WorldWideScience

Sample records for self-adaptive randomized subspace

  1. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  2. Forecasting Using Random Subspace Methods

    NARCIS (Netherlands)

    T. Boot (Tom); D. Nibbering (Didier)

    2016-01-01

    textabstractRandom subspace methods are a novel approach to obtain accurate forecasts in high-dimensional regression settings. We provide a theoretical justification of the use of random subspace methods and show their usefulness when forecasting monthly macroeconomic variables. We focus on two

  3. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain

    2017-03-06

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  4. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  5. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Diks, C.G.H.; Robinson, B.A.; Hyman, J.M.; Higdon, D.

    2009-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well-constructed MCMC schemes to the appropriate

  6. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, C.J.F.; Diks, C.G.H.; Robinson, B.A.; Hyman, J.M.; Higdon, D.

    2009-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate

  7. Local and global preserving semisupervised dimensionality reduction based on random subspace for cancer classification.

    Science.gov (United States)

    Cai, Xianfa; Wei, Jia; Wen, Guihua; Yu, Zhiwen

    2014-03-01

    Precise cancer classification is essential to the successful diagnosis and treatment of cancers. Although semisupervised dimensionality reduction approaches perform very well on clean datasets, the topology of the neighborhood constructed with most existing approaches is unstable in the presence of high-dimensional data with noise. In order to solve this problem, a novel local and global preserving semisupervised dimensionality reduction based on random subspace algorithm marked as RSLGSSDR, which utilizes random subspace for semisupervised dimensionality reduction, is proposed. The algorithm first designs multiple diverse graphs on different random subspace of datasets and then fuses these graphs into a mixture graph on which dimensionality reduction is performed. As themixture graph is constructed in lower dimensionality, it can ease the issues on graph construction on highdimensional samples such that it can hold complicated geometric distribution of datasets as the diversity of random subspaces. Experimental results on public gene expression datasets demonstrate that the proposed RSLGSSDR not only has superior recognition performance to competitive methods, but also is robust against a wide range of values of input parameters.

  8. Random subspaces for encryption based on a private shared Cartesian frame

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Hayden, Patrick; Spekkens, Robert W.

    2005-01-01

    A private shared Cartesian frame is a novel form of private shared correlation that allows for both private classical and quantum communication. Cryptography using a private shared Cartesian frame has the remarkable property that asymptotically, if perfect privacy is demanded, the private classical capacity is three times the private quantum capacity. We demonstrate that if the requirement for perfect privacy is relaxed, then it is possible to use the properties of random subspaces to nearly triple the private quantum capacity, almost closing the gap between the private classical and quantum capacities

  9. Invariant subspaces

    CERN Document Server

    Radjavi, Heydar

    2003-01-01

    This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,

  10. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees

    Science.gov (United States)

    Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.

  11. Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Debesh Jha

    2017-01-01

    Full Text Available Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT for feature extraction, probabilistic principal component analysis (PPCA for dimensionality reduction, and a random subspace ensemble (RSE classifier along with the K-nearest neighbors (KNN algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV, the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.

  12. Greedy subspace clustering.

    Science.gov (United States)

    2016-09-01

    We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets ...

  13. Self-adapted sliding scale spectroscopy ADC

    International Nuclear Information System (INIS)

    Xu Qichun; Wang Jingjin

    1992-01-01

    The traditional sliding scale technique causes a disabled range that is equal to the sliding length, thus reduces the analysis range of a MCA. A method for reduce ADC's DNL, which is called self-adapted sliding scale method, has been designed and tested. With this method, the disabled range caused by a traditional sliding scale method can be eliminated by a random trial scale and there is no need of an additional amplitude discriminator with swing threshold. A special trial-and-correct logic is presented. The tested DNL of the spectroscopy ADC described here is less than 0.5%

  14. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  15. Automatic Subspace Learning via Principal Coefficients Embedding.

    Science.gov (United States)

    Peng, Xi; Lu, Jiwen; Yi, Zhang; Yan, Rui

    2017-11-01

    In this paper, we address two challenging problems in unsupervised subspace learning: 1) how to automatically identify the feature dimension of the learned subspace (i.e., automatic subspace learning) and 2) how to learn the underlying subspace in the presence of Gaussian noise (i.e., robust subspace learning). We show that these two problems can be simultaneously solved by proposing a new method [(called principal coefficients embedding (PCE)]. For a given data set , PCE recovers a clean data set from and simultaneously learns a global reconstruction relation of . By preserving into an -dimensional space, the proposed method obtains a projection matrix that can capture the latent manifold structure of , where is automatically determined by the rank of with theoretical guarantees. PCE has three advantages: 1) it can automatically determine the feature dimension even though data are sampled from a union of multiple linear subspaces in presence of the Gaussian noise; 2) although the objective function of PCE only considers the Gaussian noise, experimental results show that it is robust to the non-Gaussian noise (e.g., random pixel corruption) and real disguises; and 3) our method has a closed-form solution and can be calculated very fast. Extensive experimental results show the superiority of PCE on a range of databases with respect to the classification accuracy, robustness, and efficiency.

  16. Ubiquitously supervised subspace learning.

    Science.gov (United States)

    Yang, Jianchao; Yan, Shuicheng; Huang, Thomas S

    2009-02-01

    In this paper, our contributions to the subspace learning problem are two-fold. We first justify that most popular subspace learning algorithms, unsupervised or supervised, can be unitedly explained as instances of a ubiquitously supervised prototype. They all essentially minimize the intraclass compactness and at the same time maximize the interclass separability, yet with specialized labeling approaches, such as ground truth, self-labeling, neighborhood propagation, and local subspace approximation. Then, enlightened by this ubiquitously supervised philosophy, we present two categories of novel algorithms for subspace learning, namely, misalignment-robust and semi-supervised subspace learning. The first category is tailored to computer vision applications for improving algorithmic robustness to image misalignments, including image translation, rotation and scaling. The second category naturally integrates the label information from both ground truth and other approaches for unsupervised algorithms. Extensive face recognition experiments on the CMU PIE and FRGC ver1.0 databases demonstrate that the misalignment-robust version algorithms consistently bring encouraging accuracy improvements over the counterparts without considering image misalignments, and also show the advantages of semi-supervised subspace learning over only supervised or unsupervised scheme.

  17. OpenSubspace

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering and projected clustering are recent research areas for clustering in high dimensional spaces. As the field is rather young, there is a lack of comparative studies on the advantages and disadvantages of the different algorithms. Part of the underlying problem is the lack...

  18. Semitransitive subspaces of operators

    Czech Academy of Sciences Publication Activity Database

    Bernik, J.; Drnovšek, R.; Hadwin, D.; Jafarian, A.; Bukovšek, D.K.; Košir, T.; Fijavž, M.K.; Laffey, T.; Livshits, L.; Mastnak, M.; Meshulam, R.; Müller, Vladimír; Nordgren, E.; Okniński, J.; Omladič, M.; Radjavi, H.; Sourour, A.; Timoney, R.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 225-238 E-ISSN 1081-3810 Institutional research plan: CEZ:AV0Z10190503 Keywords : semitransitive subspaces Subject RIV: BA - General Mathematics Impact factor: 0.322, year: 2006 http://www.math.technion.ac.il/iic/ ela

  19. Information Theoretic Subspace Clustering.

    Science.gov (United States)

    He, Ran; Wang, Liang; Sun, Zhenan; Zhang, Yingya; Li, Bo

    2016-12-01

    This paper addresses the problem of grouping the data points sampled from a union of multiple subspaces in the presence of outliers. Information theoretic objective functions are proposed to combine structured low-rank representations (LRRs) to capture the global structure of data and information theoretic measures to handle outliers. In theoretical part, we point out that group sparsity-induced measures ( l 2,1 -norm, l α -norm, and correntropy) can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates both convergence study and algorithmic development. In particular, a general formulation is accordingly proposed to unify HQ-based group sparsity methods into a common framework. In algorithmic part, we develop information theoretic subspace clustering methods via correntropy. With the help of Parzen window estimation, correntropy is used to handle either outliers under any distributions or sample-specific errors in data. Pairwise link constraints are further treated as a prior structure of LRRs. Based on the HQ framework, iterative algorithms are developed to solve the nonconvex information theoretic loss functions. Experimental results on three benchmark databases show that our methods can further improve the robustness of LRR subspace clustering and outperform other state-of-the-art subspace clustering methods.

  20. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  1. Self-Adaptive Systems for Machine Intelligence

    CERN Document Server

    He, Haibo

    2011-01-01

    This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide application

  2. Subspace K-means clustering.

    Science.gov (United States)

    Timmerman, Marieke E; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-12-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning approaches. To evaluate subspace K-means, we performed a comparative simulation study, in which we manipulated the overlap of subspaces, the between-cluster variance, and the error variance. The study shows that the subspace K-means algorithm is sensitive to local minima but that the problem can be reasonably dealt with by using partitions of various cluster procedures as a starting point for the algorithm. Subspace K-means performs very well in recovering the true clustering across all conditions considered and appears to be superior to its competitor methods: K-means, reduced K-means, factorial K-means, mixtures of factor analyzers (MFA), and MCLUST. The best competitor method, MFA, showed a performance similar to that of subspace K-means in easy conditions but deteriorated in more difficult ones. Using data from a study on parental behavior, we show that subspace K-means analysis provides a rich insight into the cluster characteristics, in terms of both the relative positions of the clusters (via the centroids) and the shape of the clusters (via the within-cluster residuals).

  3. Subspace dynamic mode decomposition for stochastic Koopman analysis

    Science.gov (United States)

    Takeishi, Naoya; Kawahara, Yoshinobu; Yairi, Takehisa

    2017-09-01

    The analysis of nonlinear dynamical systems based on the Koopman operator is attracting attention in various applications. Dynamic mode decomposition (DMD) is a data-driven algorithm for Koopman spectral analysis, and several variants with a wide range of applications have been proposed. However, popular implementations of DMD suffer from observation noise on random dynamical systems and generate inaccurate estimation of the spectra of the stochastic Koopman operator. In this paper, we propose subspace DMD as an algorithm for the Koopman analysis of random dynamical systems with observation noise. Subspace DMD first computes the orthogonal projection of future snapshots to the space of past snapshots and then estimates the spectra of a linear model, and its output converges to the spectra of the stochastic Koopman operator under standard assumptions. We investigate the empirical performance of subspace DMD with several dynamical systems and show its utility for the Koopman analysis of random dynamical systems.

  4. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    method that steers mining to few selected subspace clusters. Our novel steering technique reduces subspace processing by identifying and clustering promising subspaces and their combinations directly. Thereby, it narrows down the search space while maintaining accuracy. Thorough experiments on real...... and synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  5. Self-adapted thermocouple-diagnostic complex

    International Nuclear Information System (INIS)

    Alekseev, S.V.; Grankovskij, K.Eh.; Olejnikov, P.P.; Prijmak, S.V.; Shikalov, V.F.

    2003-01-01

    A self-adapted thermocouple-diagnostic complex (STDC) for obtaining the reliable data on the coolant temperature in the reactors of NPP is described. The STDC in based on the thermal pulse monitoring of a thermocouple in the measuring channel of a reactor. Measurement method and STDC composition are substantiated. It is shown that introduction of the developed STDC ensures realization of precise and reliable temperature monitoring in the reactors of all types [ru

  6. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  7. Parallel Monitors for Self-adaptive Sessions

    Directory of Open Access Journals (Sweden)

    Mario Coppo

    2016-06-01

    Full Text Available The paper presents a data-driven model of self-adaptivity for multiparty sessions. System choreography is prescribed by a global type. Participants are incarnated by processes associated with monitors, which control their behaviour. Each participant can access and modify a set of global data, which are able to trigger adaptations in the presence of critical changes of values. The use of the parallel composition for building global types, monitors and processes enables a significant degree of flexibility: an adaptation step can dynamically reconfigure a set of participants only, without altering the remaining participants, even if the two groups communicate.

  8. Geometry aware Stationary Subspace Analysis

    Science.gov (United States)

    2016-11-22

    BCI systems , is sCSP. Its goal is to project the data onto a subspace in which the various data classes are more separable. The sCSP method directs...divergences. The Journal of Machine Learning Research, 10:341–376, 2009. Matt J. Kusner, Nicholas I. Kolkin, Stephen Tyree , and Kilian Q. Weinberger

  9. Subspace K-means clustering

    NARCIS (Netherlands)

    Timmerman, Marieke E.; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-01-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the

  10. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail

    2016-09-13

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  11. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  12. Self-adaptive iris image acquisition system

    Science.gov (United States)

    Dong, Wenbo; Sun, Zhenan; Tan, Tieniu; Qiu, Xianchao

    2008-03-01

    Iris image acquisition is the fundamental step of the iris recognition, but capturing high-resolution iris images in real-time is very difficult. The most common systems have small capture volume and demand users to fully cooperate with machines, which has become the bottleneck of iris recognition's application. In this paper, we aim at building an active iris image acquiring system which is self-adaptive to users. Two low resolution cameras are co-located in a pan-tilt-unit (PTU), for face and iris image acquisition respectively. Once the face camera detects face region in real-time video, the system controls the PTU to move towards the eye region and automatically zooms, until the iris camera captures an clear iris image for recognition. Compared with other similar works, our contribution is that we use low-resolution cameras, which can transmit image data much faster and are much cheaper than the high-resolution cameras. In the system, we use Haar-like cascaded feature to detect faces and eyes, linear transformation to predict the iris camera's position, and simple heuristic PTU control method to track eyes. A prototype device has been established, and experiments show that our system can automatically capture high-quality iris image in the range of 0.6m×0.4m×0.4m in average 3 to 5 seconds.

  13. Subspace Based Blind Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki

    2012-01-01

    The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...

  14. Subspace learning from image gradient orientations

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails very often to estimate reliably the

  15. Hyperreflexivity of finite-dimensional subspaces

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír; Ptak, M.

    2005-01-01

    Roč. 218, č. 3 (2005), s. 395-408 ISSN 0022-1236 R&D Projects: GA ČR(CZ) GA201/03/0041 Institutional research plan: CEZ:AV0Z10190503 Keywords : reflexive subspaces * hyperreflexive subspace * hyperreflexive constant Subject RIV: BA - General Mathematics Impact factor: 0.806, year: 2005

  16. Subspace exclusion zones for damage localization

    DEFF Research Database (Denmark)

    Bernal, Dionisio; Ulriksen, Martin Dalgaard

    2018-01-01

    , this is exploited in the context of structural damage localization to cast the Subspace Exclusion Zone (SEZ) scheme, which locates damage by reconstructing the captured field quantity shifts from analytical subspaces indexed by postulated boundaries, the so-called exclusion zones (EZs), in a model of the structure...

  17. Self Adaptive Hypermedia Navigation Based On Learner Model Characters

    NARCIS (Netherlands)

    Vassileva, Dessislava; Bontchev, Boyan

    2006-01-01

    Dessislava Vassileva, Boyan Bontchev "Self Adaptive Hypermedia Navigation Based On Learner Model Characters", IADAT-e2006, 3rd International Conference on Education, Barcelona (Spain), July 12-14, 2006, ISBN: 84-933971-9-9

  18. DEVELOPMENT OF SELF ADAPTATION GUIDANCE FOR SMK PRAKERIN STUDENT

    Directory of Open Access Journals (Sweden)

    Leny Latifah

    2016-12-01

    Full Text Available Self adaptation is individual skill to react effectively in social connection environment individual in a place. The training guidance self adaptation in prakerin is developed for make counselor easier in the school for give service optimally and prepares students well before prakerin. Research subject is 11 grade of SMK PGRI Pakisaji Malang. The purpose of the research is produce training project self adaptation SMK student in prakerin place. Test effectiveness is done with one group pre-test post test planning. The instrument which is used is self project scale in prakerin with grain validity ≥ 0,3 and reliability alpha Cronbach 0,882. The result of the research show that (1 the project that is developed has complete acceptability and, (2 it has improve of effectively self adaptation SMK student in prakerin place.

  19. Code subspaces for LLM geometries

    Science.gov (United States)

    Berenstein, David; Miller, Alexandra

    2018-03-01

    We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.

  20. Robust Subspace Clustering With Complex Noise.

    Science.gov (United States)

    He, Ran; Zhang, Yingya; Sun, Zhenan; Yin, Qiyue

    2015-11-01

    Subspace clustering has important and wide applications in computer vision and pattern recognition. It is a challenging task to learn low-dimensional subspace structures due to complex noise existing in high-dimensional data. Complex noise has much more complex statistical structures, and is neither Gaussian nor Laplacian noise. Recent subspace clustering methods usually assume a sparse representation of the errors incurred by noise and correct these errors iteratively. However, large corruptions incurred by complex noise cannot be well addressed by these methods. A novel optimization model for robust subspace clustering is proposed in this paper. Its objective function mainly includes two parts. The first part aims to achieve a sparse representation of each high-dimensional data point with other data points. The second part aims to maximize the correntropy between a given data point and its low-dimensional representation with other points. Correntropy is a robust measure so that the influence of large corruptions on subspace clustering can be greatly suppressed. An extension of pairwise link constraints is also proposed as prior information to deal with complex noise. Half-quadratic minimization is provided as an efficient solution to the proposed robust subspace clustering formulations. Experimental results on three commonly used data sets show that our method outperforms state-of-the-art subspace clustering methods.

  1. Stochastic Subspace Method for Experimental Modal Analysis

    Directory of Open Access Journals (Sweden)

    Liu Dazhi

    2016-01-01

    Full Text Available The formula of stochastic subspace identification method is deduced in details and the program is written out. The two methods are verified by a vibration test on a 5-floor rigid frame model. In this test the gauss white noise generated from a shaker table to simulate the ambient vibration on the model, and the response signals are measured. Next, the response data of experiment are processed by auto-cross spectrum density method and stochastic subspace identification method respectively, the two methods are verified by comparing with the theory result. and bearing out the superiority of stochastic subspace identification method compared to auto-cross spectrum density method.

  2. Sinusoidal Order Estimation Using Angles between Subspaces

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  3. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF......). The MAF projection exploits the fact that interesting phenomena in images typically exhibit spatial autocorrelation. The analysis is based on nearinfrared hyperspectral images of maize grains demonstrating the superiority of the kernelbased MAF method....

  4. Dimensionality Reduction with Subspace Structure Preservation

    OpenAIRE

    Arpit, Devansh; Nwogu, Ifeoma; Govindaraju, Venu

    2014-01-01

    Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that $2K$ projection vectors are sufficient for the independence preservation of any $K$ class data sampled from a union of independent subspaces. It is this non-trivial observation that we use for desi...

  5. Study on Self-adapting Processing Method in Radiant Image

    International Nuclear Information System (INIS)

    Shen Kuan; Cai Yufang; Duan Liming

    2009-01-01

    This paper describes principle and character of digital radiography. After analyzing the drawbacks of current processing methods and specialty of collected signals, a new self-adapting method based on the wavelet transform is applied to process radiation image. The method maps the subsection of signal to 0-255 to form several gray images and then fuses these images to form a new enhanced image, then uses nonlinear color assignment scheme increasing the image resolution. The experiment results show that the self-adapting processing method is better than traditional ones. (authors)

  6. Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.

    Science.gov (United States)

    Peng, Xi; Yu, Zhiding; Yi, Zhang; Tang, Huajin

    2017-04-01

    Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l 1 -, l 2 -, l ∞ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.

  7. Interference subspace rejection in wideband CDMA:

    DEFF Research Database (Denmark)

    Hansen, Henrik; Affes, Sofiene; Mermelstein, Paul

    2001-01-01

    , ISR-D (diversities), which finds and suppresses the subspace of the identified paths of all known interferers. A frame extension technique is proposed which can be applied to all available ISR modes to increase the dimensionality of the observation space and thereby avoid noise amplification...... as a result of subspace suppression, as well as allow asynchronous transmission. Performance differences arise between the modes due to different sensitivities to channel identification and data detection errors. For homogeneous high data-rate situations ISR-DX manifests the best performance. However, due...... to its reduced complexity, ISR-TRX appears to offer the best complexity-performance tradeoffs....

  8. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  9. Proximinal subspaces of finite codimension in direct sum spaces

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    d(x, A)}. Proximinal subspaces of finite codimension have been studied by various authors (see. [1–4, 7–10]). In this paper we obtain a necessary and sufficient condition for proximinality of subspaces of finite codimension inc0-direct sum of Banach spaces in terms of the proxim- inality of the corresponding subspaces of ...

  10. LBAS: Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Abe, Kyniyoshi

    The regularizing properties of Lanczos bidiagonalization are powerful when the underlying Krylov subspace captures the dominating components of the solution. In some applications the regularized solution can be further improved by augmenting the Krylov subspace with a low-dimensional subspace tha...

  11. Joint local quasinilpotence and common invariant subspaces

    Indian Academy of Sciences (India)

    MS received 27 November 2005; revised 3 February 2006. Abstract. In this article we obtain some positive results about the existence of a common nontrivial invariant subspace for N-tuples of not necessarily commuting operators on. Banach spaces with a Schauder basis. The concept of joint quasinilpotence plays a basic.

  12. Semi-supervised bilinear subspace learning.

    Science.gov (United States)

    Xu, Dong; Yan, Shuicheng

    2009-07-01

    Recent research has demonstrated the success of tensor based subspace learning in both unsupervised and supervised configurations (e.g., 2-D PCA, 2-D LDA, and DATER). In this correspondence, we present a new semi-supervised subspace learning algorithm by integrating the tensor representation and the complementary information conveyed by unlabeled data. Conventional semi-supervised algorithms mostly impose a regularization term based on the data representation in the original feature space. Instead, we utilize graph Laplacian regularization based on the low-dimensional feature space. An iterative algorithm, referred to as adaptive regularization based semi-supervised discriminant analysis with tensor representation (ARSDA/T), is also developed to compute the solution. In addition to handling tensor data, a vector-based variant (ARSDA/V) is also presented, in which the tensor data are converted into vectors before subspace learning. Comprehensive experiments on the CMU PIE and YALE-B databases demonstrate that ARSDA/T brings significant improvement in face recognition accuracy over both conventional supervised and semi-supervised subspace learning algorithms.

  13. Counting Subspaces of a Finite Vector Space

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 11. Counting Subspaces of a Finite Vector Space – 1. Amritanshu Prasad. General Article Volume 15 Issue 11 November 2010 pp 977-987. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Differential Evolution Algorithm with Self-Adaptive Population Resizing Mechanism

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2013-01-01

    Full Text Available A differential evolution (DE algorithm with self-adaptive population resizing mechanism, SapsDE, is proposed to enhance the performance of DE by dynamically choosing one of two mutation strategies and tuning control parameters in a self-adaptive manner. More specifically, more appropriate mutation strategies along with its parameter settings can be determined adaptively according to the previous status at different stages of the evolution process. To verify the performance of SapsDE, 17 benchmark functions with a wide range of dimensions, and diverse complexities are used. Nonparametric statistical procedures were performed for multiple comparisons between the proposed algorithm and five well-known DE variants from the literature. Simulation results show that SapsDE is effective and efficient. It also exhibits much more superiorresultsthan the other five algorithms employed in the comparison in most of the cases.

  15. A Novel Self-Adaptive Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Kaiping Luo

    2013-01-01

    Full Text Available The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS, improved harmony search (IHS, and other self-adaptive variants for large-scale optimization problems and constrained problems.

  16. Innovation Pursuit: A New Approach to Subspace Clustering

    Science.gov (United States)

    Rahmani, Mostafa; Atia, George K.

    2017-12-01

    In subspace clustering, a group of data points belonging to a union of subspaces are assigned membership to their respective subspaces. This paper presents a new approach dubbed Innovation Pursuit (iPursuit) to the problem of subspace clustering using a new geometrical idea whereby subspaces are identified based on their relative novelties. We present two frameworks in which the idea of innovation pursuit is used to distinguish the subspaces. Underlying the first framework is an iterative method that finds the subspaces consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data potentially orthogonal to all subspaces except for the one to be identified in one step of the algorithm. A detailed mathematical analysis is provided establishing sufficient conditions for iPursuit to correctly cluster the data. The proposed approach can provably yield exact clustering even when the subspaces have significant intersections. It is shown that the complexity of the iterative approach scales only linearly in the number of data points and subspaces, and quadratically in the dimension of the subspaces. The second framework integrates iPursuit with spectral clustering to yield a new variant of spectral-clustering-based algorithms. The numerical simulations with both real and synthetic data demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms, more so for subspaces with significant intersections, and that it significantly improves the state-of-the-art result for subspace-segmentation-based face clustering.

  17. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

    Directory of Open Access Journals (Sweden)

    Jiao-Hong Yi

    2016-01-01

    Full Text Available Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2 are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.

  18. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters.

    Science.gov (United States)

    Ren, Min; Liu, Peiyu; Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c -means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule [Formula: see text] and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result.

  19. A Self-adaptive Bit-level Color Image Encryption Algorithm Based on Generalized Arnold Map

    Directory of Open Access Journals (Sweden)

    Ye Rui-Song

    2017-01-01

    Full Text Available A self-adaptive bit-level color image encryption algorithm based on generalized Arnold map is proposed. The red, green, blue components of the plain-image with height H and width W are decomposed into 8-bit planes and one three-dimensional bit matrix with size ze H×W×24 is obtained. The generalized Arnold map is used to generate pseudo-random sequences to scramble the resulted three-dimensional bit matrix by sort-based approach. The scrambled 3D bit matrix is then rearranged to be one scrambled color image. Chaotic sequences produced by another generalized Arnold map are used to diffuse the resulted red, green, blue components in a cross way to get more encryption effects. Self-adaptive strategy is adopted in both the scrambling stage and diffusion stage, meaning that the key streams are all related to the content of the plain-image and therefore the encryption algorithm show strong robustness against known/chosen plaintext attacks. Some other performances are carried out, including key space, key sensitivity, histogram, correlation coefficients between adjacent pixels, information entropy and difference attack analysis, etc. All the experimental results show that the proposed image encryption algorithm is secure and effective for practical application.

  20. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  1. On Self-Adaptive Method for General Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Abdellah Bnouhachem

    2008-01-01

    Full Text Available We suggest and analyze a new self-adaptive method for solving general mixed variational inequalities, which can be viewed as an improvement of the method of (Noor 2003. Global convergence of the new method is proved under the same assumptions as Noor's method. Some preliminary computational results are given to illustrate the efficiency of the proposed method. Since the general mixed variational inequalities include general variational inequalities, quasivariational inequalities, and nonlinear (implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems.

  2. Flutter signal extracting technique based on FOG and self-adaptive sparse representation algorithm

    Science.gov (United States)

    Lei, Jian; Meng, Xiangtao; Xiang, Zheng

    2016-10-01

    Due to various moving parts inside, when a spacecraft runs in orbits, its structure could get a minor angular vibration, which results in vague image formation of space camera. Thus, image compensation technique is required to eliminate or alleviate the effect of movement on image formation and it is necessary to realize precise measuring of flutter angle. Due to the advantages such as high sensitivity, broad bandwidth, simple structure and no inner mechanical moving parts, FOG (fiber optical gyro) is adopted in this study to measure minor angular vibration. Then, movement leading to image degeneration is achieved by calculation. The idea of the movement information extracting algorithm based on self-adaptive sparse representation is to use arctangent function approximating L0 norm to construct unconstrained noisy-signal-aimed sparse reconstruction model and then solve the model by a method based on steepest descent algorithm and BFGS algorithm to estimate sparse signal. Then taking the advantage of the principle of random noises not able to be represented by linear combination of elements, useful signal and random noised are separated effectively. Because the main interference of minor angular vibration to image formation of space camera is random noises, sparse representation algorithm could extract useful information to a large extent and acts as a fitting pre-process method of image restoration. The self-adaptive sparse representation algorithm presented in this paper is used to process the measured minor-angle-vibration signal of FOG used by some certain spacecraft. By component analysis of the processing results, we can find out that the algorithm could extract micro angular vibration signal of FOG precisely and effectively, and can achieve the precision degree of 0.1".

  3. Bi Sparsity Pursuit: A Paradigm for Robust Subspace Recovery

    Science.gov (United States)

    2016-09-27

    16. SECURITY CLASSIFICATION OF: The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data ...vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world...measurement of distance among data samples, and make data deviate from the original subspaces. Recent studies on subspace clustering [13] [7] [19] show a

  4. A self-adaptive anti-vibration pipeline-filtering algorithm

    Science.gov (United States)

    Wu, Houde; Wang, Bin; Zhao, Ming; Xu, Wenhai

    2015-03-01

    The mobile pipeline-filtering algorithm is a real-time algorithm that performs well in detecting small dim targets, but it is particularly sensitive to interframe vibration of sequence images. When searching for small dim targets at sea based on an infrared imaging system, irregular and random vibration of the airborne imaging platform causes huge interference problems for the mobile pipeline-filtering. This paper puts forward a pipeline-filtering algorithm that has a good performance on self-adaptive anti-vibration. In the block matching method using the normalized cross-correlations coefficient (NCC), the interframe vibration of sequence images is acquired in real time and used to correct coordinates of the single-frame detection results, and then the corrected detection results are used to complete the mobile pipelinefiltering. Experimental results show that the algorithm can overcome the problem of interframe vibration of sequence images, thus realizing accurate detection of small dim maritime targets.

  5. The variational subspace valence bond method

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Graham D. [Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2015-04-07

    The variational subspace valence bond (VSVB) method based on overlapping orbitals is introduced. VSVB provides variational support against collapse for the optimization of overlapping linear combinations of atomic orbitals (OLCAOs) using modified orbital expansions, without recourse to orthogonalization. OLCAO have the advantage of being naturally localized, chemically intuitive (to individually model bonds and lone pairs, for example), and transferrable between different molecular systems. Such features are exploited to avoid key computational bottlenecks. Since the OLCAO can be doubly occupied, VSVB can access very large problems, and calculations on systems with several hundred atoms are presented.

  6. Self-Adaptive Stepsize Search Applied to Optimal Structural Design

    Science.gov (United States)

    Nolle, L.; Bland, J. A.

    Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.

  7. Central subspace dimensionality reduction using covariance operators.

    Science.gov (United States)

    Kim, Minyoung; Pavlovic, Vladimir

    2011-04-01

    We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.

  8. Perturbation analysis of Lagrangian invariant subspaces of symplectic matrices

    NARCIS (Netherlands)

    Ran, A.C.M.; Mehl, Ch.; Mehrmann, V.; Rodman, L.

    2009-01-01

    Lagrangian invariant subspaces for symplectic matrices play an important role in the numerical solution of discrete time, robust and optimal control problems. The sensitivity (perturbation) analysis of these subspaces, however, is a difficult problem, in particular, when the eigenvalues are on or

  9. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  10. Subspace methods for pattern recognition in intelligent environment

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.

  11. Adjoint Subspaces in Banach Spaces, with Applications to Ordinary Differential Subspaces

    NARCIS (Netherlands)

    Coddington, Earl A.; Dijksma, Aalt

    1978-01-01

    Given two subspaces A0 ⊂ A1 ⊂ W = X ⊕ Y, where X, Y are Banach spaces, we show how to characterize, in terms of generalized boundary conditions, those adjoint pairs A, A* satisfying A0 ⊂ A ⊂ A1, A1* ⊂ A* ⊂ A0* ⊂ W+ = Y* ⊕ X*, where X*, Y* are the conjugate spaces of X, Y, respectively. The

  12. Partial interference subspace rejection in CDMA systems

    DEFF Research Database (Denmark)

    Hansen, Henrik; Affes, Sofiene; Mewelstein, Paul

    2001-01-01

    Previously presented interference subspace rejection (ISR) proposed a family of new efficient multiuser detectors for CDMA. We reconsider in this paper the modes of ISR using decision feedback (DF). DF modes share similarities with parallel interference cancellation (PIC) but attempt to cancel...... interference by nulling rather than subtraction. However like the PIC they are prone to wrong tentative decisions. We propose a modification to DF modes that performs partial ISR instead of complete interference cancellation. When tentative decisions are correct, interference is therefore not perfectly...... rejected anymore. This drawback is compensated by improved robustness to wrong tentative decisions. We show that in hard handoff systems, partial ISR can only provide negligible performance improvements in high loaded systems outside the region of interest due to out-sector interference. In situations...

  13. Towards Self-adaptation for Dependable Service-Oriented Systems

    Science.gov (United States)

    Cardellini, Valeria; Casalicchio, Emiliano; Grassi, Vincenzo; Lo Presti, Francesco; Mirandola, Raffaela

    Increasingly complex information systems operating in dynamic environments ask for management policies able to deal intelligently and autonomously with problems and tasks. An attempt to deal with these aspects can be found in the Service-Oriented Architecture (SOA) paradigm that foresees the creation of business applications from independently developed services, where services and applications build up complex dependencies. Therefore the dependability of SOA systems strongly depends on their ability to self-manage and adapt themselves to cope with changes in the operating conditions and to meet the required dependability with a minimum of resources. In this paper we propose a model-based approach to the realization of self-adaptable SOA systems, aimed at the fulfillment of dependability requirements. Specifically, we provide a methodology driving the system adaptation and we discuss the architectural issues related to its implementation. To bring this approach to fruition, we developed a prototype tool and we show the results that can be achieved with a simple example.

  14. An alternative subspace approach to EEG dipole source localization

    Science.gov (United States)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  15. An alternative subspace approach to EEG dipole source localization

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaoliang [KC Science and Technologies Inc., Naperville, IL 60565 (United States); Xu, Bobby [Illinois Mathematics and Science Academy, Aurora, IL 60506 (United States); He Bin [Department of Bioengineering, University of Illinois, Chicago, IL 60607 (United States)

    2004-01-21

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  16. An alternative subspace approach to EEG dipole source localization

    International Nuclear Information System (INIS)

    Xu Xiaoliang; Xu, Bobby; He Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist

  17. A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohammad

    2014-05-01

    Full Text Available In this paper‎, ‎we represent an inexact inverse‎ ‎subspace iteration method for computing a few eigenpairs of the‎ ‎generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang‎, ‎Inexact inverse subspace iteration for generalized eigenvalue‎ ‎problems‎, ‎Linear Algebra and its Application‎, ‎434 (2011 1697-1715‎‎]‎. ‎In particular‎, ‎the linear convergence property of the inverse‎ ‎subspace iteration is preserved‎.

  18. A hydraulic hybrid propulsion method for automobiles with self-adaptive system

    International Nuclear Information System (INIS)

    Wu, Wei; Hu, Jibin; Yuan, Shihua; Di, Chongfeng

    2016-01-01

    A hydraulic hybrid vehicle with the self-adaptive system is proposed. The mode-switching between the driving mode and the hydraulic regenerative braking mode is realised by the pressure cross-feedback control. Extensive simulated and tested results are presented. The control parameters are reduced and the energy efficiency can be increased by the self-adaptive system. The mode-switching response is fast. The response time can be adjusted by changing the controlling spool diameter of the hydraulic operated check valve in the self-adaptive system. The closing of the valve becomes faster with a smaller controlling spool diameter. The hydraulic regenerative braking mode can be achieved by changing the hydraulic transformer controlled angle. Compared with the convention electric-hydraulic system, the self-adaptive system for the hydraulic hybrid vehicle mode-switching has a higher reliability and a lower cost. The efficiency of the hydraulic regenerative braking is also increased. - Highlights: • A new hybrid system with a self-adaptive system for automobiles is presented. • The mode-switching is realised by the pressure cross-feedback control. • The energy efficiency can be increased with the self-adaptive system. • The control parameters are reduced with the self-adaptive system.

  19. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail

    2016-05-27

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  20. Experimental Comparison of Signal Subspace Based Noise Reduction Methods

    DEFF Research Database (Denmark)

    Hansen, Peter Søren Kirk; Hansen, Per Christian; Hansen, Steffen Duus

    1999-01-01

    The signal subspace approach for non-parametric speech enhancement is considered. Several algorithms have been proposed in the literature but only partly analyzed. Here, the different algorithms are compared, and the emphasis is put onto the limiting factors and practical behavior of the estimato....... Experimental results show that the signal subspace approach may lead to a significant enhancement of the signal to noise ratio of the output signal....

  1. Lie n-derivations on 7 -subspace lattice algebras

    Indian Academy of Sciences (India)

    tice algebra, or briefly, JSL algebra. Note that a JSL algebra may not be prime. It also should be mentioned that both atomic Boolean subspace lattices and pentagon subspace lattices are 7 .... there exists some P ∈ JL(K) such that A = P AP and B = PBP. So JL(K) is a local matrix algebra. Note that K ∧ K− = {0} and K ∨ K.

  2. A Spectrum Sensing Scheme Based on Subspace Filtering

    Science.gov (United States)

    Mu, Junsheng; Yang, Wei; Jing, Xiaojun; Huang, Hai

    2017-10-01

    Spectrum sensing (SS) has attracted much concern of researchers due to its significant contribution on the spectral efficiency. Energy Detection (ED) has been a critical method for Spectrum Sensing in Cognitive Radio Networks (CRNS) due to its low complexity and simple implement. However, noise uncertainty in ED greatly degrades the detection performance, especially under a low Signal-to-Noise Ratio (SNR). To remove noise uncertainty as much as possible, a scheme based on subspace decomposition is proposed for SS, where the received signal is decomposed into two parts: noise subspace and signal-plus-noise subspace. Then the closed-form solution of the detection and false alarm probabilities is given on the basis of the signal-plus-noise subspace in Rayleigh fading channel. The energy of the remainders after removal of noise subspace and noise contribution in signal-plus-noise subspace is used to decide whether the primary user (PU) exists by a comparison with a redesigned threshold. Eventually, some simulations based on MATLAB platform is made to validate the proposed method.

  3. EVD Dualdating Based Online Subspace Learning

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-01-01

    Full Text Available Conventional incremental PCA methods usually only discuss the situation of adding samples. In this paper, we consider two different cases: deleting samples and simultaneously adding and deleting samples. To avoid the NP-hard problem of downdating SVD without right singular vectors and specific position information, we choose to use EVD instead of SVD, which is used by most IPCA methods. First, we propose an EVD updating and downdating algorithm, called EVD dualdating, which permits simultaneous arbitrary adding and deleting operation, via transforming the EVD of the covariance matrix into a SVD updating problem plus an EVD of a small autocorrelation matrix. A comprehensive analysis is delivered to express the essence, expansibility, and computation complexity of EVD dualdating. A mathematical theorem proves that if the whole data matrix satisfies the low-rank-plus-shift structure, EVD dualdating is an optimal rank-k estimator under the sequential environment. A selection method based on eigenvalues is presented to determine the optimal rank k of the subspace. Then, we propose three incremental/decremental PCA methods: EVDD-IPCA, EVDD-DPCA, and EVDD-IDPCA, which are adaptive to the varying mean. Finally, plenty of comparative experiments demonstrate that EVDD-based methods outperform conventional incremental/decremental PCA methods in both efficiency and accuracy.

  4. Beyond Reactive Planning: Self Adaptive Software and Self Modeling Software in Predictive Deliberation Management

    National Research Council Canada - National Science Library

    Lenahan, Jack; Nash, Michael P; Charles, Phil

    2008-01-01

    .... We present the following hypothesis: predictive deliberation management using self-adapting and self-modeling software will be required to provide mission planning adjustments after the start of a mission...

  5. QoS-aware self-adaptation of communication protocols in a pervasive service middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Hansen, Klaus Marius; Fernandes, João

    2010-01-01

    to achieve self-adaption of web service transport protocols (TCP, UDP and Bluetooth), taking into consideration QoS requirements. Our tests show that protocol switching involves little performance overhead and runs efficiently. Our evaluations also show that the proposed approach for achieving self-adaptation......Pervasive computing is characterized by heterogeneous devices that usually have scarce resources requiring optimized usage. These devices may use different communication protocols which can be switched at runtime. As different communication protocols have different quality of service (Qo......S) properties, this motivates optimized self-adaption of protocols for devices, e.g., considering power consumption and other QoS requirements, e.g. round trip time (RTT) for service invocations, throughput, and reliability. In this paper, we present an extensible approach for self-adaptation of communication...

  6. Variation tolerant self-adaptive clock generation architecture based on a ring oscillator

    OpenAIRE

    Pérez Puigdemont, Jordi; Calomarde Palomino, Antonio; Moll Echeto, Francisco de Borja

    2012-01-01

    In this work we propose a self-adaptive clock based on a ring oscillator as the solution for the increasing uncertainty in the critical path delay. This increase in uncertainty forces to add more safety margins to the clock period which produces a circuit performance downgrade. We evaluate three self-adaptive clock systems: free running ring oscillator, infinite impulse response filter controlled RO and TEAtime controlled ring oscillator. The safety margin reduction of th...

  7. Algebraic Method in the Analysis of Decoherence-Free Subspaces in Open Quantum Systems

    Science.gov (United States)

    Kamizawa, Takeo

    2018-01-01

    In open quantum systems, a subspace which is not affected by the environmental noise is called a decoherence-free subspace. Such a subspace plays an important role in applications such as quantum information transmissions. In the literature, several "definitions" of decoherence-free subspaces were proposed, but they are model-dependent and slightly different. In this paper, we will study a general framework of decoherence-free subspaces and provide a criterion for the existence of a decoherence-free subspace in open quantum systems.

  8. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.

  9. Reduced-Rank Adaptive Filtering Using Krylov Subspace

    Directory of Open Access Journals (Sweden)

    Sergueï Burykh

    2003-01-01

    Full Text Available A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.

  10. A subspace preconditioning algorithm for eigenvector/eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Bramble, J.H.; Knyazev, A.V.; Pasciak, J.E.

    1996-12-31

    We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigen-spaces of a symmetric positive definite matrix. In our applications, the dimension of a matrix is large and the cost of its inverting is prohibitive. In this paper, we shall develop an effective parallelizable technique for computing these eigenvalues and eigenvectors utilizing subspace iteration and preconditioning. Estimates will be provided which show that the preconditioned method converges linearly and uniformly in the matrix dimension when used with a uniform preconditioner under the assumption that the approximating subspace is close enough to the span of desired eigenvectors.

  11. Evaluating Clustering in Subspace Projections of High Dimensional Data

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Günnemann, Stephan; Assent, Ira

    2009-01-01

    Clustering high dimensional data is an emerging research field. Subspace clustering or projected clustering group similar objects in subspaces, i.e. projections, of the full space. In the past decade, several clustering paradigms have been developed in parallel, without thorough evaluation...... of the clustering result. Finally, in typical publications authors have limited their analysis to their favored paradigm only, while paying other paradigms little or no attention. In this paper, we take a systematic approach to evaluate the major paradigms in a common framework. We study representative clustering...

  12. Feature Selection for Natural Language Call Routing Based on Self-Adaptive Genetic Algorithm

    Science.gov (United States)

    Koromyslova, A.; Semenkina, M.; Sergienko, R.

    2017-02-01

    The text classification problem for natural language call routing was considered in the paper. Seven different term weighting methods were applied. As dimensionality reduction methods, the feature selection based on self-adaptive GA is considered. k-NN, linear SVM and ANN were used as classification algorithms. The tasks of the research are the following: perform research of text classification for natural language call routing with different term weighting methods and classification algorithms and investigate the feature selection method based on self-adaptive GA. The numerical results showed that the most effective term weighting is TRR. The most effective classification algorithm is ANN. Feature selection with self-adaptive GA provides improvement of classification effectiveness and significant dimensionality reduction with all term weighting methods and with all classification algorithms.

  13. Classification of Photogrammetric Point Clouds of Scaffolds for Construction Site Monitoring Using Subspace Clustering and PCA

    Science.gov (United States)

    Xu, Y.; Tuttas, S.; Heogner, L.; Stilla, U.

    2016-06-01

    This paper presents an approach for the classification of photogrammetric point clouds of scaffolding components in a construction site, aiming at making a preparation for the automatic monitoring of construction site by reconstructing an as-built Building Information Model (as-built BIM). The points belonging to tubes and toeboards of scaffolds will be distinguished via subspace clustering process and principal components analysis (PCA) algorithm. The overall workflow includes four essential processing steps. Initially, the spherical support region of each point is selected. In the second step, the normalized cut algorithm based on spectral clustering theory is introduced for the subspace clustering, so as to select suitable subspace clusters of points and avoid outliers. Then, in the third step, the feature of each point is calculated by measuring distances between points and the plane of local reference frame defined by PCA in cluster. Finally, the types of points are distinguished and labelled through a supervised classification method, with random forest algorithm used. The effectiveness and applicability of the proposed steps are investigated in both simulated test data and real scenario. The results obtained by the two experiments reveal that the proposed approaches are qualified to the classification of points belonging to linear shape objects having different shapes of sections. For the tests using synthetic point cloud, the classification accuracy can reach 80%, with the condition contaminated by noise and outliers. For the application in real scenario, our method can also achieve a classification accuracy of better than 63%, without using any information about the normal vector of local surface.

  14. Von Neumann algebras as complemented subspaces of B(H)

    DEFF Research Database (Denmark)

    Christensen, Erik; Wang, Liguang

    2014-01-01

    Let M be a von Neumann algebra of type II1 which is also a complemented subspace of B( H). We establish an algebraic criterion, which ensures that M is an injective von Neumann algebra. As a corollary we show that if M is a complemented factor of type II1 on a Hilbert space H, then M is injective...

  15. New Characterizations of Fusion Frames (Frames of Subspaces)

    Indian Academy of Sciences (India)

    In this article, we give new characterizations of fusion frames, on the properties of their synthesis operators, on the behavior of fusion frames under bounded operators with closed range, and on erasures of subspaces of fusion frames. Furthermore we show that every fusion frame is the image of an orthonormal fusion basis ...

  16. Lie n-derivations on 7 -subspace lattice algebras

    Indian Academy of Sciences (India)

    all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...

  17. Fast regularizing sequential subspace optimization in Banach spaces

    International Nuclear Information System (INIS)

    Schöpfer, F; Schuster, T

    2009-01-01

    We are concerned with fast computations of regularized solutions of linear operator equations in Banach spaces in case only noisy data are available. To this end we modify recently developed sequential subspace optimization methods in such a way that the therein employed Bregman projections onto hyperplanes are replaced by Bregman projections onto stripes whose width is in the order of the noise level

  18. Invariant Subspace Method and Fractional Modified Kuramoto-Sivashinsky Equation

    OpenAIRE

    Ouhadan, A.; Kinani, E. H. El

    2015-01-01

    In this paper, the invariant subspace method is applied to the time fractional modified Kuramoto-Sivashinsky partial differential equation. The obtained reduced system of nonlinear ordinary fractional equations is solved by the Laplace transform method and with using of some useful properties of Mittag-Leffler function. Then, some exact solutions of the time fractional nonlinear studied equation are found.

  19. Recursive 4SID algorithms using gradient type subspace tracking

    NARCIS (Netherlands)

    Oku, H.; Kimura, Hidenori

    2002-01-01

    Sometimes we obtain some prior information about a system to be identified, e.g., the order, model structure etc. In this paper, we consider the case where the order of a MIMO system to be identified is a priori known. Recursive subspace state-space system identification algorithms presented here

  20. Active Subspace Methods for Data-Intensive Inverse Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiqi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-27

    The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.

  1. New characterizations of fusion frames (frames of subspaces)

    Indian Academy of Sciences (India)

    Abstract. In this article, we give new characterizations of fusion frames, on the properties of their synthesis operators, on the behavior of fusion frames under bounded operators with closed range, and on erasures of subspaces of fusion frames. Furthermore we show that every fusion frame is the image of an orthonormal ...

  2. Counting Subspaces of a Finite Vector Space – 2

    Indian Academy of Sciences (India)

    Counting Subspaces of a Finite Vector Space – 2. Amritanshu Prasad. Keywords. Gaussian binomial coefficients, finite vector spaces. Amritanshu Prasad has been at the Institute of. Mathematical Sciences,. Chennai since 2003. His mathematical interests include representation theory, harmonic analysis, and combinatorics ...

  3. Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning

    DEFF Research Database (Denmark)

    Chakraborty, Rudrasis; Hauberg, Søren; Vemuri, Baba C.

    2017-01-01

    proposed online subspace algorithm method on one synthetic and two real data sets. Experimental results depicting stability of our proposed method are also presented. Furthermore, on two real outlier corrupted datasets, we present comparison experiments showing lower reconstruction error using our online...... RPCA algorithm. In terms of reconstruction error and time required, both our algorithms outperform the competition....

  4. Control of beam halo-chaos using neural network self-adaptation method

    International Nuclear Information System (INIS)

    Fang Jinqing; Huang Guoxian; Luo Xiaoshu

    2004-11-01

    Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)

  5. Online Categorical Subspace Learning for Sketching Big Data with Misses

    Science.gov (United States)

    Shen, Yanning; Mardani, Morteza; Giannakis, Georgios B.

    2017-08-01

    With the scale of data growing every day, reducing the dimensionality (a.k.a. sketching) of high-dimensional data has emerged as a task of paramount importance. Relevant issues to address in this context include the sheer volume of data that may consist of categorical samples, the typically streaming format of acquisition, and the possibly missing entries. To cope with these challenges, the present paper develops a novel categorical subspace learning approach to unravel the latent structure for three prominent categorical (bilinear) models, namely, Probit, Tobit, and Logit. The deterministic Probit and Tobit models treat data as quantized values of an analog-valued process lying in a low-dimensional subspace, while the probabilistic Logit model relies on low dimensionality of the data log-likelihood ratios. Leveraging the low intrinsic dimensionality of the sought models, a rank regularized maximum-likelihood estimator is devised, which is then solved recursively via alternating majorization-minimization to sketch high-dimensional categorical data `on the fly.' The resultant procedure alternates between sketching the new incomplete datum and refining the latent subspace, leading to lightweight first-order algorithms with highly parallelizable tasks per iteration. As an extra degree of freedom, the quantization thresholds are also learned jointly along with the subspace to enhance the predictive power of the sought models. Performance of the subspace iterates is analyzed for both infinite and finite data streams, where for the former asymptotic convergence to the stationary point set of the batch estimator is established, while for the latter sublinear regret bounds are derived for the empirical cost. Simulated tests with both synthetic and real-world datasets corroborate the merits of the novel schemes for real-time movie recommendation and chess-game classification.

  6. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    Science.gov (United States)

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  7. Comparing Computerized Adaptive and Self-Adapted Tests: The Influence of Examinee Achievement Locus of Control.

    Science.gov (United States)

    Wise, Steven L.; And Others

    This study investigated the relationship between examinee achievement-specific locus of control and the differences between self-adapted testing (SAT) and computerized adaptive testing (CAT) in terms of mean estimated proficiency and posttest state anxiety. Subjects were 379 college students. A disordinal interaction was found between test type…

  8. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    Science.gov (United States)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  9. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2017-01-01

    Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.

  10. Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

    Directory of Open Access Journals (Sweden)

    Alim Samat

    2016-03-01

    Full Text Available In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM. To show the superior performance of the proposed approach, conventional support vector machines (SVMs and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC, joint distribution adaptation (JDA, and joint transfer matching (JTM, are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA, randomized nonlinear principal component analysis (rPCA, factor analysis (FA and non-negative matrix factorization (NNMF are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images.

  11. Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering.

    Science.gov (United States)

    Xia, Guiyu; Sun, Huaijiang; Feng, Lei; Zhang, Guoqing; Liu, Yazhou

    Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for motion capture data do not effectively model some important characteristics of motion capture data, such as Riemannian manifold structure and containing non-Gaussian noise. In this paper, we convert the segmentation of motion capture data into a temporal subspace clustering problem. Under the framework of sparse subspace clustering, we propose to use the geodesic exponential kernel to model the Riemannian manifold structure, use correntropy to measure the reconstruction error, use the triangle constraint to guarantee temporal continuity in each cluster and use multi-view reconstruction to extract the relations between different joints. Therefore, exploiting some special characteristics of motion capture data, we propose a new segmentation method, which is robust to non-Gaussian noise, since correntropy is a localized similarity measure. We also develop an efficient optimization algorithm based on block coordinate descent method to solve the proposed model. Our optimization algorithm has a linear complexity while sparse subspace clustering is originally a quadratic problem. Extensive experiment results both on simulated noisy data set and real noisy data set demonstrate the advantage of the proposed method.Studies on human motion have attracted a lot of attentions. Human motion capture data, which much more precisely records human motion than videos do, has been widely used in many areas. Motion segmentation is an indispensable step for many related applications, but current segmentation methods for motion capture data do not effectively model some important characteristics of motion capture data, such as Riemannian manifold structure and containing non-Gaussian noise. In

  12. Integrated Phoneme Subspace Method for Speech Feature Extraction

    Directory of Open Access Journals (Sweden)

    Park Hyunsin

    2009-01-01

    Full Text Available Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA, independent component analysis (ICA, and linear discriminant analysis (LDA. Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is generated by projecting an observed vector onto an integrated phoneme subspace (IPS based on PCA or ICA. The performance of the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy than conventional methods in clean and reverberant environments.

  13. Generalized Broadband Beamforming Using a Modal Subspace Decomposition

    Directory of Open Access Journals (Sweden)

    Williams Michael IY

    2007-01-01

    Full Text Available We propose a new broadband beamformer design technique which produces an optimal receiver beam pattern for any set of field measurements in space and time. The modal subspace decomposition (MSD technique is based on projecting a desired pattern into the subspace of patterns achievable by a particular set of space-time sampling positions. This projection is the optimal achievable pattern in the sense that it minimizes the mean-squared error (MSE between the desired and actual patterns. The main advantage of the technique is versatility as it can be applied to both sparse and dense arrays, nonuniform and asynchronous time sampling, and dynamic arrays where sensors can move throughout space. It can also be applied to any beam pattern type, including frequency-invariant and spot pattern designs. A simple extension to the technique is presented for oversampled arrays, which allows high-resolution beamforming whilst carefully controlling input energy and error sensitivity.

  14. Face recognition based on LDA in manifold subspace

    Directory of Open Access Journals (Sweden)

    Hung Phuoc Truong

    2016-05-01

    Full Text Available Although LDA has many successes in dimensionality reduction and data separation, it also has disadvantages, especially the small sample size problem in training data because the "within-class scatter" matrix may not be accurately estimated. Moreover, this algorithm can only operate correctly with labeled data in supervised learning. In practice, data collection is very huge and labeling data requires high-cost, thus the combination of a part of labeled data and unlabeled data for this algorithm in Manifold subspace is a novelty research. This paper reports a study that propose a semi-supervised method called DSLM, which aims at overcoming all these limitations. The proposed method ensures that the discriminative information of labeled data and the intrinsic geometric structure of data are mapped to new optimal subspace. Results are obtained from the experiments and compared to several related methods showing the effectiveness of our proposed method.

  15. Different structures on subspaces of OsckM

    Directory of Open Access Journals (Sweden)

    Čomić Irena

    2013-01-01

    Full Text Available The geometry of OsckM spaces was introduced by R. Miron and Gh. Atanasiu in [6] and [7]. The theory of these spaces was developed by R. Miron and his cooperators from Romania, Japan and other countries in several books and many papers. Only some of them are mentioned in references. Here we recall the construction of adapted bases in T(OsckM and T*(OsckM, which are comprehensive with the J structure. The theory of two complementary family of subspaces is presented as it was done in [2] and [4]. The operators J,J, θ,θ, p, p* are introduced in the ambient space and subspaces. Some new relations between them are established. The action of these operators on Liouville vector fields are examined.

  16. An adaptation of Krylov subspace methods to path following

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  17. Index Formulae for Subspaces of Kreĭn Spaces

    NARCIS (Netherlands)

    Dijksma, Aad; Gheondea, Aurelian

    1996-01-01

    For a subspace S of a Kreĭn space K and an arbitrary fundamental decomposition K = K-[+]K+ of K, we prove the index formula κ-(S) + dim(S⊥ ∩ K+) = κ+(S⊥) + dim(S ∩ K-), where κ±(S) stands for the positive/negative signature of S. The difference dim(S ∩ K-) - dim(S⊥ ∩ K+), provided it is well

  18. Invariant subspaces in some function spaces on symmetric spaces. II

    International Nuclear Information System (INIS)

    Platonov, S S

    1998-01-01

    Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1

  19. On the maximal dimension of a completely entangled subspace for ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    A subspace S ⊂. H = HA1A2...Ak = H1 ⊗ H2 ⊗···⊗ Hk is said to be completely entangled if it has no non-zero product vector of the form u1 ⊗ u2 ⊗···⊗ uk with ui in Hi for each i. Using the methods of elementary linear algebra and the intersection theorem for projective varieties in basic algebraic geometry we prove that max.

  20. Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces

    DEFF Research Database (Denmark)

    Dang, Xuan-Hong; Bailey, James

    2014-01-01

    for alternative clustering generation. A distinctive feature of our algorithms is their principled formulation of an objective function, facilitating the discovery of a subspace satisfying natural quality and orthogonality criteria. The first algorithm is a regularization of the Principal Components analysis......Clustering analysis is important for exploring complex datasets. Alternative clustering analysis is an emerging subfield involving techniques for the generation of multiple different clusterings, allowing the data to be viewed from different perspectives. We present two new algorithms...

  1. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  2. An Exploration of the Triplet Periodicity in Nucleotide Sequences with a Mature Self-Adaptive Spectral Rotation Approach

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2014-01-01

    Full Text Available Previously, for predicting coding regions in nucleotide sequences, a self-adaptive spectral rotation (SASR method has been developed, based on a universal statistical feature of the coding regions, named triplet periodicity (TP. It outputs a random walk, that is, TP walk, in the complex plane for the query sequence. Each step in the walk is corresponding to a position in the sequence and generated from a long-term statistic of the TP in the sequence. The coding regions (TP intensive are then visually discriminated from the noncoding ones (without TP, in the TP walk. In this paper, the behaviors of the walks for random nucleotide sequences are further investigated qualitatively. A slightly leftward trend (a negative noise in such walks is observed, which is not reported in the previous SASR literatures. An improved SASR, named the mature SASR, is proposed, in order to eliminate the noise and correct the TP walks. Furthermore, a potential sequence pattern opposite to the TP persistent pattern, that is, the TP antipersistent pattern, is explored. The applications of the algorithms on simulated datasets show their capabilities in detecting such a potential sequence pattern.

  3. A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-01-01

    we propose a modified version of hidden Markov model (HMM classifier, called self-adaptive HMM, whose parameters are optimized by Particle Swarm Optimization algorithms. Since manually labeling large-scale dataset is difficult, we also employ the entropy to decide whether a new unlabeled tweet shall be contained in the training dataset after being assigned an emotion using our HMM-based approach. In the experiment, we collected about 200,000 Chinese tweets from Sina Weibo. The results show that the F-score of our approach gets 76% on happiness and fear and 65% on anger, surprise, and sadness. In addition, the self-adaptive HMM classifier outperforms Naive Bayes and Support Vector Machine on recognition of happiness, anger, and sadness.

  4. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Science.gov (United States)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  5. Self-Adaptation for Robustness and Cooperation in Holonic Multi-Agent Systems

    Science.gov (United States)

    Leitao, Paulo; Valckenaers, Paul; Adam, Emmanuel

    This paper reflects a discussion at the SARC workshop, held in Venice, October 2008. This workshop addresses robustness and cooperation in holonic multi-agent systems within a context of self-organizing and self-adaptive systems. The paper first presents the basic principles underlying holonic systems. The holonic system reveals itself as a ‘law of the artificial’: in a demanding and dynamic environment, all the larger systems will be holonic. Next, it addresses robustness in holonic systems, including its relationship to self-organization and self-adaptation. These self-* systems indeed are capable of delivering superior robustness. Third, it addresses cooperation in holons and holonic systems, including its relationship with the autonomy of the individual holons. Cooperation imposes constraints on a holon such that its chances of survival and success increase.

  6. A Least Square-Based Self-Adaptive Localization Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Baoguo Yu

    2016-01-01

    Full Text Available In the wireless sensor network (WSN localization methods based on Received Signal Strength Indicator (RSSI, it is usually required to determine the parameters of the radio signal propagation model before estimating the distance between the anchor node and an unknown node with reference to their communication RSSI value. And finally we use a localization algorithm to estimate the location of the unknown node. However, this localization method, though high in localization accuracy, has weaknesses such as complex working procedure and poor system versatility. Concerning these defects, a self-adaptive WSN localization method based on least square is proposed, which uses the least square criterion to estimate the parameters of radio signal propagation model, which positively reduces the computation amount in the estimation process. The experimental results show that the proposed self-adaptive localization method outputs a high processing efficiency while satisfying the high localization accuracy requirement. Conclusively, the proposed method is of definite practical value.

  7. Temperature self-adaptive program algorithm on 65 nm MLC NOR flash memory

    International Nuclear Information System (INIS)

    Shi Weihua; Hong Zhiliang; Hu Chaohong; Kang Yong

    2009-01-01

    This paper presents an implementation for improving muti-level cell NOR flash memory program throughput based on the channel hot electron (CHE) temperature characteristic. The CHE I g temperature characteristic is analyzed theoretically with the Lucky electron model, and a temperature self-adaptive programming algorithm is proposed to increase I g according to the on-die temperature. Experimental results show that the program throughput increases significantly from 1.1 MByte/s without temperature self-adaptive programming to 1.4 MByte/s with the proposed method at room temperature. This represents a 30% improvement and is 70 times faster than the program throughput in Ref. [1]. (semiconductor integrated circuits)

  8. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  9. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  10. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    Science.gov (United States)

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Foam: Multi-Dimensional General Purpose Monte Carlo Generator With Self-Adapting Simplical Grid

    OpenAIRE

    Jadach, S.

    1999-01-01

    A new general purpose Monte Carlo event generator with self-adapting grid consisting of simplices is described. In the process of initialization, the simplex-shaped cells divide into daughter subcells in such a way that: (a) cell density is biggest in areas where integrand is peaked, (b) cells elongate themselves along hyperspaces where integrand is enhanced/singular. The grid is anisotropic, i.e. memory of the axes directions of the primary reference frame is lost. In particular, the algorit...

  12. Foam: Multi-Dimensional General Purpose Monte Carlo Generator With Self-Adapting Symplectic Grid

    OpenAIRE

    Jadach, Stanislaw

    2000-01-01

    A new general purpose Monte Carlo event generator with self-adapting grid consisting of simplices is described. In the process of initialization, the simplex-shaped cells divide into daughter subcells in such a way that: (a) cell density is biggest in areas where integrand is peaked, (b) cells elongate themselves along hyperspaces where integrand is enhanced/singular. The grid is anisotropic, i.e. memory of the axes directions of the primary reference frame is lost. In particular, the algorit...

  13. Semi-supervised subspace learning for Mumford-Shah model based texture segmentation.

    Science.gov (United States)

    Law, Yan Nei; Lee, Hwee Kuan; Yip, Andy M

    2010-03-01

    We propose a novel image segmentation model which incorporates subspace clustering techniques into a Mumford-Shah model to solve texture segmentation problems. While the natural unsupervised approach to learn a feature subspace can easily be trapped in a local solution, we propose a novel semi-supervised optimization algorithm that makes use of information derived from both the intermediate segmentation results and the regions-of-interest (ROI) selected by the user to determine the optimal subspaces of the target regions. Meanwhile, these subspaces are embedded into a Mumford-Shah objective function so that each segment of the optimal partition is homogeneous in its own subspace. The method outperforms standard Mumford-Shah models since it can separate textures which are less separated in the full feature space. Experimental results are presented to confirm the usefulness of subspace clustering in texture segmentation.

  14. The kinematic preshaping of triggered self-adaptive linkage-driven robotic fingers

    Directory of Open Access Journals (Sweden)

    L. Birglen

    2011-02-01

    Full Text Available In this paper, the issue of the kinematic – as opposed to dynamic – preshaping of self-adaptive robotic fingers driven by linkages is discussed. A method to obtain designs of these fingers capable of various behaviours during their closing motions is presented. The method is based on using triggered passive elements in carefully selected joints of the finger and the selection or optimization of geometric parameters to obtain particular kinematic relationships between the motions of the phalanges. This method is very general and can be applied to any self-adaptive robotic finger in order to obtain many different types of closing motions. Examples given in this paper are focusing on two different preshaping motions, the first one aims at allowing pinch grasps while the second mimics a human finger. The fundamental aim of this paper is to show that various preshapings of self-adaptive fingers are possible, not just one, and to give two step-by-step examples.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  15. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  16. A self-adaptive and nonmechanical motion autofocusing system for optical microscopes.

    Science.gov (United States)

    Qu, Yufu; Zhu, Shenyu; Zhang, Ping

    2016-11-01

    For the design of a passive autofocusing (AF) system for optical microscopes, many time-consuming and tedious experiments have been performed to determine and design a better focus criterion function, owing to the sample-dependence of this function. To accelerate the development of the AF systems in optical microscopes and to increase AF speed as well as maintain the AF accuracy, this study proposes a self-adaptive and nonmechanical motion AF system. The presented AF system does not require the selection and design of a focus criterion function when it is developed. Instead, the system can automatically determine a better focus criterion function for an observed sample by analyzing the texture features of the sample and subsequently perform an AF procedure to bring the sample into focus in the objective of an optical microscope. In addition, to increase the AF speed, the Z axis scanning of the mechanical motion of the sample or the objective is replaced by focusing scanning performed by a liquid lens, which is driven by an electrical current and does not involve mechanical motion. Experiments show that the reproducibility of the results obtained with the proposed self-adaptive and nonmechanical motion AF system is better than that provided by that of traditional AF systems, and that the AF speed is 10 times faster than that of traditional AF systems. Also, the self-adaptive function increased the speed of AF process by an average of 10.5% than Laplacian and Tenegrad functions. © 2016 Wiley Periodicals, Inc.

  17. Scaling of the Transient Hydroelastic Response and Failure Mechanisms of Self-Adaptive Composite Marine Propellers

    Directory of Open Access Journals (Sweden)

    Michael R. Motley

    2012-01-01

    Full Text Available The load dependent deformation responses and complex failure mechanisms of self-adaptive composite propeller blades make the design, analysis, and scaling of these structures nontrivial. The objective of this work is to investigate and verify the dynamic similarity relationships for the hydroelastic response and potential failure mechanisms of self-adaptive composite marine propellers. A fully coupled, three-dimensional boundary element method-finite element method is used to compare the model and full-scale responses of a self-adaptive composite propeller. The effects of spatially varying inflow, transient sheet cavitation, and load-dependent blade deformation are considered. Three types of scaling are discussed: Reynolds scale, Froude scale, and Mach scale. The results show that Mach scaling, which requires the model inflow speed to be the same as the full scale, will lead to discrepancies in the spatial load distributions at low speeds due to differences in Froude number, but the differences between model and full-scale results become negligible at high speeds. Thus, Mach scaling is recommended for a composite marine propeller because it allows the same material and layering scheme to be used between the model and the full scale, leading to similar 3D stress distributions, and hence similar failure mechanisms, between the model and the full scale.

  18. Video background tracking and foreground extraction via L1-subspace updates

    Science.gov (United States)

    Pierantozzi, Michele; Liu, Ying; Pados, Dimitris A.; Colonnese, Stefania

    2016-05-01

    We consider the problem of online foreground extraction from compressed-sensed (CS) surveillance videos. A technically novel approach is suggested and developed by which the background scene is captured by an L1- norm subspace sequence directly in the CS domain. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen to offer significant robustness to outliers, disturbances, and rank selection. Subtraction of the L1-subspace tracked background leads then to effective foreground/moving objects extraction. Experimental studies included in this paper illustrate and support the theoretical developments.

  19. Updating Hawaii Seismicity Catalogs with Systematic Relocations and Subspace Detectors

    Science.gov (United States)

    Okubo, P.; Benz, H.; Matoza, R. S.; Thelen, W. A.

    2015-12-01

    We continue the systematic relocation of seismicity recorded in Hawai`i by the United States Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO), with interests in adding to the products derived from the relocated seismicity catalogs published by Matoza et al., (2013, 2014). Another goal of this effort is updating the systematically relocated HVO catalog since 2009, when earthquake cataloging at HVO was migrated to the USGS Advanced National Seismic System Quake Management Software (AQMS) systems. To complement the relocation analyses of the catalogs generated from traditional STA/LTA event-triggered and analyst-reviewed approaches, we are also experimenting with subspace detection of events at Kilauea as a means to augment AQMS procedures for cataloging seismicity to lower magnitudes and during episodes of elevated volcanic activity. Our earlier catalog relocations have demonstrated the ability to define correlated or repeating families of earthquakes and provide more detailed definition of seismogenic structures, as well as the capability for improved automatic identification of diverse volcanic seismic sources. Subspace detectors have been successfully applied to cataloging seismicity in situations of low seismic signal-to-noise and have significantly increased catalog sensitivity to lower magnitude thresholds. We anticipate similar improvements using event subspace detections and cataloging of volcanic seismicity that include improved discrimination among not only evolving earthquake sequences but also diverse volcanic seismic source processes. Matoza et al., 2013, Systematic relocation of seismicity on Hawai`i Island from 1992 to 2009 using waveform cross correlation and cluster analysis, J. Geophys. Res., 118, 2275-2288, doi:10.1002/jgrb.580189 Matoza et al., 2014, High-precision relocation of long-period events beneath the summit region of Kīlauea Volcano, Hawai`i, from 1986 to 2009, Geophys. Res. Lett., 41, 3413-3421, doi:10.1002/2014GL059819

  20. Stochastic subspace system identification using multivariate time-frequency distributions

    Science.gov (United States)

    Chang, Chia-Ming; Huang, Shieh-Kung

    2017-04-01

    Structural health monitoring assesses structural integrity by processing the measured responses of structures. One particular group in the structural health monitoring research is to conduct the operational modal analysis and then to extract the dynamic characteristics of structures from vibrational responses. These characteristics include natural frequencies, damping ratios, and mode shapes. Deviations in these characteristics represent the changes in structural properties and also imply possible damage to structures. In this study, a new stochastic system identification is developed using multivariate time-frequency distributions. These time-frequency distributions are derived from the short-time Fourier transform and subsequently yield a time-frequency matrix by stacking them with respect to time. As the derivation in the data-driven stochastic subspace system identification, the future time-frequency matrix is projected onto the past time-frequency matrix. By exploiting the singular value decomposition, the system and measurement matrices of a stochastic state-space representation are derived. Consequently, the dynamic characteristics of a structure are obtained. As compared to the time-domain stochastic subspace system identification, the proposed method utilizes the past and future matrices with a lower dimension in projection. A spectral magnitude envelope can be applied to the time-frequency matrix to highlight the major frequency components as well as to eliminate the components with less influence. To validate the proposed method, a numerical example is developed. This method is also applied to experimental data in order to evaluate its effectiveness. As a result, performance of the proposed method is superior to the time-domain stochastic subspace system identification.

  1. Subspace-based analysis of the ERT inverse problem

    Science.gov (United States)

    Ben Hadj Miled, Mohamed Khames; Miller, Eric L.

    2004-05-01

    In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.

  2. Perturbation for Frames for a Subspace of a Hilbert Space

    DEFF Research Database (Denmark)

    Christensen, Ole; deFlicht, C.; Lennard, C.

    1997-01-01

    We extend a classical result stating that a sufficiently small perturbation$\\{ g_i \\}$ of a Riesz sequence $\\{ f_i \\}$ in a Hilbert space $H$ is again a Riesz sequence. It turns out that the analog result for a frame does not holdunless the frame is complete. However, we are able to prove a very...... similarresult for frames in the case where the gap between the subspaces$\\overline{span} \\{f_i \\}$ and $\\overline{span} \\{ g_i \\}$ is small enough. We give a geometric interpretation of the result....

  3. Lie n-derivations on 7-subspace lattice algebras

    Indian Academy of Sciences (India)

    Abstract. Let L be a J -subspace lattice on a Banach space X over the real or complex field F with dim X ≥ 3 and let n ≥ 2 be an integer. Suppose thatdim K ≠ 2 for every K ∈ J ( L ) and L : A l g L → A l g L is a linear map. Itis shown that L satisfies ∑ i = 1 n p n ( A 1 , ⋯ , A i − 1 , L ( A i ) , A i + 1 , ⋯ , A n ) = 0 whenever p n ( A ...

  4. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  5. LogDet Rank Minimization with Application to Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Zhao Kang

    2015-01-01

    Full Text Available Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace clustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective function on potentially large-scale data. By making use of the angular information of principal directions of the resultant low-rank representation, an affinity graph matrix is constructed for spectral clustering. Experimental results on motion segmentation and face clustering data demonstrate that the proposed method often outperforms state-of-the-art subspace clustering algorithms.

  6. A Subspace Method for Dynamical Estimation of Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Stefanos D. Georgiadis

    2007-01-01

    Full Text Available It is a challenge in evoked potential (EP analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing. We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements.

  7. Enhancing Low-Rank Subspace Clustering by Manifold Regularization.

    Science.gov (United States)

    Liu, Junmin; Chen, Yijun; Zhang, JiangShe; Xu, Zongben

    2014-07-25

    Recently, low-rank representation (LRR) method has achieved great success in subspace clustering (SC), which aims to cluster the data points that lie in a union of low-dimensional subspace. Given a set of data points, LRR seeks the lowest rank representation among the many possible linear combinations of the bases in a given dictionary or in terms of the data itself. However, LRR only considers the global Euclidean structure, while the local manifold structure, which is often important for many real applications, is ignored. In this paper, to exploit the local manifold structure of the data, a manifold regularization characterized by a Laplacian graph has been incorporated into LRR, leading to our proposed Laplacian regularized LRR (LapLRR). An efficient optimization procedure, which is based on alternating direction method of multipliers (ADMM), is developed for LapLRR. Experimental results on synthetic and real data sets are presented to demonstrate that the performance of LRR has been enhanced by using the manifold regularization.

  8. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  9. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Science.gov (United States)

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  10. Estimation of fundamental frequencies in polyphonic music sound using subspace-based approach

    Science.gov (United States)

    Lee, Jong H.; Chun, Joohwan

    2001-11-01

    Music is a sum of several instrumental sounds whose individual fundamental frequencies are based on the musical score. Reversely musical sound contains information about the score, such as the instruments played and their fundamental frequencies. Automatic identification of scores from the musical sound is called the automatic transcription. There are many items to be estimated; the type of instruments, fundamental frequency, and note. Among these, the fundamental frequency estimation problem (FFE) has been widely studied. It is extensively studied for more than thirty years and there are many algorithms for the estimation of mono-phonic sound and poly-phonic sound. In this paper we propose a new estimation method of musical sound using the subspace approach. Our algorithm can be used to estimate poly-phonic and poly-instrumental sounds. This subspace approach is based on the autocorrelation of sounds and the orthogonality property. First, we gather subspaces of various instruments with different fundamental frequency. We define the subspaces as sound manifold. Next, we compare sound manifold and the subspace of measurement musical sound. We use the noise subspace of measurement sound and apply a MUSIC-like algorithm which use the orthogonality property of the signal subspace and the noise subspace. We test our algorithm with MIDI signals and show good identification capability.

  11. A Review of Signal Subspace Speech Enhancement and Its Application to Noise Robust Speech Recognition

    Directory of Open Access Journals (Sweden)

    Hermus Kris

    2007-01-01

    Full Text Available The objective of this paper is threefold: (1 to provide an extensive review of signal subspace speech enhancement, (2 to derive an upper bound for the performance of these techniques, and (3 to present a comprehensive study of the potential of subspace filtering to increase the robustness of automatic speech recognisers against stationary additive noise distortions. Subspace filtering methods are based on the orthogonal decomposition of the noisy speech observation space into a signal subspace and a noise subspace. This decomposition is possible under the assumption of a low-rank model for speech, and on the availability of an estimate of the noise correlation matrix. We present an extensive overview of the available estimators, and derive a theoretical estimator to experimentally assess an upper bound to the performance that can be achieved by any subspace-based method. Automatic speech recognition experiments with noisy data demonstrate that subspace-based speech enhancement can significantly increase the robustness of these systems in additive coloured noise environments. Optimal performance is obtained only if no explicit rank reduction of the noisy Hankel matrix is performed. Although this strategy might increase the level of the residual noise, it reduces the risk of removing essential signal information for the recogniser's back end. Finally, it is also shown that subspace filtering compares favourably to the well-known spectral subtraction technique.

  12. Subspace in Linear Algebra: Investigating Students' Concept Images and Interactions with the Formal Definition

    Science.gov (United States)

    Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.

    2011-01-01

    This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…

  13. Automatic synthesis of MEMS devices using self-adaptive hybrid metaheuristics

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Fan, Zhun

    2011-01-01

    This paper introduces a multi-objective optimization ap- proach for layout synthesis of MEMS components. A case study of layout synthesis of a comb-driven micro-resonator shows that the approach proposed in this paper can lead to design results accommodating two design objectives, i.e. si......- multaneous minimization of size and power input of a MEMS device, while investigating optimum geometrical conguration as the main concern. The major contribution of this paper is the application of self-adaptive memetic computing in MEMS design. An evolutionary multi-objective optimization (EMO) technique...

  14. A Traffic Prediction Model for Self-Adapting Routing Overlay Network in Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2017-01-01

    Full Text Available In large-scale location-based service, an ideal situation is that self-adapting routing strategies use future traffic data as input to generate a topology which could adapt to the changing traffic well. In the paper, we propose a traffic prediction model for the broker in publish/subscribe system, which can predict the traffic of the link in future by neural network. We first introduced our traffic prediction model and then described the model integration. Finally, the experimental results show that our traffic prediction model could predict the traffic of link well.

  15. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2017-10-01

    Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  16. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches. © 2010 Springer-Verlag.

  17. A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies

    Directory of Open Access Journals (Sweden)

    An-Jiang Lu

    2016-03-01

    Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.

  18. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    Science.gov (United States)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  19. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems

    Science.gov (United States)

    Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda

    2014-05-01

    Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.

  20. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Science.gov (United States)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  1. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    Science.gov (United States)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  2. An Efficient and Self-Adapting Localization in Static Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2009-08-01

    Full Text Available Localization is one of the most important subjects in Wireless Sensor Networks (WSNs. To reduce the number of beacons and adopt probabilistic methods, some particle filter-based mobile beacon-assisted localization approaches have been proposed, such as Mobile Beacon-assisted Localization (MBL, Adapting MBL (A-MBL, and the method proposed by Hang et al. Some new significant problems arise in these approaches, however. The first question is which probability distribution should be selected as the dynamic model in the prediction stage. The second is whether the unknown node adopts neighbors’ observation in the update stage. The third is how to find a self-adapting mechanism to achieve more flexibility in the adapting stage. In this paper, we give the theoretical analysis and experimental evaluations to suggest which probability distribution in the dynamic model should be adopted to improve the efficiency in the prediction stage. We also give the condition for whether the unknown node should use the observations from its neighbors to improve the accuracy. Finally, we propose a Self-Adapting Mobile Beacon-assisted Localization (SA-MBL approach to achieve more flexibility and achieve almost the same performance with A-MBL.

  3. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2018-04-01

    Full Text Available A Fiber Bragg Grating (FBG interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA and advanced RISC machine (ARM platform, tunable Fabry–Perot (F–P filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  4. Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data

    Science.gov (United States)

    Gaspar-Cunha, A.; Recio, G.; Costa, L.; Estébanez, C.

    2014-01-01

    Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier. PMID:24707201

  5. Self-adaptive MOEA feature selection for classification of bankruptcy prediction data.

    Science.gov (United States)

    Gaspar-Cunha, A; Recio, G; Costa, L; Estébanez, C

    2014-01-01

    Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier.

  6. Theorems of Ostrowski Type and Invariant Subspaces of Analytic Functions

    Science.gov (United States)

    Gil'mutdinova, A. J.

    1980-02-01

    Suppose that G is a convex domain in C, H the space of functions holomorphic in G endowed with the topology of uniform convergence on compact sets, and W a closed subspace in H invariant with respect to the operator of differentiation and admitting spectral synthesis.In this paper it is shown that an arbitrary function f\\in W may be uniformly approximated by linear combinations of exponential monomials from W, not only within G but also in the whole domain of existence of f, if the annihilator submodule I of W contains an entire function \\varphi of exponential type which on a sequence of circles \\vert z\\vert=\\rho_k, \\rho_k\\uparrow\\infty as k\\to\\infty, admits the estimate \\ln\\vert\\varphi(z)\\vert\\leq o(\\vert z\\vert) ( \\vert z\\vert=\\rho_k, k\\to\\infty).Bibliography: 10 titles.

  7. Discriminative Non-Linear Stationary Subspace Analysis for Video Classification.

    Science.gov (United States)

    Baktashmotlagh, Mahsa; Harandi, Mehrtash; Lovell, Brian C; Salzmann, Mathieu

    2014-12-01

    Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process. In this paper, we introduce non-linear stationary subspace analysis: a method that overcomes this issue by explicitly separating the stationary parts of the video signal (i.e., the parts shared across all videos in one class), from its non-stationary parts (i.e., the parts specific to individual videos). Our method also encourages the new representation to be discriminative, thus accounting for the underlying classification problem. We demonstrate the effectiveness of our approach on dynamic texture recognition, scene classification and action recognition.

  8. Support subspaces method for synthetic aperture radar automatic target recognition

    Directory of Open Access Journals (Sweden)

    Vladimir Fursov

    2016-09-01

    Full Text Available This article offers a new object recognition approach that gives high quality using synthetic aperture radar images. The approach includes image preprocessing, clustering and recognition stages. At the image preprocessing stage, we compute the mass centre of object images for better image matching. A conjugation index of a recognition vector is used as a distance function at clustering and recognition stages. We suggest a construction of the so-called support subspaces, which provide high recognition quality with a significant dimension reduction. The results of the experiments demonstrate that the proposed method provides higher recognition quality (97.8% than such methods as support vector machine (95.9%, deep learning based on multilayer auto-encoder (96.6% and adaptive boosting (96.1%. The proposed method is stable for objects processed from different angles.

  9. Cross-Modal Subspace Learning via Pairwise Constraints.

    Science.gov (United States)

    He, Ran; Zhang, Man; Wang, Liang; Ji, Ye; Yin, Qiyue

    2015-12-01

    In multimedia applications, the text and image components in a web document form a pairwise constraint that potentially indicates the same semantic concept. This paper studies cross-modal learning via the pairwise constraint and aims to find the common structure hidden in different modalities. We first propose a compound regularization framework to address the pairwise constraint, which can be used as a general platform for developing cross-modal algorithms. For unsupervised learning, we propose a multi-modal subspace clustering method to learn a common structure for different modalities. For supervised learning, to reduce the semantic gap and the outliers in pairwise constraints, we propose a cross-modal matching method based on compound ℓ21 regularization. Extensive experiments demonstrate the benefits of joint text and image modeling with semantically induced pairwise constraints, and they show that the proposed cross-modal methods can further reduce the semantic gap between different modalities and improve the clustering/matching accuracy.

  10. Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value Decomposition (SVD)

    Science.gov (United States)

    2017-09-27

    Approximation of the tSVD 5 1.5 Approximate Eigenvectors and Eigenvalues from Krylov Subspaces 6 1.6 A Motivating Example 7 2. Corruption of Subspaces...with Noise 9 2.1 Principal Angles for Quantifying Subspace Overlap 9 2.2 A Measure of Corruption : ρ-Free of Noise 10 3. Two Sufficient Conditions on...tSVD. We assume without any loss of generality that N ≥ M—otherwise simply replace A with AT. Then, any N × M matrix A can be factorized as A = UΣVT

  11. Geometric subspace updates with applications to online adaptive nonlinear model reduction

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Peherstorfer, Benjamin; Willcox, Karen

    2017-01-01

    In many scientific applications, including model reduction and image processing, subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of the state vectors of interest. We introduce a procedure for adapting an existing subspace based on information from...... Estimation (GROUSE). We establish for GROUSE a closed-form expression for the residual function along the geodesic descent direction. Specific applications of subspace adaptation are discussed in the context of image processing and model reduction of nonlinear partial differential equation systems....

  12. Design of 2-D Recursive Filters Using Self-adaptive Mutation Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Lianghong Wu

    2011-08-01

    Full Text Available This paper investigates a novel approach to the design of two-dimensional recursive digital filters using differential evolution (DE algorithm. The design task is reformulated as a constrained minimization problem and is solved by an Self-adaptive Mutation DE algorithm (SAMDE, which adopts an adaptive mutation operator that combines with the advantages of the DE/rand/1/bin strategy and the DE/best/2/bin strategy. As a result, its convergence performance is improved greatly. Numerical experiment results confirm the conclusion. The proposedSAMDE approach is effectively applied to test a numerical example and is compared with previous design methods. The computational experiments show that the SAMDE approach can obtain better results than previous design methods.

  13. A CMOS detector leakage current self-adaptable continuous reset system: Theoretical analysis

    CERN Document Server

    De Geronimo, G

    1999-01-01

    A continuous reset system for the discharge of the feedback capacitance of integrated charge preamplifiers is presented. The system, based on the use of a FET operating in the saturation region, is self-adaptable with respect to a wide range of detector leakage currents. A circuit which provides compensation of the signal from the charge amplifier is also proposed. The noise analysis, which takes into account both the stationary and non-stationary noise contributions and the effect of the rate, shows that the system, when carefully designed, can offer good signal/noise performance for applications in gamma-ray and high-energy X-ray spectroscopy. Practical layout considerations are also made.

  14. From flapping wings to underactuated fingers and beyond: a broad look to self-adaptive mechanisms

    Directory of Open Access Journals (Sweden)

    L. Birglen

    2010-12-01

    Full Text Available In this paper, the author first reviews the different terminologies used in underactuated grasping and illustrates the current increase of activity on this topic. Then, the (probably oldest known self-adaptive mechanism is presented and its performance as an underactuated finger is discussed. Its original application, namely a flapping wing, is also shown. Finally, it is proposed that the mechanisms currently used in underactuated grasping have actually other applications similarly to the previously discussed architecture could be used for both an underactuated finger and a flapping wing.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  15. Iterative approach to self-adapting and altitude-dependent regularization for atmospheric profile retrievals.

    Science.gov (United States)

    Ridolfi, Marco; Sgheri, Luca

    2011-12-19

    In this paper we present the IVS (Iterative Variable Strength) method, an altitude-dependent, self-adapting Tikhonov regularization scheme for atmospheric profile retrievals. The method is based on a similar scheme we proposed in 2009. The new method does not need any specifically tuned minimization routine, hence it is more robust and faster. We test the self-consistency of the method using simulated observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We then compare the new method with both our previous scheme and the scalar method currently implemented in the MIPAS on-line processor, using both synthetic and real atmospheric limb measurements. The IVS method shows very good performances.

  16. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Streichert Thilo

    2006-01-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  17. Active visual tracking method self-adapting to illumination based on particle filter pre-location

    Science.gov (United States)

    Su, Jie; Yin, Guisheng; Wei, Zhenhua; Xie, Yining

    2010-01-01

    To improve the identification rate and tracking rate for quickly moving target, expand tracking scope and lower the sensitivity to illumination varying, an active visual tracking system self-adapting to illumination based on particle filter pre-location is proposed. The algorithm of object pre-location based on particle filter is used to realize realtime tracking to moving target by forecasting its location and control camera joints of Tilt and Pan. The method resetting system is used to improve accuracy of system. Brightness histogram equalization method is used to reduce the affect of illuminating varying in pre-location algorithm. Experiments and property analysis show that the real-time and accuracy are greatly improved.

  18. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  19. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  20. Self-adaptive tensor network states with multi-site correlators

    Science.gov (United States)

    Kovyrshin, Arseny; Reiher, Markus

    2017-12-01

    We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.

  1. A self-adaptive k-means classifier for business incentive in a fashion design environment

    Directory of Open Access Journals (Sweden)

    O.R. Vincent

    2018-01-01

    Full Text Available An incentive mechanism to target market for fashion designers is proposed. Recent researches have been focused on the art, style or the design; while a few were based on traditional practice. In this study, economy is considered as a major liberation in the fashion world by analyzing six attributes, namely, style, color, fabric, brand, price and size that could bring about commercial success. Dataset of 1000 customers’ records were used and categorized as original, combined and new designs using self-adaptive k-means algorithm, which extract common attributes that would foster better business from the dataset. The results would be useful to designers in knowing the type of designs usually ordered by customers with the design code, and which combinations of the attributes have high patronage. In addition, customers would have easy access to the best and current designs invoke from a combination of highest patronized designs.

  2. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  3. Lower Tropospheric Ozone Retrievals from Infrared Satellite Observations Using a Self-Adapting Regularization Method

    Science.gov (United States)

    Eremenko, M.; Sgheri, L.; Ridolfi, M.; Dufour, G.; Cuesta, J.

    2017-12-01

    Lower tropospheric ozone (O3) retrievals from nadir sounders is challenging due to the lack of vertical sensitivity of the measurements and towards the lowest layers. If improvements have been made during the last decade, it is still important to explore possibilities to improve the retrieval algorithms themselves. O3 retrieval from nadir satellite observations is an ill-conditioned problem, which requires regularization using constraint matrices. Up to now, most of the retrieval algorithms rely on a fixed constraint. The constraint is determined and fixed beforehand, on the basis of sensitivity tests. This does not allow ones to take advantage of the entire capabilities of the satellite measurements, which vary with the thermal conditions of the observed scenes. To overcome this limitation, we developed a self-adapting and altitude-dependent regularization scheme. A crucial step is the choice of the strength of the constraint. This choice is done during an iterative process and depends on the measurement errors and on the sensitivity of the measurements to the target parameters at the different altitudes. The challenge is to limit the use of a priori constraints to the minimal amount needed to perform the inversion. The algorithm has been tested on synthetic observations matching the future IASI-NG satellite instrument. IASI-NG measurements are simulated on the basis of O3 concentrations taken from an atmospheric model and retrieved using two retrieval schemes (the standard and self-adapting ones). Comparison of the results shows that the sensitivity of the observations to the O3 amount in the lowest layers (given by the degrees of freedom for the solution) is increased, which allows a better description of the ozone distribution, especially in the case of large ozone plumes. Biases are reduced and the spatial correlation is improved. Tentative of application to real observations from IASI, currently onboard the Metop satellite will also be presented.

  4. Self-adapting denoising, alignment and reconstruction in electron tomography in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Printemps, Tony, E-mail: tony.printemps@cea.fr [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Mula, Guido [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, S.P. 8km 0.700, 09042 Monserrato (Italy); Sette, Daniele; Bleuet, Pierre; Delaye, Vincent; Bernier, Nicolas; Grenier, Adeline; Audoit, Guillaume; Gambacorti, Narciso; Hervé, Lionel [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2016-01-15

    An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson–Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography. - Highlights: • Goal: perform a reliable and user-independent 3D electron tomography reconstruction. • Proposed method: self-adapting denoising and alignment prior to 3D reconstruction. • Noise estimation and denoising are performed using wavelet transform. • Tilt axis determination is done automatically as well as projection alignment.

  5. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.

    Science.gov (United States)

    Tuta, Jure; Juric, Matjaz B

    2016-12-06

    This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.

  6. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.

    2010-03-01

    In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.

  7. Forecasting the natural gas demand in China using a self-adapting intelligent grey model

    International Nuclear Information System (INIS)

    Zeng, Bo; Li, Chuan

    2016-01-01

    Reasonably forecasting demands of natural gas in China is of significance as it could aid Chinese government in formulating energy policies and adjusting industrial structures. To this end, a self-adapting intelligent grey prediction model is proposed in this paper. Compared with conventional grey models which have the inherent drawbacks of fixed structure and poor adaptability, the proposed new model can automatically optimize model parameters according to the real data characteristics of modeling sequence. In this study, the proposed new model, discrete grey model, even difference grey model and classical grey model were employed, respectively, to simulate China's natural gas demands during 2002–2010 and forecast demands during 2011–2014. The results show the new model has the best simulative and predictive precision. Finally, the new model is used to forecast China's natural gas demand during 2015–2020. The forecast shows the demand will grow rapidly over the next six years. Therefore, in order to maintain the balance between the supplies and the demands for the natural gas in the future, Chinese government needs to take some measures, such as importing huge amounts of natural gas from abroad, increasing the domestic yield, using more alternative energy, and reducing the industrial reliance on natural gas. - Highlights: • A self-adapting intelligent grey prediction model (SIGM) is proposed in this paper. • The SIGM has the advantage of working with exponential functions and linear functions. • The SIGM solves the drawbacks of fixed structure and poor adaptability of grey models. • The demand of natural gas in China is successfully forecasted using the SIGM model. • The study findings can help Chinese government reasonably formulate energy policies.

  8. Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes

    Directory of Open Access Journals (Sweden)

    Long Xiang

    2016-07-01

    Full Text Available The Green-Ampt (G-A infiltration model (i.e., the G-A model is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions (PTFs or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the G-A parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.

  9. MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING MOHAMMAD SALIM AHMED, LATIFUR KHAN, NIKUNJ OZA, AND MANDAVA RAJESWARI Abstract....

  10. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

    National Research Council Canada - National Science Library

    Du, Qian; Ren, Hsuan; Chang, Chein-I

    2003-01-01

    ...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...

  11. Predictor-Year Subspace Clustering Based Ensemble Prediction of Indian Summer Monsoon

    Directory of Open Access Journals (Sweden)

    Moumita Saha

    2016-01-01

    Full Text Available Forecasting the Indian summer monsoon is a challenging task due to its complex and nonlinear behavior. A large number of global climatic variables with varying interaction patterns over years influence monsoon. Various statistical and neural prediction models have been proposed for forecasting monsoon, but many of them fail to capture variability over years. The skill of predictor variables of monsoon also evolves over time. In this article, we propose a joint-clustering of monsoon years and predictors for understanding and predicting the monsoon. This is achieved by subspace clustering algorithm. It groups the years based on prevailing global climatic condition using statistical clustering technique and subsequently for each such group it identifies significant climatic predictor variables which assist in better prediction. Prediction model is designed to frame individual cluster using random forest of regression tree. Prediction of aggregate and regional monsoon is attempted. Mean absolute error of 5.2% is obtained for forecasting aggregate Indian summer monsoon. Errors in predicting the regional monsoons are also comparable in comparison to the high variation of regional precipitation. Proposed joint-clustering based ensemble model is observed to be superior to existing monsoon prediction models and it also surpasses general nonclustering based prediction models.

  12. Concept of a collective subspace associated with the invariance principle of the Schroedinger equation

    International Nuclear Information System (INIS)

    Marumori, Toshio; Hayashi, Akihisa; Tomoda, Toshiaki; Kuriyama, Atsushi; Maskawa, Toshihide

    1980-01-01

    The aim of this series of papers is to propose a microscopic theory to go beyond the situations where collective motions are described by the random phase approximation, i.e., by small amplitude harmonic oscillations about equilibrium. The theory is thus appropriate for the microscopic description of the large amplitude collective motion of soft nuclei. The essential idea is to develop a method to determine the collective subspace (or submanifold) in the many-particle Hilbert space in an optimal way, on the basis of a fundamental principle called the invariance principle of the Schroedinger equation. By using the principle within the framework of the Hartree-Fock theory, it is shown that the theory can clarify the structure of the so-called ''phonon-bands'' by self-consistently deriving the collective Hamiltonian where the number of the ''physical phonon'' is conserved. The purpose of this paper is not to go into detailed quantitative discussion, but rather to develop the basic idea. (author)

  13. Closed and Open Loop Subspace System Identification of the Kalman Filter

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2009-04-01

    Full Text Available Some methods for consistent closed loop subspace system identification presented in the literature are analyzed and compared to a recently published subspace algorithm for both open as well as for closed loop data, the DSR_e algorithm. Some new variants of this algorithm are presented and discussed. Simulation experiments are included in order to illustrate if the algorithms are variance efficient or not.

  14. RETRACTED: Quantum key distribution without sharing reference frame using single photon rotational-invariant subspace

    Science.gov (United States)

    Chen, Dong-Xu; Liu, Rui-Feng; Zhang, Pei; Li, Hong-Rong; Gao, Hong; Li, Fu-Li

    2013-11-01

    We report an experimental proposal of quantum key distribution without sharing reference frame by using single photon rotational-invariant subspace. The rotational-invariant subspace is achieved by taking advantage of photon's spin-orbital composite states. Our scheme is simple and can be developed as a compact QKD system under current technology. Earth-to-satellite QKD is an emerging scenario that will benefit from our protocol.

  15. Subspace orthogonalization for substructuring preconditioners for nonsymmetric systems of linear equations

    Energy Technology Data Exchange (ETDEWEB)

    Starke, G. [Universitaet Karlsruhe (Germany)

    1994-12-31

    For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.

  16. Ultrasonic Flaw Detection and Imaging through Reverberant Layers via Subspace Analysis and Projection

    Directory of Open Access Journals (Sweden)

    Ramazan Demirli

    2012-01-01

    Full Text Available Ultrasonic flaw detection and imaging through reverberant layers are challenging problems owing to the layer-induced reverberations and front surface reflections. These undesired signals present a strong clutter and mask the flaw echoes. In this paper, a subspace-based approach is developed for removing, or significantly reducing, the unwanted reverberations, enabling proper flaw detection and imaging. The technique utilizes a set of independent clutter-only reference measurements of the material through the layer. If these measurements are not available, array measurements of the material with flaws are used instead. The clutter, due to its high strength relative to the flaw reflections, forms a subspace spanned by the eigenvectors corresponding to the dominant eigenvalues of the data covariance matrix. The clutter subspace is estimated and removed using orthogonal subspace projection. The clutter usually occupies multidimension subspace that is dependent on the level of coupling, material inhomogeneity, surface roughness, and the sampling rate of the measurements. When the clutter-only reference is not available, information theoretic techniques are used to estimate the dimension of the clutter subspace so that clutter signals are sufficiently suppressed without distorting the flaw signals. The effectiveness of the proposed approach is demonstrated using simulations and real measurement results.

  17. MODAL TRACKING of A Structural Device: A Subspace Identification Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Franco, S. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ruggiero, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emmons, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez, I. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stoops, L. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-20

    Mechanical devices operating in an environment contaminated by noise, uncertainties, and extraneous disturbances lead to low signal-to-noise-ratios creating an extremely challenging processing problem. To detect/classify a device subsystem from noisy data, it is necessary to identify unique signatures or particular features. An obvious feature would be resonant (modal) frequencies emitted during its normal operation. In this report, we discuss a model-based approach to incorporate these physical features into a dynamic structure that can be used for such an identification. The approach we take after pre-processing the raw vibration data and removing any extraneous disturbances is to obtain a representation of the structurally unknown device along with its subsystems that capture these salient features. One approach is to recognize that unique modal frequencies (sinusoidal lines) appear in the estimated power spectrum that are solely characteristic of the device under investigation. Therefore, the objective of this effort is based on constructing a black box model of the device that captures these physical features that can be exploited to “diagnose” whether or not the particular device subsystem (track/detect/classify) is operating normally from noisy vibrational data. Here we discuss the application of a modern system identification approach based on stochastic subspace realization techniques capable of both (1) identifying the underlying black-box structure thereby enabling the extraction of structural modes that can be used for analysis and modal tracking as well as (2) indicators of condition and possible changes from normal operation.

  18. Subspace identification of Hammer stein models using support vector machines

    International Nuclear Information System (INIS)

    Al-Dhaifallah, Mujahed

    2011-01-01

    System identification is the art of finding mathematical tools and algorithms that build an appropriate mathematical model of a system from measured input and output data. Hammerstein model, consisting of a memoryless nonlinearity followed by a dynamic linear element, is often a good trade-off as it can represent some dynamic nonlinear systems very accurately, but is nonetheless quite simple. Moreover, the extensive knowledge about LTI system representations can be applied to the dynamic linear block. On the other hand, finding an effective representation for the nonlinearity is an active area of research. Recently, support vector machines (SVMs) and least squares support vector machines (LS-SVMs) have demonstrated powerful abilities in approximating linear and nonlinear functions. In contrast with other approximation methods, SVMs do not require a-priori structural information. Furthermore, there are well established methods with guaranteed convergence (ordinary least squares, quadratic programming) for fitting LS-SVMs and SVMs. The general objective of this research is to develop new subspace algorithms for Hammerstein systems based on SVM regression.

  19. Removing Ocular Movement Artefacts by a Joint Smoothened Subspace Estimator

    Directory of Open Access Journals (Sweden)

    Ronald Phlypo

    2007-01-01

    Full Text Available To cope with the severe masking of background cerebral activity in the electroencephalogram (EEG by ocular movement artefacts, we present a method which combines lower-order, short-term and higher-order, long-term statistics. The joint smoothened subspace estimator (JSSE calculates the joint information in both statistical models, subject to the constraint that the resulting estimated source should be sufficiently smooth in the time domain (i.e., has a large autocorrelation or self predictive power. It is shown that the JSSE is able to estimate a component from simulated data that is superior with respect to methodological artefact suppression to those of FastICA, SOBI, pSVD, or JADE/COM1 algorithms used for blind source separation (BSS. Interference and distortion suppression are of comparable order when compared with the above-mentioned methods. Results on patient data demonstrate that the method is able to suppress blinking and saccade artefacts in a fully automated way.

  20. Generalized shift-invariant systems and frames for subspaces

    DEFF Research Database (Denmark)

    Christensen, Ole; Eldar, Y.C.

    2005-01-01

    )(j is an element of J,k is an element of Z) are Bessel sequences, we are interested in expansions [GRAPHICS] Our main result gives an equivalent condition for this to hold in a more general setting than described here, where translation by k is an element of Z(d) is replaced by translation via the action......Let T-k denote translation by k is an element of Z(d). Given countable collections of functions {phi(j)}(j is an element of J), {(phi) over bar (j)}(j is an element of J) subset of L-2(R-d) and assuming that {T(k)phi(j)}(j is an element of J,k is an element of Z)(d) and {T-k(phi) over bar (j)} (d...... of a matrix. As special cases of our result we find conditions for shift-invariant systems, Gabor systems, and wavelet systems to generate a subspace frame with a corresponding dual having the same structure....

  1. Reverse time migration by Krylov subspace reduced order modeling

    Science.gov (United States)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  2. A Variational Approach to Video Registration with Subspace Constraints.

    Science.gov (United States)

    Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes

    2013-01-01

    This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

  3. Compiling the functional data-parallel language SaC for Microgrids of Self-Adaptive Virtual Processors

    NARCIS (Netherlands)

    Grelck, C.; Herhut, S.; Jesshope, C.; Joslin, C.; Lankamp, M.; Scholz, S.-B.; Shafarenko, A.

    2009-01-01

    We present preliminary results from compiling the high-level, functional and data-parallel programming language SaC into a novel multi-core design: Microgrids of Self-Adaptive Virtual Processors (SVPs). The side-effect free nature of SaC in conjunction with its data-parallel foundation make it an

  4. Self-adaptation in Software-intensive Cyber-physical Systems: From System Goals to Architecture Configurations

    Czech Academy of Sciences Publication Activity Database

    Gerostathopoulos, I.; Bureš, Tomáš; Hnětynka, P.; Keznikl, Jaroslav; Kit, M.; Plášil, F.; Plouzeau, N.

    2016-01-01

    Roč. 122, December (2016), s. 378-397 ISSN 0164-1212 Grant - others:GA MŠk(CZ) LD15051 Institutional support: RVO:67985807 Keywords : cyber–physical systems * self -adaptivity * dependability Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.444, year: 2016

  5. Simulations research of the global predictive control with self-adaptive in the gas turbine of the nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie; Xia Guoqing; Zhang Wei

    2007-01-01

    For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)

  6. Self-Adaptive Revised Land Use Regression Models for Estimating PM2.5 Concentrations in Beijing, China

    Directory of Open Access Journals (Sweden)

    Lujin Hu

    2016-08-01

    Full Text Available Heavy air pollution, especially fine particulate matter (PM2.5, poses serious challenges to environmental sustainability in Beijing. Epidemiological studies and the identification of measures for preventing serious air pollution both require accurate PM2.5 spatial distribution data. Land use regression (LUR models are promising for estimating the spatial distribution of PM2.5 at a high spatial resolution. However, typical LUR models have a limited sampling point explanation rate (SPER, i.e., the rate of the sampling points with reasonable predicted concentrations to the total number of sampling points and accuracy. Hence, self-adaptive revised LUR models are proposed in this paper for improving the SPER and accuracy of typical LUR models. The self-adaptive revised LUR model combines a typical LUR model with self-adaptive LUR model groups. The typical LUR model was used to estimate the PM2.5 concentrations, and the self-adaptive LUR model groups were constructed for all of the sampling points removed from the typical LUR model because they were beyond the prediction data range, which was from 60% of the minimum observation to 120% of the maximum observation. The final results were analyzed using three methods, including an accuracy analysis, and were compared with typical LUR model results and the spatial variations in Beijing. The accuracy satisfied the demands of the analysis, and the accuracies at the different monitoring sites indicated spatial variations in the accuracy of the self-adaptive revised LUR model. The accuracy was high in the central area and low in suburban areas. The comparison analysis showed that the self-adaptive LUR model increased the SPER from 75% to 90% and increased the accuracy (based on the root-mean-square error from 20.643 μg/m3 to 17.443 μg/m3 for the PM2.5 concentrations during the winter of 2014 in Beijing. The spatial variation analysis for Beijing showed that the PM2.5 concentrations were low in the north

  7. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    Science.gov (United States)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  8. Architecture and Knowledge-Driven Self-Adaptive Security in Smart Space

    Directory of Open Access Journals (Sweden)

    Antti Evesti

    2013-03-01

    Full Text Available Dynamic and heterogeneous smart spaces cause challenges for security because it is impossible to anticipate all the possible changes at design-time. Self-adaptive security is an applicable solution for this challenge. This paper presents an architectural approach for security adaptation in smart spaces. The approach combines an adaptation loop, Information Security Measuring Ontology (ISMO and a smart space security-control model. The adaptation loop includes phases to monitor, analyze, plan and execute changes in the smart space. The ISMO offers input knowledge for the adaptation loop and the security-control model enforces dynamic access control policies. The approach is novel because it defines the whole adaptation loop and knowledge required in each phase of the adaptation. The contributions are validated as a part of the smart space pilot implementation. The approach offers reusable and extensible means to achieve adaptive security in smart spaces and up-to-date access control for devices that appear in the space. Hence, the approach supports the work of smart space application developers.

  9. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, N.; Yang, L.; Gao, F.; Kurtz, R. J.; West, D.; Zhang, S.

    2017-02-27

    A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.

  10. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    Science.gov (United States)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Desheng Meng, Dennis

    2011-08-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA.

  11. Dim small targets detection based on self-adaptive caliber temporal-spatial filtering

    Science.gov (United States)

    Fan, Xiangsuo; Xu, Zhiyong; Zhang, Jianlin; Huang, Yongmei; Peng, Zhenming

    2017-09-01

    To boost the detect ability of dim small targets, this paper began by using improved anisotropy for background prediction (IABP), followed by target enhancement by improved high-order cumulates (HQS). Finally, on the basis of image pre-processing, to address the problem of missed and wrong detection caused by fixed caliber of traditional pipeline filtering, this paper used targets' multi-frame movement correlation in the time-space domain, combined with the scale-space theory, to propose a temporal-spatial filtering algorithm which allows the caliber to make self-adaptive changes according to the changes of the targets' scale, effectively solving the detection-related issues brought by unchanged caliber and decreased/increased size of the targets. Experiments showed that the improved anisotropic background predication could be loyal to the true background of the original image to the maximum extent, presenting a superior overall performance to other background prediction methods; the improved HQS significantly increased the signal-noise ratio of images; when the signal-noise ratio was lower than 2.6 dB, this detection algorithm could effectively eliminate noise and detect targets. For the algorithm, the lowest signal-to-noise ratio of the detectable target is 0.37.

  12. Foam Multi-Dimensional General Purpose Monte Carlo Generator With Self-Adapting Symplectic Grid

    CERN Document Server

    Jadach, Stanislaw

    2000-01-01

    A new general purpose Monte Carlo event generator with self-adapting grid consisting of simplices is described. In the process of initialization, the simplex-shaped cells divide into daughter subcells in such a way that: (a) cell density is biggest in areas where integrand is peaked, (b) cells elongate themselves along hyperspaces where integrand is enhanced/singular. The grid is anisotropic, i.e. memory of the axes directions of the primary reference frame is lost. In particular, the algorithm is capable of dealing with distributions featuring strong correlation among variables (like ridge along diagonal). The presented algorithm is complementary to others known and commonly used in the Monte Carlo event generators. It is, in principle, more effective then any other one for distributions with very complicated patterns of singularities - the price to pay is that it is memory-hungry. It is therefore aimed at a small number of integration dimensions (<10). It should be combined with other methods for higher ...

  13. Foam: Multi-dimensional general purpose Monte Carlo generator with self-adapting simplical grid

    Science.gov (United States)

    Jadach, S.

    2000-08-01

    A new general purpose Monte Carlo event generator with self-adapting grid consisting of simplices is described. In the process of initialization, the simplex-shaped cells divide into daughter subcells in such a way that: (a) cell density is biggest in areas where integrand is peaked, (b) cells elongate themselves along hyperspaces where integrand is enhanced/singular. The grid is anisotropic, i.e. memory of the axes directions of the primary reference frame is lost. In particular, the algorithm is capable of dealing with distributions featuring strong correlation among variables (like ridge along diagonal). The presented algorithm is complementary to others known and commonly used in the Monte Carlo event generators. It is, in principle, more effective than any other one for distributions with very complicated patterns of singularities - the price to pay is that it is memory-hungry. It is therefore aimed at a small number of integration dimensions ( <10 ). It should be combined with other methods for higher dimension. The source code in Fortran 77 is available from http://home.cern.ch/ hadach.

  14. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm

    Science.gov (United States)

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods. PMID:26649071

  15. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2015-01-01

    Full Text Available With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods.

  16. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm.

    Science.gov (United States)

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods.

  17. A self-adaptive parameter optimization algorithm in a real-time parallel image processing system.

    Science.gov (United States)

    Li, Ge; Zhang, Xuehe; Zhao, Jie; Zhang, Hongli; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    Aiming at the stalemate that precision, speed, robustness, and other parameters constrain each other in the parallel processed vision servo system, this paper proposed an adaptive load capacity balance strategy on the servo parameters optimization algorithm (ALBPO) to improve the computing precision and to achieve high detection ratio while not reducing the servo circle. We use load capacity functions (LC) to estimate the load for each processor and then make continuous self-adaptation towards a balanced status based on the fluctuated LC results; meanwhile, we pick up a proper set of target detection and location parameters according to the results of LC. Compared with current load balance algorithm, the algorithm proposed in this paper is proceeded under an unknown informed status about the maximum load and the current load of the processors, which means it has great extensibility. Simulation results showed that the ALBPO algorithm has great merits on load balance performance, realizing the optimization of QoS for each processor, fulfilling the balance requirements of servo circle, precision, and robustness of the parallel processed vision servo system.

  18. Optimization of an Autonomous Car Controller Using a Self-Adaptive Evolutionary Strategy

    Directory of Open Access Journals (Sweden)

    Tae Seong Kim

    2012-09-01

    Full Text Available Autonomous cars control the steering wheel, acceleration and the brake pedal, the gears and the clutch using sensory information from multiple sources. Like a human driver, it understands the current situation on the roads from the live streaming of sensory values. The decision-making module often suffers from the limited range of sensors and complexity due to the large number of sensors and actuators. Because it is tedious and difficult to design the controller manually from trial-and-error, it is desirable to use intelligent optimization algorithms. In this work, we propose optimizing the parameters of an autonomous car controller using self-adaptive evolutionary strategies (SAESs which co-evolve solutions and mutation steps for each parameter. We also describe how the most generalized parameter set can be retrieved from the process of optimization. Open-source car racing simulation software (TORCS is used to test the goodness of the proposed methods on 6 different tracks. Experimental results show that the SAES is competitive with the manual design of authors and a simple ES.

  19. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    Science.gov (United States)

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  20. Self-Adaptive Context Aware Routing Protocol for Unicast Communication in Delay and Tolerant Network

    Directory of Open Access Journals (Sweden)

    Yunbo Chen

    2014-05-01

    Full Text Available At present, most of research works in mobile network focus on the network overhead of the known path which exists between the sender and the receiver. However, the trend of the current practical application demands is becoming increasingly distributed and decentralized. The Delay and Tolerant Network (DTN just comes out of such background of the conflicts between them. The DTN could effectively eliminate the gap between the mobile network and the practical application demands. In this paper, a Self-Adaptive Context Aware Routing Protocol (SACARP for the unicast communication in delay and tolerant networks is presented. Meanwhile, according to the real-time context information of DTN, the Kalman filter theory is introduced to predict the information state of mobility for the optional message ferrying node, and then gives the optimal selection strategy of the message ferrying nodes. The simulation experiments have shown that, compared to the familiar single- copy and multi-copy protocols, the SACARP proposed in this paper has better transmission performance and stability, especially when the network is free, the protocol would keep a good performance with fewer connections and less buffer space.

  1. Self-Adaptive On-Chip System Based on Cross-Layer Adaptation Approach

    Directory of Open Access Journals (Sweden)

    Kais Loukil

    2013-01-01

    Full Text Available The emergence of mobile and battery operated multimedia systems and the diversity of supported applications mount new challenges in terms of design efficiency of these systems which must provide a maximum application quality of service (QoS in the presence of a dynamically varying environment. These optimization problems cannot be entirely solved at design time and some efficiency gains can be obtained at run-time by means of self-adaptivity. In this paper, we propose a new cross-layer hardware (HW/software (SW adaptation solution for embedded mobile systems. It supports application QoS under real-time and lifetime constraints via coordinated adaptation in the hardware, operating system (OS, and application layers. Our method relies on an original middleware solution used on both global and local managers. The global manager (GM handles large, long-term variations whereas the local manager (LM is used to guarantee real-time constraints. The GM acts in three layers whereas the LM acts in application and OS layers only. The main role of GM is to select the best configuration for each application to meet the constraints of the system and respect the preferences of the user. The proposed approach has been applied to a 3D graphics application and successfully implemented on an Altera FPGA.

  2. Self-Adaptive Contention Aware Routing Protocol for Intermittently Connected Mobile Networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-07-01

    This paper introduces a novel multicopy routing protocol, called Self-Adaptive Utility-based Routing Protocol (SAURP), for Delay Tolerant Networks (DTNs) that are possibly composed of a vast number of devices in miniature such as smart phones of heterogeneous capacities in terms of energy resources and buffer spaces. SAURP is characterized by the ability of identifying potential opportunities for forwarding messages to their destinations via a novel utility function-based mechanism, in which a suite of environment parameters, such as wireless channel condition, nodal buffer occupancy, and encounter statistics, are jointly considered. Thus, SAURP can reroute messages around nodes experiencing high-buffer occupancy, wireless interference, and/or congestion, while taking a considerably small number of transmissions. The developed utility function in SAURP is proved to be able to achieve optimal performance, which is further analyzed via a stochastic modeling approach. Extensive simulations are conducted to verify the developed analytical model and compare the proposed SAURP with a number of recently reported encounter-based routing approaches in terms of delivery ratio, delivery delay, and the number of transmissions required for each message delivery. The simulation results show that SAURP outperforms all the counterpart multicopy encounter-based routing protocols considered in the study.

  3. Conjunctive patches subspace learning with side information for collaborative image retrieval.

    Science.gov (United States)

    Zhang, Lining; Wang, Lipo; Lin, Weisi

    2012-08-01

    Content-Based Image Retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of Relevance Feedback (RF) schemes have been designed to bridge the semantic gap between the low-level visual features and the high-level semantic concepts for an image retrieval task. Various Collaborative Image Retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task, although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., Conjunctive Patches Subspace Learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. The CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images and the weakly similar information of unlabeled images together to learn a reliable subspace. We formally formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic data sets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.

  4. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  5. Extending the subspace hybrid method for eigenvalue problems in reactor physics calculation

    International Nuclear Information System (INIS)

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-01-01

    This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and extended to address core wide level k-eigenvalue problems. The method's efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future. (authors)

  6. A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2009-03-01

    Full Text Available MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH4 and N2O.

    To tackle this problem, a Tikhonov regularization scheme has been implemented in the retrieval algorithm. The applied regularization is however rather weak in order to preserve the vertical resolution of the profiles.

    In this paper we present a self-adapting and altitude-dependent regularization approach that detects whether the analyzed observations contain information about small-scale profile features, and determines the strength of the regularization accordingly. The objective of the method is to smooth out artificial oscillations as much as possible, while preserving the fine detail features of the profile when related information is detected in the observations.

    The proposed method is checked for self consistency, its performance is tested on MIPAS observations and compared with that of some other regularization schemes available in the literature. In all the considered cases the proposed scheme achieves a good performance, thanks to its altitude dependence and to the constraints employed, which are specific of the inversion problem under consideration. The proposed method is generally applicable to iterative Gauss-Newton algorithms for the retrieval of vertical distribution profiles from atmospheric remote sounding measurements.

  7. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    OpenAIRE

    Zhijia Chen; Yuanchang Zhu; Yanqiang Di; Shaochong Feng

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is const...

  8. The Detection of Subsynchronous Oscillation in HVDC Based on the Stochastic Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    Chen Shi

    2014-01-01

    Full Text Available Subsynchronous oscillation (SSO usually caused by series compensation, power system stabilizer (PSS, high voltage direct current transmission (HVDC and other power electronic equipment, which will affect the safe operation of generator shafting even the system. It is very important to identify the modal parameters of SSO to take effective control strategies as well. Since the identification accuracy of traditional methods are not high enough, the stochastic subspace identification (SSI method is proposed to improve the identification accuracy of subsynchronous oscillation modal. The stochastic subspace identification method was compared with the other two methods on subsynchronous oscillation IEEE benchmark model and Xiang-Shang HVDC system model, the simulation results show that the stochastic subspace identification method has the advantages of high identification precision, high operation efficiency and strong ability of anti-noise.

  9. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  10. Subspace electrode selection methodology for EEG multiple source localization error reduction due to uncertain conductivity values.

    Science.gov (United States)

    Crevecoeur, Guillaume; Yitembe, Bertrand; Dupre, Luc; Van Keer, Roger

    2013-01-01

    This paper proposes a modification of the subspace correlation cost function and the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) method for electroencephalography (EEG) source analysis in epilepsy. This enables to reconstruct neural source locations and orientations that are less degraded due to the uncertain knowledge of the head conductivity values. An extended linear forward model is used in the subspace correlation cost function that incorporates the sensitivity of the EEG potentials to the uncertain conductivity value parameter. More specifically, the principal vector of the subspace correlation function is used to provide relevant information for solving the EEG inverse problems. A simulation study is carried out on a simplified spherical head model with uncertain skull to soft tissue conductivity ratio. Results show an improvement in the reconstruction accuracy of source parameters compared to traditional methodology, when using conductivity ratio values that are different from the actual conductivity ratio.

  11. Estimation of direction of arrival of a moving target using subspace based approaches

    Science.gov (United States)

    Ghosh, Ripul; Das, Utpal; Akula, Aparna; Kumar, Satish; Sardana, H. K.

    2016-05-01

    In this work, array processing techniques based on subspace decomposition of signal have been evaluated for estimation of direction of arrival of moving targets using acoustic signatures. Three subspace based approaches - Incoherent Wideband Multiple Signal Classification (IWM), Least Square-Estimation of Signal Parameters via Rotation Invariance Techniques (LS-ESPRIT) and Total Least Square- ESPIRIT (TLS-ESPRIT) are considered. Their performance is compared with conventional time delay estimation (TDE) approaches such as Generalized Cross Correlation (GCC) and Average Square Difference Function (ASDF). Performance evaluation has been conducted on experimentally generated data consisting of acoustic signatures of four different types of civilian vehicles moving in defined geometrical trajectories. Mean absolute error and standard deviation of the DOA estimates w.r.t. ground truth are used as performance evaluation metrics. Lower statistical values of mean error confirm the superiority of subspace based approaches over TDE based techniques. Amongst the compared methods, LS-ESPRIT indicated better performance.

  12. Signal Subspace Smoothing Technique for Time Delay Estimation Using MUSIC Algorithm.

    Science.gov (United States)

    Sun, Meng; Wang, Yide; Le Bastard, Cédric; Pan, Jingjing; Ding, Yuehua

    2017-12-10

    In civil engineering, Time Delay Estimation (TDE) is one of the most important tasks for the media structure and quality evaluation. In this paper, the MUSIC algorithm is applied to estimate the time delay. In practice, the backscattered echoes are highly correlated (even coherent). In order to apply the MUSIC algorithm, an adaptation of signal subspace smoothing is proposed to decorrelate the correlation between echoes. Unlike the conventional sub-band averaging techniques, we propose to directly use the signal subspace, which can take full advantage of the signal subspace and reduce the influence of noise. Moreover, the proposed method is adapted to deal with any radar pulse shape. The proposed method is tested on both numerical and experimental data. Both results show the effectiveness of the proposed method.

  13. The Algorithm for Blind Multi-user Detector Based on Subspace Tracking

    Directory of Open Access Journals (Sweden)

    Meng JIA

    2014-04-01

    Full Text Available Multi-user detection (MUD is an efficient technique for interference suppression that reduces the Multiple access interference (MAI and improves the performance and increases the capacity of the system. Nowadays most of the research to MUD focuses on the blind multi-user detector because it does not require training sequences and can save the spectrum resource. By applying an improved subspace tracking algorithm to a modified subspace-based linear MMSE multi-user detector, a blind multi-user detector is presented. For the improved subspace tracking algorithm can reduce considerably computational complexity while keeping satisfactory convergence speed and stability and the modified MMSE multi-user detector doesn’t require the estimation of eigenvalue matrix, there can be significant elevation in the detection performance. Simulation results demonstrate preliminarily the conclusions above.

  14. Optimizing the data acquisition rate for a remotely controllable structural monitoring system with parallel operation and self-adaptive sampling

    International Nuclear Information System (INIS)

    Sheng, Wenjuan; Guo, Aihuang; Liu, Yang; Azmi, Asrul Izam; Peng, Gang-Ding

    2011-01-01

    We present a novel technique that optimizes the real-time remote monitoring and control of dispersed civil infrastructures. The monitoring system is based on fiber Bragg gating (FBG) sensors, and transfers data via Ethernet. This technique combines parallel operation and self-adaptive sampling to increase the data acquisition rate in remote controllable structural monitoring systems. The compact parallel operation mode is highly efficient at achieving the highest possible data acquisition rate for the FBG sensor based local data acquisition system. Self-adaptive sampling is introduced to continuously coordinate local acquisition and remote control for data acquisition rate optimization. Key issues which impact the operation of the whole system, such as the real-time data acquisition rate, data processing capability, and buffer usage, are investigated. The results show that, by introducing parallel operation and self-adaptive sampling, the data acquisition rate can be increased by several times without affecting the system operating performance on both local data acquisition and remote process control

  15. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene

    Science.gov (United States)

    Zhao, Yunlong; Feng, Jiangang; Liu, Xue; Wang, Fengchao; Wang, Lifen; Shi, Changwei; Huang, Lei; Feng, Xi; Chen, Xiyuan; Xu, Lin; Yan, Mengyu; Zhang, Qingjie; Bai, Xuedong; Wu, Hengan; Mai, Liqiang

    2014-08-01

    High-energy lithium battery materials based on conversion/alloying reactions have tremendous potential applications in new generation energy storage devices. However, these applications are limited by inherent large volume variations and sluggish kinetics. Here we report a self-adaptive strain-relaxed electrode through crumpling of graphene to serve as high-stretchy protective shells on metal framework, to overcome these limitations. The graphene sheets are self-assembled and deeply crumpled into pinecone-like structure through a contraction-strain-driven crumpling method. The as-prepared electrode exhibits high specific capacity (2,165 mAh g-1), fast charge-discharge rate (20 A g-1) with no capacity fading in 1,000 cycles. This kind of crumpled graphene has self-adaptive behaviour of spontaneous unfolding-folding synchronized with cyclic expansion-contraction volumetric variation of core materials, which can release strain and maintain good electric contact simultaneously. It is expected that such findings will facilitate the applications of crumpled graphene and the self-adaptive materials.

  16. Krylov subspace methods for the solution of large systems of ODE's

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Bjurstrøm, Nils Henrik

    1998-01-01

    In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....

  17. Subspace Method-based Blind SNR Estimation for Communication between Orbiters in Mars Exploration

    Directory of Open Access Journals (Sweden)

    Sun Ze-Zhou

    2017-01-01

    Full Text Available In Mars exploration the effective time of communication between orbiters is short, and the relative distance and gesture between them change fast. The signal to noise ratio (SNR estimation is required in receiver to change adaptively the data rate in the communication system. Therefore, SNR estimation is a key technique in adaptive data transmission. We propose a blind SNR estimation for communication between orbiters in Mars exploration via subspace method. The subspace method has better SNR estimation than some conventional SNR estimation algorithms. Numerical simulations demonstrate the effectiveness and improvement of the proposed algorithm.

  18. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2007-01-01

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  19. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  20. On restricting planar curve evolution to finite dimensional implicit subspaces with non-Euclidean metric

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant; Lauze, Francois Bernard; Sommer, Stefan Horst

    2010-01-01

    This paper deals with restricting curve evolution to a finite and not necessarily flat space of curves, obtained as a subspace of the infinite dimensional space of planar curves endowed with the usual but weak parametrization invariant curve L 2-metric.We first show how to solve differential...... of a 3-sphere and then a series of examples on a highly non-linear subspace of the space of closed spline curves, where we have restricted mean curvature motion, Geodesic Active contours and compute geodesic between two curves....

  1. Robust subspace estimation using low-rank optimization theory and applications

    CERN Document Server

    Oreifej, Omar

    2014-01-01

    Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundame

  2. Extended Krylov subspaces approximations of matrix functions. Application to computational electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Druskin, V.; Lee, Ping [Schlumberger-Doll Research, Ridgefield, CT (United States); Knizhnerman, L. [Central Geophysical Expedition, Moscow (Russian Federation)

    1996-12-31

    There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.

  3. The Kalman Filtering Blind Adaptive Multi-user Detector Based on Tracking Algorithm of Signal Subspace

    Directory of Open Access Journals (Sweden)

    Liqing Zhou

    2015-01-01

    Full Text Available Multi-user detection is an effective method to reduce multiple access interference in code division multiple access (CDMA systems. This paper discusses a signal subspace based blind adaptive multiuser detector and a Kalman filtering blind adaptive multiuser detector. Combining them together, a new Kalman filtering blind adaptive multiuser detector based on a tracking algorithm of the signal subspace is proposed. Analysis and simulation show that the proposed blind multiuser detector achieves better suppression of multiple access interference and has a higher convergence rate.

  4. An Effective Hybrid Self-Adapting Differential Evolution Algorithm for the Joint Replenishment and Location-Inventory Problem in a Three-Level Supply Chain

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP. The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs, the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP’s difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA and hybrid DE (HDE are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem.

  5. An analogue of the Littlewood-Paley theorem for orthoprojectors onto wavelet subspaces

    Science.gov (United States)

    Kudryavtsev, S. N.

    2016-06-01

    We prove an analogue of the Littlewood-Paley theorem for orthoprojectors onto wavelet subspaces corresponding to a non-isotropic multiresolution analysis generated by the tensor product of smooth scaling functions of one variable with sufficiently rapid decay at infinity.

  6. A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    comparative studies on the advantages and disadvantages of the different algorithms exist. Part of the underlying problem is the lack of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this work, we...

  7. Experimental Study of Generalized Subspace Filters for the Cocktail Party Situation

    DEFF Research Database (Denmark)

    Christensen, Knud Bank; Christensen, Mads Græsbøll; Boldt, Jesper B.

    2016-01-01

    This paper investigates the potential performance of generalized subspace filters for speech enhancement in cocktail party situations with very poor signal/noise ratio, e.g. down to -15 dB. Performance metrics output signal/noise ratio, signal/ distortion ratio, speech quality rating and speech...

  8. Consistency analysis of subspace identification methods based on a linear regression approach

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2001-01-01

    In the literature results can be found which claim consistency for the subspace method under certain quite weak assumptions. Unfortunately, a new result gives a counter example showing inconsistency under these assumptions and then gives new more strict sufficient assumptions which however does n...

  9. Two stage DOA and Fundamental Frequency Estimation based on Subspace Techniques

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; Christensen, Mads Græsbøll; So, Hing-Cheung

    2012-01-01

    In this paper, the problem of fundamental frequency and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signal is addressed. The estimation procedure consists of two stages. Firstly, by making use of the subspace technique and Markov-based eigenanalysis, a multi- channel...

  10. Prewhitening for Narrow-Band Noise in Subspace Methods for Noise Reduction

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2004-01-01

    A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, typically when...

  11. Residual replacement strategies for Krylov subspace iterative methods for the convergence of true residuals

    NARCIS (Netherlands)

    Vorst, H.A. van der; Ye, Q.

    1999-01-01

    In this paper, a strategy is proposed for alternative computations of the residual vectors in Krylov subspace methods, which improves the agreement of the computed residuals and the true residuals to the level of O(u)kAkkxk. Building on earlier ideas on residual replacement and on insights in

  12. Locally indistinguishable subspaces spanned by three-qubit unextendible product bases

    International Nuclear Information System (INIS)

    Duan Runyao; Ying Mingsheng; Xin Yu

    2010-01-01

    We study the local distinguishability of general multiqubit states and show that local projective measurements and classical communication are as powerful as the most general local measurements and classical communication. Remarkably, this indicates that the local distinguishability of multiqubit states can be decided efficiently. Another useful consequence is that a set of orthogonal n-qubit states is locally distinguishable only if the summation of their orthogonal Schmidt numbers is less than the total dimension 2 n . Employing these results, we show that any orthonormal basis of a subspace spanned by arbitrary three-qubit orthogonal unextendible product bases (UPB) cannot be exactly distinguishable by local operations and classical communication. This not only reveals another intrinsic property of three-qubit orthogonal UPB but also provides a class of locally indistinguishable subspaces with dimension 4. We also explicitly construct locally indistinguishable subspaces with dimensions 3 and 5, respectively. Similar to the bipartite case, these results on multipartite locally indistinguishable subspaces can be used to estimate the one-shot environment-assisted classical capacity of a class of quantum broadcast channels.

  13. A lower bound on the error in dimensionality reduction resulting from projection onto a restricted subspace

    Science.gov (United States)

    Chandola, Himanshu

    2010-01-01

    We obtain the lower bound on a variant of the common problem of dimensionality reduction. In this version, the dataset is projected on to a k dimensional subspace with the property that the first k-1 basis vectors are fixed, leaving a single degree of freedom in terms of basis vectors. PMID:21057654

  14. A lower bound on the error in dimensionality reduction resulting from projection onto a restricted subspace.

    Science.gov (United States)

    Chandola, Himanshu

    2010-12-30

    We obtain the lower bound on a variant of the common problem of dimensionality reduction. In this version, the dataset is projected on to a k dimensional subspace with the property that the first k-1 basis vectors are fixed, leaving a single degree of freedom in terms of basis vectors.

  15. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    Science.gov (United States)

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections

    OpenAIRE

    Hong, Liang

    2015-01-01

    Fuzzy ordered linear spaces, Riesz spaces, fuzzy Archimedean spaces and $\\sigma$-complete fuzzy Riesz spaces were defined and studied in several works. Following the efforts along this line, we define fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections and establish their fundamental properties.

  17. A Subspace Approach to Blind Multiuser Detection for Ultra-Wideband Communication Systems

    Directory of Open Access Journals (Sweden)

    Liu Ping

    2005-01-01

    Full Text Available Impulse radio-based ultra-wideband (UWB communication systems allow multiple users to access channels simultaneously by assigning unique time-hopping codes to individual users, while each user's information stream is modulated by pulse-position modulation (PPM. However, transmitted signals undergo fading from a number of propagation paths in a dense multipath environment and meanwhile suffer from multiuser interference (MUI. Although RAKE receiver can be employed to maximally exploit path diversity, it is a single-user receiver. Multiuser receiver can significantly improve detection performance. Each of these receivers requires channel parameters. Existing maximum likelihood channel estimators treat MUI as Gaussian noise. In this paper, we derive a blind subspace channel estimator first and then design linear receivers. Following a channel input/output model that transforms a PPM signal into a sum of seemingly pulse-amplitude modulated signals, a structure similar to a code-division multiple-access (CDMA system is observed. Code matrices for each user are identified. After considering unique statistical properties of new inputs such as mean and covariance, the model is further transformed to ensure that all signature waveforms lie in the signal subspace and are orthogonal to the noise subspace. Consequently, a subspace technique is applicable to estimate each channel. Then minimum mean square error receivers of two different versions are designed, suitable for both uplink and downlink. Asymptotic performance of both the channel estimator and receivers is studied. Closed-form bit error rate is also derived.

  18. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite

  19. On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace

    Science.gov (United States)

    Bocquet, Marc

    2016-04-01

    The characteristics of the model dynamics are critical in the performance of (ensemble) Kalman filters and smoothers. In particular, as emphasised in the seminal work of Anna Trevisan and co-authors, the error covariance matrix is asymptotically supported by the unstable and neutral subspace only, i.e. it is span by the backward Lyapunov vectors with non-negative exponents. This behaviour is at the heart of algorithms known as Assimilation in the Unstable Subspace, although its formal proof was still missing. This convergence property, its analytic proof, meaning and implications for the design of efficient reduced-order data assimilation algorithms are the topics of this talk. The structure of the talk is as follows. Firstly, we provide the analytic proof of the convergence on the unstable and neutral subspace in the linear dynamics and linear observation operator case, along with rigorous results giving the rate of such convergence. The derivation is based on an expression that relates explicitly the covariance matrix at an arbitrary time with the initial error covariance. Numerical results are also shown to illustrate and support the mathematical claims. Secondly, we discuss how this neat picture is modified when the dynamics become nonlinear and chaotic and when it is not possible to derive analytic formulas. In this case an ensemble Kalman filter (EnKF) is used and the connection between the convergence properties on the unstable-neutral subspace and the EnKF covariance inflation is discussed. We also explain why, in the perfect model setting, the iterative ensemble Kalman smoother (IEnKS), as an efficient filtering and smoothing technique, has an error covariance matrix whose projection is more focused on the unstable-neutral subspace than that of the EnKF. This contribution results from collaborations with A. Carrassi, K. S. Gurumoorthy, A. Apte, C. Grudzien, and C. K. R. T. Jones.

  20. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  1. Lyapunov vectors and assimilation in the unstable subspace: theory and applications

    International Nuclear Information System (INIS)

    Palatella, Luigi; Carrassi, Alberto; Trevisan, Anna

    2013-01-01

    Based on a limited number of noisy observations, estimation algorithms provide a complete description of the state of a system at current time. Estimation algorithms that go under the name of assimilation in the unstable subspace (AUS) exploit the nonlinear stability properties of the forecasting model in their formulation. Errors that grow due to sensitivity to initial conditions are efficiently removed by confining the analysis solution in the unstable and neutral subspace of the system, the subspace spanned by Lyapunov vectors with positive and zero exponents, while the observational noise does not disturb the system along the stable directions. The formulation of the AUS approach in the context of four-dimensional variational assimilation (4DVar-AUS) and the extended Kalman filter (EKF-AUS) and its application to chaotic models is reviewed. In both instances, the AUS algorithms are at least as efficient but simpler to implement and computationally less demanding than their original counterparts. As predicted by the theory when error dynamics is linear, the optimal subspace dimension for 4DVar-AUS is given by the number of positive and null Lyapunov exponents, while the EKF-AUS algorithm, using the same unstable and neutral subspace, recovers the solution of the full EKF algorithm, but dealing with error covariance matrices of a much smaller dimension and significantly reducing the computational burden. Examples of the application to a simplified model of the atmospheric circulation and to the optimal velocity model for traffic dynamics are given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  2. Using CUDA Technology for Defining the Stiffness Matrix in the Subspace of Eigenvectors

    Directory of Open Access Journals (Sweden)

    Yu. V. Berchun

    2015-01-01

    Full Text Available The aim is to improve the performance of solving a problem of deformable solid mechanics through the use of GPGPU. The paper describes technologies for computing systems using both a central and a graphics processor and provides motivation for using CUDA technology as the efficient one.The paper also analyses methods to solve the problem of defining natural frequencies and design waveforms, i.e. an iteration method in the subspace. The method includes several stages. The paper considers the most resource-hungry stage, which defines the stiffness matrix in the subspace of eigenforms and gives the mathematical interpretation of this stage.The GPU choice as a computing device is justified. The paper presents an algorithm for calculating the stiffness matrix in the subspace of eigenforms taking into consideration the features of input data. The global stiffness matrix is very sparse, and its size can reach tens of millions. Therefore, it is represented as a set of the stiffness matrices of the single elements of a model. The paper analyses methods of data representation in the software and selects the best practices for GPU computing.It describes the software implementation using CUDA technology to calculate the stiffness matrix in the subspace of eigenforms. Due to the input data nature, it is impossible to use the universal libraries of matrix computations (cuSPARSE and cuBLAS for loading the GPU. For efficient use of GPU resources in the software implementation, the stiffness matrices of elements are built in the block matrices of a special form. The advantages of using shared memory in GPU calculations are described.The transfer to the GPU computations allowed a twentyfold increase in performance (as compared to the multithreaded CPU-implementation on the model of middle dimensions (degrees of freedom about 2 million. Such an acceleration of one stage speeds up defining the natural frequencies and waveforms by the iteration method in a subspace

  3. Lyapunov vectors and assimilation in the unstable subspace: theory and applications

    Science.gov (United States)

    Palatella, Luigi; Carrassi, Alberto; Trevisan, Anna

    2013-06-01

    Based on a limited number of noisy observations, estimation algorithms provide a complete description of the state of a system at current time. Estimation algorithms that go under the name of assimilation in the unstable subspace (AUS) exploit the nonlinear stability properties of the forecasting model in their formulation. Errors that grow due to sensitivity to initial conditions are efficiently removed by confining the analysis solution in the unstable and neutral subspace of the system, the subspace spanned by Lyapunov vectors with positive and zero exponents, while the observational noise does not disturb the system along the stable directions. The formulation of the AUS approach in the context of four-dimensional variational assimilation (4DVar-AUS) and the extended Kalman filter (EKF-AUS) and its application to chaotic models is reviewed. In both instances, the AUS algorithms are at least as efficient but simpler to implement and computationally less demanding than their original counterparts. As predicted by the theory when error dynamics is linear, the optimal subspace dimension for 4DVar-AUS is given by the number of positive and null Lyapunov exponents, while the EKF-AUS algorithm, using the same unstable and neutral subspace, recovers the solution of the full EKF algorithm, but dealing with error covariance matrices of a much smaller dimension and significantly reducing the computational burden. Examples of the application to a simplified model of the atmospheric circulation and to the optimal velocity model for traffic dynamics are given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  4. M/T method based incremental encoder velocity measurement error analysis and self-adaptive error elimination algorithm

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Long, Jiang

    2017-01-01

    For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...... and A/D conversion error make it hard to achieve theoretical speed measurement accuracy. In this paper, hardware caused speed measurement errors are analyzed and modeled in detail; a Single-Phase Self-adaptive M/T method is proposed to ideally suppress speed measurement error. In the end, simulation...

  5. Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries.

    Science.gov (United States)

    Li, Jiansen; Song, Ying; Zhu, Zhen; Zhao, Jun

    2017-05-01

    Dual-dictionary learning (Dual-DL) method utilizes both a low-resolution dictionary and a high-resolution dictionary, which are co-trained for sparse coding and image updating, respectively. It can effectively exploit a priori knowledge regarding the typical structures, specific features, and local details of training sets images. The prior knowledge helps to improve the reconstruction quality greatly. This method has been successfully applied in magnetic resonance (MR) image reconstruction. However, it relies heavily on the training sets, and dictionaries are fixed and nonadaptive. In this research, we improve Dual-DL by using self-adaptive dictionaries. The low- and high-resolution dictionaries are updated correspondingly along with the image updating stage to ensure their self-adaptivity. The updated dictionaries incorporate both the prior information of the training sets and the test image directly. Both dictionaries feature improved adaptability. Experimental results demonstrate that the proposed method can efficiently and significantly improve the quality and robustness of MR image reconstruction.

  6. Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology

    Directory of Open Access Journals (Sweden)

    Chongfei Sun

    2018-03-01

    Full Text Available The lack of an efficient and reliable power supply is currently one of the bottlenecks restricting the practical application of unmanned ocean detectors. Wave energy is the most widely distributed ocean energy, with the obvious advantages of high energy density and predictability. In this paper, a novel wave energy converter (WEC for power supply of low-power unmanned ocean detectors is proposed, which is a small-scale counter-rotating self-adaptive point absorber-type WEC. The double-layer counter-rotating absorbers can achieve the torque balance of the whole device. Besides, the self-adaptation of the blade to the water flow can maintain a unidirectional continuous rotation of the single-layer absorber. The WEC has several advantages, including small occupied space, simple exchange process and convenient modular integration. It is expected to meet the power demand of low-power ocean detectors. Through modeling and CFD analysis, it was found that the power and efficiency characteristics of WEC are greatly influenced by the relative flow velocity, the blade angle of the absorber and the interaction between the upper and lower absorbers. A physical prototype of the WEC was made and some related experiments were conducted to verify the feasibility of WEC working principle and the reliability of CFD analysis.

  7. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  8. Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.

  9. Speckle noise reduction technique for Lidar echo signal based on self-adaptive pulse-matching independent component analysis

    Science.gov (United States)

    Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi

    2018-04-01

    Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.

  10. Four-dimensional ensemble variational data assimilation and the unstable subspace

    Science.gov (United States)

    Bocquet, Marc; Carrassi, Alberto

    2017-04-01

    The performance of (ensemble) Kalman filters used for data assimilation in the geosciences critically depends on the dynamical properties of the evolution model. A key aspect, emphasized in the seminal work of Anna Trevisan and co-authors, is that the error covariance matrix is asymptotically supported by the unstable-neutral subspace only, i.e. it is spanned by the backward Lyapunov vectors with non- negative exponents. The analytic proof of such a property for the Kalman filter error covariance has been recently given, and in particular that of its confinement to the unstable-neutral subspace. In this paper, we first generalize those results to the case of the Kalman smoother in a linear, Gaussian and perfect model scenario. We also provide square-root formulae for the filter and smoother that make the connection with ensemble formulations of the Kalman filter and smoother, where the span of the error covariance is described in terms of the ensemble deviations from the mean. We then discuss how this neat picture is modified when the dynamics are nonlinear and chaotic, and for which analytic results are precluded or difficult to obtain. A numerical investigation is carried out to study the approximate confinement of the anomalies for both a deterministic ensemble Kalman filter (EnKF) and a four-dimensional ensemble variational method, the iterative ensemble Kalman smoother (IEnKS), in a perfect model scenario. The confinement is characterized using geometrical angles that determine the relative position of the anomalies with respect to the unstable-neutral subspace. The alignment of the anomalies and of the unstable-neutral subspace is more pronounced when observation precision or frequency, as well as the data assimilation window length for the IEnKS, are increased. This leads to the increase of the data assimilation accuracy and shows that, under perfect model assumptions, spanning the full unstable-neutral subspace is sufficient to achieve satisfactorily

  11. HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2016-06-01

    Full Text Available In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.

  12. Cumulant-Based Coherent Signal Subspace Method for Bearing and Range Estimation

    Directory of Open Access Journals (Sweden)

    Bourennane Salah

    2007-01-01

    Full Text Available A new method for simultaneous range and bearing estimation for buried objects in the presence of an unknown Gaussian noise is proposed. This method uses the MUSIC algorithm with noise subspace estimated by using the slice fourth-order cumulant matrix of the received data. The higher-order statistics aim at the removal of the additive unknown Gaussian noise. The bilinear focusing operator is used to decorrelate the received signals and to estimate the coherent signal subspace. A new source steering vector is proposed including the acoustic scattering model at each sensor. Range and bearing of the objects at each sensor are expressed as a function of those at the first sensor. This leads to the improvement of object localization anywhere, in the near-field or in the far-field zone of the sensor array. Finally, the performances of the proposed method are validated on data recorded during experiments in a water tank.

  13. Quantum theory of dynamical collective subspace for large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-03-01

    By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  14. Efficient Computation of Hartree-Fock Exchange Using Recursive Subspace Bisection.

    Science.gov (United States)

    Gygi, François; Duchemin, Ivan

    2013-01-08

    We use a recursive subspace bisection approach introduced in Phys. Rev. Lett.2009, 102, 166406 to accelerate the computation of the Hartree-Fock exchange operator in plane-wave pseudopotential electronic structure calculations. Recursive subspace bisection allows for an unbiased localization of orbitals in domains of varying size and a truncation of orbitals that preserves accuracy in a controlled manner. This representation is used to accelerate the computation of the Hartree-Fock exchange operator, which in turn makes first-principles molecular dynamics simulations based on hybrid density functionals feasible for larger systems than previously possible. We describe a parallel implementation of the method and a load balancing algorithm. The efficiency and accuracy of this approach are demonstrated in electronic structure calculations of a chloride ion solvated in liquid water and calculations of the vacancy formation energy in a 512-atom silicon crystal using the PBE0 hybrid exchange-correlation functional.

  15. Modelling of Lime Kiln Using Subspace Method with New Order Selection Criterion

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2014-01-01

    Full Text Available This paper is taking actual control demand of rotary kiln as background and builds a calcining belt state space model using PO-Moesp subspace method. A novel order-delay double parameters error criterion (ODC is presented to reduce the modeling order. The proposed subspace order identification method takes into account the influence of order and delay on model error criterion simultaneously. For the introduction of the delay factors, the order is reduced dramatically in the system modeling. Also, in the data processing part sliding-window method is adopted for stripping delay factor from historical data. For this, the parameters can be changed flexibly. Some practical problems in industrial kiln process modeling are also solved. Finally, it is applied to an industrial kiln case.

  16. Blind equalization and automatic modulation classification based on subspace for subcarrier MPSK optical communications

    Science.gov (United States)

    Chen, Dan; Guo, Lin-yuan; Wang, Chen-hao; Ke, Xi-zheng

    2017-07-01

    Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying (MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor (KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.

  17. Recursive Subspace Identification of AUV Dynamic Model under General Noise Assumption

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs is proposed in this paper. Due to the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a Hammerstein model with nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration, the identification problem is concerned as an errors-in-variables (EIV one which means that the identification procedure is under general noise assumption. In order to make the algorithm recursively, propagator method (PM based subspace approach is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

  18. Visual tracking based on the sparse representation of the PCA subspace

    Science.gov (United States)

    Chen, Dian-bing; Zhu, Ming; Wang, Hui-li

    2017-09-01

    We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis (PCA) subspace, and then we employ an L 1 regularization to restrict the sparsity of the residual term, an L 2 regularization term to restrict the sparsity of the representation coefficients, and an L 2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods.

  19. Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits

    Science.gov (United States)

    Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.

    2015-08-01

    To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.

  20. On Consistency of Closed-Loop Subspace Identification with Innovation Estimation

    OpenAIRE

    Lin, Weilu; Qin, S. Joe; Ljung, Lennart

    2007-01-01

    In this paper, we show that the consistency of closed-loop subspace identification methods (SIMs) can be achieved through innovation estimation. Based on this analysis, a sufficient condition for the consistency of a new proposed closed-loop SIM is given, A consistent estimate of the Kalman gain under closed-loop conditions is also provided based on the algorithm. A multi-input-multi-output simulation shows that itis consistent under closed-loop conditions, when traditional SIMs fail to provi...

  1. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods....

  2. Krylov Subspace and Multigrid Methods Applied to the Incompressible Navier-Stokes Equations

    Science.gov (United States)

    Vuik, C.; Wesseling, P.; Zeng, S.

    1996-01-01

    We consider numerical solution methods for the incompressible Navier-Stokes equations discretized by a finite volume method on staggered grids in general coordinates. We use Krylov subspace and multigrid methods as well as their combinations. Numerical experiments are carried out on a scalar and a vector computer. Robustness and efficiency of these methods are studied. It appears that good methods result from suitable combinations of GCR and multigrid methods.

  3. Uncertainty calculation for modal parameters used with stochastic subspace identification: an application to a bridge structure

    Science.gov (United States)

    Hsu, Wei-Ting; Loh, Chin-Hsiung; Chao, Shu-Hsien

    2015-03-01

    Stochastic subspace identification method (SSI) has been proven to be an efficient algorithm for the identification of liner-time-invariant system using multivariate measurements. Generally, the estimated modal parameters through SSI may be afflicted with statistical uncertainty, e.g. undefined measurement noises, non-stationary excitation, finite number of data samples etc. Therefore, the identified results are subjected to variance errors. Accordingly, the concept of the stabilization diagram can help users to identify the correct model, i.e. through removing the spurious modes. Modal parameters are estimated at successive model orders where the physical modes of the system are extracted and separated from the spurious modes. Besides, an uncertainty computation scheme was derived for the calculation of uncertainty bounds for modal parameters at some given model order. The uncertainty bounds of damping ratios are particularly interesting, as the estimation of damping ratios are difficult to obtain. In this paper, an automated stochastic subspace identification algorithm is addressed. First, the identification of modal parameters through covariance-driven stochastic subspace identification from the output-only measurements is used for discussion. A systematic way of investigation on the criteria for the stabilization diagram is presented. Secondly, an automated algorithm of post-processing on stabilization diagram is demonstrated. Finally, the computation of uncertainty bounds for each mode with all model order in the stabilization diagram is utilized to determine system natural frequencies and damping ratios. Demonstration of this study on the system identification of a three-span steel bridge under operation condition is presented. It is shown that the proposed new operation procedure for the automated covariance-driven stochastic subspace identification can enhance the robustness and reliability in structural health monitoring.

  4. Banach C*-algebras not containing a subspace isomorphic to C0

    International Nuclear Information System (INIS)

    Basit, B.

    1989-09-01

    If X is a locally Hausdorff space and C 0 (X) the Banach algebra of continuous functions defined on X vanishing at infinity, we showed that a subalgebra A of C 0 (X) is finite dimensional if it does not contain a subspace isomorphic to the Banach space C 0 of convergent to zero complex sequences. In this paper we extend this result to noncommutative Banach C*-algebras and Banach* algebras. 10 refs

  5. Subspace accelerated inexact Newton method for large scale wave functions calculations in Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J

    2008-07-29

    We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.

  6. Subspace based adaptive denoising of surface EMG from neurological injury patients

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  7. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  8. Subspace-based damage detection under changes in the ambient excitation statistics

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent; Hille, Falk

    2014-03-01

    In the last ten years, monitoring the integrity of the civil infrastructure has been an active research topic, including in connected areas as automatic control. It is common practice to perform damage detection by detecting changes in the modal parameters between a reference state and the current (possibly damaged) state from measured vibration data. Subspace methods enjoy some popularity in structural engineering, where large model orders have to be considered. In the context of detecting changes in the structural properties and the modal parameters linked to them, a subspace-based fault detection residual has been recently proposed and applied successfully, where the estimation of the modal parameters in the possibly damaged state is avoided. However, most works assume that the unmeasured ambient excitation properties during measurements of the structure in the reference and possibly damaged condition stay constant, which is hardly satisfied by any application. This paper addresses the problem of robustness of such fault detection methods. It is explained why current algorithms from literature fail when the excitation covariance changes and how they can be modified. Then, an efficient and fast subspace-based damage detection test is derived that is robust to changes in the excitation covariance but also to numerical instabilities that can arise easily in the computations. Three numerical applications show the efficiency of the new approach to better detect and separate different levels of damage even using a relatively low sample length.

  9. Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers.

    Science.gov (United States)

    Shahbazi Avarvand, Forooz; Ewald, Arne; Nolte, Guido

    2012-01-01

    To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method "RAP-MUSIC" to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a) RAP-MUSIC based on the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b) conventional RAP-MUSIC fails to do so since it is highly influenced by noninteracting sources, and that (c) the second method correctly identifies those sources which are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of four interacting sources presumably in sensory-motor areas.

  10. N-screen aware multicriteria hybrid recommender system using weight based subspace clustering.

    Science.gov (United States)

    Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements.

  11. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  12. Localizing True Brain Interactions from EEG and MEG Data with Subspace Methods and Modified Beamformers

    Directory of Open Access Journals (Sweden)

    Forooz Shahbazi Avarvand

    2012-01-01

    Full Text Available To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method “RAP-MUSIC” to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a RAP-MUSIC based on the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b conventional RAP-MUSIC fails to do so since it is highly influenced by noninteracting sources, and that (c the second method correctly identifies those sources which are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of four interacting sources presumably in sensory-motor areas.

  13. SMS-HSL: Simultaneous multislice aliasing separation exploiting hankel subspace learning.

    Science.gov (United States)

    Park, Suhyung; Park, Jaeseok

    2017-10-01

    To develop a novel, simultaneous multislice reconstruction method that exploits Hankel subspace learning (SMS-HSL) for aliasing separation in the slice direction. An SMS signal model with the Hankel-structured matrix was proposed. To efficiently suppress interslice leakage artifacts from a signal subspace perspective, a null space was learned from the reference data combined over all slices other than a slice of interest using singular value decomposition. Given the fact that the Hankel-structured matrix is rank-deficient while the magnitude between the reference and its estimate is similar in k-space, the SMS-HSL was reformulated as a constrained optimization problem with both low-rank and magnitude priors. SMS signals were projected onto a slice-specific subspace while undesired signals were eliminated using the null space operator. The simulations and experiments were performed with increasing multiband factors up to 6 using the SMS-HSL and the split slice-GRAPPA. Compared with the split slice-GRAPPA, the SMS-HSL shows superior performance in suppressing aliasing artifacts and noises at high multiband factors even with: insufficient reference signals, a small number of coils, and a short distance between aliasing voxels. We successfully demonstrated the effectiveness of the SMS-HSL over the split slice-GRAPPA for aliasing separation in the slice direction. Magn Reson Med 78:1392-1404, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality

    Directory of Open Access Journals (Sweden)

    Carlos A. L. Pires

    2017-01-01

    Full Text Available We propose an expansion of multivariate time-series data into maximally independent source subspaces. The search is made among rotations of prewhitened data which maximize non-Gaussianity of candidate sources. We use a tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of squared coskewness and cokurtosis. By solving a high-order singular value decomposition problem, we extract the axes associated with most non-Gaussianity. Moreover, an estimate of the Gaussian subspace is provided by the trailing singular vectors. The independent subspaces are obtained through the search of “quasi-independent” components within the estimated non-Gaussian subspace, followed by the identification of groups with significant joint negentropies. Sources result essentially from the coherency of extremes of the data components. The method is then applied to the global sea surface temperature anomalies, equatorward of 65°, after being tested with non-Gaussian surrogates consistent with the data anomalies. The main emerging independent components and subspaces, supposedly generated by independent forcing, include different variability modes, namely, The East-Pacific, the Central Pacific, and the Atlantic Niños, the Atlantic Multidecadal Oscillation, along with the subtropical dipoles in the Indian, South Pacific, and South-Atlantic oceans. Benefits and usefulness of independent subspaces are then discussed.

  15. Self-adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network.

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  16. Numerical study of self-adaptive vibration suppression for flexible structure using interior inlay viscous fluid unit method

    Science.gov (United States)

    Zhang, Xiongwen; Li, Jun; Xu, Hui; Li, Guojun

    2006-11-01

    This paper investigates the usage of an interior inlay viscous fluid unit as a new vibration suppression method for flexible structures via numerical simulations. The first and second modes of vibration for a beam have been calculated using the commercial computational fluid dynamic package Fluent6.1, together with the liquid surface distribution and the fluid force. The calculated results show that the inlay fluid unit has suppressive effects on flexible structures. The liquid converges self-adaptively to locations of larger vibrations. The fluid force varies with the beam vibration at a phase difference of more than 180°. Thus the fluid force suppresses the beam vibration at most of the time.

  17. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    Science.gov (United States)

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  18. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment

    International Nuclear Information System (INIS)

    Jiang Chuanwen; Bompard, Etorre

    2005-01-01

    This paper proposes a short term hydroelectric plant dispatch model based on the rule of maximizing the benefit. For the optimal dispatch model, which is a large scale nonlinear planning problem with multi-constraints and multi-variables, this paper proposes a novel self-adaptive chaotic particle swarm optimization algorithm to solve the short term generation scheduling of a hydro-system better in a deregulated environment. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed approach introduces chaos mapping and an adaptive scaling term into the particle swarm optimization algorithm, which increases its convergence rate and resulting precision. The new method has been examined and tested on a practical hydro-system. The results are promising and show the effectiveness and robustness of the proposed approach in comparison with the traditional particle swarm optimization algorithm

  19. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Zhijia Chen

    2015-01-01

    Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  20. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    International Nuclear Information System (INIS)

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-01-01

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k∼20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  1. Self-Adapting Routing Overlay Network for Frequently Changing Application Traffic in Content-Based Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2014-01-01

    Full Text Available In the large-scale distributed simulation area, the topology of the overlay network cannot always rapidly adapt to frequently changing application traffic to reduce the overall traffic cost. In this paper, we propose a self-adapting routing strategy for frequently changing application traffic in content-based publish/subscribe system. The strategy firstly trains the traffic information and then uses this training information to predict the application traffic in the future. Finally, the strategy reconfigures the topology of the overlay network based on this predicting information to reduce the overall traffic cost. A predicting path is also introduced in this paper to reduce the reconfiguration numbers in the process of the reconfigurations. Compared to other strategies, the experimental results show that the strategy proposed in this paper could reduce the overall traffic cost of the publish/subscribe system in less reconfigurations.

  2. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  3. Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis

    Science.gov (United States)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan

    2017-09-01

    It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus

  4. A framework for generalized subspace pattern mining in high-dimensional datasets.

    Science.gov (United States)

    Curry, Edward W J

    2014-11-21

    A generalized notion of biclustering involves the identification of patterns across subspaces within a data matrix. This approach is particularly well-suited to analysis of heterogeneous molecular biology datasets, such as those collected from populations of cancer patients. Different definitions of biclusters will offer different opportunities to discover information from datasets, making it pertinent to tailor the desired patterns to the intended application. This paper introduces 'GABi', a customizable framework for subspace pattern mining suited to large heterogeneous datasets. Most existing biclustering algorithms discover biclusters of only a few distinct structures. However, by enabling definition of arbitrary bicluster models, the GABi framework enables the application of biclustering to tasks for which no existing algorithm could be used. First, a series of artificial datasets were constructed to represent three clearly distinct scenarios for applying biclustering. With a bicluster model created for each distinct scenario, GABi is shown to recover the correct solutions more effectively than a panel of alternative approaches, where the bicluster model may not reflect the structure of the desired solution. Secondly, the GABi framework is used to integrate clinical outcome data with an ovarian cancer DNA methylation dataset, leading to the discovery that widespread dysregulation of DNA methylation associates with poor patient prognosis, a result that has not previously been reported. This illustrates a further benefit of the flexible bicluster definition of GABi, which is that it enables incorporation of multiple sources of data, with each data source treated in a specific manner, leading to a means of intelligent integrated subspace pattern mining across multiple datasets. The GABi framework enables discovery of biologically relevant patterns of any specified structure from large collections of genomic data. An R implementation of the GABi framework is

  5. Time-varying subspace dimensionality: Useful as a seismic signal detection method?

    Science.gov (United States)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2012-12-01

    We explore the application of dimensional analysis to the problem of anomaly detection in multichannel time series. These techniques, which have been used for real-time load management in large computer systems, revolve around the time-varying dimensionality estimates of the signal subspace. Our application is to multiple channels of incoming seismic waveform data, as from a large array or across a network. Subspace analysis has been applied to seismic data before, but the routine use of the method is for the identification of a particular signal type, and requires a priori information about the range of signals for which the algorithm is searching. In this paradigm, a known but variable source (such as a mining region or aftershock sequence) provides known waveforms that are assumed to span the space occupied by incoming events of interest. Singular value decomposition or principal components analysis of the identified waveforms will allow for the selection of basis vectors that define the subspace onto which incoming signals are projected, to determine whether they belong to the source population of interest. In our application we do not seek to compare incoming signals to previously identified waveforms, but instead we seek to detect anomalies from the background behavior across an array or network. The background seismic levels will describe a signal space whose dimension may change markedly when an earthquake or other signal of interest occurs. We explore a variety of means by which we can evaluate the time-varying dimensionality of the signal space, and we compare the detection performance to other standard event detection methods.

  6. Outlier Ranking via Subspace Analysis in Multiple Views of the Data

    DEFF Research Database (Denmark)

    Muller, Emmanuel; Assent, Ira; Iglesias, Patricia

    2012-01-01

    Outlier mining is an important task for finding anomalous objects. In practice, however, there is not always a clear distinction between outliers and regular objects as objects have different roles w.r.t. different attribute sets. An object may deviate in one subspace, i.e. a subset of attributes...... principled integration of multiple views into an outlierness measure uncovers outliers that are not detectable in the full attribute space. Our experimental evaluation demonstrates that Outrank successfully determines a high quality outlier ranking, and outperforms state-of-the-art outlierness measures....

  7. Experimental Study of Generalized Subspace Filters for the Cocktail Party Situation

    DEFF Research Database (Denmark)

    Christensen, Knud Bank; Christensen, Mads Græsbøll; Boldt, Jesper B.

    2016-01-01

    This paper investigates the potential performance of generalized subspace filters for speech enhancement in cocktail party situations with very poor signal/noise ratio, e.g. down to -15 dB. Performance metrics output signal/noise ratio, signal/ distortion ratio, speech quality rating and speech...... intelligibility rating are mapped as functions of two algorithm parameters, revealing clear trade-off options between noise, distortion and subjective performances and a recommended choice of trade-off. Given sufficiently good noise statistics, SNR improvements around 20 dB as well as PESQ quality and STOI...

  8. Kernel based subspace projection of near infrared hyperspectral images of maize kernels

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Arngren, Morten; Hansen, Per Waaben

    2009-01-01

    In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods...... including principal component analysis and maximum autocorrelation factor analysis. The latter utilizes the fact that interesting phenomena in images exhibit spatial autocorrelation. However, linear projections often fail to grasp the underlying variability on the data. Therefore we propose to use so......- tor transform outperform the linear methods as well as kernel principal components in producing interesting projections of the data....

  9. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    DEFF Research Database (Denmark)

    Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian

    2017-01-01

    We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure...... of the dynamics and the approach to the stationary state becomes far more complex than in the case of conventional EIT. In particular, we discuss the emergence of a metastable decoherence-free subspace, whose dimension for a single Rydberg excitation grows linearly in the number of atoms. On approach...

  10. A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

    Science.gov (United States)

    Carpenter, Mark H.; Vuik, C.; Lucas, Peter; vanGijzen, Martin; Bijl, Hester

    2010-01-01

    A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b (sup i), which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to provide significant improvement in computational efficiency relative to baseline approaches.

  11. Speech Denoising in White Noise Based on Signal Subspace Low-rank Plus Sparse Decomposition

    Directory of Open Access Journals (Sweden)

    yuan Shuai

    2017-01-01

    Full Text Available In this paper, a new subspace speech enhancement method using low-rank and sparse decomposition is presented. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank for the underlying human speech signal. Then the low-rank and sparse decomposition is performed with the guidance of speech rank value to remove the noise. Extensive experiments have been carried out in white Gaussian noise condition, and experimental results show the proposed method performs better than conventional speech enhancement methods, in terms of yielding less residual noise and lower speech distortion.

  12. A hybrid approach to generating search subspaces in dynamically constrained 4-dimensional data assimilation

    Science.gov (United States)

    Yaremchuk, Max; Martin, Paul; Beattie, Christopher

    2017-09-01

    Development and maintenance of the linearized and adjoint code for advanced circulation models is a challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive with variational methods in many practical applications. This article proposes a hybrid scheme for generating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained by model dynamics and search directions are supplied iteratively using information from the current and previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces a single search direction from exact gradient information, a4dVar employs an ensemble of directions to form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built using the leading EOFs of either the model trajectory or the projections of the model-data misfits onto the range of the background error covariance (BEC) matrix at the current iteration. In the present study, we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating minimization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and can be potentially competitive with 4dvar both in terms of the required computational time and the forecast skill.

  13. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  14. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search.

    Science.gov (United States)

    Sugiyama, Masashi; Yamada, Makoto; von Bünau, Paul; Suzuki, Taiji; Kanamori, Takafumi; Kawanabe, Motoaki

    2011-03-01

    Methods for directly estimating the ratio of two probability density functions have been actively explored recently since they can be used for various data processing tasks such as non-stationarity adaptation, outlier detection, and feature selection. In this paper, we develop a new method which incorporates dimensionality reduction into a direct density-ratio estimation procedure. Our key idea is to find a low-dimensional subspace in which densities are significantly different and perform density-ratio estimation only in this subspace. The proposed method, D(3)-LHSS (Direct Density-ratio estimation with Dimensionality reduction via Least-squares Hetero-distributional Subspace Search), is shown to overcome the limitation of baseline methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Tsai Sung

    2013-12-01

    Full Text Available This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  16. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  17. PDE-Foam - a probability-density estimation method using self-adapting phase-space binning

    CERN Document Server

    Dannheim, Dominik; Voigt, Alexander; Grahn, Karl-Johan; Speckmayer, Peter

    2009-01-01

    Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. To efficiently use large event samples to estimate the probability density, a binary search tree (range searching) is used in the PDE-RS implementation. It is a generalisation of standard likelihood methods and a powerful classification tool for problems with highly non-linearly correlated observables. In this paper, we present an innovative improvement of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multidimensional phase space, minimizing the variance of the signal and background densities inside the cells. The binned density information is stored in binary trees, allowing for a very ...

  18. Calibration of the Hall Measurement System for a 6-DOF Precision Stage Using Self-Adaptive Hybrid TLBO.

    Science.gov (United States)

    Chen, Zhenyu; Liu, Yang; Fu, Zhenxian; Song, Shenmin; Tan, Jiubin

    2016-06-14

    To determine the planar motion of a 6-DOF precision stage, a measurement system based on three Hall sensors is adopted to obtain the X, Y, Rz motions of the stage. The machining and assembly errors in the actual mechanical system, which are difficult to measure directly, cause the parameters in the model of the Hall measurement system to deviate from their designed values. Additionally, the vertical movement of the stage will render the measurement model nonlinear. To guarantee the accuracy of the measurement, the parameters in the measurement model should be estimated and the nonlinearity compensated. In this paper, a novel approach based on self-adaptive hybrid TLBO (teaching-learning-based-optimization) is proposed to estimate the parameters in the Hall measurement model. The influences of zero deviations and vertical movements on the measurement accuracy are analyzed and compensated. The effectiveness of the proposed method is validated by experimental results obtained on a 6-DOF precision stage. Thanks to parameter estimation and calibration, the measurement error of the Hall sensor array is reduced to 6 micrometers.

  19. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    International Nuclear Information System (INIS)

    Wu Xiaobo; Liu Qing; Zhao Menglian; Chen Mingyang

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA. (semiconductor integrated circuits)

  20. High Resolution DOA Estimation Using Unwrapped Phase Information of MUSIC-Based Noise Subspace

    Science.gov (United States)

    Ichige, Koichi; Saito, Kazuhiko; Arai, Hiroyuki

    This paper presents a high resolution Direction-Of-Arrival (DOA) estimation method using unwrapped phase information of MUSIC-based noise subspace. Superresolution DOA estimation methods such as MUSIC, Root-MUSIC and ESPRIT methods are paid great attention because of their brilliant properties in estimating DOAs of incident signals. Those methods achieve high accuracy in estimating DOAs in a good propagation environment, but would fail to estimate DOAs in severe environments like low Signal-to-Noise Ratio (SNR), small number of snapshots, or when incident waves are coming from close angles. In MUSIC method, its spectrum is calculated based on the absolute value of the inner product between array response and noise eigenvectors, means that MUSIC employs only the amplitude characteristics and does not use any phase characteristics. Recalling that phase characteristics plays an important role in signal and image processing, we expect that DOA estimation accuracy could be further improved using phase information in addition to MUSIC spectrum. This paper develops a procedure to obtain an accurate spectrum for DOA estimation using unwrapped and differentiated phase information of MUSIC-based noise subspace. Performance of the proposed method is evaluated through computer simulation in comparison with some conventional estimation methods.

  1. Joint Feature Selection and Subspace Learning for Cross-Modal Retrieval.

    Science.gov (United States)

    Wang, Kaiye; He, Ran; Wang, Liang; Wang, Wei; Tan, Tieniu

    2016-10-01

    Cross-modal retrieval has recently drawn much attention due to the widespread existence of multimodal data. It takes one type of data as the query to retrieve relevant data objects of another type, and generally involves two basic problems: the measure of relevance and coupled feature selection. Most previous methods just focus on solving the first problem. In this paper, we aim to deal with both problems in a novel joint learning framework. To address the first problem, we learn projection matrices to map multimodal data into a common subspace, in which the similarity between different modalities of data can be measured. In the learning procedure, the l21-norm penalties are imposed on the projection matrices separately to solve the second problem, which selects relevant and discriminative features from different feature spaces simultaneously. A multimodal graph regularization term is further imposed on the projected data,which preserves the inter-modality and intra-modality similarity relationships.An iterative algorithm is presented to solve the proposed joint learning problem, along with its convergence analysis. Experimental results on cross-modal retrieval tasks demonstrate that the proposed method outperforms the state-of-the-art subspace approaches.

  2. An efficient preconditioning technique using Krylov subspace methods for 3D characteristics solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Le Tellier, R.; Roy, R.; Hebert, A.

    2005-01-01

    The Generalized Minimal RESidual (GMRES) method, using a Krylov subspace projection, is adapted and implemented to accelerate a 3D iterative transport solver based on the characteristics method. Another acceleration technique called the self-collision rebalancing technique (SCR) can also be used to accelerate the solution or as a left preconditioner for GMRES. The GMRES method is usually used to solve a linear algebraic system (Ax=b). It uses K(r (o) ,A) as projection subspace and AK(r (o) ,A) for the orthogonalization of the residual. This paper compares the performance of these two combined methods on various problems. To implement the GMRES iterative method, the characteristics equations are derived in linear algebra formalism by using the equivalence between the method of characteristics and the method of collision probability to end up with a linear algebraic system involving fluxes and currents. Numerical results show good performance of the GMRES technique especially for the cases presenting large material heterogeneity with a scattering ratio close to 1. Similarly, the SCR preconditioning slightly increases the GMRES efficiency

  3. Mitigating Wind Induced Noise in Outdoor Microphone Signals Using a Singular Spectral Subspace Method

    Directory of Open Access Journals (Sweden)

    Omar Eldwaik

    2018-01-01

    Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.

  4. Multiple Dipole Sources Localization from the Scalp EEG Using a High-resolution Subspace Approach.

    Science.gov (United States)

    Ding, Lei; He, Bin

    2005-01-01

    We have developed a new algorithm, FINE, to enhance the spatial resolution and localization accuracy for closely-spaced sources, in the framework of the subspace source localization. Computer simulations were conducted in the present study to evaluate the performance of FINE, as compared with classic subspace source localization algorithms, i.e. MUSIC and RAP-MUSIC, in a realistic geometry head model by means of boundary element method (BEM). The results show that FINE could distinguish superficial simulated sources, with distance as low as 8.5 mm and deep simulated sources, with distance as low as 16.3 mm. Our results also show that the accuracy of source orientation estimates from FINE is better than MUSIC and RAP-MUSIC for closely-spaced sources. Motor potentials, obtained during finger movements in a human subject, were analyzed using FINE. The detailed neural activity distribution within the contralateral premotor areas and supplemental motor areas (SMA) is revealed by FINE as compared with MUSIC. The present study suggests that FINE has excellent spatial resolution in imaging neural sources.

  5. An Improved EMD-Based Dissimilarity Metric for Unsupervised Linear Subspace Learning

    Directory of Open Access Journals (Sweden)

    Xiangchun Yu

    2018-01-01

    Full Text Available We investigate a novel way of robust face image feature extraction by adopting the methods based on Unsupervised Linear Subspace Learning to extract a small number of good features. Firstly, the face image is divided into blocks with the specified size, and then we propose and extract pooled Histogram of Oriented Gradient (pHOG over each block. Secondly, an improved Earth Mover’s Distance (EMD metric is adopted to measure the dissimilarity between blocks of one face image and the corresponding blocks from the rest of face images. Thirdly, considering the limitations of the original Locality Preserving Projections (LPP, we proposed the Block Structure LPP (BSLPP, which effectively preserves the structural information of face images. Finally, an adjacency graph is constructed and a small number of good features of a face image are obtained by methods based on Unsupervised Linear Subspace Learning. A series of experiments have been conducted on several well-known face databases to evaluate the effectiveness of the proposed algorithm. In addition, we construct the noise, geometric distortion, slight translation, slight rotation AR, and Extended Yale B face databases, and we verify the robustness of the proposed algorithm when faced with a certain degree of these disturbances.

  6. On the selection of user-defined parameters in data-driven stochastic subspace identification

    Science.gov (United States)

    Priori, C.; De Angelis, M.; Betti, R.

    2018-02-01

    The paper focuses on the time domain output-only technique called Data-Driven Stochastic Subspace Identification (DD-SSI); in order to identify modal models (frequencies, damping ratios and mode shapes), the role of its user-defined parameters is studied, and rules to determine their minimum values are proposed. Such investigation is carried out using, first, the time histories of structural responses to stationary excitations, with a large number of samples, satisfying the hypothesis on the input imposed by DD-SSI. Then, the case of non-stationary seismic excitations with a reduced number of samples is considered. In this paper, partitions of the data matrix different from the one proposed in the SSI literature are investigated, together with the influence of different choices of the weighting matrices. The study is carried out considering two different applications: (1) data obtained from vibration tests on a scaled structure and (2) in-situ tests on a reinforced concrete building. Referring to the former, the identification of a steel frame structure tested on a shaking table is performed using its responses in terms of absolute accelerations to a stationary (white noise) base excitation and to non-stationary seismic excitations of low intensity. Black-box and modal models are identified in both cases and the results are compared with those from an input-output subspace technique. With regards to the latter, the identification of a complex hospital building is conducted using data obtained from ambient vibration tests.

  7. Gene selection for microarray data classification via subspace learning and manifold regularization.

    Science.gov (United States)

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  8. Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled.

    Science.gov (United States)

    Alexander, Andrew S; Nitz, Douglas A

    2017-06-05

    Traversal of a complicated route is often facilitated by considering it as a set of related sub-spaces. Such compartmentalization processes could occur within retrosplenial cortex, a structure whose neurons simultaneously encode position within routes and other spatial coordinate systems. Here, retrosplenial cortex neurons were recorded as rats traversed a track having recurrent structure at multiple scales. Consistent with a major role in compartmentalization of complex routes, individual retrosplenial cortex (RSC) neurons exhibited periodic activation patterns that repeated across route segments having the same shape. Concurrently, a larger population of RSC neurons exhibited single-cycle periodicity over the full route, effectively defining a framework for encoding of sub-route positions relative to the whole. The same population simultaneously provides a novel metric for distance from each route position to all others. Together, the findings implicate retrosplenial cortex in the extraction of path sub-spaces, the encoding of their spatial relationships to each other, and path integration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Parallel algorithms for unconstrained optimization by multisplitting with inexact subspace search - the abstract

    Energy Technology Data Exchange (ETDEWEB)

    Renaut, R.; He, Q. [Arizona State Univ., Tempe, AZ (United States)

    1994-12-31

    In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.

  10. Robust Switching Control and Subspace Identification for Flutter of Flexible Wing

    Directory of Open Access Journals (Sweden)

    Yizhe Wang

    2018-01-01

    Full Text Available Active flutter suppression and subspace identification for a flexible wing model using micro fiber composite actuator were experimentally studied in a low speed wind tunnel. NACA0006 thin airfoil model was used for the experimental object to verify the performance of identification algorithm and designed controller. The equation of the fluid, vibration, and piezoelectric coupled motion was theoretically analyzed and experimentally identified under the open-loop and closed-loop condition by subspace method for controller design. A robust pole placement algorithm in terms of linear matrix inequality that accommodates the model uncertainty caused by identification deviation and flow speed variation was utilized to stabilize the divergent aeroelastic system. For further enlarging the flutter envelope, additional controllers were designed subject to the models beyond the flutter speed. Wind speed was measured online as the decision parameter of switching between the controllers. To ensure the stability of arbitrary switching, Common Lyapunov function method was applied to design the robust pole placement controllers for different models to ensure that the closed-loop system shared a common Lyapunov function. Wind tunnel result showed that the designed controllers could stabilize the time varying aeroelastic system over a wide range under arbitrary switching.

  11. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions: Survey and Analysis

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2007-01-01

    Full Text Available We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both diagonal (eigenvalue and singular value decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV, and ULLIV. In addition, we show how the subspace-based algorithms can be analyzed and compared by means of simple FIR filter interpretations. The algorithms are illustrated with working Matlab code and applications in speech processing.

  12. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  13. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    Science.gov (United States)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for

  14. ISO14001 Declaration of self-adaption in Nagasaki University Environmental Studies Faculty ― Changeover to Student Participatory EMS and Future Subject ―

    OpenAIRE

    長岡, 諭志; 鳥井, 俊輔; 山口, 佑子; 中村, 修

    2010-01-01

    Nagasaki University Environmental Studies Faculty has transited to the method of ISO14001 Declaration of self-adaption since Apr. 2009. It was because more demands to build environment management system (hereinafter called EMS) in organization characteristics had been increased and the stream for students to participate in EMS had started to be formed. Some agendas such as guarantee of objective authenticity, review of the system, and the position of students were brought up for declaration o...

  15. Nearest-Regularized Subspace Classification for PolSAR Imagery Using Polarimetric Feature Vector and Spatial Information

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2017-11-01

    Full Text Available Feature extraction using polarimetric synthetic aperture radar (PolSAR images is of great interest in SAR classification, no matter if it is applied in an unsupervised approach or a supervised approach. In the supervised classification framework, a major group of methods is based on machine learning. Various machine learning methods have been investigated for PolSAR image classification, including neural network (NN, support vector machine (SVM, and so on. Recently, representation-based classifications have gained increasing attention in hyperspectral imagery, such as the newly-proposed sparse-representation classification (SRC and nearest-regularized subspace (NRS. These classifiers provide excellent performance that is comparable to or even better than the classic SVM for remotely-sensed image processing. However, rare studies have been found to extend this representation-based NRS classification into PolSAR images. By the use of the NRS approach, a polarimetric feature vector-based PolSAR image classification method is proposed in this paper. The polarimetric SAR feature vector is constructed by the components of different target decomposition algorithms for each pixel, including those scattering components of Freeman, Huynen, Krogager, Yamaguchi decomposition, as well as the eigenvalues, eigenvectors and their consequential parameters such as entropy, anisotropy and mean scattering angle. Furthermore, because all these representation-based methods were originally designed to be pixel-wise classifiers, which only consider the separate pixel signature while ignoring the spatial-contextual information, the Markov random field (MRF model is also introduced in our scheme. MRF can provide a basis for modeling contextual constraints. Two AIRSAR data in the Flevoland area are used to validate the proposed classification scheme. Experimental results demonstrate that the proposed method can reach an accuracy of around 99 % for both AIRSAR data by

  16. Performance Analysis and Enhancements for the Music Subspace Direction-Finding Algorithm in the Presence of Wideband Signals

    Science.gov (United States)

    2014-12-01

    signals classification ( MUSIC ) subspace direction-finding algorithm are evaluated in this thesis. Additionally, two performance enhancements are...presented: one that reduces the MUSIC computational load and one that provides a method of utilizing collector motion to resolve DOA ambiguities.

  17. pSum-SaDE: A Modified p-Median Problem and Self-Adaptive Differential Evolution Algorithm for Text Summarization

    Directory of Open Access Journals (Sweden)

    Rasim M. Alguliev

    2011-01-01

    Full Text Available Extractive multidocument summarization is modeled as a modified p-median problem. The problem is formulated with taking into account four basic requirements, namely, relevance, information coverage, diversity, and length limit that should satisfy summaries. To solve the optimization problem a self-adaptive differential evolution algorithm is created. Differential evolution has been proven to be an efficient and robust algorithm for many real optimization problems. However, it still may converge toward local optimum solutions, need to manually adjust the parameters, and finding the best values for the control parameters is a consuming task. In the paper is proposed a self-adaptive scaling factor in original DE to increase the exploration and exploitation ability. This paper has found that self-adaptive differential evolution can efficiently find the best solution in comparison with the canonical differential evolution. We implemented our model on multi-document summarization task. Experiments have shown that the proposed model is competitive on the DUC2006 dataset.

  18. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2017-06-01

    Full Text Available Considering an inverse Gamma prior distribution model for texture, the adaptive detection problems for both first order Gaussian and second order Gaussian subspace targets are researched in a compound Gaussian sea clutter. Test statistics are derived on the basis of the two-step generalized likelihood ratio test. From these tests, new adaptive detectors are proposed by substituting the covariance matrix with estimation results from the Sample Covariance Matrix (SCM, normalized SCM, and fixed point estimator. The proposed detectors consider the prior distribution model for sea clutter during the design stage, and they model parameters that match the working environment during the detection stage. Analysis and validation results indicate that the detection performance of the proposed detectors out performs existing AMF (Adaptive Matched Filter, AMF and ANMF (Adaptive Normalized Matched Filter, ANMF detectors.

  19. A new damage diagnosis approach for NC machine tools based on hybrid Stationary subspace analysis

    Science.gov (United States)

    Gao, Chen; Zhou, Yuqing; Ren, Yan

    2017-05-01

    This paper focused on the damage diagnosis for NC machine tools and put forward a damage diagnosis method based on hybrid Stationary subspace analysis (SSA), for improving the accuracy and visibility of damage identification. First, the observed single sensor signal was reconstructed to multi-dimensional signals by the phase space reconstruction technique, as the inputs of SSA. SSA method was introduced to separate the reconstructed data into stationary components and non-stationary components without the need for independency and prior information of the origin signals. Subsequently, the selected non-stationary components were analysed for training LS-SVM (Least Squares Support Vector Machine) classifier model, in which several statistic parameters in the time and frequency domains were exacted as the sample of LS-SVM. An empirical analysis in NC milling machine tools is developed, and the result shows high accuracy of the proposed approach.

  20. Fault Tolerant Flight Control Using Sliding Modes and Subspace Identification-Based Predictive Control

    KAUST Repository

    Siddiqui, Bilal A.

    2016-07-26

    In this work, a cascade structure of a time-scale separated integral sliding mode and model predictive control is proposed as a viable alternative for fault-tolerant control. A multi-variable sliding mode control law is designed as the inner loop of the flight control system. Subspace identification is carried out on the aircraft in closed loop. The identified plant is then used for model predictive controllers in the outer loop. The overall control law demonstrates improved robustness to measurement noise, modeling uncertainties, multiple faults and severe wind turbulence and gusts. In addition, the flight control system employs filters and dead-zone nonlinear elements to reduce chattering and improve handling quality. Simulation results demonstrate the efficiency of the proposed controller using conventional fighter aircraft without control redundancy.

  1. Efficient Structural System Reliability Updating with Subspace-Based Damage Detection Information

    DEFF Research Database (Denmark)

    Döhler, Michael; Thöns, Sebastian

    modelling is introduced building upon the non-destructive testing reliability which applies to structural systems and DDS containing a strategy to overcome the high computational efforts for the pre-determination of the DDS reliability. This approach takes basis in the subspace-based damage detection method......Damage detection systems and algorithms (DDS and DDA) provide information of the structural system integrity in contrast to e.g. local information by inspections or non-destructive testing techniques. However, the potential of utilizing DDS information for the structural integrity assessment...... and prognosis is hardly exploited nor treated in scientific literature up to now. In order to utilize the information provided by DDS for the structural performance, usually high computational efforts for the pre-determination of DDS reliability are required. In this paper, an approach for the DDS performance...

  2. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  3. Prewhitening for Rank-Deficient Noise in Subspace Methods for Noise Reduction

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2005-01-01

    A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, e.g., when the noise...... has narrow-band characteristics, or in the case of tonal noise. We extend the concept of prewhitening to include the case when the noise covariance matrix is rank deficient, using a weighted pseudoinverse and the quotient SVD, and we show how to formulate a general rank-reduction algorithm that works...... also for rank deficient noise. We also demonstrate how to formulate this algorithm by means of a quotient ULV decomposition, which allows for faster computation and updating. Finally we apply our algorithm to a problem involving a speech signal contaminated by narrow-band noise....

  4. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  5. Development of a Burnup Module DECBURN Based on the Krylov Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S

    2008-05-15

    This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution

  6. REVIEW APPROACHES ECONOMIC DEVELOPMENT OF THE TERRITORY OF THE ARCTIC ZONE OF THE RUSSIAN FEDERATION, PRESENTED IN THE FORM OF TARGET SUBSPACE

    Directory of Open Access Journals (Sweden)

    N. I. Didenko

    2015-01-01

    Full Text Available This paper presents a conceptual idea of the organization of management of development of the Arctic area of the Russian Federation in the form of a set of target subspace. Among the possible types of target subspace comprising the Arctic zone of the Russian Federation, allocated seven subspace: basic city mobile Camps, site production of mineral resources, recreational area, fishing area, the Northern Sea Route, infrastructure protection safe existence in the Arctic. The task of determining the most appropriate theoretical approach for the development of each target subspaces. To this end, the theoretical approaches of economic growth and development of the theory of "economic base» (Economic Base Theory; resource theory (Staple Theory; Theory sectors (Sector Theory; theory of growth poles (Growth Pole Theory; neoclassical theory (Neoclassical Growth Theory; theory of inter-regional trade (Interregional Trade Theory; theory of the commodity cycle; entrepreneurial theory (Entrepreneurship Theories.

  7. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  8. An additive subspace preconditioning method for the iterative solution of some problems with extreme contrasts in coefficients

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2014-01-01

    Roč. 22, č. 4 (2014), s. 289-310 ISSN 1570-2820 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : preconditioning * additive subspace * small eigenvalues Subject RIV: BA - General Mathematics Impact factor: 2.310, year: 2014 http://www.degruyter.com/view/j/jnma.2014.22.issue-4/jnma-2014-0013/jnma-2014-0013. xml

  9. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes

    Science.gov (United States)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Zi, Yanyang; Yan, Ruqiang

    2017-09-01

    The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSL-MFD) technique to construct different subspaces adaptively for different fault patterns. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.

  10. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    Science.gov (United States)

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems.

    Science.gov (United States)

    Xu, Y; Li, N

    2014-09-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.

  12. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems

    International Nuclear Information System (INIS)

    Xu, Y; Li, N

    2014-01-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)

  13. Modal–Physical Hybrid System Identification of High-rise Building via Subspace and Inverse-Mode Methods

    Directory of Open Access Journals (Sweden)

    Kohei Fujita

    2017-08-01

    Full Text Available A system identification (SI problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode method by using the lowest mode of horizontal displacements and floor rotation angles, the lowest mode of the objective building is identified first by using the subspace method. Identification of the lowest mode is performed by using the amplitude of transfer functions derived in the subspace method. Considering the resolution in measuring the floor rotation angles in lower stories, floor rotation angles in most stories are predicted from the floor rotation angle at the top floor. An empirical equation of floor rotation angles is proposed by investigating those for various building models. From the viewpoint of application of the present SI method to practical situations, a non-simultaneous measurement system is also proposed. In order to investigate the reliability and accuracy of the proposed SI method, a 10-story building frame subjected to micro-tremor is examined.

  14. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: I. Theory

    Science.gov (United States)

    Ren, W. X.; Lin, Y. Q.; Fang, S. E.

    2011-11-01

    One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.

  15. Model reduction and frequency residuals for a robust estimation of nonlinearities in subspace identification

    Science.gov (United States)

    De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.

    2017-09-01

    The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.

  16. A Low Complexity Subspace-Based DOA Estimation Algorithm with Uniform Linear Array Correlation Matrix Subsampling

    Directory of Open Access Journals (Sweden)

    Do-Sik Yoo

    2015-01-01

    Full Text Available We propose a low complexity subspace-based direction-of-arrival (DOA estimation algorithm employing a direct signal space construction method (DSPCM by subsampling the autocorrelation matrix of a uniform linear array (ULA. Three major contributions of this paper are as follows. First of all, we introduce the method of autocorrelation matrix subsampling which enables us to employ a low complexity algorithm based on a ULA without computationally complex eigenvalue decomposition or singular-value decomposition. Secondly, we introduce a signal vector separation method to improve the distinguishability among signal vectors, which can greatly improve the performance, particularly, in low signal-to-noise ratio (SNR regime. Thirdly, we provide a root finding (RF method in addition to a spectral search (SS method as the angle finding scheme. Through simulations, we illustrate that the performance of the proposed scheme is reasonably close to computationally much more expensive MUSIC- (MUltiple SIgnal Classification- based algorithms. Finally, we illustrate that the computational complexity of the proposed scheme is reduced, in comparison with those of MUSIC-based schemes, by a factor of O(N2/K, where K is the number of sources and N is the number of antenna elements.

  17. Discriminative local subspaces in gene expression data for effective gene function prediction.

    Science.gov (United States)

    Puelma, Tomas; Gutiérrez, Rodrigo A; Soto, Alvaro

    2012-09-01

    Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning methods, such as Support Vector Machines (SVMs), have shown superior prediction accuracy. However, these methods lack the simple biological intuition provided by co-expression networks (CNs), limiting their practical usefulness. In this work, we present Discriminative Local Subspaces (DLS), a novel method that combines supervised machine learning and co-expression techniques with the goal of systematically predict genes involved in specific biological processes of interest. Unlike traditional CNs, DLS uses the knowledge available in Gene Ontology (GO) to generate informative training sets that guide the discovery of expression signatures: expression patterns that are discriminative for genes involved in the biological process of interest. By linking genes co-expressed with these signatures, DLS is able to construct a discriminative CN that links both, known and previously uncharacterized genes, for the selected biological process. This article focuses on the algorithm behind DLS and shows its predictive power using an Arabidopsis thaliana dataset and a representative set of 101 GO terms from the Biological Process Ontology. Our results show that DLS has a superior average accuracy than both SVMs and CNs. Thus, DLS is able to provide the prediction accuracy of supervised learning methods while maintaining the intuitive understanding of CNs. A MATLAB® implementation of DLS is available at http://virtualplant.bio.puc.cl/cgi-bin/Lab/tools.cgi.

  18. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Jun Li

    2018-03-01

    Full Text Available Direction of arrival (DOA estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS processing and compressed sensing (CS theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR, this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  19. Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods

    Science.gov (United States)

    Wang, C. L.; Funk, L. L.; Riedel, R. A.; Berry, K. D.

    2017-05-01

    3He gas based neutron Linear-Position-Sensitive Detectors (LPSDs) have been used for many neutron scattering instruments. Traditional Pulse-height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (NGD ratio) on the order of 105-106. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher Linear Discriminant Analysis (FLDA) and three Multivariate Analyses (MVAs) of the features were performed. The NGD ratios are improved by about 102-103 times compared with the traditional PHA method. Our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.

  20. Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation.

    Science.gov (United States)

    Xu, Yong; Fang, Xiaozhao; Wu, Jian; Li, Xuelong; Zhang, David

    2016-02-01

    In this paper, we address the problem of unsupervised domain transfer learning in which no labels are available in the target domain. We use a transformation matrix to transfer both the source and target data to a common subspace, where each target sample can be represented by a combination of source samples such that the samples from different domains can be well interlaced. In this way, the discrepancy of the source and target domains is reduced. By imposing joint low-rank and sparse constraints on the reconstruction coefficient matrix, the global and local structures of data can be preserved. To enlarge the margins between different classes as much as possible and provide more freedom to diminish the discrepancy, a flexible linear classifier (projection) is obtained by learning a non-negative label relaxation matrix that allows the strict binary label matrix to relax into a slack variable matrix. Our method can avoid a potentially negative transfer by using a sparse matrix to model the noise and, thus, is more robust to different types of noise. We formulate our problem as a constrained low-rankness and sparsity minimization problem and solve it by the inexact augmented Lagrange multiplier method. Extensive experiments on various visual domain adaptation tasks show the superiority of the proposed method over the state-of-the art methods. The MATLAB code of our method will be publicly available at http://www.yongxu.org/lunwen.html.

  1. Blind Source Separation for Unimodal and Multimodal Brain Networks: A Unifying Framework for Subspace Modeling.

    Science.gov (United States)

    Silva, Rogers F; Plis, Sergey M; Sui, Jing; Pattichis, Marios S; Adalı, Tülay; Calhoun, Vince D

    2016-10-01

    In the past decade, numerous advances in the study of the human brain were fostered by successful applications of blind source separation (BSS) methods to a wide range of imaging modalities. The main focus has been on extracting "networks" represented as the underlying latent sources. While the broad success in learning latent representations from multiple datasets has promoted the wide presence of BSS in modern neuroscience, it also introduced a wide variety of objective functions, underlying graphical structures, and parameter constraints for each method. Such diversity, combined with a host of datatype-specific know-how, can cause a sense of disorder and confusion, hampering a practitioner's judgment and impeding further development. We organize the diverse landscape of BSS models by exposing its key features and combining them to establish a novel unifying view of the area. In the process, we unveil important connections among models according to their properties and subspace structures. Consequently, a high-level descriptive structure is exposed, ultimately helping practitioners select the right model for their applications. Equipped with that knowledge, we review the current state of BSS applications to neuroimaging. The gained insight into model connections elicits a broader sense of generalization, highlighting several directions for model development. In light of that, we discuss emerging multi-dataset multidimensional (MDM) models and summarize their benefits for the study of the healthy brain and disease-related changes.

  2. Quasistatic Seismic Damage Indicators for RC Structures from Dissipating Energies in Tangential Subspaces

    Directory of Open Access Journals (Sweden)

    Wilfried B. Krätzig

    2014-01-01

    Full Text Available This paper applies recent research on structural damage description to earthquake-resistant design concepts. Based on the primary design aim of life safety, this work adopts the necessity of additional protection aims for property, installation, and equipment. This requires the definition of damage indicators, which are able to quantify the arising structural damage. As in present design, it applies nonlinear quasistatic (pushover concepts due to code provisions as simplified dynamic design tools. Substituting so nonlinear time-history analyses, seismic low-cycle fatigue of RC structures is approximated in similar manner. The treatment will be embedded into a finite element environment, and the tangential stiffness matrix KT in tangential subspaces then is identified as the most general entry for structural damage information. Its spectra of eigenvalues λi or natural frequencies ωi of the structure serve to derive damage indicators Di, applicable to quasistatic evaluation of seismic damage. Because det KT=0 denotes structural failure, such damage indicators range from virgin situation Di=0 to failure Di=1 and thus correspond with Fema proposals on performance-based seismic design. Finally, the developed concept is checked by reanalyses of two experimentally investigated RC frames.

  3. Local sharpening and subspace wavefront correction with predictive dynamic digital holography

    Science.gov (United States)

    Sulaiman, Sennan; Gibson, Steve

    2017-09-01

    Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.

  4. Constitutive relations in multidimensional isotropic elasticity and their restrictions to subspaces of lower dimensions

    Science.gov (United States)

    Georgievskii, D. V.

    2017-07-01

    The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.

  5. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  6. Conotoxin superfamily prediction using diffusion maps dimensionality reduction and subspace classifier.

    Science.gov (United States)

    Yin, Jiang-Bo; Fan, Yong-Xian; Shen, Hong-Bin

    2011-09-01

    Conotoxins are disulfide-rich small peptides that are invaluable channel-targeted peptides and target neuronal receptors, which have been demonstrated to be potent pharmaceuticals in the treatment of Alzheimer's disease, Parkinson's disease, and epilepsy. Accurate prediction of conotoxin superfamily would have many important applications towards the understanding of its biological and pharmacological functions. In this study, a novel method, named dHKNN, is developed to predict conotoxin superfamily. Firstly, we extract the protein's sequential features composed of physicochemical properties, evolutionary information, predicted secondary structures and amino acid composition. Secondly, we use the diffusion maps for dimensionality reduction, which interpret the eigenfunctions of Markov matrices as a system of coordinates on the original data set in order to obtain efficient representation of data geometric descriptions. Finally, an improved K-local hyperplane distance nearest neighbor subspace classifier method called dHKNN is proposed for predicting conotoxin superfamilies by considering the local density information in the diffusion space. The overall accuracy of 91.90% is obtained through the jackknife cross-validation test on a benchmark dataset, indicating the proposed dHKNN is promising.

  7. Shape Detection from Raw LiDAR Data with Subspace Modeling.

    Science.gov (United States)

    Wang, Jun; Xu, Kai

    2017-09-01

    LiDAR scanning has become a prevalent technique for digitalizing large-scale outdoor scenes. However, the raw LiDAR data often contain imperfections, e.g., missing large regions, anisotropy of sampling density, and contamination of noise and outliers, which are the major obstacles that hinder its more ambitious and higher level applications in digital city modeling. Observing that 3D urban scenes can be locally described with several low dimensional subspaces, we propose to locally classify the neighborhoods of the scans to model the substructures of the scenes. The key enabler is the adaptive kernel-scale scoring, filtering and clustering of substructures, making it possible to recover the local structures at all points simultaneously, even in the presence of severe data imperfections. Integrating the local analyses leads to robust shape detection from raw LiDAR data. On this basis, we develop several urban scene applications and verify them on a number of LiDAR scans with various complexities and styles, which demonstrates the effectiveness and robustness of our methods.

  8. Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications

    Science.gov (United States)

    Reynders, Edwin; Maes, Kristof; Lombaert, Geert; De Roeck, Guido

    2016-01-01

    Identified modal characteristics are often used as a basis for the calibration and validation of dynamic structural models, for structural control, for structural health monitoring, etc. It is therefore important to know their accuracy. In this article, a method for estimating the (co)variance of modal characteristics that are identified with the stochastic subspace identification method is validated for two civil engineering structures. The first structure is a damaged prestressed concrete bridge for which acceleration and dynamic strain data were measured in 36 different setups. The second structure is a mid-rise building for which acceleration data were measured in 10 different setups. There is a good quantitative agreement between the predicted levels of uncertainty and the observed variability of the eigenfrequencies and damping ratios between the different setups. The method can therefore be used with confidence for quantifying the uncertainty of the identified modal characteristics, also when some or all of them are estimated from a single batch of vibration data. Furthermore, the method is seen to yield valuable insight in the variability of the estimation accuracy from mode to mode and from setup to setup: the more informative a setup is regarding an estimated modal characteristic, the smaller is the estimated variance.

  9. Performance evaluation in color face hallucination with error regression model in MPCA subspace method

    Science.gov (United States)

    Asavaskulkiet, Krissada

    2014-01-01

    This paper proposes a novel face super-resolution reconstruction (hallucination) technique for YCbCr color space. The underlying idea is to learn with an error regression model and multi-linear principal component analysis (MPCA). From hallucination framework, many color face images are explained in YCbCr space. To reduce the time complexity of color face hallucination, we can be naturally described the color face imaged as tensors or multi-linear arrays. In addition, the error regression analysis is used to find the error estimation which can be obtained from the existing LR in tensor space. In learning process is from the mistakes in reconstruct face images of the training dataset by MPCA, then finding the relationship between input and error by regression analysis. In hallucinating process uses normal method by backprojection of MPCA, after that the result is corrected with the error estimation. In this contribution we show that our hallucination technique can be suitable for color face images both in RGB and YCbCr space. By using the MPCA subspace with error regression model, we can generate photorealistic color face images. Our approach is demonstrated by extensive experiments with high-quality hallucinated color faces. Comparison with existing algorithms shows the effectiveness of the proposed method.

  10. High Capacity Downlink Transmission with MIMO Interference Subspace Rejection in Multicellular CDMA Networks

    Directory of Open Access Journals (Sweden)

    Hansen Henrik

    2004-01-01

    Full Text Available We proposed recently a new technique for multiuser detection in CDMA networks, denoted by interference subspace rejection (ISR, and evaluated its performance on the uplink. This paper extends its application to the downlink (DL. On the DL, the information about the interference is sparse, for example, spreading factor (SF and modulation of interferers may not be known, which makes the task much more challenging. We present three new ISR variants which require no prior knowledge of interfering users. The new solutions are applicable to MIMO systems and can accommodate any modulation, coding, SF, and connection type. We propose a new code allocation scheme denoted by DACCA which significantly reduces the complexity of our solution at the receiving mobile. We present estimates of user capacities and data rates attainable under practically reasonable conditions regarding interferences identified and suppressed in a multicellular interference-limited system. We show that the system capacity increases linearly with the number of antennas despite the existence of interference. Our new DL multiuser receiver consistently provides an Erlang capacity gain of at least over the single-user detector.

  11. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  12. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring

    Science.gov (United States)

    Shokravi, H.; Bakhary, NH

    2017-11-01

    Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.

  13. Signal subspace change detection in averaged multi-look SAR imagery

    Science.gov (United States)

    Ranney, Kenneth; Soumekh, Mehrdad

    2005-05-01

    Modern Synthetic Aperture Radar (SAR) signal processing algorithms could retrieve accurate and subtle information regarding a scene that is being interrogated by an airborne radar system. An important reconnaissance problem that is being studied via the use of SAR systems and their sophisticated signal processing methods involves detecting changes in an imaged scene. In these problems, the user interrogates a scene with a SAR system at two different time points (e.g. different days); the resultant two SAR databases that we refer to as reference and test data, are used to determine where targets have entered or left the imaged scene between the two data acquisitions. For instance, X band SAR systems have the potential to become a potent tool to determine whether mines have been recently placed in an area. This paper describes an algorithm for detecting changes in averaged multi-look SAR imagery. Averaged multi-look SAR images are preferable to full aperture SAR reconstructions when the imaging algorithm is approximation based (e.g. polar format processing), or motion data are not accurate over a long full aperture. We study the application of a SAR detection method, known as Signal Subspace Processing, that is based on the principles of 2D adaptive filtering. We identify the change detection problem as a binary hypothesis-testing problem, and identify an error signal and its normalized version to determine whether i) there is no change in the imaged scene; or ii) a target has been added to the imaged scene. A statistical analysis of the error signal is provided to show its properties and merits. Results are provided for data collected by an X band SAR platform and processed to form non-coherently look-averaged SAR images.

  14. Linear servomotor probe drive system with real-time self-adaptive position control for the Alcator C-Mod tokamak.

    Science.gov (United States)

    Brunner, D; Kuang, A Q; LaBombard, B; Burke, W

    2017-07-01

    A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density-through use of a mirror Langmuir probe bias system-combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.

  15. Improved Analyses of the Randomized Power Method and Block Lanczos Method

    OpenAIRE

    Wang, Shusen; Zhang, Zhihua; Zhang, Tong

    2015-01-01

    The power method and block Lanczos method are popular numerical algorithms for computing the truncated singular value decomposition (SVD) and eigenvalue decomposition problems. Especially in the literature of randomized numerical linear algebra, the power method is widely applied to improve the quality of randomized sketching, and relative-error bounds have been well established. Recently, Musco & Musco (2015) proposed a block Krylov subspace method that fully exploits the intermediate result...

  16. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  17. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    tracking interfaces, active contour based segmentation methods and others. It can also be used to study shape spaces, as deforming a shape can be thought of as evolving its boundary curve. During curve evolution a curve traces out a path in the infinite dimensional space of curves. Due to application...... defined subspace, the N-links bicycle chain space, i.e. the space of curves with equidistant neighboring landmark points. This in itself is a useful shape space for medical image analysis applications. The Histogram of Gradient orientation based features are many in number and are widely used...

  18. Deep Long-period Seismicity Beneath the Executive Committee Range, Marie Byrd Land, Antarctica, Studied Using Subspace Detection

    Science.gov (United States)

    Aster, R. C.; McMahon, N. D.; Myers, E. K.; Lough, A. C.

    2015-12-01

    Lough et al. (2014) first detected deep sub-icecap magmatic events beneath the Executive Committee Range volcanoes of Marie Byrd Land. Here, we extend the identification and analysis of these events in space and time utilizing subspace detection. Subspace detectors provide a highly effective methodology for studying events within seismic swarms that have similar moment tensor and Green's function characteristics and are particularly effective for identifying low signal-to-noise events. Marie Byrd Land (MBL) is an extremely remote continental region that is nearly completely covered by the West Antarctic Ice Sheet (WAIS). The southern extent of Marie Byrd Land lies within the West Antarctic Rift System (WARS), which includes the volcanic Executive Committee Range (ECR). The ECR shows north-to-south progression of volcanism across the WARS during the Holocene. In 2013, the POLENET/ANET seismic data identified two swarms of seismic activity in 2010 and 2011. These events have been interpreted as deep, long-period (DLP) earthquakes based on depth (25-40 km) and low frequency content. The DLP events in MBL lie beneath an inferred sub-WAIS volcanic edifice imaged with ice penetrating radar and have been interpreted as a present location of magmatic intrusion. The magmatic swarm activity in MBL provides a promising target for advanced subspace detection and temporal, spatial, and event size analysis of an extensive deep long period earthquake swarm using a remote seismographic network. We utilized a catalog of 1,370 traditionally identified DLP events to construct subspace detectors for the six nearest stations and analyzed two years of data spanning 2010-2011. Association of these detections into events resulted in an approximate ten-fold increase in number of locatable earthquakes. In addition to the two previously identified swarms during early 2010 and early 2011, we find sustained activity throughout the two years of study that includes several previously

  19. Estimating the number of components and detecting outliers using Angle Distribution of Loading Subspaces (ADLS) in PCA analysis.

    Science.gov (United States)

    Liu, Y J; Tran, T; Postma, G; Buydens, L M C; Jansen, J

    2018-08-22

    Principal Component Analysis (PCA) is widely used in analytical chemistry, to reduce the dimensionality of a multivariate data set in a few Principal Components (PCs) that summarize the predominant patterns in the data. An accurate estimate of the number of PCs is indispensable to provide meaningful interpretations and extract useful information. We show how existing estimates for the number of PCs may fall short for datasets with considerable coherence, noise or outlier presence. We present here how Angle Distribution of the Loading Subspaces (ADLS) can be used to estimate the number of PCs based on the variability of loading subspace across bootstrap resamples. Based on comprehensive comparisons with other well-known methods applied on simulated dataset, we show that ADLS (1) may quantify the stability of a PCA model with several numbers of PCs simultaneously; (2) better estimate the appropriate number of PCs when compared with the cross-validation and scree plot methods, specifically for coherent data, and (3) facilitate integrated outlier detection, which we introduce in this manuscript. We, in addition, demonstrate how the analysis of different types of real-life spectroscopic datasets may benefit from these advantages of ADLS. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Features in chemical kinetics. III. Attracting subspaces in a hyper-spherical representation of the reactive system

    Energy Technology Data Exchange (ETDEWEB)

    Ceccato, Alessandro; Frezzato, Diego, E-mail: diego.frezzato@unipd.it [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, I-35131 Padova (Italy); Nicolini, Paolo [Department of Control Engineering–K335, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, 121 35 Prague 2 (Czech Republic)

    2015-12-14

    In this work, we deal with general reactive systems involving N species and M elementary reactions under applicability of the mass-action law. Starting from the dynamic variables introduced in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138(23), 234101 (2013); 138(23), 234102 (2013)], we turn to a new representation in which the system state is specified in a (N × M){sup 2}-dimensional space by a point whose coordinates have physical dimension of inverse-of-time. By adopting hyper-spherical coordinates (a set of dimensionless “angular” variables and a single “radial” one with physical dimension of inverse-of-time) and by examining the properties of their evolution law both formally and numerically on model kinetic schemes, we show that the system evolves towards the equilibrium as being attracted by a sequence of fixed subspaces (one at a time) each associated with a compact domain of the concentration space. Thus, we point out that also for general non-linear kinetics there exist fixed “objects” on the global scale, although they are conceived in such an abstract and extended space. Moreover, we propose a link between the persistence of the belonging of a trajectory to such subspaces and the closeness to the slow manifold which would be perceived by looking at the bundling of the trajectories in the concentration space.

  1. Low-dimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction.

    Science.gov (United States)

    Rohé, Marc-Michel; Sermesant, Maxime; Pennec, Xavier

    2018-04-01

    One major challenge when trying to build low-dimensional representation of the cardiac motion is its natural circular pattern during a cycle, therefore making the mean image a poor descriptor of the whole sequence. Therefore, traditional approaches for the analysis of the cardiac deformation use one specific frame of the sequence - the end-diastolic (ED) frame - as a reference to study the whole motion. Consequently, this methodology is biased by this empirical choice. Moreover, the ED image might be a poor reference when looking at large deformation for example at the end-systolic (ES) frame. In this paper, we propose a novel approach to study cardiac motion in 4D image sequences using low-dimensional subspace analysis. Instead of building subspaces relying on a mean value we use a novel type of subspaces called Barycentric Subspaces which are implicitly defined as the weighted Karcher means of k+1 reference images instead of being defined with respect to one reference image. In the first part of this article, we introduce the methodological framework and the algorithms used to manipulate images within these new subspaces: how to compute the projection of a given image on the Barycentric Subspace with its coordinates, and the opposite operation of computing an image from a set of references and coordinates. Then we show how this framework can be applied to cardiac motion problems and lead to significant improvements over the single reference method. Firstly, by computing the low-dimensional representation of two populations we show that the parameters extracted correspond to relevant cardiac motion features leading to an efficient representation and discrimination of both groups. Secondly, in motion estimation, we use the projection on this low-dimensional subspace as an additional prior on the regularization in cardiac motion tracking, efficiently reducing the error of the registration between the ED and ES by almost 30%. We also derive a symmetric and transitive

  2. Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Using ASTER Thermal Infrared Data, Part I: Methodology and Decadal Change Detection

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2015-05-01

    Full Text Available Coal fires that are induced by natural spontaneous combustion or result from human activities occurring on the surface and in underground coal seams destroy coal resources and cause serious environmental degradation. Thermal infrared image data, which directly measure surface temperature, can be an important tool to map coal fires over large areas. As the first of two parts introducing our coal fire detection method, this paper proposes a self-adaptive threshold-based approach for coal fire detection using ASTER thermal infrared data: the self-adaptive gradient-based thresholding method (SAGBT. This method is based on an assumption that the attenuation of temperature along the coal fire’s boundaries generates considerable numbers of spots with extremely high gradient values. The SAGBT method applied mathematical morphology thinning to skeletonize the potential high gradient buffers into the extremely high gradient lines, which provides a self-adaptive mechanism to generate thresholds according to the thermal spatial patterns of the images. The final threshold was defined as an average temperature value reading from the high temperature buffers (segmented by 1.0 σ from the mean and along a sequence of extremely high gradient lines (thinned from the potential high gradient buffers and segmented within the lower bounds, ranging from 0.5 σ to 1.5 σ and with an upper bound of 3.2 σ, where σ is the standard deviation, marking the coal fire areas. The SAGBT method used the basic outer boundary of the coal-bearing strata to simply exclude false alarms. The intermediate thresholds reduced the coupling with the temperature and converged by changing the potential high gradient buffers. This simple approach can be economical and accurate in identifying coal fire areas. In addition, it allows for the identification of thresholds using multiple ASTER TIR scenes in a consistent and uniform manner, and supports long-term coal fire change analyses using

  3. Cyclo-stationary linear parameter time-varying subspace realization method applied for identification of horizontal-axis wind turbines

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Wind energy is becoming increasingly important worldwide as an alternative renewable energy source. Economical, maintenance and operation are critical issues for large slender dynamic structures, especially for remote offshore wind farms. Health monitoring systems are very promising instruments to assure reliability and good performance of the structure. These sensing and control technologies are typically informed by models based on mechanics or data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order and having overlapping frequency content. Instead, time-domain techniques have shown powerful advantages from a practical point of view (e.g. embedded algorithms in wireless-sensor networks), being more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify the analysis, but such is not the case for wind loaded structures with spinning multibodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system, and the wind tower substructure interaction. Transformations of the cyclic effects on the vibration data can be applied to isolate inertia quantities different from rotating-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated Eigensystem realizations. In this paper an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here by means of a modified Eigensystem Realization Algorithm (ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying (LPTV) techniques. Structural response is assumed under stationary ambient excitation produced by a Gaussian (white) noise assembled

  4. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-09-01

    Full Text Available To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model.

  5. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-01-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality

  6. Optimal Throughput and Self-adaptability of Robust Real-Time IEEE 802.15.4 MAC for AMI Mesh Network

    International Nuclear Information System (INIS)

    Shabani, Hikma; Ahmed, Musse Mohamud; Khan, Sheroz; Hameed, Shahab Ahmed; Habaebi, Mohamed Hadi

    2013-01-01

    A smart grid refers to a modernization of the electricity system that brings intelligence, reliability, efficiency and optimality to the power grid. To provide an automated and widely distributed energy delivery, the smart grid will be branded by a two-way flow of electricity and information system between energy suppliers and their customers. Thus, the smart grid is a power grid that integrates data communication networks which provide the collected and analysed data at all levels in real time. Therefore, the performance of communication systems is so vital for the success of smart grid. Merit to the ZigBee/IEEE802.15.4std low cost, low power, low data rate, short range, simplicity and free licensed spectrum that makes wireless sensor networks (WSNs) the most suitable wireless technology for smart grid applications. Unfortunately, almost all ZigBee channels overlap with wireless local area network (WLAN) channels, resulting in severe performance degradation due to interference. In order to improve the performance of communication systems, this paper proposes an optimal throughput and self-adaptability of ZigBee/IEEE802.15.4std for smart grid

  7. The Effects of a Self-Adapted, Jaw Repositioning Mouthpiece and Jaw Clenching on Muscle Activity during Vertical Jump and Isometric Clean Pull Performance

    Directory of Open Access Journals (Sweden)

    Charles Allen

    2016-07-01

    Full Text Available Purpose: The purpose of this study was to investigate the effects of a self-adapted, jaw repositioning mouthpiece and jaw clenching on muscle activity during the countermovement vertical jump (CMVJ and isometric mid-thigh clean pull (MTCP. Methods:  Thirty-six healthy, recreationally trained males (n=36; age, 23 ± 2.8 years; height, 178.54 ± 9.0 cm; body mass, 83.09 ± 7.8 kg completed maximal CMVJ and MTCP assessments under six experimental conditions:  jaw repositioning mouthpiece plus clenching (MP+C, jaw repositioning mouthpiece with jaw relaxed (MP, traditional mouthguard plus clenching (MG+C, traditional mouthguard with jaw relaxed (MG, no mouthpiece plus clenching (NoMP+C and no mouthpiece with jaw relaxed (NoMP while muscle activity of the dominant leg medial gastrocnemius (G, medial hamstring (H, vastus medialis (VMO, and erector spinae (ES was recorded. Results:  Repeated measures ANOVA revealed no changes in MTCP muscle activation for any mouthpiece or clench condition. Jaw clenching, regardless of mouthpiece condition, significantly improved prime mover muscle activation during CMVJ (p .05. Conclusion:  These findings support jaw clenching as a viable technique to elicit concurrent activation potentiation (CAP of prime mover muscle activity during dynamic but not isometric physical activity. Keywords: jaw repositioning mouthpiece, jaw clenching, concurrent activation potentiation, muscle activation

  8. Classification of breast masses in ultrasound images using self-adaptive differential evolution extreme learning machine and rough set feature selection.

    Science.gov (United States)

    Prabusankarlal, Kadayanallur Mahadevan; Thirumoorthy, Palanisamy; Manavalan, Radhakrishnan

    2017-04-01

    A method using rough set feature selection and extreme learning machine (ELM) whose learning strategy and hidden node parameters are optimized by self-adaptive differential evolution (SaDE) algorithm for classification of breast masses is investigated. A pathologically proven database of 140 breast ultrasound images, including 80 benign and 60 malignant, is used for this study. A fast nonlocal means algorithm is applied for speckle noise removal, and multiresolution analysis of undecimated discrete wavelet transform is used for accurate segmentation of breast lesions. A total of 34 features, including 29 textural and five morphological, are applied to a [Formula: see text]-fold cross-validation scheme, in which more relevant features are selected by quick-reduct algorithm, and the breast masses are discriminated into benign or malignant using SaDE-ELM classifier. The diagnosis accuracy of the system is assessed using parameters, such as accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), Matthew's correlation coefficient (MCC), and area ([Formula: see text]) under receiver operating characteristics curve. The performance of the proposed system is also compared with other classifiers, such as support vector machine and ELM. The results indicated that the proposed SaDE algorithm has superior performance with [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] compared to other classifiers.

  9. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    Science.gov (United States)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  10. Optimal Throughput and Self-adaptability of Robust Real-Time IEEE 802.15.4 MAC for AMI Mesh Network

    Science.gov (United States)

    Shabani, Hikma; Mohamud Ahmed, Musse; Khan, Sheroz; Hameed, Shahab Ahmed; Hadi Habaebi, Mohamed

    2013-12-01

    A smart grid refers to a modernization of the electricity system that brings intelligence, reliability, efficiency and optimality to the power grid. To provide an automated and widely distributed energy delivery, the smart grid will be branded by a two-way flow of electricity and information system between energy suppliers and their customers. Thus, the smart grid is a power grid that integrates data communication networks which provide the collected and analysed data at all levels in real time. Therefore, the performance of communication systems is so vital for the success of smart grid. Merit to the ZigBee/IEEE802.15.4std low cost, low power, low data rate, short range, simplicity and free licensed spectrum that makes wireless sensor networks (WSNs) the most suitable wireless technology for smart grid applications. Unfortunately, almost all ZigBee channels overlap with wireless local area network (WLAN) channels, resulting in severe performance degradation due to interference. In order to improve the performance of communication systems, this paper proposes an optimal throughput and self-adaptability of ZigBee/IEEE802.15.4std for smart grid.

  11. Averaged cov-driven subspace identification for modal analysis of a modified troposkien blade with displacement measurement

    DEFF Research Database (Denmark)

    Najafi, Nadia; Panah, Mohammad Esmail Aryaee; Schmidt Paulsen, Uwe

    2015-01-01

    in the analysis are very short because of limitations in the image acquisition system. Short time series are not fully qualified for OMA and analyzing the data needs a proper method. Covariance driven Stochastic Subspace Identification method (SSI-cov) has been used for short time series like earthquakes...... to analyse short time series is described in this paper. For OMA validation, a classical modal analysis is done with signals from accelerometers mounted on the blade. The blade is exited with a hammer. The natural frequencies are estimated by picking the peaks from the FRFs (Frequency Response Function......) obtained at different points. Finally the natural frequencies and mode shapes obtained from classical modal analysis and OMA results are compared to numerical simulations of the blade with COMSOL....

  12. Averaged cov-driven subspace identification for modal analysis of a modified troposkien blade with displacement measurement

    DEFF Research Database (Denmark)

    Najafi, Nadia; Panah, Mohammad Esmail Aryaee; Schmidt Paulsen, Uwe

    2015-01-01

    An operational modal analysis study has been carried out on a 1- kW, vertical-axis wind turbine rotor blade, using a stereo vision technique. Numerical simulation has also been carried out and results were compared to classical modal analysis and OMA results. The displacement time series used...... in the analysis are very short because of limitations in the image acquisition system. Short time series are not fully qualified for OMA and analyzing the data needs a proper method. Covariance driven Stochastic Subspace Identification method (SSI-cov) has been used for short time series like earthquakes......) obtained at different points. Finally the natural frequencies and mode shapes obtained from classical modal analysis and OMA results are compared to numerical simulations of the blade with COMSOL....

  13. Dissatisfaction of Compact Picard Condition (CPC) with GRACE satellite data and its treatment by Generalized Tikhonov in Sobolev subspace

    Science.gov (United States)

    AllahTavakoli, Y.; Bagheri, H.; Safari, A.; Sharifi, M.

    2012-04-01

    This paper is mainly aiming to prove that the stripy noises in the map of earth's surface mass-density changes derived from GRACE Satellites gravimetry, is due to a dissatisfaction of Compact Picard Condition (CPC) with the GRACE data in the inversion of the Newton Integral Equation over the thin layer of earth; and hence the paper proposes the regularization strategies as efficient tools to treat the Ill-posedness and consequently to de-strip the data. First of all, we preferred to slightly modify the mathematical model of earth's surface mass-density changes developed creatively first by J. Wahr and et.al (1998), according to the all their previous assumptions plus taking into consideration the effect of the earth topography. By the modification we expect that some uncertainties in the prior model have been reduced to some extent. Then we analyzed the CPC on the model and we demonstrated how to perform Generalized Tikhonov regularization in Sobolev subspace for overcoming the instability of the problem. Then we applied the strategy in some simulations and case studies to validate our ideas. The simulations confirm that the stripy noises in the GRACE-derived map of the mass-density changes are due to the CPC dissatisfaction and furthermore the case studies show that Generalized Tikhonov regularization in Sobolev subspace is an influential filtering tool to de-strip the noisy data. Also, the case studies interestingly show that the effect of the topography is comparable to the effect of the load Love numbers on the Wahr's model; hence it may be taken into consideration when the load Love numbers have been taken into account.

  14. Developing a Shuffled Complex-Self Adaptive Hybrid Evolution (SC-SAHEL) Framework for Water Resources Management and Water-Energy System Optimization

    Science.gov (United States)

    Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.

    2017-12-01

    Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary

  15. A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm

    International Nuclear Information System (INIS)

    Shivaie, Mojtaba; Ameli, Mohammad T.; Sepasian, Mohammad S.; Weinsier, Philip D.; Vahidinasab, Vahid

    2015-01-01

    In this paper, the authors present a new multistage framework for reliability-based Distribution Expansion Planning (DEP) in which expansion options are a reinforcement and/or installation of substations, feeders, and Distributed Generations (DGs). The proposed framework takes into account not only costs associated with investment, maintenance, and operation, but also expected customer interruption cost in the optimization as four problem objectives. At the same time, operational restrictions, Kirchhoff's laws, radial structure limitation, voltage limits, and capital expenditure budget restriction are considered as problem constraints. The proposed model is a non-convex optimization problem having a non-linear, mixed-integer nature. Hence, a hybrid Self-adaptive Global-based Harmony Search Algorithm (SGHSA) and Optimal Power Flow (OPF) were used and followed by a fuzzy satisfying method in order to obtain the final optimal solution. The SGHSA is a recently developed optimization algorithm which imitates the music improvisation process. In this process, the harmonists improvise their instrument pitches, searching for the perfect state of harmony. The planning methodology was demonstrated on the 27-node, 13.8-kV test system in order to demonstrate the feasibility and capability of the proposed model. Simulation results illustrated the sufficiency and profitableness of the newly developed framework, when compared with other methods. - Highlights: • A new multistage framework is presented for reliability-based DEP problem. • In this paper, DGs are considered as an expansion option to increase the flexibility of the proposed model. • In this paper, effective factors of DEP problem are incorporated as a multi-objective model. • In this paper, three new algorithms HSA, IHSA and SGHSA are proposed. • Results obtained by the proposed SGHSA algorithm are better than others

  16. Random SU(2) invariant tensors

    Science.gov (United States)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  17. A Subspace-Based Compensation Method for the Mutual Coupling in Concentric Circular Ring Arrays for Near-Field Source Localisation

    Directory of Open Access Journals (Sweden)

    Mohammed Jainul Abedin

    2012-01-01

    Full Text Available We propose a technique for compensating the effect of mutual coupling on parameter estimation that is suitable with any subspace-based super-resolution algorithms. A Concentric circular ring array (CCRA formed using thin dipole antennas in the receiving mode is employed to estimate the parameters of electromagnetic sources located in the radiating near field of the array. A CCRA geometry that obtains a lowest Cramer-Rao lower bound (CRLB in the presence of array mutual coupling is chosen for investigation. The mutual coupling among antenna elements of the array would affect the orthogonality of subspaces when MUSIC or ESPRIT algorithms are used for parameter estimation. The proposed method obtains a compensation matrix that restores the orthogonality between the subspaces there by improving the accuracy of estimation. To avoid three-dimensional searches, the range parameter is estimated using a cross-correlation-based method. Numerical simulation using a full-wave electromagnetic (EM solver is employed to demonstrate the effectiveness of the proposed compensation approach.

  18. A Combination of Modal Synthesis and Subspace Iteration for an Efficient Algorithm for Modal Analysis within a FE-Code

    Directory of Open Access Journals (Sweden)

    M.W. Zehn

    2003-01-01

    Full Text Available Various well-known modal synthesis methods exist in the literature, which are all based upon certain assumptions for the relation of generalised modal co-ordinates with internal modal co-ordinates. If employed in a dynamical FE substructure/superelement technique the generalised modal co-ordinates are represented by the master degrees of freedom (DOF of the master nodes of the substructure. To conduct FE modal analysis the modal synthesis method can be integrated to reduce the number of necessary master nodes or to ease the process of defining additional master points within the structure. The paper presents such a combined method, which can be integrated very efficiently and seamless into a special subspace eigenvalue problem solver with no need to alter the FE system matrices within the FE code. Accordingly, the merits of using the new algorithm are the easy implementation into a FE code, the less effort to carry out modal synthesis, and the versatility in dealing with superelements. The paper presents examples to illustrate the proper work of the algorithm proposed.

  19. Application of the trajectory coordinate system and the moving modes method approach to railroad dynamics using Krylov subspaces

    Science.gov (United States)

    Recuero, Antonio M.; Escalona, José L.

    2013-09-01

    This paper presents a procedure that makes use of a particular formulation based on the trajectory coordinate system (TCS) approach, which is specific of ground vehicles, to describe the track deformation by means of a suitable set of mode shapes. The inertia terms of the track elastic displacements are derived using the TCS arc length to couple the system dynamics. The selection of the track modes of deformation is carried out from a finite element model by using Krylov subspaces as the model-order reduction technique. The modes of deformation move along the track fixed to the TCS using the moving modes method (MMM), avoiding the issue concerning the spatial convergence of the load (wheels) on the track and preserving their vertical frequency contents whose accuracy can be chosen beforehand. An unsuspended wheelset with an induced hunting motion moving on flexible and rigid tangent tracks and a vehicle model are simulated using rail defects as excitations sources such that the performance of this procedure using a fully 3D contact algorithm is shown and analyzed.

  20. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: II. Experimental validation under varying temperature

    Science.gov (United States)

    Lin, Y. Q.; Ren, W. X.; Fang, S. E.

    2011-11-01

    Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.

  1. Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data.

    Science.gov (United States)

    Fan, Jicong; Tian, Zhaoyang; Zhao, Mingbo; Chow, Tommy W S

    2018-04-01

    The scalability of low-rank representation (LRR) to large-scale data is still a major research issue, because it is extremely time-consuming to solve singular value decomposition (SVD) in each optimization iteration especially for large matrices. Several methods were proposed to speed up LRR, but they are still computationally heavy, and the overall representation results were also found degenerated. In this paper, a novel method, called accelerated LRR (ALRR) is proposed for large-scale data. The proposed accelerated method integrates matrix factorization with nuclear-norm minimization to find a low-rank representation. In our proposed method, the large square matrix of representation coefficients is transformed into a significantly smaller square matrix, on which SVD can be efficiently implemented. The size of the transformed matrix is not related to the number of data points and the optimization of ALRR is linear with the number of data points. The proposed ALRR is convex, accurate, robust, and efficient for large-scale data. In this paper, ALRR is compared with state-of-the-art in subspace clustering and semi-supervised classification on real image datasets. The obtained results verify the effectiveness and superiority of the proposed ALRR method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Grid-free simulation of diffusion using random walk methods

    Science.gov (United States)

    Ghoniem, A. F.; Sherman, F. S.

    1985-01-01

    The simulation of the diffusion of a continuum field by the random walk (RW) displacement of a set of particles is considered. Elements of the gradients of the diffusive concentration are transported by computational particles. It is demonstrated that, by the use of concentration gradients in the RW process, statistical errors are reduced and each realization of the numerical solution is a representation of the exact solution. The algorithm is grid-free, and the computational elements move to follow the gradients; hence, the algorithm is self-adaptive, and uniform resolution is achieved for all times.

  3. Random projections and the optimization of an algorithm for phase retrieval

    International Nuclear Information System (INIS)

    Elser, Veit

    2003-01-01

    Iterative phase retrieval algorithms typically employ projections onto constraint subspaces to recover the unknown phases in the Fourier transform of an image, or, in the case of x-ray crystallography, the electron density of a molecule. For a general class of algorithms, where the basic iteration is specified by the difference map, solutions are associated with fixed points of the map, the attractive character of which determines the effectiveness of the algorithm. The behaviour of the difference map near fixed points is controlled by the relative orientation of the tangent spaces of the two constraint subspaces employed by the map. Since the dimensionalities involved are always large in practical applications, it is appropriate to use random matrix theory ideas to analyse the average-case convergence at fixed points. Optimal values of the γ parameters of the difference map are found which differ somewhat from the values previously obtained on the assumption of orthogonal tangent spaces

  4. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    Directory of Open Access Journals (Sweden)

    Guihua Wen

    2017-01-01

    Full Text Available Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  5. Data-Driven Nonlinear Subspace Modeling for Prediction and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Song, Heda; Wang, Hong; Chai, Tianyou

    2017-09-01

    Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improve modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.

  6. Generalized subspace correction methods

    Energy Technology Data Exchange (ETDEWEB)

    Kolm, P. [Royal Institute of Technology, Stockholm (Sweden); Arbenz, P.; Gander, W. [Eidgenoessiche Technische Hochschule, Zuerich (Switzerland)

    1996-12-31

    A fundamental problem in scientific computing is the solution of large sparse systems of linear equations. Often these systems arise from the discretization of differential equations by finite difference, finite volume or finite element methods. Iterative methods exploiting these sparse structures have proven to be very effective on conventional computers for a wide area of applications. Due to the rapid development and increasing demand for the large computing powers of parallel computers, it has become important to design iterative methods specialized for these new architectures.

  7. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  8. Application of a model order reduction method based on the Krylov subspace to finite element transient analysis imposing several kinds of boundary condition

    International Nuclear Information System (INIS)

    Amin, N M; Asai, M; Sonoda, Y

    2010-01-01

    Model order reduction (MOR) via Krylov subspace (KS-MOR) is one of projection-based reduction method for spatially discretized time differential equation. This paper presents a treatment of KS-MOR incorporating with finite element method for structure dynamics. KS-MOR needs basis vectors for the projection into Krylov subspace. In this context, Arnoldi and/or Lanczos method are typical techniques to generate basis vectors, and these techniques requires the information of right hand side (RHS) vector, which is the loading pattern vector in structure dynamics. In this study, we propose a treatment of Dirichlet boundary problem by generating an equivalent blocked system equation including three RHS vectors. In order to solve the multiple RHS vector problem, Block Second Order Arnoldi (BSOAR) is utilized in this paper. After projection, time integration of the projected small system equations was performed by the conventional Newmark-β method. In order to show the performance of KS-MOR, several numerical simulations are conducted. The numerical results show less than 1% of the original degrees of freedoms (DOFs) are necessary to get the accurate results for all of our numerical examples, and the CPU time is less than 2% of the conventional FE calculation.

  9. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via

  10. A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space

    International Nuclear Information System (INIS)

    Yodgorov, G R; Ismail, F; Muminov, Z I

    2014-01-01

    We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments. Bibliography: 19 titles

  11. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    Energy Technology Data Exchange (ETDEWEB)

    Tsilifis, Panagiotis, E-mail: tsilifis@usc.edu [Department of Mathematics, University of Southern California, Los Angeles, CA 90089 (United States); Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Ghanem, Roger G., E-mail: ghanem@usc.edu [Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089 (United States)

    2017-07-15

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  12. Random magnetism

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1975-01-01

    A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt

  13. Spatio-temporal EEG source localization using a three-dimensional subspace FINE approach in a realistic geometry inhomogeneous head model.

    Science.gov (United States)

    Ding, Lei; He, Bin

    2006-09-01

    The subspace source localization approach, i.e., first principle vectors (FINE), is able to enhance the spatial resolvability and localization accuracy for closely-spaced neural sources from EEG and MEG measurements. Computer simulations were conducted to evaluate the performance of the FINE algorithm in an inhomogeneous realistic geometry head model under a variety of conditions. The source localization abilities of FINE were examined at different cortical regions and at different depths. The present computer simulation results indicate that FINE has enhanced source localization capability, as compared with MUSIC and RAP-MUSIC, when sources are closely spaced, highly noise-contaminated, or inter-correlated. The source localization accuracy of FINE is better, for closely-spaced sources, than MUSIC at various noise levels, i.e., signal-to-noise ratio (SNR) from 6 dB to 16 dB, and RAP-MUSIC at relatively low noise levels, i.e., 6 dB to 12 dB. The FINE approach has been further applied to localize brain sources of motor potentials, obtained during the finger tapping tasks in a human subject. The experimental results suggest that the detailed neural activity distribution could be revealed by FINE. The present study suggests that FINE provides enhanced performance in localizing multiple closely spaced, and inter-correlated sources under low SNR, and may become an important alternative to brain source localization from EEG or MEG.

  14. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2017-03-01

    Full Text Available Tool fault diagnosis in numerical control (NC machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA and least squares support vector machine (LS-SVM using only a single sensor. First, SSA was used to extract stationary and non-stationary sources from multi-dimensional signals without the need for independency and without prior information of the source signals, after the dimensionality of the vibration signal observed by a single sensor was expanded by phase space reconstruction technique. Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals from tools of an unknown state and their non-stationary sources were separated by SSA to serve as test samples for the trained SVM. The experimental validation demonstrated that the proposed method has better diagnosis accuracy than three previous methods based on LS-SVM alone, Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

  15. Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: a comparison with the EnKF

    Directory of Open Access Journals (Sweden)

    A. Carrassi

    2008-07-01

    Full Text Available A hybrid scheme obtained by combining 3DVar with the Assimilation in the Unstable Subspace (3DVar-AUS is tested in a QG model, under perfect model conditions, with a fixed observational network, with and without observational noise. The AUS scheme, originally formulated to assimilate adaptive observations, is used here to assimilate the fixed observations that are found in the region of local maxima of BDAS vectors (Bred vectors subject to assimilation, while the remaining observations are assimilated by 3DVar. The performance of the hybrid scheme is compared with that of 3DVar and of an EnKF. The improvement gained by 3DVar-AUS and the EnKF with respect to 3DVar alone is similar in the present model and observational configuration, while 3DVar-AUS outperforms the EnKF during the forecast stage. The 3DVar-AUS algorithm is easy to implement and the results obtained in the idealized conditions of this study encourage further investigation toward an implementation in more realistic contexts.

  16. Random subcloning.

    Science.gov (United States)

    Roach, J C

    1995-12-01

    Random subcloning strategies are commonly employed for analyzing pieces of DNA that are too large for direct analysis. Such strategies are applicable to gene finding, physical mapping, and DNA sequencing. Random subcloning refers to the generation of many small, directly analyzable fragments of DNA that represent random fragments of a larger whole, such as a genome. Following analysis of these fragments, a map or sequence of the original target may be reconstructed. Mathematical modeling is useful in planning such strategies and in providing a reference for their evaluation, both during execution and following completion. The statistical theory necessary for constructing these models has been developed independently over the last century. This paper brings this theory together into a statistical model for random subcloning strategies. This mathematical model retains its utility even at high subclone redundancies, which are necessary for project completion. The discussion here centers on shotgun sequencing, a random subcloning strategy envisioned as the method of choice for sequencing the human genome.

  17. Self-Adaptive Anytime Stream Clustering

    DEFF Research Database (Denmark)

    Kranen, Philipp; Assent, Ira; Baldauf, Corinna

    2009-01-01

    Clustering streaming data requires algorithms which are capable of updating clustering results for the incoming data. As data is constantly arriving, time for processing is limited. Clustering has to be performed in a single pass over the incoming data and within the possibly varying inter......-arrival times of the stream. Likewise, memory is limited, making it impossible to store all data. For clustering, we are faced with the challenge of maintaining a current result that can be presented to the user at any given time. In this work, we propose a parameter free algorithm that automatically adapts...... to the speed of the data stream. It makes best use of the time available under the current constraints to provide a clustering of the objects seen up to that point. Our approach incorporates the age of the objects to reflect the greater importance of more recent data. Moreover, we are capable of detecting...

  18. Dissecting random and systematic differences between noisy composite data sets.

    Science.gov (United States)

    Diederichs, Kay

    2017-04-01

    Composite data sets measured on different objects are usually affected by random errors, but may also be influenced by systematic (genuine) differences in the objects themselves, or the experimental conditions. If the individual measurements forming each data set are quantitative and approximately normally distributed, a correlation coefficient is often used to compare data sets. However, the relations between data sets are not obvious from the matrix of pairwise correlations since the numerical value of the correlation coefficient is lowered by both random and systematic differences between the data sets. This work presents a multidimensional scaling analysis of the pairwise correlation coefficients which places data sets into a unit sphere within low-dimensional space, at a position given by their CC* values [as defined by Karplus & Diederichs (2012), Science, 336, 1030-1033] in the radial direction and by their systematic differences in one or more angular directions. This dimensionality reduction can not only be used for classification purposes, but also to derive data-set relations on a continuous scale. Projecting the arrangement of data sets onto the subspace spanned by systematic differences (the surface of a unit sphere) allows, irrespective of the random-error levels, the identification of clusters of closely related data sets. The method gains power with increasing numbers of data sets. It is illustrated with an example from low signal-to-noise ratio image processing, and an application in macromolecular crystallography is shown, but the approach is completely general and thus should be widely applicable.

  19. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  20. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.; Brene, N.; Nielsen, H.B.

    1986-06-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  1. Subspace Arrangement Codes and Cryptosystems

    Science.gov (United States)

    2011-05-09

    Professor William Traves . I also thank Professor Carl Wick and the Trident Scholar Committee for providing me with the opportunity to conduct this...Lauri Kahanpää, Pekka Kekäläinen, and William Traves . An Invitation to Algebraic Geometry. Universitext. Springer-Verlag, New York, 2000. [17

  2. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  3. Random walk polynomials and random walk measures

    NARCIS (Netherlands)

    van Doorn, Erik A.; Schrijner, Pauline

    1993-01-01

    Random walk polynomials and random walk measures play a prominent role in the analysis of a class of Markov chains called random walks. Without any reference to random walks, however, a random walk polynomial sequence can be defined (and will be defined in this paper) as a polynomial sequence{Pn(x)}

  4. Random walks in a random environment

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Random walks as well as diffusions in random media are considered. Methods are developed that allow one to establish large deviation results for both the 'quenched' and the 'averaged' case. Keywords. Large deviations; random walks in a random environment. 1. Introduction. A random walk on Zd is a stochastic ...

  5. Random tensors

    CERN Document Server

    Gurau, Razvan

    2017-01-01

    Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....

  6. Random functions and turbulence

    CERN Document Server

    Panchev, S

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random

  7. A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

    KAUST Repository

    Harman, Radoslav

    2018-01-17

    We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.

  8. Random projection-based dimensionality reduction method for hyperspectral target detection

    Science.gov (United States)

    Feng, Weiyi; Chen, Qian; He, Weiji; Arce, Gonzalo R.; Gu, Guohua; Zhuang, Jiayan

    2015-09-01

    Dimensionality reduction is a frequent preprocessing step in hyperspectral image analysis. High-dimensional data will cause the issue of the "curse of dimensionality" in the applications of hyperspectral imagery. In this paper, a dimensionality reduction method of hyperspectral images based on random projection (RP) for target detection was investigated. In the application areas of hyperspectral imagery, e.g. target detection, the high dimensionality of the hyperspectral data would lead to burdensome computations. Random projection is attractive in this area because it is data independent and computationally more efficient than other widely-used hyperspectral dimensionality-reduction methods, such as Principal Component Analysis (PCA) or the maximum-noise-fraction (MNF) transform. In RP, the original highdimensional data is projected onto a low dimensional subspace using a random matrix, which is very simple. Theoretical and experimental results indicated that random projections preserved the structure of the original high-dimensional data quite well without introducing significant distortion. In the experiments, Constrained Energy Minimization (CEM) was adopted as the target detector and a RP-based CEM method for hyperspectral target detection was implemented to reveal that random projections might be a good alternative as a dimensionality reduction tool of hyperspectral images to yield improved target detection with higher detection accuracy and lower computation time than other methods.

  9. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  10. Random fixed points and random differential inclusions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1988-01-01

    Full Text Available In this paper, first, we study random best approximations to random sets, using fixed point techniques, obtaining this way stochastic analogues of earlier deterministic results by Browder-Petryshyn, KyFan and Reich. Then we prove two fixed point theorems for random multifunctions with stochastic domain that satisfy certain tangential conditions. Finally we consider a random differential inclusion with upper semicontinuous orientor field and establish the existence of random solutions.

  11. Topics in random walks in random environment

    International Nuclear Information System (INIS)

    Sznitman, A.-S.

    2004-01-01

    Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)

  12. Random generalized linear model: a highly accurate and interpretable ensemble predictor.

    Science.gov (United States)

    Song, Lin; Langfelder, Peter; Horvath, Steve

    2013-01-16

    Ensemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature. Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso). This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to define a "thinned" ensemble predictor (involving few features) that retains excellent predictive accuracy. RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized linear model (interpretability). These methods are implemented in the freely available R software package randomGLM.

  13. A special covariance structure for random coefficient models with both between and within covariates

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1990-07-01

    We review random coefficient (RC) models in linear regression and propose a bias correction to the maximum likelihood (ML) estimator. Asymmptotic expansion of the ML equations are given when the between individual variance is much larger or smaller than the variance from within individual fluctuations. The standard model assumes all but one covariate varies within each individual, (we denote the within covariates by vector χ 1 ). We consider random coefficient models where some of the covariates do not vary in any single individual (we denote the between covariates by vector χ 0 ). The regression coefficients, vector β k , can only be estimated in the subspace X k of X. Thus the number of individuals necessary to estimate vector β and the covariance matrix Δ of vector β increases significantly in the presence of more than one between covariate. When the number of individuals is sufficient to estimate vector β but not the entire matrix Δ , additional assumptions must be imposed on the structure of Δ. A simple reduced model is that the between component of vector β is fixed and only the within component varies randomly. This model fails because it is not invariant under linear coordinate transformations and it can significantly overestimate the variance of new observations. We propose a covariance structure for Δ without these difficulties by first projecting the within covariates onto the space perpendicular to be between covariates. (orig.)

  14. Completely random signed measures

    DEFF Research Database (Denmark)

    Hellmund, Gunnar

    Completely random signed measures are defined, characterized and related to Lévy random measures and Lévy bases.......Completely random signed measures are defined, characterized and related to Lévy random measures and Lévy bases....

  15. Random broadcast on random geometric graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  16. How random is a random vector?

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Over 80 years ago Samuel Wilks proposed that the “generalized variance” of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the “Wilks standard deviation” –the square root of the generalized variance–is indeed the standard deviation of a random vector. We further establish that the “uncorrelation index” –a derivative of the Wilks standard deviation–is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: “randomness measures” and “independence indices” of random vectors. In turn, these general notions give rise to “randomness diagrams”—tangible planar visualizations that answer the question: How random is a random vector? The notion of “independence indices” yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  17. Random Marginal and Random Removal values

    OpenAIRE

    Calvo, Emilio

    2006-01-01

    We propose two variations of the non-cooperative bargaining model for games in coalitional form, introduced by Hart and Mas-Colell (1996a). These strategic games implement, in the limit, two new NTU-values: The random marginal and the random removal values. The main characteristic of these proposals is that they always select a unique payoff allocation in NTU-games. The random marginal value coincides with the Consistent NTU-value (Maschler and Owen, 1989) for hyperplane games, and with the S...

  18. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  19. Blocked randomization with randomly selected block sizes.

    Science.gov (United States)

    Efird, Jimmy

    2011-01-01

    When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  20. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  1. Misuse of randomization

    DEFF Research Database (Denmark)

    Liu, Jianping; Kjaergard, Lise Lotte; Gluud, Christian

    2002-01-01

    The quality of randomization of Chinese randomized trials on herbal medicines for hepatitis B was assessed. Search strategy and inclusion criteria were based on the published protocol. One hundred and seventy-six randomized clinical trials (RCTs) involving 20,452 patients with chronic hepatitis B...... virus (HBV) infection were identified that tested Chinese medicinal herbs. They were published in 49 Chinese journals. Only 10% (18/176) of the studies reported the method by which they randomized patients. Only two reported allocation concealment and were considered as adequate. Twenty percent (30...

  2. Self Adaptive Safe Provisioning of Wireless Power Using DCOPs

    NARCIS (Netherlands)

    Leeuwen, C.J. van; Yildirim, K.S.; Pawelczak, P.

    2017-01-01

    Wireless Power Transfer (WPT) technologies aim at getting rid of cables used by consumer devices for energy provision. As long distance WPT is becoming mature, the health impact of WPT becomes increasingly important to consider. In this paper we look at how to maximize the wireless power transfer to

  3. Reasoning about Human Participation in Self-Adaptive Systems

    Science.gov (United States)

    2015-01-16

    these adaptation models as stochastic multiplayer games (SMGs) that can be used to analyze human-system-environment interactions. We illustrate our...models as stochastic multiplayer games (SMGs) that can be used to analyze human-system-environment interactions. To explore these issues, we propose...select a set of devices of size MAX DEVS PN (a constant that represents the maximum number of devices that can be attached to a processor node) among

  4. Robust object tacking based on self-adaptive search area

    Science.gov (United States)

    Dong, Taihang; Zhong, Sheng

    2018-02-01

    Discriminative correlation filter (DCF) based trackers have recently achieved excellent performance with great computational efficiency. However, DCF based trackers suffer boundary effects, which result in the unstable performance in challenging situations exhibiting fast motion. In this paper, we propose a novel method to mitigate this side-effect in DCF based trackers. We change the search area according to the prediction of target motion. When the object moves fast, broad search area could alleviate boundary effects and reserve the probability of locating object. When the object moves slowly, narrow search area could prevent effect of useless background information and improve computational efficiency to attain real-time performance. This strategy can impressively soothe boundary effects in situations exhibiting fast motion and motion blur, and it can be used in almost all DCF based trackers. The experiments on OTB benchmark show that the proposed framework improves the performance compared with the baseline trackers.

  5. Self-Adaptive Switched Architecture for Ultra-Capacitors Storage

    OpenAIRE

    El Mahboubi, Firdaous; Bafleur, Marise; Boitier, Vincent; Dilhac, Jean-Marie

    2016-01-01

    National audience; Energy autonomy is a major barrier to the deployment of wireless sensors networks in many applications. Ambient energy harvesting and storage is a way to enhance this autonomy. Moreover, in some applications with harsh environment (extreme temperatures) or when a long service liftime is required, the use of batteries for storage is prohibited. Ultra-capacitor provide in this case a good alternative for a energy storage. This type of storage must comply with the following re...

  6. Bio-inspired Self-Adaptive Agents in Distributed Systems

    OpenAIRE

    Ichiro SATOH

    2013-01-01

    This paper proposes a bio-inspired middleware for selfadaptive software agents on distributed systems. It is unique to other existing approaches for software adaptation because it introduces the notions of differentiation, dedifferentiation, and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into real distributed systems. When an agent delegates a function to another agent coordinating with it, if the former has the function, this function becomes lessdeveloped ...

  7. Self-adapting the success rate when practicing math

    NARCIS (Netherlands)

    Jansen, B.R.J.; Hofman, A.D.; Savi, A.; Visser, I.; van der Maas, H.L.J.

    2016-01-01

    Use and benefits of the possibility to choose a success rate are studied in a math-practice application that is used by a considerable percentage of Dutch primary school children. Study 1 uses data that were collected with the application, using children's practice data (N = 40,329; grades 1–6).

  8. Talking Titler: Evolutionary and Self-Adaptive Land Tenure ...

    African Journals Online (AJOL)

    Conventional land registration systems often do not produce the desired results in uncertain land tenure situations such as peri-urban areas in developing world cities, post-conflict situations, land restitution claims and aboriginal land systems. In the Talking Titler system, flexibility in creating relationships between people ...

  9. Towards A Self Adaptive System for Social Wellness

    Directory of Open Access Journals (Sweden)

    Asad Masood Khattak

    2016-04-01

    Full Text Available Advancements in science and technology have highlighted the importance of robust healthcare services, lifestyle services and personalized recommendations. For this purpose patient daily life activity recognition, profile information, and patient personal experience are required. In this research work we focus on the improvement in general health and life status of the elderly through the use of an innovative services to align dietary intake with daily life and health activity information. Dynamic provisioning of personalized healthcare and life-care services are based on the patient daily life activities recognized using smart phone. To achieve this, an ontology-based approach is proposed, where all the daily life activities and patient profile information are modeled in ontology. Then the semantic context is exploited with an inference mechanism that enables fine-grained situation analysis for personalized service recommendations. A generic system architecture is proposed that facilitates context information storage and exchange, profile information, and the newly recognized activities. The system exploits the patient’s situation using semantic inference and provides recommendations for appropriate nutrition and activity related services. The proposed system is extensively evaluated for the claims and for its dynamic nature. The experimental results are very encouraging and have shown better accuracy than the existing system. The proposed system has also performed better in terms of the system support for a dynamic knowledge-base and the personalized recommendations.

  10. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  11. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  12. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  13. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  14. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  15. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  16. Comparison among dimensionality reduction techniques based on Random Projection for cancer classification.

    Science.gov (United States)

    Xie, Haozhe; Li, Jie; Zhang, Qiaosheng; Wang, Yadong

    2016-12-01

    Random Projection (RP) technique has been widely applied in many scenarios because it can reduce high-dimensional features into low-dimensional space within short time and meet the need of real-time analysis of massive data. There is an urgent need of dimensionality reduction with fast increase of big genomics data. However, the performance of RP is usually lower. We attempt to improve classification accuracy of RP through combining other reduction dimension methods such as Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Feature Selection (FS). We compared classification accuracy and running time of different combination methods on three microarray datasets and a simulation dataset. Experimental results show a remarkable improvement of 14.77% in classification accuracy of FS followed by RP compared to RP on BC-TCGA dataset. LDA followed by RP also helps RP to yield a more discriminative subspace with an increase of 13.65% on classification accuracy on the same dataset. FS followed by RP outperforms other combination methods in classification accuracy on most of the datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Joint local quasinilpotence and common invariant subspaces

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 3. Joint Local ... The concept of joint quasinilpotence plays a basic role. Our results complement recent work by ... A Fernández Valles1. Department of Mathematics, University of Cádiz, Avda. de la Universidad, s/n 11402-Jerez de la Frontera, Spain ...

  18. Dominant Taylor Spectrum and Invariant Subspaces

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore; Müller, Vladimír

    2009-01-01

    Roč. 61, č. 1 (2009), s. 101-111 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : Taylor spectrum * Scott-Brown technique * dominant spectrum Subject RIV: BA - General Mathematics Impact factor: 0.580, year: 2009

  19. Minimal Krylov Subspaces for Dimension Reduction

    Science.gov (United States)

    2013-01-01

    stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.4.2 Enron email corpus experiment...the Enron email corpus and eigenvalue gaps. . . . 65 4.6 Low-rank approximation errors of Enron email corpus. . . . . . . . . . . . . . . . . . . . . 66...4.7 Maximum loss of orthogonality in projection basis for Enron email corpus. . . . . . . . . 67 4.8 FLOP counts for producing low-rank

  20. Subspace Analysis of Indoor UWB Channels

    Directory of Open Access Journals (Sweden)

    Rachid Saadane

    2005-03-01

    Full Text Available This work aims at characterizing the second-order statistics of indoor ultra-wideband (UWB channels using channel sounding techniques. We present measurement results for different scenarios conducted in a laboratory setting at Institut Eurécom. These are based on an eigendecomposition of the channel autocovariance matrix, which allows for the analysis of the growth in the number of significant degrees of freedom of the channel process as a function of the signaling bandwidth as well as the statistical correlation between different propagation paths. We show empirical eigenvalue distributions as a function of the signal bandwidth for both line-of-sight and non-line-of-sight situations. Furthermore, we give examples where paths from different propagation clusters (possibly arising from reflection or diffraction show strong statistical dependence.

  1. External Evaluation Measures for Subspace Clustering

    DEFF Research Database (Denmark)

    Günnemann, Stephan; Färber, Ines; Müller, Emmanuel

    2011-01-01

    Knowledge discovery in databases requires not only development of novel mining techniques but also fair and comparable quality assessment based on objective evaluation measures. Especially in young research areas where no common measures are available, researchers are unable to provide a fair...... the requirements in form of quality properties. In thorough experiments we empirically show characteristic properties of evaluation measures. Overall, we provide a set of evaluation measures that fulfill the general quality criteria as recommendation for future evaluations. All measures and datasets are provided...

  2. Joint local quasinilpotence and common invariant subspaces

    Indian Academy of Sciences (India)

    Banach spaces with a Schauder basis. The concept of joint quasinilpotence ... Let T be a continuous linear operator defined on a separable Banach space X. Let us say that T is cyclic if x ∈ X such that ..... for the case of N-tuples of positive operators defined on a Hausdorff topological vector space, where the partial order is ...

  3. Preconditioned Krylov subspace methods for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Saad, Y.; Stathopoulos, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    Lanczos algorithm is a commonly used method for finding a few extreme eigenvalues of symmetric matrices. It is effective if the wanted eigenvalues have large relative separations. If separations are small, several alternatives are often used, including the shift-invert Lanczos method, the preconditioned Lanczos method, and Davidson method. The shift-invert Lanczos method requires direct factorization of the matrix, which is often impractical if the matrix is large. In these cases preconditioned schemes are preferred. Many applications require solution of hundreds or thousands of eigenvalues of large sparse matrices, which pose serious challenges for both iterative eigenvalue solver and preconditioner. In this paper we will explore several preconditioned eigenvalue solvers and identify the ones suited for finding large number of eigenvalues. Methods discussed in this paper make up the core of a preconditioned eigenvalue toolkit under construction.

  4. Dominant Taylor Spectrum and Invariant Subspaces

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore; Müller, Vladimír

    2009-01-01

    Roč. 61, č. 1 (2009), s. 101-111 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : Taylor spectrum * Scott -Brown technique * dominant spectrum Subject RIV: BA - General Mathematics Impact factor: 0.580, year: 2009

  5. Weyl-Heisenberg frames for subspaces

    DEFF Research Database (Denmark)

    Christensen, Ole

    2001-01-01

    A Weyl-Heisenberg frame {E(mb)T(na)g}(m, n Z) = {e(2 pi imb(.)) g(.-na)}(m, n is an element of Z) for L-2 (R) allows every function f is an element of L-2(R) to be written as an infinite linear combination of translated and modulated versions of the fixed function g is an element of L-2(R...

  6. Krylov subspace acceleration of waveform relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)

    1996-12-31

    Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).

  7. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  8. Random maintenance policies

    CERN Document Server

    Nakagawa, Toshio

    2014-01-01

    Exploring random maintenance models, this book provides an introduction to the implementation of random maintenance, and it is one of the first books to be written on this subject.  It aims to help readers learn new techniques for applying random policies to actual reliability models, and it provides new theoretical analyses of various models including classical replacement, preventive maintenance and inspection policies. These policies are applied to scheduling problems, backup policies of database systems, maintenance policies of cumulative damage models, and reliability of random redundant systems. Reliability theory is a major concern for engineers and managers, and in light of Japan’s recent earthquake, the reliability of large-scale systems has increased in importance. This also highlights the need for a new notion of maintenance and reliability theory, and how this can practically be applied to systems. Providing an essential guide for engineers and managers specializing in reliability maintenance a...

  9. Theory of random sets

    CERN Document Server

    Molchanov, Ilya

    2017-01-01

    This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integ...

  10. Drawing a random number

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik

    2006-01-01

    Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... of a model or a solution method requires certain characteristics of the random numbers used. This is usually a distribution classification, which the sequence of random numbers must fulfill; of these some are very hard to fulfill and others are next to impossible. Today mathematics allows us to transform...... highly uniform multidimensional draws, which are highly relevant for todays traffic models. This paper shows among others combined shuffling and scrambling seems needless, that scrambling gives the lowest correlation and that there are detectable differences between random numbers, dependent...

  11. Optimizing Persistent Random Searches

    Science.gov (United States)

    Tejedor, Vincent; Voituriez, Raphael; Bénichou, Olivier

    2012-02-01

    We consider a minimal model of persistent random searcher with a short range memory. We calculate exactly for such a searcher the mean first-passage time to a target in a bounded domain and find that it admits a nontrivial minimum as function of the persistence length. This reveals an optimal search strategy which differs markedly from the simple ballistic motion obtained in the case of Poisson distributed targets. Our results show that the distribution of targets plays a crucial role in the random search problem. In particular, in the biologically relevant cases of either a single target or regular patterns of targets, we find that, in strong contrast to repeated statements in the literature, persistent random walks with exponential distribution of excursion lengths can minimize the search time, and in that sense perform better than any Levy walk.

  12. Coded Random Access

    DEFF Research Database (Denmark)

    Paolini, Enrico; Stefanovic, Cedomir; Liva, Gianluigi

    2015-01-01

    The rise of machine-to-machine communications has rekindled the interest in random access protocols as a support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed under a collision model, where slots containing collided packets are considered...... as waste. However, if the common receiver (e.g., base station) is capable to store the collision slots and use them in a transmission recovery process based on successive interference cancellation, the design space for access protocols is radically expanded. We present the paradigm of coded random access......, in which the structure of the access protocol can be mapped to a structure of an erasure-correcting code defined on graph. This opens the possibility to use coding theory and tools for designing efficient random access protocols, offering markedly better performance than ALOHA. Several instances of coded...

  13. TRUNCATED RANDOM MEASURES

    Science.gov (United States)

    2018-01-12

    tV e −u/γ ] = ( 1 + te−u/γ )−1 and ∫ J(u, t)du = γ log ( eu/γ + t ) . Using the antiderivative to evaluate the integrals in the formula for BK... Journal of Statistics, 26(2):283–297, 1998. J. F. C. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59–78, 1967. T S Ferguson...Random discrete distributions. Journal of the Royal Statistical Society B, 37(1): 1–22, 1975. Anders Brix. Generalized gamma measures and shot-noise cox

  14. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  15. On Random Numbers and Design

    Science.gov (United States)

    Ben-Ari, Morechai

    2004-01-01

    The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…

  16. Randomized clinical trial

    DEFF Research Database (Denmark)

    Jensen, Berit E.S.; Hansen, Jane M.; Larsen, Kasper S.

    2017-01-01

    percutaneous coronary intervention and randomized to either screening or control. Screened high-risk patients were prescribed pantoprazole 40 mg during the 1-year after percutaneous coronary intervention. Results The incidence of UGIB was 0.8 versus 1.3% in screened patients and controls, respectively (P=0...

  17. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    a stochastic reduced basis approximation which can be applied to discrete or discretized continuous dynamic systems. ... methods are proposed to obtain joint distributions of the natural frequencies of discrete linear systems. In § 2, some ... variables are Gaussian. When the basic random variables are non-Gaussian, a new.

  18. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  19. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  20. Random errors revisited

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    It is well known that the random errors of sound intensity estimates can be much larger than the theoretical minimum value determined by the BT-product, in particular under reverberant conditions and when there are several sources present. More than ten years ago it was shown that one can predict...

  1. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    The description of real-life engineering structural systems is associated with some amount of uncertainty in specifying material properties, geometric parameters, boundary conditions and applied loads. In the context of structural dynamics it is necessary to consider random eigenvalue problems in order to account for these ...

  2. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  3. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  4. Free random variables

    CERN Document Server

    Voiculescu, Dan; Nica, Alexandru

    1992-01-01

    This book presents the first comprehensive introduction to free probability theory, a highly noncommutative probability theory with independence based on free products instead of tensor products. Basic examples of this kind of theory are provided by convolution operators on free groups and by the asymptotic behavior of large Gaussian random matrices. The probabilistic approach to free products has led to a recent surge of new results on the von Neumann algebras of free groups. The book is ideally suited as a textbook for an advanced graduate course and could also provide material for a seminar. In addition to researchers and graduate students in mathematics, this book will be of interest to physicists and others who use random matrices.

  5. Independent random sampling methods

    CERN Document Server

    Martino, Luca; Míguez, Joaquín

    2018-01-01

    This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the li...

  6. Random acyclic networks

    OpenAIRE

    Karrer, Brian; Newman, M. E. J.

    2009-01-01

    Directed acyclic graphs are a fundamental class of networks that includes citation networks, food webs, and family trees, among others. Here we define a random graph model for directed acyclic graphs and give solutions for a number of the model's properties, including connection probabilities and component sizes, as well as a fast algorithm for simulating the model on a computer. We compare the predictions of the model to a real-world network of citations between physics papers and find surpr...

  7. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  8. On Randomness and Probability

    Indian Academy of Sciences (India)

    Var(U + V) = E«U + V)2). = Var(U) + Var(V) where we have used the previous lemma in deducing that. E(UV) = O. The required result now follows from this. We are now in a position to prove the Weak Law of Large Numbers. Theorem 3: Let XI,X2,··· ,Xn ··· be a sequence of bounded random variables such that for each n, Xl, ...

  9. Randomness in complex media

    Science.gov (United States)

    Caulfield, H. John; Henderson, Don O.; Noginov, Mikhail A.

    2002-06-01

    Randomness is not always the enemy. It can serve many purposes where materials sciences and optical sciences meet. Among those purposes are these. It can provide the raw material for self-organization. It can 'uniformize' optical properties. It can make manufacturing easier. It can assure a great deal of noise immunity. Although most cases exhibit all of those features, we can illustrate them with examples in which one tends to dominate the other.

  10. Certified randomness in quantum physics.

    Science.gov (United States)

    Acín, Antonio; Masanes, Lluis

    2016-12-07

    The concept of randomness plays an important part in many disciplines. On the one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions about the devices that are often not valid in practice. However, quantum technologies enable new methods for generating certified randomness, based on the violation of Bell inequalities. These methods are referred to as device-independent because they do not rely on any modelling of the devices. Here we review efforts to design device-independent randomness generators and the associated challenges.

  11. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  12. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  13. Randomizing Roaches: Exploring the "Bugs" of Randomization in Experimental Design

    Science.gov (United States)

    Wagler, Amy; Wagler, Ron

    2014-01-01

    Understanding the roles of random selection and random assignment in experimental design is a central learning objective in most introductory statistics courses. This article describes an activity, appropriate for a high school or introductory statistics course, designed to teach the concepts, values and pitfalls of random selection and assignment…

  14. On a randomly imperfect spherical cap pressurized by a random ...

    African Journals Online (AJOL)

    In this paper, we investigate a dynamical system in a random setting of dual randomness in space and time variables in which both the imperfection of the structure and the load function are considered random , each with a statistical zero-mean .The auto- covariance of the load is correlated as an exponentially decaying ...

  15. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  16. Randomness at the root of things 1: Random walks

    Science.gov (United States)

    Ogborn, Jon; Collins, Simon; Brown, Mick

    2003-09-01

    This is the first of a pair of articles about randomness in physics. In this article, we use some variations on the idea of a `random walk' to consider first the path of a particle in Brownian motion, and then the random variation to be expected in radioactive decay. The arguments are set in the context of the general importance of randomness both in physics and in everyday life. We think that the ideas could usefully form part of students' A-level work on random decay and quantum phenomena, as well as being good for their general education. In the second article we offer a novel and simple approach to Poisson sequences.

  17. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  18. Investigating the Randomness of Numbers

    Science.gov (United States)

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  19. On random unitary channels

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2008-01-01

    In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal

  20. Random Cell Identifiers Assignment

    Directory of Open Access Journals (Sweden)

    Robert Bestak

    2012-01-01

    Full Text Available Despite integration of advanced functions that enable Femto Access Points (FAPs to be deployed in a plug-and-play manner, the femtocell concept still cause several opened issues to be resolved. One of them represents an assignment of Physical Cell Identifiers (PCIs to FAPs. This paper analyses a random based assignment algorithm in LTE systems operating in diverse femtocell scenarios. The performance of the algorithm is evaluated by comparing the number of confusions for various femtocell densities, PCI ranges and knowledge of vicinity. Simulation results show that better knowledge of vicinity can significantly reduce the number of confusions events.