutron scattering (SANS) and dynamic light scattering (DLS). The self-assembling properties...... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...

  5. Enabling complex nanoscale pattern customization using directed self-assembly.

    Science.gov (United States)

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  6. Understanding emergent functions in self-assembled fibrous networks

    Science.gov (United States)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  7. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases

  8. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  9. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  10. Mesoscopic Self-Assembly: A Shift to Complexity

    Directory of Open Access Journals (Sweden)

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  11. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  12. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  13. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    compared with other less polar solvents) in order to determine optimized conditions for self-assembly, for which relatively large (> 1 mum2) areas of superlattices could be routinely formed. Depending on appropriate selection of the radius ratio, AuCu or CaCu 5 binary superlattices of CdSe-Au nanoparticles were generated. Chapter 4. The preparation of binary nanoparticle superlattices obtained by self-assembly of two different semiconductor quantum dots is presented. Such a system is a means to include two discretized, quantum-confined, and complimentary semiconductor units in close proximity, which might exhibit interesting charge transport properties for applications such as solar cells. From a range of possible structures predicted, we observe an exclusive preference for the formation of Cuboctahedral AB13 (Cuboctahedral modification of NaZn13) and AB5 (isostructural with CaCu5) structures in the system of 8.1 nm CdTe and 4.4 nm CdSe nanoparticles. To understand further the principles of superlattice formation, space-filling curves for binary component hard spheres over the full range of radius ratio are constructed. In addition, the pair interaction energies due to core-core and ligand-ligand van der Waals forces are estimated. The real structures are believed to form under a major influence of entropic driving forces (following the hard-sphere space filling principle) and combined with other influence from the surface (as nanoparticle deviates from hard spheres). Chapter 5. A nanoparticle radius ratio dependent study of the formation of binary nanoparticle superlattices (BNSLs) of CdTe and CdSe quantum dots is reported. While keeping all other parameters identical in the system, the effective nanoparticle radius ratio, gammaeff, was tuned to allow the formation of five different BNSL structures, AlB 2, cub-NaZn13, ico-NaZn 13, CaCu5, and MgZn2. For each structure, gamma eff is located close to a local maximum of its space-filling factor, based on a model following the

  14. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  15. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  16. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    Science.gov (United States)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  17. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  18. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  19. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  20. Highly ordered self-assembling polymer/clay nanocomposite barrier film.

    Science.gov (United States)

    Cook, Ray; Chen, Yihong; Beall, Gary W

    2015-05-27

    Efforts to mimic complex-structured biologically based materials such as abalone shell have occupied substantial research time and effort in science and engineering. The majority of the efforts involve tedious and expensive techniques and processes. Layer-by-layer (LBL) is one such technique that can produce materials with quite unique physical properties, approaching, and in some cases surpassing, those seen in nature. The LBL technique, however, is quite tedious and difficult to implement commercially. We report here the discovery of an organic/inorganic spontaneous self-assembling system that forms a highly structured nanocomposite. The driving force behind this self-assembly appears to be entropy. This discovery should open up completely new avenues to designing hierarchical composites and structures. The films have been studied by X-ray diffraction and the barrier properties for oxygen diffusion measured.

  1. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    Science.gov (United States)

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  3. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.

    Science.gov (United States)

    He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei

    2015-01-01

    A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  5. Self-assembly strategies for the synthesis of functional nanostructured materials

    International Nuclear Information System (INIS)

    Perego, M.; Seguini, G.

    2016-01-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer selfassembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  6. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang Yi; Li Yuanfang; Zhao Xijuan; Huang Chengzhi; Chen Liqiang; Peng Li

    2010-01-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  7. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    Science.gov (United States)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  8. Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawłowski, Jan; Juhaniewicz, Joanna; Sęk, Sławomir, E-mail: slasek@chem.uw.edu.pl

    2017-01-15

    Although the adsorption of lipids on reconstructed Au(111) surface and formation of highly ordered stripe-like domains are well-known phenomena, the exact orientation of the molecules with respect to the substrate remains unclear. Therefore, in this study we have focused on the structure and arrangement of lipid molecules forming highly ordered stripe-like domains at gold electrode-electrolyte interface. N-palmitoyl-D-erythro-dihydroceramide-1-phosphate was selected as model compound since its ability to transform into hemimicellar structure is limited. This way it was possible to get very stable lipid film with characteristic stripe-like pattern. Application of complementary techniques such as atomic force microscopy and scanning tunneling microscopy enabled detailed characteristics of lipid adlayer adsorbed on Au(111) electrode. Based on careful analysis of the experimental results, we have proposed a model which describes the arrangement of the molecules within the film. In general, it assumes flat-lying orientation of the lipids but only one hydrocarbon chain of phosphorylated dihydroceramide is involved in direct interaction with gold. - Highlights: • STM and AFM methods were used to examine adsorption of model lipid on Au(111). • Self-assembly of model lipid leads to formation of highly organized molecular film. • The model is proposed which reproduces the STM contrast.

  9. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  10. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  11. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    Science.gov (United States)

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  12. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.

    Science.gov (United States)

    Koutsopoulos, Sotirios

    2016-04-01

    Until the mid-1980s, mainly biologists were conducting peptide research. This changed with discoveries that opened new paths of research involving the use of peptides in bioengineering, biotechnology, biomedicine, nanotechnology, and bioelectronics. Peptide engineering and rational design of novel peptide sequences with unique and tailor-made properties further expanded the field. The discovery of short self-assembling peptides, which upon association form well-defined supramolecular architectures, created new and exciting areas of research. Depending on the amino acid sequence, the pH, and the type of the electrolyte in the medium, peptide self-assembly leads to the formation of nanofibers, which are further organized to form a hydrogel. In this review, the application of ionic complementary peptides which self-assemble to form nanofiber hydrogels for tissue engineering and regenerative medicine will be discussed through a selective presentation of the most important work performed during the last 25 years. © 2016 Wiley Periodicals, Inc.

  13. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  14. A real time analysis of the self-assembly process using thermal analysis inside the differential scanning calorimeter instrument.

    Science.gov (United States)

    Roy, Debmalya; Shastri, Babita; Mukhopadhyay, K

    2012-07-12

    The supramolecular assembly of the regioregular poly-3-hexylthiophene (rr-P3HT) in solution has been investigated thoroughly in the past. In the current study, our focus is on the enthalpy of nanofiber formation using thermal analysis techniques by performing the self-assembly process inside the differential scanning calorimetry (DSC) instrument. Thermogravimetric analysis (TGA) was carried out to check the concentration of the solvent during the self-assembly process of P3HT in p-xylene. Ultraviolet visible (UV-vis) spectophotometric technique, small-angle X-ray scattering (SAXS) experiment, atomic force microscopic (AFM), and scanning electron microscopic (SEM) images were used to characterize the different experimental yields generated by cooling the reaction mixture at desired temperatures. Comparison of the morphologies of self-assembled products at different fiber formation temperatures gives us an idea about the possible crystallization parameters which could affect the P3HT nanofiber morphology.

  15. Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine-derived oligopyridines in two-dimensional self-assembly

    Directory of Open Access Journals (Sweden)

    Daniel Caterbow

    2011-07-01

    Full Text Available The position of the peripheral nitrogen atoms in bis(terpyridine-derived oligopyridines (BTPs has a strong impact on their self-assembly behavior at the liquid/HOPG (highly oriented pyrolytic graphite interface. The intermolecular hydrogen bonding interactions in these peripheral pyridine units show specific 2D structures for each BTP isomer. From nine possible constitutional isomers only four have been described in the literature. The synthesis and self-assembling behavior of an additional isomer is presented here, but the remaining four members of the series are synthetically inaccessible. The self-assembling properties of three of the missing four BTP isomers can be mimicked by making use of the energetically preferred N–C–C–N transoid conformation between 2,2'-bipyridine subunits in a new class of so-called septipyridines. The structures are investigated by scanning tunneling microscopy (STM and a combination of force-field and first-principles electronic structure calculations.

  16. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  17. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  18. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  19. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures...

  20. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  1. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    International Nuclear Information System (INIS)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    2014-01-01

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed

  2. Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited.

    Science.gov (United States)

    Ninham, Barry W; Larsson, Kåre; Lo Nostro, Pierandrea

    2017-04-01

    Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Disassembly of Bacterial Biofilms by the Self-Assembled Glycolipids Derived from Renewable Resources.

    Science.gov (United States)

    Prasad, Yadavali Siva; Miryala, Sandeep; Lalitha, Krishnamoorthy; Ranjitha, K; Barbhaiwala, Shehnaz; Sridharan, Vellaisamy; Maheswari, C Uma; Srinandan, C S; Nagarajan, Subbiah

    2017-11-22

    More than 80% of chronic infections of bacteria are caused by biofilms. It is also a long-term survival strategy of the pathogens in a nonhost environment. Several amphiphilic molecules have been used in the past to potentially disrupt biofilms; however, the involvement of multistep synthesis, complicated purification and poor yield still remains a major problem. Herein, we report a facile synthesis of glycolipid based surfactant from renewable feedstocks in good yield. The nature of carbohydrate unit present in glycolipid influence the ring chain tautomerism, which resulted in the existence of either cyclic structure or both cyclic and acyclic structures. Interestingly, these glycolipids self-assemble into gel in highly hydrophobic solvents and vegetable oils, and displayed foam formation in water. The potential application of these self-assembled glycolipids to disrupt preformed biofilm was examined against various pathogens. It was observed that glycolipid 6a disrupts Staphylococcus aureus and Listeria monocytogenes biofilm, while the compound 6c was effective in disassembling uropathogenic E. coli and Salmonella enterica Typhimurium biofilms. Altogether, the supramolecular self-assembled materials, either as gel or as surfactant solution could be potentially used for surface cleansing in hospital environments or the food processing industries to effectively reduce pathogenic biofilms.

  4. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2015-01-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995

  5. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine.

    Science.gov (United States)

    Luo, Jing-Wen; Zhang, Zhi-Rong; Gong, Tao; Fu, Yao

    2016-01-01

    Our study aimed to develop a self-assembled nanomicelle for oral administration of nimodipine (NIM) with poor water solubility. Using Solutol(®) HS15, the NIM-loaded self-assembled nanomicelles displayed a near-spherical morphology with a narrow size distribution of 12.57 ± 0.21 nm (polydispersity index =0.071 ± 0.011). Compared with Nimotop(®) (NIM tablets), the intestinal absorption of NIM from NIM nanomicelle in rats was improved by 3.13- and 2.25-fold in duodenum and jejunum at 1 hour after oral administration. The cellular transport of NIM nanomicelle in Caco-2 cell monolayers was significantly enhanced compared to that of Nimotop(®). Regarding the transport pathways, clathrin, lipid raft/caveolae, and macropinocytosis mediated the cell uptake of NIM nanomicelles, while P-glycoprotein and endoplasmic reticulum/Golgi complex (ER/Golgi) pathways were involved in exocytosis. Pharmacokinetic studies in our research laboratory have showed that the area under the plasma concentration-time curve (AUC0-∞) of NIM nanomicelles was 3.72-fold that of Nimotop(®) via oral administration in rats. Moreover, the NIM concentration in the brain from NIM nanomicelles was dramatically improved. Therefore, Solutol(®) HS15-based self-assembled nanomicelles represent a promising delivery system to enhance the oral bioavailability of NIM.

  6. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  7. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly

    Science.gov (United States)

    Gibaud, Thomas

    2017-12-01

    Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.

  8. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  9. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Mandoc, MM; van Woudenbergh, T; Blom, PWM

    2005-01-01

    Work functions of gold and silver are varied by over 1.4 and 1.7 eV, respectively, by using self-assembled monolayers. Using these modified electrodes, the hole current in a poly(2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylene vinylene) light-emitting diode is tuned by more than six orders of

  10. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Physical and Materials Chemistry Division, National Chemical Laboratory,. Pune 411 008, India e-mail: viji@ems.ncl.res.in. Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with ...

  11. Synthesis, characterization and self-assembly with gold nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    characterization and self-assembly with gold nanoparticles. JUN-BO LI. 1, ... gold surface lead to the enhancement of device prop- erties. 36,37 ... Reactions were monitored by thin-layer ..... plasmon (SP) absorption band (figure 5) of TOAB-.

  12. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  13. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  14. Self-assembled fluorescent organic nanoparticles for live cell imaging

    NARCIS (Netherlands)

    Fischer, I.; Petkau, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L.

    2013-01-01

    Fluorescent, cell-permeable, organic nanoparticles based on self-assembled p-conjugated oligomers with high absorption cross-sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge-mediated cellular uptake by a

  15. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  16. Self-assembly of concentric quantum double rings.

    Science.gov (United States)

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  17. Oscillatory persistent currents in self-assembled quantum rings

    NARCIS (Netherlands)

    Kleemans, N.A.J.M.; Bominaar-Silkens, I.M.A.; Fomin, V.; Gladilin, V.N.; Granados, D.; Taboada, A.G.; Garcia, J.M.; Offermans, P.; Zeitler, U.; Christianen, P.C.M.; Maan, J.C.; Devreese, J.T.; Koenraad, P.M.

    2007-01-01

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural

  18. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  19. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single...

  20. Multiphonon capture processes in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2001-01-01

    We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show...

  1. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  2. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  3. Electrostatic Self-Assembly of Polysaccharides into Nanofibers

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Strohmenger, Timm; Goycoolea, Francisco

    2017-01-01

    In this study, the anionic polysaccharide Xanthan gum (X) was mixed with positively charged Chitosan oligomers (ChO), and used as building blocks, to generate novel nanofibers by electrostatic self-assembly in aqueous conditions. Different concentrations, ionic strength and order of mixing of both...

  4. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  5. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules

    NARCIS (Netherlands)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-01-01

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded

  6. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    Unknown

    applications in catalytic systems, solubalizing agents and drug delivery matrices. Following the pioneering efforts of ... In this context, self-assembly of amphipiles in nonpolar organic media assumes significance 8 since .... structures in clear contrast to lamellar phases formed by the higher members. We sought to image the ...

  7. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  8. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  9. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  10. Self-assembling peptide hydrogels immobilized on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy); Zamuner, Annj; Dettin, Monica [Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua, 35131 (Italy); Iucci, Giovanna, E-mail: giovanna.iucci@uniroma3.it [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy)

    2016-12-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  11. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  12. Building polyhedra by self-assembly: theory and experiment.

    Science.gov (United States)

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  13. Spectromicroscopy of self-assembled protein clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schonschek, O.; Hormes, J.; Herzog, V. [Univ. of Bonn (Germany)

    1997-04-01

    The aim of this project is to use synchrotron radiation as a tool to study biomedical questions concerned with the thyroid glands. The biological background is outlined in a recent paper. In short, Thyroglobulin (TG), the precursor protein of the hormone thyroxine, forms large (20 - 500 microns in diameter) clusters in the extracellular lumen of thyrocytes. The process of the cluster formation is still not well understood but is thought to be a main storage mechanism of TG and therefore thyroxine inside the thyroid glands. For human thyroids, the interconnections of the proteins inside the clusters are mainly disulfide bondings. Normally, sulfur bridges are catalyzed by an enzyme called Protein Disulfide Bridge Isomerase (PDI). While this enzyme is supposed to be not present in any extracellular space, the cluster formation of TG takes place in the lumen between the thyrocytes. A possible explanation is the autocatalysis of TG.

  14. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.; Houbenov, Nikolay; Iatrou, Hermis; Hadjichristidis, Nikolaos; Karatzas, A.; Faul, Charl F. J.; Rannou, Patrice; Ikkala, Olli T.

    2012-01-01

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  15. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.

    2012-11-12

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  16. Self-Assembly of Molecular Threads into Reversible Gels

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2001-03-01

    Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.

  17. DNA Self-Assembly: From Chirality to Evolution

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2013-04-01

    Full Text Available Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.

  18. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  19. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  20. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  1. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  2. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self......-assembled molecular layer can be controlled by tuning of the experimental conditions under which the deposition is carried out. When the Cu(111) substrate is held above room temperature (T-Cu(111) = 350 K) during deposition, a structure is formed in which the two molecules in the unit cell are oriented one...... perpendicular to the other. Conversely, when the substrate is held at room temperature during deposition and slightly annealed afterwards, a more complex structure with five molecules per unit cell is formed. DFT calculations complement the experimental results by revealing that the building blocks of the two...

  3. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  4. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  5. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  6. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  7. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  8. Fabrication of Nanostructures Using Self-Assembled Peptides as Templates

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    the advantages of diphenylalanine are explained step by step offering new alternatives to fabricate nanostructures in a simple and rapid way. The chapter is complemented with techniques to manipulate the self-assembled diphenylalanine nanostructures without changing its properties during the manipulation process.......This chapter evaluates the use of a short-aromatic dipeptide, diphenylalanine, as a template in the fabrication of new nanostructures (nanowires, coaxial nanocables, nanochannels) using materials such as silicon, conducting and non-conducting polymers. Diphenylalanine self...

  9. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  10. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  11. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Czech Academy of Sciences Publication Activity Database

    Stakkestad, O.; Lyngstadaas, S. P.; Thiede, B.; Vondrášek, Jiří; Skalhegg, B. S.; Reseland, J. E.

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 531. ISSN 1664-042X Institutional support: RVO:61388963 Keywords : ameloblastin * phosphorylation * self-assembly * Ca2+-binding * enamel * intrinsically disordered proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.134, year: 2016 http://journal.frontiersin.org/article/10.3389/fphys.2017.00531/full

  12. Self-assembled containers based on extended tetrathiafulvalene.

    Science.gov (United States)

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  13. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  14. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  15. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    Science.gov (United States)

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  16. Asynchrony in visual consciousness and the possible involvement of attention

    Directory of Open Access Journals (Sweden)

    Konstantinos eMoutoussis

    2012-09-01

    Full Text Available When subjects are asked to perceptually bind rapidly alternating colour and motion stimuli, the pairings they report are different from the ones actually occurring in physical reality. A possible explanation for this misbinding is that the time necessary for perception is different for different visual attributes. Such an explanation is in logical harmony with the fact that the visual brain is characterized by different, functionally specialized systems, with different processing times for each; this type of organization naturally leads to different perceptual times for the corresponding attributes. In the present review, the experimental findings supporting perceptual asynchrony are presented, together with the original theoretical explanation behind the phenomenon and its implication for visual consciousness. Alternative theoretical views and additional experimental facts concerning perceptual misbinding are also reviewed, with a particular emphasis given to the role of attention. With few exceptions, most theories converge on the idea that the observed misbinding reflects a difference in perception times, which is in turn due to differences in neuronal processing times for different attributes within the brain. These processing-time differences have been attributed to several different factors, attention included, with the possibility of co-existence between them.

  17. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  18. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  19. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  20. DNA assisted self-assembly of PAMAM dendrimers.

    Science.gov (United States)

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  1. Controlling Self-Assembly in Al(110) Homoepitaxy

    Science.gov (United States)

    Tiwary, Yogesh; Fichthorn, Kristen

    2010-03-01

    Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).

  2. Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage

    International Nuclear Information System (INIS)

    Yang Rong; Gu Yingan; Li Yaoqi; Zheng Jie; Li Xingguo

    2010-01-01

    Flower-shaped SnO 2 nanoplates were successfully synthesized via a simple hydrothermal treatment of a mixture of tin(II) dichloride dihydrate (SnCl 2 .2H 2 O) and sodium citrate (Na 3 C 6 H 5 O 7 .2H 2 O) in alkali solution. The obtained SnO 2 nanoplates were less than 5 nm thick and self-assembled into flower-shaped nanostructures. The introduction of citrate was essential for the preparation of the SnO 2 nanoplates. The nanoscale shape and self-assembled architecture of SnO 2 nanoparticles were mainly controlled by the alkalinity of the solution. When the self-assembled SnO 2 nanostructures were used as anode materials in Li-ion batteries, they exhibit a reversible capacity of 670 mA h g -1 after 30 cycles and an average capacity fading of 0.95% per cycle after the second cycle. The good electrochemical performance of the SnO 2 sample prepared via the hydrothermal synthesis indicates the possibility of fabricating specific self-assembled three-dimensional nanostructures for Li-ion batteries.

  3. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  4. Self-assembled peptide nanostructures for the development of electrochemical biosensors

    DEFF Research Database (Denmark)

    Castillo-León, Jaime; Zor, Kinga; Svendsen, Winnie Edith

    2015-01-01

    . These biological nanostructures have recently been utilized for bionanotechnological applications thanks to their easy and low-cost fabrication, their stability, and their facile functionalization. These features suggest the usage of self-assembled peptide nanostructures in the development of biosensing platforms......Biological building blocks such as peptides or proteins are able to self-organize into nanostructures with particular properties. There are several possibilities for their use in varying applications such as drug delivery, biosensing, clean-room fabrication methods, and tissue engineering...

  5. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  6. Possible Anandamide and Palmitoylethanolamide involvement in human stroke

    Directory of Open Access Journals (Sweden)

    Pizzolato Gilberto

    2010-05-01

    Full Text Available Abstract Background Endocannabinoids (eCBs are ubiquitous lipid mediators that act on specific (CB1, CB2 and non-specific (TRPV1, PPAR receptors. Despite many experimental animal studies proved eCB involvement in the pathogenesis of stroke, such evidence is still lacking in human patients. Our aim was to determine eCB peripheral levels in acute stroke patients and evaluate their relationship with clinical disability and stroke volume. Methods A cohort of ten patients with a first acute (within six hours since symptoms onset ischemic stroke and a group of eight age- and sex-matched normal subjects were included. Groups were also matched for metabolic profile. All subjects underwent a blood sample collection for anandamide (AEA, 2-arachidonoylglycerol (2-AG and palmitoylethanolamide (PEA measurement; blood sampling was repeated in patients on admission (T0, at 6 (T1 and 18 hours (T2 thereafter. Patients neurological impairment was assessed using NIHSS and Fugl-Meyer Scale arm subitem (FMSa; stroke volume was determined on 48 h follow-up brain CT scans. Blood samples were analyzed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Results 1T0 AEA levels were significantly higher in stroke patients compared to controls. 2A significant inverse correlation between T0 AEA levels and FMSa score was found. Moreover a positive correlation between T0 AEA levels and stroke volume were found in stroke patients. T0 PEA levels in stroke patients were not significantly different from the control group, but showed a significant correlation with the NIHSS scores. T0 2-AG levels were lower in stroke patients compared to controls, but such difference did not reach the significance threshold. Conclusions This is the first demonstration of elevated peripheral AEA levels in acute stroke patients. In agreement with previous murine studies, we found a significant relationship between AEA or PEA levels and neurological involvement, such

  7. Husband and wife with sarcoidosis: possible environmental factors involved

    Directory of Open Access Journals (Sweden)

    Leli Ilaria

    2013-01-01

    Full Text Available Abstract Sarcoidosis is a granulomatous multisystem disorder of unclear etiology that involves any organ, most commonly the lung and the lymph nodes. It is hypothesized that the disease derives from the interaction between single or multiple environmental factors and genetically determined host factors. Multiple potential etiologic agents for sarcoidosis have been proposed without any definitive demonstration of causality. We report the case of two patients, husband (57 years old and wife (55 years old, both suffering from sarcoidosis. They underwent a lymph node biopsy by mediastinoscopy which showed a “granulomatous epithelioid giant cell non-necrotising chronic lymphadenitis”. They had lived up to 3 years ago in the country in a farm, in contact with organic dusts, animals such as dogs, chickens, rabbits, pigeons; now they have lived since about 3 years in an urban area where there are numerous chemical industries and stone quarries. The aim of this case report was to focus on environmental factors that might be related to the pathogenesis of the sarcoidosis.

  8. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  9. Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis.

    Science.gov (United States)

    Dezerega, A; Osorio, C; Mardones, J; Mundi, V; Dutzan, N; Franco, M; Gamonal, J; Oyarzún, A; Overall, C M; Hernández, M

    2010-10-01

    To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry.   MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis. © 2010 International Endodontic Journal.

  10. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    Science.gov (United States)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic

  11. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine

    Directory of Open Access Journals (Sweden)

    Luo JW

    2016-03-01

    Full Text Available Jing-Wen Luo, Zhi-Rong Zhang, Tao Gong, Yao Fu Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China Abstract: Our study aimed to develop a self-assembled nanomicelle for oral administration of nimodipine (NIM with poor water solubility. Using Solutol® HS15, the NIM-loaded self-assembled nanomicelles displayed a near-spherical morphology with a narrow size distribution of 12.57±0.21 nm (polydispersity index =0.071±0.011. Compared with Nimotop® (NIM tablets, the intestinal absorption of NIM from NIM nanomicelle in rats was improved by 3.13- and 2.25-fold in duodenum and jejunum at 1 hour after oral administration. The cellular transport of NIM nanomicelle in Caco-2 cell monolayers was significantly enhanced compared to that of Nimotop®. Regarding the transport pathways, clathrin, lipid raft/caveolae, and macropinocytosis mediated the cell uptake of NIM nanomicelles, while P-glycoprotein and endoplasmic reticulum/Golgi complex (ER/Golgi pathways were involved in exocytosis. Pharmacokinetic studies in our research laboratory have showed that the area under the plasma concentration–time curve (AUC0–∞ of NIM nanomicelles was 3.72-fold that of Nimotop® via oral administration in rats. Moreover, the NIM concentration in the brain from NIM nanomicelles was dramatically improved. Therefore, Solutol® HS15-based self-assembled nanomicelles represent a promising delivery system to enhance the oral bioavailability of NIM. Keywords: nanomicelles, stability, nimodipine, oral bioavailability, transport mechanism 

  12. Novel self-assembled mesalamine-sucralfate complexes: preparation, characterization, and formulation aspects.

    Science.gov (United States)

    Ispas-Szabo, Pompilia; Friciu, Mihaela Maria; Nguyen, Phuong; Dumoulin, Yves; Mateescu, Mircea Alexandru

    2016-01-01

    Two well-known active agents, mesalamine (MES) and sucralfate (SUC), were investigated for possible utilization as fixed-dose combination product. The anti-inflammatory action of MES in association with bioadhesiveness and mucosal healing properties of SUC were considered promising for the development of a new compound containing both molecules, aimed as an improved treatment of ulcerative colitis. The present study investigates the capacity of the two active agents to interact and generate a new and stable entity via self-assembling. Spray-drying was used to co-process the two active principles from an aqueous mixture where the ratio MES:SUC was in the range 25:75, 50:50, and 75:25. The structural data (X-Ray, FTIR, SEM, DSC, and (1)H NMR) have shown that MES and SUC are interacting leading to complexes with properties differing from those of each separate active agent and from their physical blends. (1)H NMR results indicated that complexation occurred when the aqueous suspensions of drugs were mixed, prior to spray-drying. Drug-drug self-assembling was the driving mechanism in the formation of the new entity. Based on the structural data, a hypothetical structure of the complex was proposed. Co-processing of MES and SUC represents a simple and useful procedure to prepare new self-assembled compounds by valorizing the ionic interactions between the two entities. Preliminary studies with oral solid dosage forms based on MES-SUC complexes tested in vitro have shown a controlled MES release, opening the perspective of a new colon-targeted delivery system and a novel class of compounds with therapeutic application in inflammatory bowel diseases.

  13. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    modifications in a row. A logical alternative approach is to leave out the phosphodiester bridges between the chromophores and let chromophore-nucleoside conjugates self-assemble specifically along single stranded DNA as template. The self-organization of chromophores along the DNA template based on canonical base pairing would be advantageous because sequence selective base pairing could provide a structural basis for programmed complexity within the chromophore assembly. The self-assembly is governed by two interactions. The chromophore-nucleoside conjugates as guest molecules are recognized via hydrogen bonds to the corresponding counter bases in the single stranded DNA template. Moreover, the π-π interactions between the stacked chromophores stabilize these self-assembled constructs with increasing length. Longer DNA templates are more attractive for self-assembled antenna. The helicity in the stack of porphyrins as guest molecules assembled on the DNA template can be switched by environmental changes, such as pH variations. DNA-templated stacks of ethynyl pyrene and nile red exhibit left-handed chirality, which stands in contrast to similar covalent multichromophore-DNA conjugates with enforced right-handed helicity. With ethynyl nile red, it is possible to occupy every available binding site on the templates. Mixed assemblies of ethynyl pyrene and nile red show energy transfer and thereby provide a proof-of-principle that simple light-harvesting antennae can be obtained in a noncovalent and self-assembled fashion. With respect to the next important step, chemical storage of the absorbed light energy, future research has to focus on the coupling of sophisticated DNA-based light-harvesting antenna to reaction centers.

  14. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  15. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  16. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  17. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    Science.gov (United States)

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  18. Self-assembly of silver nanoparticles and bacteriophage

    Directory of Open Access Journals (Sweden)

    Santi Scibilia

    2016-03-01

    Full Text Available Biohybrid nanostructured materials, composed of both inorganic nanoparticles and biomolecules, offer prospects for many new applications in extremely diverse fields such as chemistry, physics, engineering, medicine and nanobiotechnology. In the recent years, Phage display technique has been extensively used to generate phage clones displaying surface peptides with functionality towards organic materials. Screening and selection of phage displayed material binding peptides has attracted great interest because of their use for development of hybrid materials with multiple functionalities. Here, we present a self-assembly approach for the construction of hybrid nanostructured networks consisting of M13 P9b phage clone, specific for Pseudomonas aeruginosa, selected by Phage display technology, directly assembled with silver nanoparticles (AgNPs, previously prepared by pulsed laser ablation. These networks are characterized by UV–vis optical spectroscopy, scanning/transmission electron microscopies and Raman spectroscopy. We investigated the influence of different ions and medium pH on self-assembly by evaluating different phage suspension buffers. The assembly of these networks is controlled by electrostatic interactions between the phage pVIII major capsid proteins and the AgNPs. The formation of the AgNPs-phage networks was obtained only in two types of tested buffers at a pH value near the isoelectric point of each pVIII proteins displayed on the surface of the clone. This systematic study allowed to optimize the synthesis procedure to assembly AgNPs and bacteriophage. Such networks find application in the biomedical field of advanced biosensing and targeted gene and drug delivery. Keywords: Phage display, Silver nanoparticles, Self-assembly, Hybrid architecture, Raman spectroscopy

  19. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  20. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  1. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    Science.gov (United States)

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  2. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  3. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia; Yufa, Nataliya A.; Cunha, Pedro S.; Guldin, Stefan; Rushkin, Ilia; Stefik, Morgan; Hur, Kahyun; Wiesner, Ulrich; Baumberg, Jeremy J.; Steiner, Ullrich

    2011-01-01

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oscillatory persistent currents in self-assembled quantum rings.

    Science.gov (United States)

    Kleemans, N A J M; Bominaar-Silkens, I M A; Fomin, V M; Gladilin, V N; Granados, D; Taboada, A G; García, J M; Offermans, P; Zeitler, U; Christianen, P C M; Maan, J C; Devreese, J T; Koenraad, P M

    2007-10-05

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural properties determined by cross-sectional scanning tunneling microscopy measurements. The observed oscillation magnitude of the magnetic moment per electron is remarkably large for the topology of our nanostructures, which are singly connected and exhibit a pronounced shape asymmetry.

  6. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  7. Directed Formation of DNA Nanoarrays through Orthogonal Self-Assembly

    Directory of Open Access Journals (Sweden)

    Eugen Stulz

    2011-06-01

    Full Text Available We describe the synthesis of terpyridine modified DNA strands which selectively form DNA nanotubes through orthogonal hydrogen bonding and metal complexation interactions. The short DNA strands are designed to self-assemble into long duplexes through a sticky-end approach. Addition of weakly binding metals such as Zn(II and Ni(II induces the formation of tubular arrays consisting of DNA bundles which are 50-200 nm wide and 2-50 nm high. TEM shows additional long distance ordering of the terpy-DNA complexes into fibers.

  8. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  9. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  10. Light-assisted templated self assembly using photonic crystal slabs.

    Science.gov (United States)

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  11. Nanoporous network channels from self-assembled triblock copolymer supramolecules.

    Science.gov (United States)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-02-16

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded P4VP(PDP)complexes. After structure formation, PDP was removed using a simple washing procedure, resulting in well-ordered nanoporous films that were used as templates for nickel plating. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  13. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao; Wang, Qingxiao; Yang, Yang; Zhang, Bei; Zhang, Xixiang

    2012-01-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  14. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  15. Surfactant self-assembly in alcohol-rich solutions

    International Nuclear Information System (INIS)

    Bouguerra, N.; Jebari, M.M.; Gomati, R.; Gharbi, A.

    2005-01-01

    Ionic conductivity and viscosity measurements are achieved along alcohol dilution lines of a single-isotropic phase domain, which extends from the alcohol corner to sponge phase domain to brine corner, of an alcohol-surfactant-brine phase diagram. The results are discussed in terms of amphiphilic self-assembly which leads to stable mixtures of the slightly miscible alcohol and brine used. We show the formation of reverse micelles, whose cores are either dry or charged of brine according to the samples composition, and whose sizes remain small near the sponge phase structure

  16. Biomimetic engineering: towards a self-assembled nanotechnology

    International Nuclear Information System (INIS)

    Braach-Maksvytis, V.

    2002-01-01

    Full text: The Nanoscience and Systems program was set up within CSIRO Telecommunications and Industrial Physics three years ago with an emphasis on biomimetic engineering, with the aim of developing new cross-disciplinary research in traditional physics areas. By combining expertise in experimental and theoretical physics with biology and chemistry, new approaches towards understanding and using nanoscale systems and devices are being explored. Research in the program ranges from using self-assembled lipid membranes for surface passivation of GaAs transistors to the electrical properties of nanoparticle films and devices. An overview of the research will be given, highlighting the diversity of nanotechnology applications

  17. Synthesis and self-assembly of Janus and patchy colloidal particles

    Science.gov (United States)

    Jiang, Shan

    Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle

  18. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Fu

    Full Text Available Nanotubes are formed by self-assembly of α-lactalbumin milk protein following a different route than established for the hydrolysis which involves V8 enzyme, phosphate buffer and appropriate amounts of calcium at neutral pH. The resulting nanotubes are used as templates for the growth of conductive silver nanotubes. TEM, SEM-EDS, AFM and FTIR are used for characterization.

  19. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    Science.gov (United States)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  20. Tuning peptide self-assembly by an in-tether chiral center

    Science.gov (United States)

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  1. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A., E-mail: marodri@ugr.es; Cabrerizo-Vílchez, Miguel A.

    2016-12-15

    Highlights: • Chemically-tailored titanium surfaces were prepared by self-assembly of alkylphosphonates. • Mixed self-assembled films were prepared with aqueous mixtures of two alkylphosphonates. • Single self-assembled films were altered by laser abrasion. • Mixed and patterned self-assembled films on titanium may guide the bone-like formation. - Abstract: Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  2. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    umbilical vein endothelial cells and alpha5beta1 integrins immobilized on an AFM tip preferred binding to a fibronectin mimetic peptide that contained both hydrophilic and hydrophobic residues in the linker and a medium length spacer. Most cells require a three-dimensional scaffold in order to thrive. To incorporate the fibronectin mimetic peptide into a three-dimensional structure, a single hydrocarbon tail was attached to form a peptideamphiphile. Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of the electrostatic charges in the headgroup. These gels show promise as scaffolds for tissue engineering. A fibronectin mimetic peptide-amphiphile containing a linker with alternating hydrophobic and hydrophilic residues was designed to form nanofibers in solution. The critical micelle concentration of the peptide-amphiphile was determined to be 38 muM, and all subsequent experiments were performed above this concentration. Circular dichroism (CD) spectroscopy indicated that the peptide headgroup of the peptide-amphiphile forms an alpha+beta secondary structure; whereas, the free peptide forms a random secondary structure. Cryogenic-transmission electron microscopy (cryo-TEM) and small angle neutron scattering showed that the peptide-amphiphile self-assembled into nanofibers. The cryo-TEM images showed single nanofibers with a diameter of 10 nm and lengths on the order of microns. Images of higher peptideamphiphile concentrations showed evidence of bundling between individual nanofibers, which could give rise to gelation behavior at higher concentrations. The peptide-amphiphile formed a gel at concentrations above 6 mM. A 10 mM sample was analyzed with oscillating plate rheometry and was found to have an elastic modulus within the range of living tissue, showing potential as a possible scaffold for tissue engineering.

  3. Screening of self-assembled monolayer for aflatoxin B1 detection using immune-capacitive sensor

    Directory of Open Access Journals (Sweden)

    Alvaro V. Gutierrez R

    2015-12-01

    Full Text Available A capacitive biosensor was used for detection of aflatoxin B1. Two different methods for cleaning gold electrodes were evaluated using cyclic voltammetry in the presence of ferricyanide as redox couple. The methods involve use of a sequence of cleaning steps avoiding the use of Piranha solution and plasma cleaner. Anti-aflatoxin B1 was immobilized on self-assembled monolayers (SAM. The immune-capacitive biosensor is able to detect aflatoxin B1 concentrations in a linear range of 3.2 × 10−12 M to 3.2 × 10−9 M when thiourea was used to form the SAM; 3.2 × 10−9 M to 3.2 × 10−7 M when thioctic acid was used. When the gold surface was isolated with tyramine-electropolymerization linear ranges of 3.2 × 10−13 M to 3.2 × 10−7 M and 3.2 × 10−9 M to 3.2 × 10−7 M where obtained, respectively. The results obtained show the difference in linear range, limit of detection, and limit of quantification when different self-assembled monolayers are used for aflatoxin B1 detection.

  4. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    Energy Technology Data Exchange (ETDEWEB)

    Irrera, Simona [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy); Department of Chemistry, University College London, 20 Grodon Street, WC1H0AJ London (United Kingdom); Ruiz-Hernandez, Sergio E. [School of Chemistry, Cardiff University Main Building, Park Place, CF103AT Cardiff (United Kingdom); Reggente, Melania [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Passeri, Daniele, E-mail: daniele.passeri@uniroma1.it [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Natali, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Gala, Fabrizio [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Department of Medical-Surgical, Techno-Biomedical Sciences and Translational Medicine of SAPIENZA University of Rome, Sant’Andrea Hospital, Rome (Italy); Zollo, Giuseppe [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Rossi, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Research Center for Nanotechnology applied to Engineering of SAPIENZA University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome (Italy); Portalone, Gustavo, E-mail: gustavo.portalone@uniroma1.it [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy)

    2017-06-15

    Highlights: • Ca salt of 5-carboxylcytosine has been deposited on HOPG substrate. • Molecules self-assembled in monolayers and filaments. • Height of the features were measured by atomic force microscopy. • Ab-initio calculations confirmed the AFM results. - Abstract: Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  5. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    Science.gov (United States)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  6. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  7. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  8. Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)

    International Nuclear Information System (INIS)

    Vericat, C; Vela, M E; Benitez, G A; Gago, J A Martin; Torrelles, X; Salvarezza, R C

    2006-01-01

    In the last two decades surface science techniques have decisively contributed to our present knowledge of alkanethiol self-assembled monolayers (SAMs) on solid surfaces. These organic layers have been a challenge for surface scientists, in particular because of the soft nature of the organic material (which can be easily damaged by irradiation), the large number of atoms present in the molecules, and the complex physical chemistry involved in the self-assembly process. This challenge has been motivated by the appealing technological applications of SAMs that cover many fields of the emerging area of nanotechnology. Sulfur (S) is closely related to alkanethiols and can be used to understand basic aspects of the surface structure of SAMs. In this review we focus on the atomic/molecular structures of S-containing SAMs on Au(111). Particular emphasis is given to the substrate, adsorption sites, chemical state of the S-metal bond and also to the experimental and theoretical tools used to study these structures at the atomic or molecular levels. (topical review)

  9. Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Vericat, C [Instituto de Investigaciones FisicoquImicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata (Argentina); Vela, M E [Instituto de Investigaciones FisicoquImicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata (Argentina); Benitez, G A [Instituto de Investigaciones FisicoquImicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata (Argentina); Gago, J A Martin [Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz Madrid (Spain); Torrelles, X [Instituto de Ciencia de Materiales de Barcelona (ICMAB), Barcelona (Spain); Salvarezza, R C [Instituto de Investigaciones FisicoquImicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata (Argentina)

    2006-12-06

    In the last two decades surface science techniques have decisively contributed to our present knowledge of alkanethiol self-assembled monolayers (SAMs) on solid surfaces. These organic layers have been a challenge for surface scientists, in particular because of the soft nature of the organic material (which can be easily damaged by irradiation), the large number of atoms present in the molecules, and the complex physical chemistry involved in the self-assembly process. This challenge has been motivated by the appealing technological applications of SAMs that cover many fields of the emerging area of nanotechnology. Sulfur (S) is closely related to alkanethiols and can be used to understand basic aspects of the surface structure of SAMs. In this review we focus on the atomic/molecular structures of S-containing SAMs on Au(111). Particular emphasis is given to the substrate, adsorption sites, chemical state of the S-metal bond and also to the experimental and theoretical tools used to study these structures at the atomic or molecular levels. (topical review)

  10. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  11. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  12. New self-assembly strategies for next generation lithography

    Science.gov (United States)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  13. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone

    Directory of Open Access Journals (Sweden)

    Chen Y

    2011-05-01

    Full Text Available Yupeng Chen1,2, Shang Song2, Zhimin Yan3, Hicham Fenniri3, Thomas J Webster2,41Department of Chemistry, Brown University, Providence, RI, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; 4Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Rosette nanotubes (RNTs are novel, self-assembled, biomimetic, synthetic drug delivery materials suitable for numerous medical applications. Because of their amphiphilic character and hollow architecture, RNTs can be used to encapsulate and deliver hydrophobic drugs otherwise difficult to deliver in biological systems. Another advantage of using RNTs for drug delivery is their biocompatibility, low cytotoxicity, and their ability to engender a favorable, biologically-inspired environment for cell adhesion and growth. In this study, a method to incorporate dexamethasone (DEX, an inflammatory and a bone growth promoting steroid into RNTs was developed. The drug-loaded RNTs were characterized using diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR and UV-Vis spectroscopy. Results showed for the first time that DEX can be easily and quickly encapsulated into RNTs and released to promote osteoblast (bone-forming cell functions over long periods of time. As a result, RNTs are presented as a novel material for the targeted delivery of hydrophobic drugs otherwise difficult to deliver.Keywords: nanotubes, drug delivery, self-assembly, physiological conditions

  14. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  15. Stochastic lag time in nucleated linear self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Nitin S. [Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Schoot, Paul van der [Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-06-21

    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway.

  16. Probabilistic Performance Guarantees for Distributed Self-Assembly

    KAUST Repository

    Fox, Michael J.

    2015-04-01

    In distributed self-assembly, a multitude of agents seek to form copies of a particular structure, modeled here as a labeled graph. In the model, agents encounter each other in spontaneous pairwise interactions and decide whether or not to form or sever edges based on their two labels and a fixed set of local interaction rules described by a graph grammar. The objective is to converge on a graph with a maximum number of copies of a given target graph. Our main result is the introduction of a simple algorithm that achieves an asymptotically maximum yield in a probabilistic sense. Notably, agents do not need to update their labels except when forming or severing edges. This contrasts with certain existing approaches that exploit information propagating rules, effectively addressing the decision problem at the level of subgraphs as opposed to individual vertices. We are able to obey more stringent locality requirements while also providing smaller rule sets. The results can be improved upon if certain requirements on the labels are relaxed. We discuss limits of performance in self-assembly in terms of rule set characteristics and achievable maximum yield.

  17. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  18. Self-assembly of colloids with magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V., E-mail: ekaterina.novak@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In our earlier work (Steinbach et al., 2016 ) we investigated a homogeneous system of magnetically capped colloidal particles that self-assembled via two structural patterns of different symmetry. The particles could form a compact, equilateral triangle with a three-fold rotational symmetry and zero dipole moment and a staggered chain with mirror symmetry with a net magnetisation perpendicular to the chain. The system exhibited a bistability already in clusters of three particles. Based on observations of a real magnetic particles system, analytical calculations and molecular dynamics simulations, it has been shown that the bistability is a result of an anisotropic magnetisation distribution with rotational symmetry inside the particles. The present study is a logical extension of the above research and forms a preparatory stage for the study of a self-assembly of such magnetic particles under the influence of an external magnetic field. Since the magnetic field is only an additive contribution to the total ground state energy, we can study the interparticle interaction energies of candidate ground state structures based on the field-free terms. - Highlights: • Analytical calculations of the energies of ground state candidates for colloids with magnetic caps. • Computer simulations confirmed the theoretical model. • The structural transition between ground states was found.

  19. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  20. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  1. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  2. Self-assembled cellulose materials for biomedicine: A review.

    Science.gov (United States)

    Yang, Jisheng; Li, Jinfeng

    2018-02-01

    Cellulose-based materials have reached a growing interest for the improvement of biomedicine, due to their good biocompatibility, biodegradability, and low toxicity. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing steps. This article describes the modifications, properties and applications of cellulose and its derivatives, which including a detailed review of representative types of solvents such as NMMO, DMAc/LiCl, some molten salt hydrates, some aqueous solutions of metal complexes, ionic liquids and NaOH-water system etc. The modifications were frequently performed by esterification, etherification, ATRP, RAFT, ROP and other novel methods. Stimuli-responsive cellulose-based materials, such as temperature-, pH-, light- and redox-responsive, were synthesized for their superior performance. Additionally, the applications of cellulose-based materials which can self-assemble into micelles, vesicles and other aggregates, for drug/gene delivery, bioimaging, biosensor, are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  4. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  5. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  6. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  7. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  8. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail: shcherbina@ispm.ru; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)

    2012-03-15

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  9. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    International Nuclear Information System (INIS)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.

    2012-01-01

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  10. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Mika Dorin, Rachel; Phillip, William A.; Wiesner, Ulrich; Hoek, Eric M.V.

    2013-01-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  11. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  12. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly

    Science.gov (United States)

    Boott, Charlotte E.; Gwyther, Jessica; Harniman, Robert L.; Hayward, Dominic W.; Manners, Ian

    2017-08-01

    The preparation of well-defined nanoparticles based on soft matter, using solution-processing techniques on a commercially viable scale, is a major challenge of widespread importance. Self-assembly of block copolymers in solvents that selectively solvate one of the segments provides a promising route to core-corona nanoparticles (micelles) with a wide range of potential uses. Nevertheless, significant limitations to this approach also exist. For example, the solution processing of block copolymers generally follows a separate synthesis step and is normally performed at high dilution. Moreover, non-spherical micelles—which are promising for many applications—are generally difficult to access, samples are polydisperse and precise dimensional control is not possible. Here we demonstrate the formation of platelet and cylindrical micelles at concentrations up to 25% solids via a one-pot approach—starting from monomers—that combines polymerization-induced and crystallization-driven self-assembly. We also show that performing the procedure in the presence of small seed micelles allows the scalable formation of low dispersity samples of cylindrical micelles of controlled length up to three micrometres.

  13. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    International Nuclear Information System (INIS)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R

    2011-01-01

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  14. Self-assembly of Polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) Triblock Terpolymers

    KAUST Repository

    Musteata, Valentina-Elena; Sutisna, Burhannudin; Polymeropoulos, Georgios; Avgeropoulos, Apostolos; Meneau, Florian; Peinemann, Klaus-Viktor; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2017-01-01

    Polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) terpolymer is a versatile polymer to form isoporous films and membranes, due to the possibility of self-assembly control and the properties of the different blocks, such as the P2VP ability of complexation, and H-bond formation, and the PEO biocompatibility. Copolymers with different block ratios and sizes were synthesized. The correlation between their equilibrium bulk morphology, the self-assembly in dilute and semi-dilute solutions and the non-equilibrium porous structures of membranes, obtained by non-solvent induced phase separation, was investigated and discussed in detail. The characterization was performed by small-angle X-ray scattering (SAXS), scanning (SEM) and transmission electron microscopy (TEM). Hexagonal, cubic and lamellar arrangements were observed. The preparation conditions were optimized and a regular, isoporous morphology, suitable for membrane application, was successfully obtained with PS80.5k-b-P2VP64.4k-b-PEO16.1k.

  15. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  16. Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures

    International Nuclear Information System (INIS)

    Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.

    2008-01-01

    Cellulose can be dissolved in precooled (-12 C) 7 wt % NaOH-12 wt % urea aqueous solution within 2 min. This interesting process, to our knowledge, represents the most rapid dissolution of native cellulose. The results from 13C NMR, 15N NMR, 1H NMR, FT-IR, small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and wide-angle X-ray diffraction (WAXD) suggested that NaOH 'hydrates' could be more easily attracted to cellulose chains through the formation of new hydrogen-bonded networks at low temperatures, while the urea hydrates could not be associated directly with cellulose. However, the urea hydrates could possibly be self-assembled at the surface of the NaOH hydrogen-bonded cellulose to form an inclusion complex (IC), leading to the dissolution of cellulose. Scattering experiments, including dynamic and static light scattering, indicated that most cellulose molecules, with limited amounts of aggregation, could exist as extended rigid chains in dilute solution. Further, the cellulose solution was relatively unstable and could be very sensitive to temperature, polymer concentration, and storage time, leading to additional aggregations. TEM images and WAXD provided experimental evidence on the formation of a wormlike cellulose IC being surrounded with urea. Therefore, we propose that the cellulose dissolution at -12 C could arise as a result of a fast dynamic self-assembly process among solvent small molecules (NaOH, urea, and water) and the cellulose macromolecules.

  17. Self-assembled magnetic nanostructures: Epitaxial Ni nanodots on TiN/Si (001) surface

    International Nuclear Information System (INIS)

    Zhou, H.; Narayan, J.

    2006-01-01

    Systems containing single domain magnetic particles are of great interest in view of their possible applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this work is plan-view STEM Z-contrast imaging study of the self-assembly growth of magnetic nickel nanostructures by domain matching epitaxy under Volmer-Weber (V-W) mode. The growth was carried out using pulsed laser deposition (PLD) technique with epitaxial titanium nitride film as the template, which was in turn grown on silicon (001) substrate via domain matching epitaxy. Our results show that the base of nickel islands is rectangular with the two principal edges parallel to two orthogonal directions, which is [110] and [1-bar 1 0] for [001] oriented growth. The size distribution of the islands is relatively narrow, comparable to that obtained from self-assembled islands grown under Stranski-Krastanow (S-K) mode. A certain degree of self-organization was also found in the lateral distribution of islands: island chains were observed along the directions close to , which are also the edge directions. The interaction between neighboring islands through the island edge-induced strain field is believed to be responsible for the size uniformity and the lateral ordering

  18. Self-assembly of Polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) Triblock Terpolymers

    KAUST Repository

    Musteata, Valentina-Elena

    2017-11-08

    Polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) terpolymer is a versatile polymer to form isoporous films and membranes, due to the possibility of self-assembly control and the properties of the different blocks, such as the P2VP ability of complexation, and H-bond formation, and the PEO biocompatibility. Copolymers with different block ratios and sizes were synthesized. The correlation between their equilibrium bulk morphology, the self-assembly in dilute and semi-dilute solutions and the non-equilibrium porous structures of membranes, obtained by non-solvent induced phase separation, was investigated and discussed in detail. The characterization was performed by small-angle X-ray scattering (SAXS), scanning (SEM) and transmission electron microscopy (TEM). Hexagonal, cubic and lamellar arrangements were observed. The preparation conditions were optimized and a regular, isoporous morphology, suitable for membrane application, was successfully obtained with PS80.5k-b-P2VP64.4k-b-PEO16.1k.

  19. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    Science.gov (United States)

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  20. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    Science.gov (United States)

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  1. Self-assembly of a triangle-shaped, hexaplatinum-incorporated, supramolecular amphiphile in solution and at interfaces.

    Science.gov (United States)

    Maran, Umamageswaran; Britt, David; Fox, Christopher B; Harris, Joel M; Orendt, Anita M; Conley, Hiram; Davis, Robert; Hlady, Vladamir; Stang, Peter J

    2009-08-24

    The self-assembly and characterization of a novel supramolecular amphiphile built from a new 60 degree amphiphilic precursor that incorporates hydrophilic platinum(II) metals and hydrophobic dioctadecyloxy chains is reported. The amphiphilic macrocycle and its precursor compound have been characterized by multinuclear NMR spectroscopy, ESI-MS, and other standard techniques. The coacervate morphology of the amphiphile at the liquid-liquid interface has been studied by using confocal optical microscopy and in situ Raman spectroscopy. The self-assembly of the amphiphilic macrocycle at the air-water interface has been investigated through Langmuir-trough techniques. The study indicates the possible formation of surface micelle-like aggregates. The disparity between the experimental molecular areas and those derived from molecular models support the idea of aggregation. AFM images of the surface aggregates show the formation of a flat topology with arbitrary ridgelike patterns. Reasonable molecular-packing arrangements are proposed to explain the molecular organization within the observed structures.

  2. Surface plasmon resonance spectroscopic study of UV-addressable phenylalanine sensing based on a self-assembled spirooxazine derivative monolayer

    International Nuclear Information System (INIS)

    Suk, Shinae; Suh, Hee-Jung; Gun An, Won; Kim, Jae-Ho; Jin, Sung-Ho; Kim, Sung-Hoon; Gal, Yeong-Soon; Koh, Kwangnak

    2004-01-01

    Light-addressable compounds are very interesting due to the possibilities of their practical use such as optical switches and memories or variable transmission materials. For example, transportation of phenylalanine across liposomal bilayers mediated by a photoresponsive carrier like spirooxazine through electrostatic interaction between phenylalanine and spirooxazine derivative. Thus, the spirooxazine is expected to form a UV-addressable phenylalanine sensing interface. In this study, we prepared phenylalanine sensing interface of a spirooxazine derivative by self-assembly technique and evaluated interaction between a spirooxazine moiety and phenylalanine with a surface plasmon resonance (SPR). The refractive index change of monolayer caused by interaction between a spirooxazine derivative and phenylalanine led to the SPR angle shifts upon UV irradiation. The SPR angle shift increased with increasing the concentration of phenylalanine solution. These results indicated that the spirooxazine derivative self-assembled monolayer (SAM) has an application potential for UV-addressable phenylalanine sensing

  3. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    International Nuclear Information System (INIS)

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-01-01

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability

  4. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    Science.gov (United States)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  5. Programmable Self-assembly of Hydrocarbon-capped Nanoparticles: Role of Chain Conformations

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    Nanoparticle superlattices (NPS), i.e. crystalline arrangements of nanoparticles, are materials with fascinating structures, which in many cases are not possible to attain from simple atoms or molecules. They also span a wide range of possible applications such as metamaterials, new energy sources, catalysis, and many others. In this talk, we present a theoretical and computational description of the self-assembly of nanoparticles with hydrocarbons as capping ligands. Usually, these systems have been described with hard sphere packing models. In this talk, we show that the conformations of the hydrocarbon chains play a fundamental role in determining the equilibrium phases, including and especially in binary systems. The work of CW was supported by a DOE-SULI internship from May-December 2016, and by NSF, DMR-CMMT 1606336 CDS&E: Design Principles for Ordering Nanoparticles into Super-crystals after January 1st.

  6. Self-assembling triblock proteins for biofunctional surface modification

    Science.gov (United States)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility

  7. Crops: a green approach toward self-assembled soft materials.

    Science.gov (United States)

    Vemula, Praveen Kumar; John, George

    2008-06-01

    To date, a wide range of industrial materials such as solvents, fuels, synthetic fibers, and chemical products are being manufactured from petroleum resources. However, rapid depletion of fossil and petroleum resources is encouraging current and future chemists to orient their research toward designing safer chemicals, products, and processes from renewable feedstock with an increased awareness of environmental and industrial impact. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally known as the biorefinery concept. The swift integration of crop-based materials synthesis and biorefinery manufacturing technologies offers the potential for new advances in sustainable energy alternatives and biomaterials that will lead to a new manufacturing paradigm. This Account presents a novel and emerging concept of generating various forms of soft materials from crops (an alternate feedstock). In future research, developing biobased soft materials will be a fascinating yet demanding practice, which will have direct impact on industrial applications as an economically viable alternative. Here we discuss some remarkable examples of glycolipids generated from industrial byproducts such as cashew nut shell liquid, which upon self-assembly produced soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecular-weight gels, and liquid crystals. Synthetic methods applied to a "chiral pool" of carbohydrates using the selectivity of enzyme catalysis yield amphiphilic products derived from biobased feedstock including amygdalin, trehalose, and vitamin C. This has been achieved with a lipase-mediated regioselective synthetic procedure to obtain such amphiphiles in quantitative yields. Amygdalin amphiphiles showed unique gelation behavior in a broad range of solvents such as nonpolar hexanes to polar aqueous solutions

  8. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  9. Spin-flip transitions in self-assembled quantum dots

    Science.gov (United States)

    Stavrou, V. N.

    2017-12-01

    Detailed realistic calculations of the spin-flip time (T 1) for an electron in a self-assembled quantum dot (SAQD) due to emission of an acoustic phonon, using only bulk properties with no fitting parameters, are presented. Ellipsoidal lens shaped Inx Ga1-x As quantum dots, with electronic states calculated using 8-band strain dependent {k \\cdot p} theory, are considered. The phonons are treated as bulk acoustic phonons coupled to the electron by both deformation potential and piezoelectric interactions. The dependence of T 1 on the geometry of SAQD, on the applied external magnetic field and on the lattice temperature is highlighted. The theoretical results are close to the experimental measurements on the spin-flip times for a single electron in QD.

  10. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  11. Self-assembly of orthogonal three-axis sensors

    International Nuclear Information System (INIS)

    Cho, J. H.; Hu, S.; Gracias, D. H.

    2008-01-01

    Conventional planar microfabrication is widely utilized to construct sensors for the measurement of physical or chemical properties. However, in these devices, the information component measured is typically restricted to only one vectorial axis. Here, we describe a self-assembling strategy that can be utilized to construct three dimensional (3D) cubic devices that facilitate measurement along three axes. This 3D measurement is achieved by arranging sensing elements orthogonally; any sensing element that can be lithographically patterned can be utilized. The 3D arrangement of sensors allows for the measurement of angular and orientation parameters. As an example, we describe a three-axis cantilever based sensor and demonstrate measurement of an evaporated analyte using resonant frequency shifts of cantilevers in each of the x, y, and z axes

  12. Self-Assembled InAs Nanowires as Optical Reflectors

    Directory of Open Access Journals (Sweden)

    Francesco Floris

    2017-11-01

    Full Text Available Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed.

  13. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  14. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  15. Electrochromic properties of self-assembled nanoparticle multilayer films

    International Nuclear Information System (INIS)

    Xue Bo; Li Hong; Zhang Lanlan; Peng Jun

    2010-01-01

    Hexagonal tungsten bronze (HTB) nanocrystal and TiO 2 nanoparticles were assembled into thin films by layer-by-layer self-assembly method. HTB nanocrystals were synthesized by hydrothermal route at 155 o C. UV-Vis spectra showed that the HTB/TiO 2 films exhibit a linear increase in film thickness with assembly exposure steps. The electrochromic property of the film was carefully investigated. Cyclic voltammetry indicated that the redox peak was around -0.5 V. The electrochromic contrast, coloration efficiency, switching speed, stability and optical memory were carefully investigated. The films vary from white to blue and finally dark brown. The electrochromic contrast is 63.9% at 633 nm. The coloration efficiency of the films is relatively high. The response time is less than 3 s.

  16. Charged triblock copolymer self-assembly into charged micelles

    Science.gov (United States)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  17. Dynamic simulations of many-body electrostatic self-assembly

    Science.gov (United States)

    Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.

    2018-03-01

    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.

  18. The Relationship between Self-Assembly and Conformal Mappings

    Science.gov (United States)

    Duque, Carlos; Santangelo, Christian

    The isotropic growth of a thin sheet has been used as a way to generate programmed shapes through controlled buckling. We discuss how conformal mappings, which are transformations that locally preserve angles, provide a way to quantify the area growth needed to produce a particular shape. A discrete version of the conformal map can be constructed from circle packings, which are maps between packings of circles whose contact network is preserved. This provides a link to the self-assembly of particles on curved surfaces. We performed simulations of attractive particles on a curved surface using molecular dynamics. The resulting particle configurations were used to generate the corresponding discrete conformal map, allowing us to quantify the degree of area distortion required to produce a particular shape by finding particle configurations that minimize the area distortion.

  19. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  1. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  2. Graphene growth by conversion of aromatic self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Turchanin, Andrey [Institute of Physical Chemistry, Friedrich Schiller University Jena (Germany); Jena Center for Soft Matter (JCSM), Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC), Jena (Germany); Abbe Center of Photonics (ACP), Jena (Germany)

    2017-11-15

    Despite present diversity of graphene production methods there is still a high demand for improvement of the existing production schemes or development of new. Here a method is reviewed to produce graphene employing aromatic self-assembled monolayers (SAMs) as molecular precursors. This method is based on electron irradiation induced crosslinking of aromatic SAMs resulting in their conversion into carbon nanomembranes (CNMs) with high thermal stability and subsequent pyrolysis of CNMs into graphene in vacuum or in the inert atmosphere. Depending on the production conditions, such as chemical structure of molecular precursors, irradiation and annealing parameters, various properties of the produced graphene sheets including shape, crystallinity, thickness, optical properties and electric transport can be adjusted. The assembly of CNM/graphene van der Waals heterostructures opens a flexible route to non-destructive chemical functionalization of graphene for a variety of applications in electronic and photonic devices. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  4. Characterization of manganese tetraarylthiosubstituted phthalocyanines self assembled monolayers

    International Nuclear Information System (INIS)

    Matemadombo, Fungisai; Durmus, Mahmut; Togo, Chamunorwa; Limson, Janice; Nyokong, Tebello

    2009-01-01

    Manganese tetraarylthiosubstituted phthalocyanines (complexes 1-5) have been deposited on Au electrode surfaces through the self assembled monolayer (SAM) technique. SAM characteristics reported in this work are: ion barrier factor (∼1); interfacial capacitance (303-539 μF cm -2 ) and surface coverage (1.06 x 10 -10 -2.80 x 10 -10 mol cm -2 ). Atomic force microscopy was employed in characterizing a SAM. SAMs of complexes 1-5 were employed to detect L-cysteine (with limit of detection ranging from 2.83 x 10 -7 to 3.14 x 10 -7 M at potentials of 0.68-0.75 V vs. Ag|AgCl) and nitrite (limit of detection ranging from 1.78 x 10 -7 to 3.02 x 10 -7 M at potentials of 0.69-0.76 V vs. Ag|AgCl).

  5. Bioengineering towards self-assembly of particulate vaccines.

    Science.gov (United States)

    Rehm, Bernd H A

    2017-12-01

    There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  7. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  9. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  10. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  11. Guided self-assembly of nanostructured titanium oxide

    Science.gov (United States)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  12. Self-Assembly and Crystallization of Conjugated Block Copolymers

    Science.gov (United States)

    Davidson, Emily Catherine

    This dissertation demonstrates the utility of molecular design in conjugated polymers to create diblock copolymers that robustly self-assemble in the melt and confine crystallization upon cooling. This work leverages the model conjugated polymer poly(3-(2'-ethyl)hexylthiophene) (P3EHT), which features a branched side chain, resulting in a dramatically reduced melting temperature (Tm 80°C) relative to the widely-studied poly(3-hexylthiophene) (P3HT) (Tm 200°C). This reduced melting temperature permits an accessible melt phase, without requiring that the segregation strength (chiN) be dramatically increased. Thus, diblock copolymers containing P3EHT demonstrate robust diblock copolymer self-assembly in the melt over a range of compositions and morphologies. Furthermore, confined crystallization in the case of both glassy (polystyrene (PS) matrix block) and soft (polymethylacrylate (PMA) matrix block) confinement is studied, with the finding that even in soft confinement, crystallization is constrained within the diblock microdomains. This success demonstrates the strategy of leveraging molecular design to decrease the driving force for crystallization as a means to achieving robust self-assembly and confined crystallization in conjugated block copolymers. Importantly, despite the relatively flexible nature of P3EHT in the melt, the diblock copolymer phase behavior appears to be significantly impacted by the stiffness (persistence length of 3 nm) of the P3EHT chain compared to the coupled amorphous blocks (persistence length 0.7 nm). In particular, it is shown that the synthesized morphologies are dominated by a very large composition window for lamellar geometries (favored at high P3EHT volume fractions); cylindrical geometries are favored when P3EHT is the minority fraction. This asymmetry of the composition window is attributed to impact of conformational asymmetry (the difference in chain stiffness, as opposed to shape) between conjugated and amorphous blocks

  13. Structural aspects, thermal behavior, and stability of a self-assembled supramolecular polymer derived from flunixin-meglumine supramolecular adducts

    Energy Technology Data Exchange (ETDEWEB)

    Cassimiro, Douglas L.; Kobelnik, Marcelo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Ribeiro, Clovis A., E-mail: ribeiroc@iq.unesp.br [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Crespi, Marisa S.; Boralle, Nivaldo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The thermal behavior of flunixin-meglumine, a potent NSAID, was investigated. Black-Right-Pointing-Pointer This supramolecular adduct self-assembled resulting in a polymer-like material. Black-Right-Pointing-Pointer The supramolecular polymer showed a high molecular weight around 290 {+-} 88 MDa. Black-Right-Pointing-Pointer NMR and FT-IR showed that hydrogen bonding can be responsible for the self-assembly. Black-Right-Pointing-Pointer The stability of the supramolecular polymer was also studied and presented here. - Abstract: Flunixin-meglumine, a potent non-steroidal anti-inflammatory drug (NSAID) and a cyclo-oxygenase inhibitor for Veterinary use, is a hydrogen-bonded supramolecular adduct. Two monotropically related crystalline modifications (Forms I and II) were observed for a flunixin-meglumine sample. During the melt of form I, flunixin-meglumine adducts self-assembled by hydrogen bonds involving the hydroxyl groups from meglumine, resulting in an amorphous rigid glassy supramolecular polymer, which showed a high molecular weight around 290 {+-} 88 MDa and a glass transition around 49.5 Degree-Sign C. Both the adduct and the resulting supramolecular polymer were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR), and weight-average molecular weight determination by light scattering. The chemical stability and morphological changes of the depolymerization process were also investigated for the supramolecular polymer, by DSC and scanning electron microscopy (SEM), respectively.

  14. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications.

    Science.gov (United States)

    Hoppe, Cristina E; Williams, Roberto J J

    2018-03-01

    The self-assembly of n-alkyl chains at the bulk or at the interface of different types of materials and substrates has been extensively studied in the past. The packing of alkyl chains is driven by Van der Waals interactions and can generate crystalline or disordered domains, at the bulk of the material, or self-assembled monolayers at an interface. This natural property of alkyl chains has been employed in recent years to develop a new generation of materials for technological applications. These studies are dispersed in a variety of journals. The purpose of this article was to discuss some selected examples where these advanced properties arise from a process involving the self-assembly of alkyl chains. We included a description of electronic devices and new-generation catalysts with properties derived from a controlled two-dimensional (2D) or three-dimensional (3D) self-assembly of alkyl chains at an interface. Then, we showed that controlling the crystallization of alkyl chains at the bulk can be used to generate a variety of advanced materials such as superhydrophobic coatings, shape memory hydrogels, hot-melt adhesives, thermally reversible light scattering (TRLS) films for intelligent windows and form-stable phase change materials (FS-PCMs) for the storage of thermal energy. Finally, we discussed two examples where advanced properties derive from the formation of disordered domains by physical association of alkyl chains. This was the case of photoluminescent nanocomposites and materials used for reversible optical storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    Science.gov (United States)

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  17. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  18. One-dimensional Confinement Effect on the Self-assembly of Symmetric H-shaped Copolymers in a Thin Film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-10-19

    The self-assembly of a reformed symmetric H-shaped copolymer with four hydrophilic branches and one hydrophobic stem was systematically investigated. The existence of vacancies is vital to regulate the sizes of self-assembled cylinders to be able to form a hexagonal arrangement. With the introduction of horizontal-orientated confinement, a micellar structure is formed through a coalescence mechanism. The short acting distance and large influencing area of the confinement produces numerous small-sized micelles. Additionally, the cycled "contraction-expansion" change helps achieve hexagonal arrangement. In contrast, the introduction of lateral-oriented confinement with long acting distance and small influencing area cannot change the cylindrical structure. Under the fission mechanism, in which the larger cylinder splits into smaller ones, it is quite efficient to generate hierarchical-sized cylinders from larger-sized cylinders in the middle region and smaller-sized cylinders near both walls. The results indicate the possibility of regulating the characteristics of a nanomaterial by tuning the molecular structure of the copolymer and the parameters of the introduced confinement, which are closely related to the self-assembly structure.

  19. Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Borghese, C.; Casagrande, N.; Pivetta, E.; Colombatti, A.; Boccellino, M.; Amler, Evžen; Normanno, N.; Caraglia, M.; de Rosa, G.; Aldinucci, D.

    2017-01-01

    Roč. 8, č. 26 (2017), s. 42926-42938 ISSN 1949-2553 Institutional support: RVO:68378041 Keywords : zoledronic acid * self-assembling nanoparticles * mesenchymal stromal cells * prostate cancer * tumor microenvironment Subject RIV: FP - Other Medical Disciplines OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 5.168, year: 2016

  20. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    Science.gov (United States)

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis, self-assembly and lipoplex formulation of two novel cyclic phosphonate lipids

    Directory of Open Access Journals (Sweden)

    JenniferYeh

    2013-05-01

    Full Text Available Background: Synthetic cationic lipids hold much potential as gene packaging and delivery agents for the treatment of inherited and acquired life threatening diseases, such as cancer, AIDS, cardiovascular diseases, and certain autoimmune disorders. Methods: We report the synthesis, self-assembly as characterized by critical micelle concentrations and plasmid DNA gel retardation using two novel cyclic, phosphonate cationic lipids 2a and 2b, which were synthesized by derivatizing two diastereomeric macrocyclic phosphonates 1a and 1b with a 2-carbon hydroxylamine linker, N, N-dimethylethanolamine (3. Results: The production of cyclic phosphonate lipids 2a and 2b in 73% and 60% yields, respectively, was achieved using classical synthetic methods involving nucleophilic substitution at the phosphorus centre. Conclusions: The synthesis, aggregation and DNA binding properties of these novel cyclic phosphonate lipids suggest that they may have utility serving as gene packaging and delivery agents.

  2. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  3. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays.

    Science.gov (United States)

    Puiu, Mihaela; Bala, Camelia

    2018-04-01

    Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Carrier emission from the electronic states of self-assembled indium arsenide quantum dots

    International Nuclear Information System (INIS)

    Lin, S.W.; Song, A.M.; Missous, M.; Hawkins, I.D; Hamilton, B.; Engstroem, O.; Peaker, A.R.

    2006-01-01

    We have used the new technique of high resolution (Laplace) transient spectroscopy to examine the electronic states of ensembles of self-assembled quantum dots of InAs in a GaAs matrix. These have been produced by solid source MBE. We have monitored the s and p state occupancies as a function of time under thermal excitation over a range of temperatures after electrons have been captured by the quantum dots with different Fermi level positions. This can provide more information about the interaction of the dots with the host matrix than is possible with optical techniques and gives new fundamental insights into how such dots may operate in electronic devices such as memory and sensors. The increase in resolution of Laplace transient spectroscopy over conventional experiments reveals quite specific rates of carrier loss which we attribute to tunnelling at low temperatures and a combination of thermal emission and tunnelling as the temperature is increased

  5. Competitive Self-Assembly Manifests Supramolecular Darwinism in Soft-Oxometalates

    Science.gov (United States)

    Das, Santu; Kumar, Saurabh; Mallick, Apabrita; Roy, Soumyajit

    2015-09-01

    Topological transformation manifested in inorganic materials shows manifold possibilities. In our present work, we show a clear topological transformation in a soft-oxometalate (SOM) system which was formed from its polyoxometalate (POM) precursor [PMo12@Mo72Fe30]. This topological transformation was observed due to time dependent competitive self-assembly of two different length scale soft-oxometalate moieties formed from this two-component host-guest reaction. We characterized different morphologies by scanning electron microscopy, electron dispersive scattering spectroscopy, dynamic light scattering, horizontal attenuated total reflection-infrared spectroscopy and Raman spectroscopy. The predominant structure is selected by its size in a sort of supramolecular Darwinian competition in this process and is described here.

  6. Communication: Theoretical prediction of free-energy landscapes for complex self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-01-14

    We present a technique for calculating free-energy profiles for the nucleation of multicomponent structures that contain as many species as building blocks. We find that a key factor is the topology of the graph describing the connectivity of the target assembly. By considering the designed interactions separately from weaker, incidental interactions, our approach yields predictions for the equilibrium yield and nucleation barriers. These predictions are in good agreement with corresponding Monte Carlo simulations. We show that a few fundamental properties of the connectivity graph determine the most prominent features of the assembly thermodynamics. Surprisingly, we find that polydispersity in the strengths of the designed interactions stabilizes intermediate structures and can be used to sculpt the free-energy landscape for self-assembly. Finally, we demonstrate that weak incidental interactions can preclude assembly at equilibrium due to the combinatorial possibilities for incorrect association.

  7. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Directory of Open Access Journals (Sweden)

    Frigeri C

    2010-01-01

    Full Text Available Abstract We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate.

  8. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  9. Competition between the In/Ga intermixing and the electronic coupling effects in self-assembled InAs/GaAs double-quantum-dots

    Energy Technology Data Exchange (ETDEWEB)

    Pocas, Luiz Carlos; Sawata, Marcella Ferraz [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil); Lourenco, Sidney Alves [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil); Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica; Quivy, A.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: The notable progress in the fabrication of low-dimensional semiconductor structures during the last years has made it possible to reduce the effective device dimension from three-dimensional bulk materials, to low dimensional quantum systems, as for example, to quasi-two dimensional quantum well systems and to quasi-zero dimensional quantum dots systems. Semiconductors quantum dots (QDs) have attracted considerable interest from both fundamental and technological point of view and have been extensively studied in aspects involving its structural properties and the electronic structure of the confined charge carriers. These systems have been utilized for applications on optoelectronics devices such as lasers, detectors, photodiodes, solar cells, etc. In despite of its fundamental importance, many aspects of their behavior are still not fully understood including, as for example, carrier capture and escape, optical transitions, effects of the inhomogeneous size and energy distribution, etc. Quantum dots grown by Stranski-Krastanov (SK) technique are self-assembled islands, favored by relaxation of the elastic energy that emerge due to the difference of lattice parameter between the epitaxial layer and the substratum. One of the challenges in growing of QDs by SK is to have control of both size and distribution of the islands in the samples. Recently, the growth of samples with vertically stacked multilayer separated by a layer of another semiconductor material, known as stacked QDs, have shown a vertical alignment of QDs which leads to a better QDs size distribution for the upper layers. The strength of electronic coupling, in the case of vertically stacked QDs, as well as the QDs size distribution, is controlled by thickness of the layers that separate the quantum dots (spacer layers). In this work we present a study from a set of self-assembled stacked InAs/GaAs double-quantum-dots grown on GaAs-(001) substrates by molecular beam epitaxy obtained by SK

  10. Elucidating dominant pathways of the nano-particle self-assembly process.

    Science.gov (United States)

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  11. Vortex pinning in superconductors laterally modulated by nanoscale self-assembled arrays

    DEFF Research Database (Denmark)

    Vanacken, J.; Vinckx, W.; Moshchalkov, V.V.

    2008-01-01

    Being the exponent of the so-called "bottom-up" approach, self-assembled structures are now-a-days attracting a lot of attention in the fields of science and technology. In this work, we show that nanoscale self-assembled arrays used as templates can provide periodic modulation in superconducting...

  12. Bio-inspired supramolecular materials by orthogonal self-assembly of hydrogelators and phospholipids

    NARCIS (Netherlands)

    Boekhoven, J.; Brizard, AMA; Stuart, M. C A; Florusse, L.J.; Raffy, G.; Del Guerzo, A.; van Esch, J.H.

    2016-01-01

    The orthogonal self-assembly of multiple components is a powerful strategy towards the formation of complex biomimetic architectures, but so far the rules for designing such systems are unclear. Here we show how to identify orthogonal self-assembly at the supramolecular level and describe

  13. Towards Crystals of Crystals of NanoCrystals : a Self-Assembly Study

    NARCIS (Netherlands)

    de Nijs, B.

    2014-01-01

    In this thesis several methods to synthesise monodisperse nanoparticles and how to self-assembled them within emulsion droplets are presented. The self-assembly behaviour of nanoparticles within the spherical confinement of emulsion droplets resulted in highly ordered crystalline supraparticles that

  14. Self-Assembly of Colloidal Spheres into One, Two, and Three Dimensional Structures

    NARCIS (Netherlands)

    Guo, Y.

    2017-01-01

    The main goal of this thesis is to increase our understanding of colloidal self-assembly processes and develop new strategies to assemble colloidal building blocks into more sophisticated and well-defined super-structures. Self-assembly is a spontaneous process in which a disordered system of

  15. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, Jurriaan; Reinhoudt, David; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of

  16. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  17. Three-dimensional visualization and characterization of polymeric self-assemblies by Transmission Electron Microtomography

    NARCIS (Netherlands)

    H. Jinnai (Hiroshi); T. Higuchi (Takeshi); X. Zhuge (Jason); A. Kumamoto (Akihito); K.J. Batenburg (Joost); Y. Ikuhara (Yuichi)

    2017-01-01

    textabstractSelf-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep

  18. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  19. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism

    Science.gov (United States)

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  20. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    Science.gov (United States)

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  1. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  2. Investigation of functionalized silicon nanowires by self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Hemed, Nofar Mintz [Dept. of Physical Electronics, Eng. Faculty, and the University Res. Inst. for Nano Science and Nano-Technologies, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Convertino, Annalisa [Istituto per la Microelettronica e i Microsistemi C.N.R.-Area della Ricerca di Roma, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Shacham-Diamand, Yosi [Dept. of Physical Electronics, Eng. Faculty, and the University Res. Inst. for Nano Science and Nano-Technologies, Tel-Aviv University, Ramat-Aviv 69978 (Israel); The Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2016-03-30

    Graphical abstract: - Highlights: • We characterize and verify the existence of self-assembled monolayer (SAM) on silicon nanowires and α-Si:H. • We define the term “electrical coverage” and find the formula for both cases. • The SAM's electrical coverage on silicon nanowires is found to be ∼63%. • The SAM's electrical coverage on α-Si:H is found to be ∼65 ± 3%. • The amount of SAM on the SiNWs is sufficient and it can serve as a linker to biological molecules. - Abstract: The functionalization using self assembled monolayer (SAM) of silicon nanowires (SiNW) fabricated by plasma enhanced chemical vapor deposition (PECVD) is reported here. The SAM is being utilized as the first building block in the functionalization process. The morphology of the SiNW comprises a polycrystalline core wrapped by an hydrogenated amorphous silicon (α-Si:H) shell. Since most of the available methods for SAM verification and characterization are suitable only for flat substrates; therefore, in addition to the SiNW α-Si:H on flat samples were produced in the same system as the SiNWs. First we confirmed the SAM's presence on the flat α-Si:H samples using the following methods: contact angle measurement to determine the change in surface energy; atomic force microscopy (AFM) to determine uniformity and molecular coverage. Spectroscopic ellipsometry and X-ray reflectivity (XRR) were performed to measure SAM layer thickness and density. X-ray photoelectron spectroscopy (XPS) was applied to study the chemical states of the surface. Next, SiNW/SAM were tested by electrochemical impedance spectroscopy (EIS), and the results were compared to α-Si:H/SAM. The SAM electrical coverage on SiNW and α-Si:H was found to be ∼37% and ∼65 ± 3%, respectively. A model, based on transmission line theory for the nanowires is presented to explain the disparity in results between the nanowires and flat surface of the same materials.

  3. Development of self-assembled molecular structures on polymeric surfaces and their applications as ultrasonically responsive barrier coatings for on-demand, pulsatile drug delivery

    Science.gov (United States)

    Kwok, Connie Sau-Kuen

    temporal release of the encapsulated drugs. In addition to acoustic energy, self-assembled surfaces experience order-disorder transition and have a transition temperature higher than body temperature if longer alkyl chains (C18) are used. The C18-assembled surface barrier membrane exhibits a relatively superior impermeable coating than the shorter C12 chains. The versatility of derivatizing the terminal groups of the self-assembled molecular structures is illustrated by attaching poly (ethyleneoxide) oligomers to the alkyl chains to minimize nonspecific protein adsorption. This study lays an important foundation for future work in conjugating other biomolecules to develop surface-based diagnostics and biomaterials. With much success, this original research work of forming self-assembled crystalline structures on synthetic materials still allows for numerous opportunities for new applications and possibly even more new discoveries.

  4. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    Science.gov (United States)

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  5. Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report; FINAL

    International Nuclear Information System (INIS)

    BURNS, ALAN R.; SASAKI, DARRYL Y.; CARPICK, R.W.; SHELNUTT, JOHN A.; BRINKER, C. JEFFREY

    2001-01-01

    This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films

  6. Glutamate decarboxylase-derived IDDM autoantigens displayed on self-assembled protein nanoparticles

    International Nuclear Information System (INIS)

    Choi, Hyoung; Ahn, Ji-Young; Sim, Sang Jun; Lee, Jeewon

    2005-01-01

    The recombinant ferritin heavy chain (FTN-H) formed self-assembled spherical nanoparticles with the size comparable to native one. We tried to express the GAD65 COOH-terminal fragments, i.e., 448-585 (GAD65 448-585 ), 487-585 (GAD65 487-585 ), and 512-585 (GAD65 512-585 ) amino acid fragments, using FTN-H as N-terminus fusion expression partner in Escherichia coli. All of recombinant fusion proteins (FTN-H::GAD65 448-585 , FTN-H::GAD65 487-585 , and FTN-H::GAD65 512-585 ) also formed spherical nanoparticles due probably to the self-assembly function of the fused ferritin heavy chain. The antigenic epitopes within GAD65 448-585 , GAD65 487-585 , and GAD65 512-585 against insulin-dependent diabetes mellitus (IDDM) marker (autoantibodies against GAD65) were localized at the surface of the spherical protein nanoparticles so that anti-GAD65 Ab could recognize them. Protein nanoparticles like FTN-H seem to provide distinct advantages over other inorganic nanoparticles (e.g., Au, Ag, CdSe, etc.) in that through the bacterial synthesis, the active capture probes can be located at the nanoparticle surface with constant orientation/conformation via covalent cross-linking without complex chemistry. Also it is possible for the protein nanoparticles to have uniform particle size, which is rarely achieved in the chemical synthesis of inorganic nanoparticles. Thus, the recombinant ferritin particles can be used as a three-dimensional (spherical) and nanometer-scale probe structure that is a key component in ultra-sensitive protein chip for detecting protein-small molecule interactions and protein-protein interactions

  7. Self-Assembly of Protein Nanostructures to Enhance Biosensor Sensitivity

    Science.gov (United States)

    Olsen, Bradley; Dong, Xuehui; Obermeyer, Allie

    The Langmuir adsorption isotherm predicts that the number of bound species on a surface at a given concentration will be directly proportional to the number of binding sites on the surface. Therefore, the number of binding events in a biosensor may be increased at a given analyte concentration if the surface density of binding domains is increased. Here, we demonstrate the formation of block copolymers where one block is a human IgG antibody or a nanobody and self-assemble these molecules into nanostructured films with a high density of binding sites. The type of nanostructure formed and the rate of transport through the protein-polymer layers are explored as a function of coil fraction of the protein-polymer conjugate block copolymers, showing optima for transport and assembly that depend upon the identity of the protein. For small enough analytes, binding to the antibodies and nanobodies is linear with film thickness, indicating that the entire film is accessible. Consistent with the enhanced number of binding sites and the prediction of the Langmuir isotherm, the films improve sensitivity by several orders of magnitude relative to chemisorbed protein layers used in current sensor designs. Current research is integrating this new material technology into prototype sensors. Work supported by the Air Force Office of Scientific Reesearch (AFOSR).

  8. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    Directory of Open Access Journals (Sweden)

    John Canning

    2014-03-01

    Full Text Available Percolation diffusion into long (11.5 cm self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS. Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1 of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

  10. Nanoscale isoindigo-carriers: self-assembly and tunable properties

    Directory of Open Access Journals (Sweden)

    Tatiana N. Pashirova

    2017-02-01

    Full Text Available Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic–lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1′-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.

  11. Supercapacitors based on self-assembled graphene organogel.

    Science.gov (United States)

    Sun, Yiqing; Wu, Qiong; Shi, Gaoquan

    2011-10-14

    Self-assembled graphene organogel (SGO) with 3-dimensional (3D) macrostructure was prepared by solvothermal reduction of a graphene oxide (GO) dispersion in propylene carbonate (PC). This SGO was used as an electrode material for fabricating supercapacitors with a PC electrolyte. The supercapacitor can be operated in a wide voltage range of 0-3 V and exhibits a high specific capacitance of 140 F g(-1) at a discharge current density of 1 A g(-1). Furthermore, it can still keep a specific capacitance of 90 F g(-1) at a high current density of 30 A g(-1). The maximum energy density of the SGO based supercapacitor was tested to be 43.5 Wh kg(-1), and this value is higher than those of the graphene based supercapacitors with aqueous or PC electrolytes reported previously. Furthermore, at a high discharge current density of 30 A g(-1), the energy and power densities of the supercapacitor were measured to be 15.4 Wh kg(-1) and 16,300 W kg(-1), respectively. These results indicate that the supercapacitor has a high specific capacitance and power density, and excellent rate capability.

  12. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    Science.gov (United States)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  13. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  14. Templated Biomineralization on Self-Assembled Protein Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Subburaman,K.; Pernodet, N.; Kwak, S.; DiMasi, E.; Ge, S.; Zaitsev, V.; Ba, X.; Yang, N.; Rafailovich, M.

    2006-01-01

    Biological mineralization of tissues in living organisms relies on proteins that preferentially nucleate minerals and control their growth. This process is often referred to as 'templating', but this term has become generic, denoting various proposed mineral-organic interactions including both chemical and structural affinities. Here, we present an approach using self-assembled networks of elastin and fibronectin fibers, similar to the extracellular matrix. When induced onto negatively charged sulfonated polystyrene surfaces, these proteins form fiber networks of {approx}10-{mu}m spacing, leaving open regions of disorganized protein between them. We introduce an atomic force microscopy-based technique to measure the elastic modulus of both structured and disorganized protein before and during calcium carbonate mineralization. Mineral-induced thickening and stiffening of the protein fibers during early stages of mineralization is clearly demonstrated, well before discrete mineral crystals are large enough to image by atomic force microscopy. Calcium carbonate stiffens the protein fibers selectively without affecting the regions between them, emphasizing interactions between the mineral and the organized protein fibers. Late-stage observations by optical microscopy and secondary ion mass spectroscopy reveal that Ca is concentrated along the protein fibers and that crystals form preferentially on the fiber crossings. We demonstrate that organized versus unstructured proteins can be assembled mere nanometers apart and probed in identical environments, where mineralization is proved to require the structural organization imposed by fibrillogenesis of the extracellular matrix.

  15. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  16. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fatigue crack propagation in self-assembling nanocomposites

    Science.gov (United States)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  18. Fatigue crack propagation in self-assembling nanocomposites

    International Nuclear Information System (INIS)

    Klingler, Andreas; Wetzel, Bernd

    2016-01-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  19. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  20. Lipid dip-pen nanolithography on self-assembled monolayers

    International Nuclear Information System (INIS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-01-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (∼10 –1 μm 3 s −1 ), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ∼20 times slower, nonlinear, and the obtained stable dots of ∼1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats. (paper)

  1. Magnetic Actuation of Self-assembled Bacteria Inspired Nanoswimmers

    Science.gov (United States)

    Ali, Jamel; Cheang, U. Kei; Martindale, James D.; Jabbarzadeh, Mehdi; Fu, Henry C.; Kim, Min Jun

    2017-11-01

    Currently, there is growing interest in developing nanoscale swimmers for biological and biomedical tasks. Of particular interest is the development of soft stimuli-responsive nanorobots to probe cellular and sub-cellular environments. While there have been a few reports of nanoscale robotic swimmers, which have shown potential to be used for these tasks, they often lack multifuctionality. In particular, no man-made soft nanoscale material has been able to match the ability of natural bacterial flagella to undergo rapid and reversible morphological changes in response to multiple forms of environmental stimuli. Towards this end, we report self-assembled stimuli-responsive nanoscale robotic swimmers composed of single or multiple bacterial flagella and attached to magnetic nanoparticles. We visualize the movement of flagella using high resolution fluorescence microscopy while controlling these swimmers via a magnetic control system. Differences in in propulsion before and after the change in flagellar form are observed. Furthermore, we demonstrate the ability to induce flagellar bundling in multiflagellated nanoswimmers. This work was funded by the National Science Foundation (DMR 1712061 and CMMI 1737682 to M.J.K. and DMR 1650970 and CBET 1651031 to H.C.F.), and the Korea Evaluation Institute of Industrial Technology (MOTIE) (NO. 10052980) award to M.J.K.

  2. Random lasing actions in self-assembled perovskite nanoparticles

    Science.gov (United States)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  3. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    Science.gov (United States)

    Lin, Tao

    derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited

  4. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  5. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  6. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  7. Balancing the intermolecular forces in peptide amphiphiles for controlling self-assembly transitions.

    Science.gov (United States)

    Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E

    2017-06-21

    While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.

  8. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.; Docampo, P.; Hü ttner, S.; Kohn, P.; Stefik, M.; Snaith, H. J.; Wiesner, U.; Steiner, U.

    2011-01-01

    ) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block

  9. Micro-‘‘factory’’ for self-assembled peptide nanostructures

    DEFF Research Database (Denmark)

    Castillo, Jaime; Rodriguez-Trujíllo, Romén; Gauthier, Sébastian

    2011-01-01

    This study describes an integrated micro ‘‘factory’’ for the preparation of biological self-assembled peptide nanotubes and nanoparticles on a polymer chip, yielding controlled growth conditions. Self-assembled peptides constitute attractive building blocks for the fabrication of biological...... nanostructures due to the mild conditions of their synthesis process. This biological material can form nanostructures in a rapid way and the synthesis method is less expensive as compared to that of carbon nanotubes or silicon nanowires. The present article thus reports on the on-chip fabrication of self-assembled...

  10. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  11. Self-assembly kinetics of microscale components: A parametric evaluation

    Science.gov (United States)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments

  12. Self-assembled electrical materials from contorted aromatics

    Science.gov (United States)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity

  13. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    International Nuclear Information System (INIS)

    Yu, Zhi Gang

    2010-01-01

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues concerning these

  14. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Gang Yu

    2010-06-30

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues

  15. Measuring excess free energies of self-assembled membrane structures.

    Science.gov (United States)

    Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus

    2010-01-01

    Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

  16. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  17. Self-assembly of perylenediimide based semiconductor on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wiatrowski, Michal, E-mail: Michal.Wiatrowski@p.lodz.p [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Dobruchowska, Ewa [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Maniukiewicz, Waldemar [Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Pietsch, Ulrich [FB7- Physik , Universitaet Siegen, 57068 Siegen (Germany); Kowalski, Jacek [Division of Non-Metallic Materials, Faculty of Mechanical Engineering, Technical University of Lodz, Stefanowskiego1/15, 90-924 Lodz (Poland); Szamel, Zbigniew; Ulanski, Jacek [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)

    2010-02-01

    The continuous bi-layer composites consisting of top, ordered crystalline layer of perylenediimide derivative (2,9-di(pent-3-yl)-anthra[,1,9-def:6,5,10-d'e'f'] diisoquinoline-1,3,8,10-tetrone) - PTCDI-C5(3) and bottom poly(3-hexylthiophene-2,5-diyl) (P3HT) support were obtained from one solution, with a use of so called 'two-step reticulate doping' method. Optical, atomic force and scanning electron microscopy images show that the top crystalline layer is made of relatively large, anisotropic domains composed of long, parallel crystals. The crystalline character of the surface layer of PTCDI-C5(3) grown on the P3HT film was confirmed by wide angle X-ray scattering measurements. Furthermore, the grazing-incidence angle X-ray diffraction experiments revealed that the self-assembly of PTCDI-C5(3) molecules on P3HT is dominated by {pi}-{pi} interaction between the conjugated perylene cores, and the stacks are parallel to the long axis of the crystals and to the polymer surface. The surface conductivity, measured along the long axis of the crystals was estimated to be ca. 2.4 10{sup -8} {Omega}{sup -1} square{sup -}1 at 285 K. Temperature dependence of the conductivity in the range 140-285 K reveal semiconductor-like behaviour with activation energy ca. 150 meV.

  18. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  19. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    Science.gov (United States)

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  20. INTRODUCTION: New trends in simulating colloids and self-assembling systems New trends in simulating colloids and self-assembling systems

    Science.gov (United States)

    Foffi, Giuseppe; Kahl, Gerhard

    2010-03-01

    relatively high number of contributions as an indicator that the topics presented at these workshops represent substantial scientific developments. The particular motivation to organize these two workshops came from the fact that experimental work in colloidal physics is advancing rapidly around the globe. In contrast, theoretical and simulation approaches to investigate the wide range of new and surprising physical phenomena of colloidal systems is lagging behind this experimental progress. This is the more deploring since theory and simulation might provide a more profound understanding of many phenomena in soft and bio-related physics, such as phase behaviour, self-assembly strategies, or rheological properties, to name but a few. Furthermore this insight might help to guide experiment to design new colloid-based materials with desired properties. The declared aim of the two workshops was thus to bring together scientists who have contributed in recent time to new developments in colloidal physics and to share and discuss their latest innovations. While CECAM workshops traditionally bring together scientists from the theoretical and simulator communities, from the very beginning the organizers considered it an indispensable necessity to invite experimentalists. And indeed, the organizers are happy to confirm that the participation of experimentalists, theoreticians, and simulators was highly fruitful and mutually inspiring: discussions between all communities did help to understand the possibilities and limitations imposed by experiment, theory, and simulations. Reuniting thus all forces, the workshop did contribute to a deeper understanding in colloidal physics and has helped to address future aspects that might lead to more applied problems of technological relevance. The first workshop, entitled 'Computer Simulation Approaches to Study Self-Assembly: From Patchy Nano-Colloids to Virus Capsides', (organized by Jonathan Doye—University Of Oxford, Ard A Louis

  1. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    International Nuclear Information System (INIS)

    Jia, Juanjuan; Kara, Abdelkader; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A.

    2015-01-01

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments

  2. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Juanjuan [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); Kara, Abdelkader, E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Pasquali, Luca [Dipartimento di Ingegneria “E. Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Bendounan, Azzedine; Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Esaulov, Vladimir A., E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy)

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  3. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon S; Rust, Michael J; Do, Jaephil; Ahn, Chong H [Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 (United States); Yun, Yeo-Heung; Schulz, Mark J [Department of Mechanical Engineering, University of Cincinnati, 45221 (United States); Shanov, Vesselin, E-mail: chong.ahn@uc.ed [Department of Chemical and Materials Engineering, University of Cincinnati, 45221 (United States)

    2009-08-12

    A new method for the self-assembly of a carbon nanotube (CNT) using magnetic capturing and fluidic alignment has been developed and characterized in this work. In this new method, the residual iron (Fe) catalyst positioned at one end of the CNT was utilized as a self-assembly driver to attract and position the CNT, while the assembled CNT was aligned by the shear force induced from the fluid flow through the assembly channel. The self-assembly procedures were successfully developed and the electrical properties of the assembled multi-walled carbon nanotube (MWNT) and single-walled carbon nanotube (SWNT) were fully characterized. The new assembly method developed in this work shows its feasibility for the precise self-assembly of parallel CNTs for electronic devices and nanobiosensors.

  4. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

    KAUST Repository

    Nunes, Suzana Pereira; Behzad, Ali Reza; Peinemann, Klaus-Viktor

    2013-01-01

    Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use

  5. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/water interface * self assembly * ion-water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  6. Self-assembling peptide-based building blocks in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji; Schnorenberg, Mathew R.; Barrett, John C.; LaBelle, James L.; Tirrell, Matthew

    2017-02-01

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.

  7. Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules

    Science.gov (United States)

    Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan

    DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.

  8. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  9. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  10. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun; Hennig, Richard G.; Escobedo, Fernando A.; Wiesner, Ulrich

    2012-01-01

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self

  11. Self-assembly and flux closure studies of magnetic nanoparticle rings

    DEFF Research Database (Denmark)

    Wei, Alexander; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2011-01-01

    Thermoremanent magnetic nanoparticles (MNPs) can self-assemble into rings through dipolar interactions, when dispersed under appropriate conditions. Analysis of individual MNP rings and clusters by off-axis electron holography reveals bistable flux closure (FC) states at ambient temperatures...

  12. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    Science.gov (United States)

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  13. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié , Sté phane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.

    2012-01-01

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs

  14. Steering Self-Assembly of Amphiphilic Molecular Nanostructures via Halogen Exchange

    NARCIS (Netherlands)

    Kriete, Björn; Bondarenko, Anna S.; Jumde, Varsha R.; Franken, Linda E.; Minnaard, Adriaan J.; Jansen, Thomas L. C.; Knoester, Jasper; Pshenichnikov, Maxim S.

    2017-01-01

    In the field of self-assembly, the quest for gaining control over the supramolecular architecture without affecting the functionality of the individual molecular building blocks is intrinsically challenging. By using a combination of synthetic chemistry, cryogenic transmission electron microscopy,

  15. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers

    CSIR Research Space (South Africa)

    Nkosi, D

    2010-01-01

    Full Text Available The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time...

  16. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  17. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  18. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  19. Optical constants and self-assembly of phenylene ethynylene oligomer monolayers

    DEFF Research Database (Denmark)

    Marx, E.; Walzer, Karsten; Less, R.J.

    2004-01-01

    This paper studies the self-assembly on gold surfaces of 1,4-ethynylphenyl-4'-ethynylphenyl-2'-nitro-1-benzenedithiolate (EP2NO(2)), a substituted phenylene ethynylene trimer with applications in molecular electronics. We develop an ellipsometric technique to measure the optical constants...... of these self-assembled monolayers, and we also use attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and scanning tunneling microscopy (STM) to confirm the structure of the films....

  20. Improved organic thin-film transistor performance using novel self-assembled monolayers

    Science.gov (United States)

    McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J.

    2006-02-01

    Pentacene-based organic thin-film transistors have been fabricated using a phosphonate-linked anthracene self-assembled monolayer as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Vast improvements in the subthreshold slope and threshold voltage are observed compared to control devices fabricated without the buffer. Both observations are consistent with a greatly reduced density of charge trapping states at the semiconductor-dielectric interface effected by introduction of the self-assembled monolayer.

  1. Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He

    2016-10-01

    A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide

    Directory of Open Access Journals (Sweden)

    Nobuo Kimizuka

    2011-08-01

    Full Text Available Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7 via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.

  3. Self-recognition in the coordination driven self-assembly of 2-D polygons.

    Science.gov (United States)

    Addicott, Chris; Das, Neeladri; Stang, Peter J

    2004-08-23

    Self-recognition in the transition-metal-mediated self-assembly of some 2-D polygons is presented. Prolonged heating of two or three organoplatinum reagents with 4,4'-dipyridyl in aqueous acetone results in the predominant formation of a rectangle, triangle, and/or square. All mixtures are characterized with NMR and electrospray ionization mass spectrometry (ESIMS). Despite the potential for ill-defined oligomeric products, these mixed ligand systems prefer to self-assemble into discrete species.

  4. A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells

    Science.gov (United States)

    2015-10-26

    an ordered 3-dimentional space. In the first stage, we constructed protein building blocks able to self-assemble into 3D protein hydrogel upon...Chem 23, 1891-1901 (2012). 26. Jung, S. & Yi, H. Facile Strategy for Protein Conjugation with Chitosan -Poly(ethylene glycol) Hybrid Microparticle...multiple enzymes in an ordered 3-dimentional space. In the first stage, we constructed protein building blocks able to self-assemble into 3D protein

  5. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  6. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  7. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  8. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  9. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Hari O. S., E-mail: cyz108802@chemistry.iitd.ac.in, E-mail: hariyadav.iitd@gmail.com; Shrivastav, Gourav; Agarwal, Manish; Chakravarty, Charusita [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India)

    2016-06-28

    emergent anisotropy due to correlation of mass dipoles on the two nanoparticles. One expects therefore that during self-assembly using solvent evaporation, temperature can be used as a structure-directing factor as long as good solvent conditions are maintained. It also suggests that disordered configurations may emerge as solvent quality decreases due to increasing role of short-range attractions and ligand fluctuation-driven anisotropy. The possibilities of using structural estimators of various thermodynamic quantities to analyse the interplay of ligand fluctuations and solvent quality in self-assembly as well as to design solvation environments are discussed.

  10. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  11. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    loose packing can be attributed to the designed wedge and trough shapes of the peptides disturbing formation of a uniform bilayer type structure proposed in the case of MAX1 with each hairpin having a flat hydrophobic surface. Although designed changes in hydrophobic shape of the peptide nanofibril core in the new peptides were found to significantly influence the self-assembled nanostructure and network rheological behavior, a lack of direct morphological and rheological evidence to prove shape specific hydrophobic interactions between wedge and trough shaped beta-hairpins was encountered. In the second approach, peptides with established differences in assembly kinetics and bulk mechanical properties of assembled peptide hydrogels were used to develop composite materials with diverse morphological and mechanical properties by blending with the biopolymer hyaluronic acid. The diverse properties of the composites have been correlated to the specific peptide hydrogels used to develop the composite and the different stages of peptide assembly at which blending with hyaluronic acid was carried out. Finally along with overall conclusions, the new area of co-assembly of peptides in solution has been explored and discussed as potential future work following the research discussed in this dissertation. Strategies such as construction of composite hydrogels from blends of MAX1/MAX8 peptide hydrogels and biologically important anionic species such as heparin biopolymer and DNA have been discussed. Another area of future work discussed is the design and study of peptides that can incorporate chemically crosslinkable functional groups in their hydrophobic amino acid side chains that can be covalently crosslinked after peptide assembly into fibrils. Such covalent crosslinking can potentially lead to stiffer individual peptide fibrils due to additional bond formation at the fibrillar core and therefore much stiffer hydrogels due to a synergistic effect. These enhanced stiffness

  12. Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    KAUST Repository

    Polymeropoulos, George; Zapsas, George; Hadjichristidis, Nikolaos; Avgeropoulos, Apostolos

    2015-01-01

    Two star triblock terpolymers (PS-b-P2VP-b-PEO)3 and one dendritic-like terpolymer [PS-b-P2VP-b-(PEO)2]3 of PS (polystyrene), P2VP (poly(2-vinylpyridine)), and PEO (poly(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the -Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two -OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture. © 2015 American Chemical Society.

  13. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    Science.gov (United States)

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  14. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold

    International Nuclear Information System (INIS)

    Viana, A.S.; Leupold, S.; Montforts, F.-P.; Abrantes, L.M.

    2005-01-01

    A self-assembled monolayer (SAM) of a novel cobalt(II)porphyrin disulphide derivative was prepared on flat gold(1 1 1) electrode. Evidence for surface modification was provided by electrochemical reductive desorption of the monolayer and ellipsometry, consistent with a coverage of 2.5 x 10 -10 mol cm -2 and a thickness of 13 A, respectively. Both results support the presence of SAMs where the molecules share an intermediate position between perpendicular and flat orientation. Scanning tunnelling microscopy have also proven the formation of CoPSS SAMs, however high-resolution images could only be obtained when the CoPSS molecules were diluted in an hexanethiol SAM. The electrocatalytic activity of the surface confined Co-porphyrin was evaluated for the oxygen reduction. Voltammetric data indicate that reaction involves two electrons consistent with the formation of hydrogen peroxide. Under similar experimental conditions the data obtained for an iron-porphyrin analogue points for a full reduction of dioxygen to water

  15. Submolecular Gates Self-Assemble for Hot-Electron Transfer in Proteins.

    Science.gov (United States)

    Filip-Granit, Neta; Goldberg, Eran; Samish, Ilan; Ashur, Idan; van der Boom, Milko E; Cohen, Hagai; Scherz, Avigdor

    2017-07-27

    Redox reactions play key roles in fundamental biological processes. The related spatial organization of donors and acceptors is assumed to undergo evolutionary optimization facilitating charge mobilization within the relevant biological context. Experimental information from submolecular functional sites is needed to understand the organization strategies and driving forces involved in the self-development of structure-function relationships. Here we exploit chemically resolved electrical measurements (CREM) to probe the atom-specific electrostatic potentials (ESPs) in artificial arrays of bacteriochlorophyll (BChl) derivatives that provide model systems for photoexcited (hot) electron donation and withdrawal. On the basis of computations we show that native BChl's in the photosynthetic reaction center (RC) self-assemble at their ground-state as aligned gates for functional charge transfer. The combined computational and experimental results further reveal how site-specific polarizability perpendicular to the molecular plane enhances the hot-electron transport. Maximal transport efficiency is predicted for a specific, ∼5 Å, distance above the center of the metalized BChl, which is in remarkably close agreement with the distance and mutual orientation of corresponding native cofactors. These findings provide new metrics and guidelines for analysis of biological redox centers and for designing charge mobilizing machines such as artificial photosynthesis.

  16. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    Science.gov (United States)

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    Science.gov (United States)

    Irrera, Simona; Ruiz-Hernandez, Sergio E.; Reggente, Melania; Passeri, Daniele; Natali, Marco; Gala, Fabrizio; Zollo, Giuseppe; Rossi, Marco; Portalone, Gustavo

    2017-06-01

    Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  18. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates

    International Nuclear Information System (INIS)

    Venturi, F; Calizzi, M; Pasquini, L; Bals, S; Perkisas, T

    2015-01-01

    Magnesium nanoparticles (NPs) with initial size in the 10–50 nm range were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features. (paper)

  19. Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    KAUST Repository

    Polymeropoulos, George

    2015-11-25

    Two star triblock terpolymers (PS-b-P2VP-b-PEO)3 and one dendritic-like terpolymer [PS-b-P2VP-b-(PEO)2]3 of PS (polystyrene), P2VP (poly(2-vinylpyridine)), and PEO (poly(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the -Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two -OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture. © 2015 American Chemical Society.

  20. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Geng Ping; Zhang Xinai; Meng Weiwei; Wang Qingjiang; Zhang Wen; Jin Litong; Feng Zhen; Wu Zirong

    2008-01-01

    An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN) 6 3- /Fe(CN) 6 4- as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 x 10 3 to 3.0 x 10 7 cfu mL -1 with the detection limit of 1.0 x 10 3 cfu mL -1 . With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples

  1. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application

    Science.gov (United States)

    Kind, Martin; Wöll, Christof

    2009-07-01

    Organic surfaces play a major role in materials science. Most surfaces that we touch in our daily lives are made from organic materials, e.g., vegetables, fruit, skin, wood, and textiles made from natural fibers. In the context of biology, organic surfaces play a prominent role too, proteins docking onto cell surfaces are a good example. To better understand the characteristics of organic surfaces, including physico-chemical properties like wettability or chemical reactivities and physical properties like friction and lubrication, a structurally well-defined model system that can be investigated with numerous analytical techniques is desirable. In the last two decades, one particular system, self-assembled monolayers or SAMs, have demonstrated their suitability for this purpose. In particular, organothiols consisting of an organic molecule with an attached SH-group are well suited to fabricating structurally well-defined adlayers of monolayer thickness on gold substrates using a simple preparation procedure. These ultrathin monolayers expose an organic surface with properties that can be tailored by varying the type of organothiol employed. After a short introduction into the preparation of SAMs, this article provides an overview of the possibilities and limitations of organic surfaces exposed by Au-thiolate SAMs. Applications are as diverse as the metallization of organic surfaces, a fundamental problem in materials science, and the fabrication of surfaces that resist the adsorption of proteins. In addition to a number of different case studies, we will also discuss the most powerful analytical techniques needed to characterize these important model systems.

  2. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Hong-Yeol; Jang, Soohwan; Kim, Jihyun

    2016-10-12

    Large-area graphene needs to be directly synthesized on the desired substrates without using a transfer process so that it can easily be used in industrial applications. However, the development of a direct method for graphene growth on an arbitrary substrate remains challenging. Here, we demonstrate a bottom-up and transfer-free growth method for preparing multilayer graphene using a self-assembled monolayer (trimethoxy phenylsilane) as the carbon source. Graphene was directly grown on various substrates such as SiO 2 /Si, quartz, GaN, and textured Si by a simple thermal annealing process employing catalytic metal encapsulation. To determine the optimal growth conditions, experimental parameters such as the choice of catalytic metal, growth temperatures, and gas flow rate were investigated. The optical transmittance at 550 nm and the sheet resistance of the prepared transfer-free graphene are 84.3% and 3500 Ω/□, respectively. The synthesized graphene samples were fabricated into chemical sensors. High and fast responses to both NO 2 and NH 3 gas molecules were observed. The transfer-free graphene growth method proposed in this study is highly compatible with previously established fabrication systems, thereby opening up new possibilities for using graphene in versatile applications.

  3. Synthesis and photoluminescence properties of self-assembled Eu-doped ZnO hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin [Department of Materials Science and Engineering, College of Materials, Xiamen University, Siming South Road 422, 361005 Xiamen (China); Key Laboratory for Fire Retardant Materials of Fujian Province, Xiamen University, Siming South Road 422, 361005 Xiamen (China); Wang, Nating; Wang, Weiqiang [Department of Materials Science and Engineering, College of Materials, Xiamen University, Siming South Road 422, 361005 Xiamen (China)

    2011-12-15

    ZnO hollow microspheres with a shell wall consisting of crystalline ZnO nanosheets were synthesized by using Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} microspheres as spherical templates. Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} microspheres were first fabricated by a solvothermal procedure in an ethylene glycol (EG)-water solution. ZnO microspheres with a hexagonal structure were identified by means of X-ray diffraction (XRD) and selected-area electron diffraction (SAED). On the basis of the results, a possible self-assembly growth mechanism was proposed. It reveals that the EG played an important role in determining the hollow morphologies of Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} structures. In addition, photoluminescence (PL) investigation of ZnO:Eu{sup 3+} suggested that a direct energy transfer occurred, which was ascribed to the energy transfer from ZnO host to Eu{sup 3+} ions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Block copolymer systems: from single chain to self-assembled nanostructures.

    Science.gov (United States)

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  5. Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

    Directory of Open Access Journals (Sweden)

    Bingxue Pu

    2018-01-01

    Full Text Available Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow structures were prepared through different processing conditions with two parameters such as temperature and time. Based on scanning electron microscopy (SEM, X-ray diffraction (XRD, thermal gravimetric analysis (TGA and vibrating sample magnetometry (VSM, the submicron nickel particles show good saturation magnetization and excellent thermal stabilities with a possible growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave absorption properties of the submicron nickel particles were studied. The lowest reflection loss of Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.

  6. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  7. Template-based self-assembly for silicon chips and 01005 surface-mount components

    International Nuclear Information System (INIS)

    Hoo, J H; Park, Kwang Soon; Baskaran, Rajashree; Böhringer, Karl F

    2014-01-01

    We present template-based microscale self-assembly as a technique that promotes the electronics industry's initiative towards functional diversification and function densification, demonstrating that our process can improve existing assembly and packaging techniques, and also enable possibilities restricted by current industry methodologies. We first present foundational work that performs part (370 × 370 × 150 µm 3 ) delivery to receptor sites (20 × 10 array) with a stochastic batch delivery process that completes within tens of seconds. The delivery mechanism is statistically characterized and a chemical kinetics inspired model is developed. Based on this understanding, repeatable and programmable 100% yield assembly is achieved in open-loop and feedback-based configurations. The established methodology is adapted to deliver and assemble standard 01 005 format (0.016″ × 0.008″, 0.4 mm × 0.2 mm) monolithic ceramic capacitors and thin-film resistors onto silicon substrates. This process is CMOS compatible and is competitive with capacitors and resistors fabricated through standard foundry processes. (paper)

  8. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  9. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent.

    Science.gov (United States)

    Babič, Andrej; Vorobiev, Vassily; Xayaphoummine, Céline; Lapicorey, Gaëlle; Chauvin, Anne-Sophie; Helm, Lothar; Allémann, Eric

    2018-01-26

    Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm -1  s -1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Exploration of suitable dry etch technologies for directed self-assembly

    Science.gov (United States)

    Yamashita, Fumiko; Nishimura, Eiichi; Yatsuda, Koichi; Mochiki, Hiromasa; Bannister, Julie

    2012-03-01

    Directed self-assembly (DSA) has shown the potential to replace traditional resist patterns and provide a lower cost alternative for sub-20-nm patterns. One of the possible roadblocks for DSA implementation is the ability to etch the polymers to produce quality masks for subsequent etch processes. We have studied the effects of RF frequency and etch chemistry for dry developing DSA patterns. The results of the study showed a capacitively-coupled plasma (CCP) reactor with very high frequency (VHF) had superior pattern development after the block co-polymer (BCP) etch. The VHF CCP demonstrated minimal BCP height loss and line edge roughness (LER)/line width roughness (LWR). The advantage of CCP over ICP is the low dissociation so the etch rate of BCP is maintained low enough for process control. Additionally, the advantage of VHF is the low electron energy with a tight ion energy distribution that enables removal of the polymethyl methacrylate (PMMA) with good selectivity to polystyrene (PS) and minimal LER/LWR. Etch chemistries were evaluated on the VHF CCP to determine ability to treat the BCPs to increase etch resistance and feature resolution. The right combination of RF source frequencies and etch chemistry can help overcome the challenges of using DSA patterns to create good etch results.

  11. Statistical analysis of AFM topographic images of self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sevriuk, V. A.; Brunkov, P. N., E-mail: brunkov@mail.ioffe.ru; Shalnev, I. V.; Gutkin, A. A.; Klimko, G. V.; Gronin, S. V.; Sorokin, S. V.; Konnikov, S. G. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-07-15

    To obtain statistical data on quantum-dot sizes, AFM topographic images of the substrate on which the dots under study are grown are analyzed. Due to the nonideality of the substrate containing height differences on the order of the size of nanoparticles at distances of 1-10 {mu}m and the insufficient resolution of closely arranged dots due to the finite curvature radius of the AFM probe, automation of the statistical analysis of their large dot array requires special techniques for processing topographic images to eliminate the loss of a particle fraction during conventional processing. As such a technique, convolution of the initial matrix of the AFM image with a specially selected matrix is used. This makes it possible to determine the position of each nanoparticle and, using the initial matrix, to measure their geometrical parameters. The results of statistical analysis by this method of self-assembled InAs quantum dots formed on the surface of an AlGaAs epitaxial layer are presented. It is shown that their concentration, average size, and half-width of height distribution depend strongly on the In flow and total amount of deposited InAs which are varied within insignificant limits.

  12. Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Dwivedi, Charu; Dutta, V

    2012-01-01

    Well-aligned zinc oxide (ZnO) nanorods are fabricated on indium-tin-oxide (ITO) coated glass substrates via self-assembly of ZnO nanoparticles created using continuous spray pyrolysis (CoSP) technique. The method involves pre-treatment by dip-coating the substrate with a solution comprising of zinc salt for creating a seed layer, and then spray-pyrolyzed ZnO nanoparticles self-assemble on the pre-treated substrate. The effect of the substrate pre-treatment and the deposition time (t dep ) of nanoparticles is investigated. The results show that the substrate pre-treatment influences the growth of ZnO nanorods which are absent without the pre-treatment. Nanoparticle collection and nanorod growth on different substrates are done simultaneously. The thin films of as-grown nanorods are used as photoelectrode materials to fabricate dye-sensitized solar cells (DSSCs) and the effect of nanorods grown for different times has been studied. The best performance with this cell structure is found for the layer with t dep =15 min, which showed a conversion efficiency of 1.77% for the cell area of 0.25 cm 2

  13. Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self-Assembly Behavior.

    Science.gov (United States)

    Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo

    2018-04-17

    Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  15. Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: Effect of polymer concentration

    International Nuclear Information System (INIS)

    Martín-García, Beatriz; Velázquez, M. Mercedes

    2013-01-01

    We propose to use the self-assembly ability of a block copolymer to obtain CdSe quantum dots (QDs) structures of different morphology. The methodology proposed consist in transferring mixed Langmuir monolayers of QDs and the polymer poly (styrene-co-maleic anhydride) partial 2 buthoxy ethyl ester cumene terminated, PS-MA-BEE onto mica by the Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by AFM and TEM measurements. Our results show that it is possible to modulate the self-assembly process by modifying the composition of the mixed Langmuir monolayer precursor of the LB film. The different morphologies are interpreted according to two different dewetting mechanisms, growth of holes and spinodal-like dewetting. The growth of holes dewetting process is driven by gravitatory effects and was observed for LB films obtained by transferring Langmuir monolayer of the smallest elasticity values in which the polymer is in brush conformation. The spinodal dewetting mechanism prevailed when the Langmuir monolayer presents the highest elasticity values. - Graphical abstract: Display Omitted - Highlights: • Effect of the surface composition on the LB films architecture. • QDs/polymer LB films morphology interpreted in terms of dewetting mechanism. • The dewetting mechanism depends on the Langmuir monolayer state

  16. Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: Effect of polymer concentration

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Beatriz; Velázquez, M. Mercedes, E-mail: mvsal@usal.es

    2013-08-15

    We propose to use the self-assembly ability of a block copolymer to obtain CdSe quantum dots (QDs) structures of different morphology. The methodology proposed consist in transferring mixed Langmuir monolayers of QDs and the polymer poly (styrene-co-maleic anhydride) partial 2 buthoxy ethyl ester cumene terminated, PS-MA-BEE onto mica by the Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by AFM and TEM measurements. Our results show that it is possible to modulate the self-assembly process by modifying the composition of the mixed Langmuir monolayer precursor of the LB film. The different morphologies are interpreted according to two different dewetting mechanisms, growth of holes and spinodal-like dewetting. The growth of holes dewetting process is driven by gravitatory effects and was observed for LB films obtained by transferring Langmuir monolayer of the smallest elasticity values in which the polymer is in brush conformation. The spinodal dewetting mechanism prevailed when the Langmuir monolayer presents the highest elasticity values. - Graphical abstract: Display Omitted - Highlights: • Effect of the surface composition on the LB films architecture. • QDs/polymer LB films morphology interpreted in terms of dewetting mechanism. • The dewetting mechanism depends on the Langmuir monolayer state.

  17. The Metal Effect on Self-Assembling of Oxalamide Gelators Explored by Mass Spectrometry and DFT Calculations

    Science.gov (United States)

    Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata

    2018-01-01

    Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc)2, depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na+ cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na+ cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. [Figure not available: see fulltext.

  18. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    International Nuclear Information System (INIS)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F; Hampai, D; Rossi, M

    2008-01-01

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications

  19. Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available The DAP12-NKG2C activating immunoreceptor complex is one of the multisubunit transmembrane protein complexes in which ligand-binding receptor chains assemble with dimeric signal-transducing modules through non-covalent associations in their transmembrane (TM domains. In this work, both coarse grained and atomistic molecular dynamic simulation methods were applied to investigate the self-assembly dynamics of the transmembrane domains of the DAP12-NKG2C activating immunoreceptor complex. Through simulating the dynamics of DAP12-NKG2C TM heterotrimer and point mutations, we demonstrated that a five-polar-residue motif including: 2 Asps and 2 Thrs in DAP12 dimer, as well as 1 Lys in NKG2C TM plays an important role in the assembly structure of the DAP12-NKG2C TM heterotrimer. Furthermore, we provided clear evidences to exclude the possibility that another NKG2C could stably associate with the DAP12-NKG2C heterotrimer. Based on the simulation results, we proposed a revised model for the self-assembly of DAP12-NKG2C activating immunoreceptor complex, along with a plausible explanation for the association of only one NKG2C with a DAP12 dimer.

  20. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F [Dipartimento di Scienze e Tecnologie Chimiche, MINASlab, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Hampai, D [INFN-LNF Via E Fermi 40, Frascati (Italy); Rossi, M [Dipartimento di Energetica, Universita di Roma ' Sapienza' , Via Antonio Scarpa 16, 00161 Roma (Italy)

    2008-10-15

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong <110> preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications.

  1. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates

    Directory of Open Access Journals (Sweden)

    Yujiao Xie

    2018-03-01

    Full Text Available New amphiphilic liquid crystal (LC polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR spectrum, 1H NMR, gel permeation chromatographic (GPC, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, polarizing optical microscope (POM, and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td, glass temperature (Tg, and isotropic temperature (Ti increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX, together with drug release tracking, were evaluated by dynamic light scattering (DLS, SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications.

  2. FOLDNA, a Web Server for Self-Assembled DNA Nanostructure Autoscaffolds and Autostaples

    Directory of Open Access Journals (Sweden)

    Chensheng Zhou

    2012-01-01

    Full Text Available DNA self-assembly is a nanotechnology that folds DNA into desired shapes. Self-assembled DNA nanostructures, also known as origami, are increasingly valuable in nanomaterial and biosensing applications. Two ways to use DNA nanostructures in medicine are to form nanoarrays, and to work as vehicles in drug delivery. The DNA nanostructures perform well as a biomaterial in these areas because they have spatially addressable and size controllable properties. However, manually designing complementary DNA sequences for self-assembly is a technically demanding and time consuming task, which makes it advantageous for computers to do this job instead. We have developed a web server, FOLDNA, which can automatically design 2D self-assembled DNA nanostructures according to custom pictures and scaffold sequences provided by the users. It is the first web server to provide an entirely automatic design of self-assembled DNA nanostructure, and it takes merely a second to generate comprehensive information for molecular experiments including: scaffold DNA pathways, staple DNA directions, and staple DNA sequences. This program could save as much as several hours in the designing step for each DNA nanostructure. We randomly selected some shapes and corresponding outputs from our server and validated its performance in molecular experiments.

  3. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  4. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  5. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  7. Self-Assembly in the Ferritin Nano-Cage Protein Superfamily

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2011-08-01

    Full Text Available Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  8. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA

    Science.gov (United States)

    Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.

    1987-01-01

    An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868

  9. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    Science.gov (United States)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  10. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    International Nuclear Information System (INIS)

    Nidetz, Robert; Kim, Jinsang

    2012-01-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces. (paper)

  11. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  12. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  13. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  14. A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

    Directory of Open Access Journals (Sweden)

    Ping Du

    2015-03-01

    Full Text Available Two-dimensional (2D, supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp2-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.

  15. Crystalline self-assembly of organic molecules with metal ions at the air-aqueous solution interface. A grazing incidence X-ray scattering study

    DEFF Research Database (Denmark)

    Weissbuch, I.; Buller, R.; Kjær, K.

    2002-01-01

    The advent of intense X-rays from synchrotron sources made possible to probe, at the molecular level, the structural aspects of self-assemblies generated at interfaces. Here we present the two-dimensional (2-D) packing arrangements of two-, three- and multi-component organo-metallic self......-assemblies formed via interfacial reaction at the air-aqueous solution interface, as determined by grazing incidence X-ray diffraction (GIRD) and X-ray specular reflectivity techniques. GIXD yields structural information on the crystalline part of the Langmuir film, including the ions and counterions lateral order...... of metal ions bound to the polar head groups of amphipilic molecules; use of bolaamphiphiles to generate oriented thin films with metal ions arranged in periodic layers; delineation of differences in the lateral organization of metal ions at interfaces as induced by racemates and enantiomerically pure...

  16. Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel(II) triangle by atmospheric CO2 fixation.

    Science.gov (United States)

    Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh

    2008-09-01

    Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).

  17. Electrostatic self-assembly of Fe3O4/GO nanocomposites and their application as an efficient Fenton-like catalyst for degradation of rhodamine B

    Science.gov (United States)

    Wang, Wenxia; He, Qi; Xiao, Kaijun; Zhu, Liang

    2018-03-01

    In the study, a two-major step involving a hydrothermal method and an electrostatic self-assembly method was adopted to synthesis Fe3O4/GO nanocomposites. The Fe3O4 nanoparticles were successfully modified with the 3-aminopropyltrimethoxy-silane and homogeneously deposited onto the surface of GO. They were used as Fenton-like catalyst to degrade Rhodamine B and displayed a higher activity compared with the pristine Fe3O4 nanoparticles, H2O2, Fe3O4/GO nanocomposite and Fe3O4/H2O2 system, demonstrating the synergistic effect between the superior adsorption properties of GO and the excellent catalytic activity of Fe3O4/H2O2 system. Besides, the possible catalytic mechanism and degradation pathway for RhB molecules by Fe3O4/GO nanocomposites and H2O2 was proposed based on the liquid chromatography-mass spectrometry (LC-MS) analysis. The result reveals that the •OH radicals should be the main actives species during catalytic degradation of RhB by the Fe3O4/GO/H2O2 system. In addition, the catalyst is reusable and shows efficiency up to 5 cycles. We believe the strategy in our work can provide insight into designing the novel catalysts for large-scale degradation of organic pollutants in the wastewater.

  18. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang

    2018-05-29

    Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.

  19. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    Science.gov (United States)

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.

    Science.gov (United States)

    Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J

    2018-04-02

    A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

  1. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    Science.gov (United States)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  2. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

    Science.gov (United States)

    Zhao, Liang; Northrop, Brian H; Stang, Peter J

    2008-09-10

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

  3. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F

    2018-02-12

    The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.

  4. Epitaxial growth of sexi-thiophene and para-hexaphenyl and its implications for the fabrication of self-assembled lasing nano-fibres

    International Nuclear Information System (INIS)

    Simbrunner, Clemens

    2013-01-01

    Over the last few years, epitaxially grown self-assembled organic nano-structures became of increasing interest due to their high potential for implementation within opto-electronic devices. Exemplarily, the epitaxial growth of the rod-like molecules para-hexaphenyl (p-6P) and α-sexi-thiophene (6T) is discussed within this review. Both molecules tend to crystallize in highly asymmetric elongated entities which are also called nano-fibres. It is demonstrated that the obtained needle orientations and morphologies result from a complex interplay between various parameters e.g. substrate surface symmetry, molecular adsorption, crystal structure and contact plane. The interplay and its implications on the fabrication of self-assembled waveguiding nano-fibres and optical resonator structures are discussed and substantiated by a comparison with the reported literature. In further consequence, it is demonstrated that a precise control on the molecular adsorption geometry and the crystal contact plane represents a fundamental key parameter for the fabrication of self-assembled nano-fibres. As both parameters are basically determined by the chosen molecule–substrate material couple, the possible spectrum of molecular building blocks for the fabrication of waveguiding and lasing nano-structures can be predicted by the discussed growth model. A possible expansion of this common valid concept is presented by the utilization of organic–organic heteroepitaxy. Based on the reported p-6P/6T heterostructures which have been fabricated on various substrate surfaces, it is substantiated that the fabrication of organic–organic interfaces can be effectively used to gain control on the molecular adsorption geometry. As the proposed strategy still lacks a precise control of the obtained crystal contact plane, further strategies are discussed which potentially lead to a controlled fabrication of opto-electronic devices based on self-assembled organic nano-structures. (invited review)

  5. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    Science.gov (United States)

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  6. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  7. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    Science.gov (United States)

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  8. Formation of self-assembled stripes on the anodic aluminum oxide

    International Nuclear Information System (INIS)

    Liu Hongwen; Guo Haiming; Wang Yeliang; Shen Chengmin; Yang Haitao; Wang Yutian; Wei Long

    2004-01-01

    Non-polished aluminum sheets were anodized and the coexistence of self-assembled stripes and porous arrays on the Al surface was observed. The nanostructures were investigated in details using an atomic force microscope. And the formation mechanism of the stripes was discussed and simulated using Brusselator model in this work. The authors demonstrated that the self-assembled patterns on the Al surface were governed by the competition of formation and dissolution of alumina film during the reaction process. Moreover, this type of ordered structure could only form in certain conditions

  9. Preparation and self-assembly of nanostructured BaCrO4 from CTAB reverse microemulsions

    International Nuclear Information System (INIS)

    Li Zhonghao; Zhang Jianling; Du Jimin; Han Buxing; Mu Tiancheng; Gao Yanan; Liu Zhimin

    2005-01-01

    Well-defined superstructures of rectangular-shaped BaCrO 4 and extensive network of BaCrO 4 nanoparticles constructed by self-assembly were prepared in cetyltrimethylammonium bromide (CTAB) reverse microemulsions. The effects of aging time and reactant concentrations on the morphology and the self-assemble pattern of the nanostructured BaCrO 4 were investigated. TEM combined with the electron diffraction was used to characterize the morphology and the crystal structure of the prepared nanostructured BaCrO 4 at different conditions

  10. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    OpenAIRE

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength s...

  11. Diffuse x-ray scattering study of interfacial structure of self-assembled conjugated polymers

    International Nuclear Information System (INIS)

    Wang Jun; Park, Y.J.; Lee, K.-B.; Hong, H.; Davidov, D.

    2002-01-01

    The interfacial structures of self-assembled heterostructures through alternate deposition of conjugated and nonconjugated polymers were studied by x-ray reflectivity and nonspecular scattering. We found that the interfacial width including the effects of both interdiffusion and interfacial roughness (correlated) was mainly contributed by the latter one. The self-assembled deposition induced very small interdiffusion between layers. The lateral correlation length ξ parallel grew as a function of deposition time (or film thickness) described by a power law ξ parallel ∝t β/H and was also observed from the off-specular scattering

  12. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  13. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Science.gov (United States)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  14. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  15. Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels.

    Science.gov (United States)

    Vigier-Carrière, Cécile; Boulmedais, Fouzia; Schaaf, Pierre; Jierry, Loïc

    2018-02-05

    Localized molecular self-assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self-assembly of low-molecular-weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Designing thiophene-based azomethine oligomers with tailored properties: Self-assembly and charge carrier mobility

    DEFF Research Database (Denmark)

    Kiriy, N.; Bocharova, V.; Kiriy, A.

    2004-01-01

    This paper describes synthesis and characterization of two thiophene-based azomethines designed to optimize solubility, self-assembly, and charge carrier mobility. We found that incorporation of azomethine and amide moieties in the alpha,omega-position, and hexyl chains in the beta-position of th...... with the mobilities of the best organic semiconductors. All these significant differences in properties of related compounds can be attributed to the hydrogen bonding between QT-amide molecules responsible for the observed self-assembly....

  17. Light-assisted, templated self-assembly using a photonic-crystal slab.

    Science.gov (United States)

    Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L

    2013-05-08

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.

  18. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    Science.gov (United States)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  19. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Andersen, Karsten Brandt; Svendsen, Winnie Edith

    2011-01-01

    This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on c...... characterization by SEM and I-V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin-streptavidin interaction in order to probe their potential in the development of biosensing devices....

  20. Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.

    Science.gov (United States)

    Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar

    2012-05-07

    Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DNA-mediated self-assembly of tetrahedral plasmonic clusters for metafluids

    Science.gov (United States)

    Schade, Nicholas; Sun, Li; Lee, You-Jin; Fan, Jonathan; Capasso, Federico; Yi, Gi-Ra; Manoharan, Vinothan

    2014-03-01

    We direct the self-assembly of clusters of gold nanospheres with the goal of creating a bulk, isotropic, optical metafluid. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with commercially available gold colloids. We label them with DNA sequences and mix them together to self-assemble small clusters. By controlling the particle sizes and the interactions between them, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials.

  2. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

    Directory of Open Access Journals (Sweden)

    Alexander Weddemann

    2010-11-01

    Full Text Available This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.

  3. A simple method to prepare self-assembled organic-organic heterobilayers on metal substrates

    Directory of Open Access Journals (Sweden)

    L. D. Sun

    2011-06-01

    Full Text Available We demonstrate a self-assembly based simple method to prepare organic-organic heterobilayers on a metal substrate. By either sequential- or co-deposition of para-sexiphenyl (p-6P and pentacene molecules onto the Cu(110 surface in ultrahigh vacuum, p-6P/pentacene/Cu(110 heterobilayer is synthesized at room temperature. The layer sequence of the heterostructure is independent of the growth scenario indicating the p-6P/pentacene/Cu(110 is a self-assembled structure with lowest energy. Besides, the bilayer shows a very high orientational ordering and is thermally stable up to 430K.

  4. Fabrication of nanostructure via self-assembly of nanowires within the AAO template

    Directory of Open Access Journals (Sweden)

    Brust Mathias

    2006-01-01

    Full Text Available AbstractThe novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires and nanoparticles by a self-assembly method. The nanostructures of the nano cigars and structure which is containing particles junction are characterized by transmission electron microscopy (TEM. These kinds of novel nanostructure will be the building blocks for nanoelectronic and nanophotonic devices.

  5. Self-assembling nanoparticles at surfaces and interfaces

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2008-01-01

    Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles

  6. On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator

    International Nuclear Information System (INIS)

    Hemed, Nofar Mintz; Inberg, Alexandra; Shacham-Diamand, Yosi

    2013-01-01

    We herein report on the stability of Electrolyte/Insulator/Semiconductor (EIS) devices with Self-Assembled Monolayer (SAM) gate insulator layers, i.e. Electrolyte/SAM/Semiconductor (ESS) devices. ESS devices can be functionalized creating highly specific sensors that can be integrated on standard silicon platform. However, biosensors by their nature are in contact with biological solutions that contain ions and molecules that may affect the device characteristics and cause electrical instability. In this paper we present a list of potential hazards to ESS devices and a study of the device stability under common testing conditions analyzing possible causes for the instabilities. ESS capacitors under open circuit conditions (i.e. open circuit bias of ∼0.6 V vs. Ag/AgCl reference electrode) were periodically characterized. We measured the complex impedance of the capacitors versus bias and extracted the effective capacitance vs. voltage (C–V) curves using two methods. We observed a parallel shift of the C–V curves toward negative bias; showing an effective accumulation of positive charge. The quantitative analysis of the drift vs. time was found to depend on the effective capacitance evaluation method. This effect is discussed and a best-known method is proposed. The devices surface composition was tested before and after the stress experiment by X-ray Photoelectron Spectroscopy (XPS) and sodium accumulation was observed. To further explore the flat-band voltage drift effect and to challenge the assumption that alkali ions are involved in the drift we conceived a novel alkali-free phosphate buffer saline (AF-PBS) where the sodium and potassium ions are replaced by ammonium ion and tested the capacitor under similar conditions to standard PBS. We found that the drift of the AF-PBS solution was much less at the first hour but was similar to that of the conventional PBS for longer stress times; hence, AF-PBS does not solve the long-term instability problem

  7. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    Science.gov (United States)

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  8. Research involving subjects with Alzheimer's disease in Italy: the possible role of family members.

    Science.gov (United States)

    Porteri, Corinna; Petrini, Carlo

    2015-03-04

    Alzheimer's disease is a very common, progressive and still incurable disease. Future possibilities for its cure lie in the promotion of research that will increase our knowledge of the disorder's causes and lead to the discovery of effective remedies. Such research will necessarily involve individuals suffering from Alzheimer's disease. This raises the controversial issue of whether patients with Alzheimer's disease are competent to give their consent for research participation. We discuss the case of subjects with Alzheimer's disease who may have impaired decision-making capacity and who could be involved in research protocols, taking into consideration aspects of the Italian normative framework, which requires a court-appointed legal representative for patients who are not able to give consent and does not recognise the legal value of advance directives. We show that this normative framework risks preventing individuals with Alzheimer's disease from taking part in research and that a new policy that favours research while promoting respect for patients' well-being and rights needs to be implemented. We believe that concerns about the difficulty of obtaining fully valid consent of patients with Alzheimer's disease should not prevent them from participating in clinical trials and benefiting from scientific progress. Therefore, we argue that the requirement for patients to have a legal representative may not be the best solution in all countries and clinical situations, and suggest promoting the role of patients' family members in the decision-making process. In addition, we outline the possible role of advance directives and ethics committees.

  9. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    Science.gov (United States)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  10. Study of Alkylthiolate Self-assembled Monolayers on Au(111) Using a Semilocal meta-GGA Density Functional

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Pan, Yun-xiang; Grönbeck, Henrik

    2012-01-01

    We present a density functional theory study of the structure and stability of self-assembled monolayers (SAMs) of alkylthiolate on Au(111) as a function of the alkyl chain length. The most favorable structure of the SAMs involves an RS–Au–SR complex (S being sulfur, R being an alkyl chain) forme....... In particular, the use of M06-L yields an increased stability of the SAMs with increasing alkyl chain length and an increased attractive interaction between RS–Au–SR complexes at shorter distances....... through sandwiching one Au adatom by two alkylthiolates (RSs). Comparing a generalized gradient (GGA-PBE) and a meta-GGA (MGGA-M06-L) exchange-correlation functional we find that only the meta-GGA functional predicts the experimentally observed attractive intermolecular interactions within the SAMs...

  11. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    International Nuclear Information System (INIS)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Tavagnacco, Claudio; Borsari, Marco

    2011-01-01

    Highlights: → Denaturation involves intermediate and partially unfolded forms. → An unfolded species displaying the haem with Fe coordinated by two His is observed. → Under unfolding conditions the nature of the SAM influences conformation of protein. → Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E o ' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E o ' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  12. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy); Tavagnacco, Claudio [Department of Chemistry, University of Trieste, via Giorgieri 1, 34127 Trieste (Italy); Borsari, Marco, E-mail: marco.borsari@unimore.it [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy)

    2011-08-01

    Highlights: > Denaturation involves intermediate and partially unfolded forms. > An unfolded species displaying the haem with Fe coordinated by two His is observed. > Under unfolding conditions the nature of the SAM influences conformation of protein. > Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E{sup o}' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E{sup o}' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  13. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  14. The fabrication of Ag nanoflake arrays via self-assembly on the surface of an anodic aluminum oxide template

    International Nuclear Information System (INIS)

    Li Xueming; Dong Kun; Tang Libin; Wu, Yongjun; Yang Peizhi; Zhang Pengxiang

    2010-01-01

    Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.

  15. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    Directory of Open Access Journals (Sweden)

    Wang Fang

    2011-01-01

    Full Text Available Abstract Self-assembled monolayer (SAM with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry.

  16. The fabrication of Ag nanoflake arrays via self-assembly on the surface of an anodic aluminum oxide template

    Science.gov (United States)

    Li, Xueming; Dong, Kun; Tang, Libin; Wu, Yongjun; Yang, Peizhi; Zhang, Pengxiang

    2010-02-01

    Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.

  17. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule.

    Science.gov (United States)

    Liu, Simin; Gibb, Bruce C

    2008-08-28

    High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nanoscale reaction chamber and how they can bring about the separation of hydrocarbon gases.

  18. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  19. Studies of G-quadruplexes formed within self-assembled DNA mini-circles.

    Science.gov (United States)

    Klejevskaja, Beata; Pyne, Alice L B; Reynolds, Matthew; Shivalingam, Arun; Thorogate, Richard; Hoogenboom, Bart W; Ying, Liming; Vilar, Ramon

    2016-10-13

    We have developed self-assembled DNA mini-circles that contain a G-quadruplex-forming sequence from the c-Myc oncogene promoter and demonstrate by FRET that the G-quadruplex unfolding kinetics are 10-fold slower than for the simpler 24-mer G-quadruplex that is commonly used for FRET experiments.

  20. Dynamic Self-Assembly of Homogenous Microcyclic Structures Controlled by a Silver-Coated Nanopore.

    Science.gov (United States)

    Gao, Rui; Lin, Yao; Ying, Yi-Lun; Liu, Xiao-Yuan; Shi, Xin; Hu, Yong-Xu; Long, Yi-Tao; Tian, He

    2017-07-01

    The self-assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high-efficiency, and reproducible self-assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self-assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self-assembly. To address these obstacles, here, a novel silver-coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore-induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.