WorldWideScience

Sample records for selenium-enriched yeast production

  1. Preparation and characterization of a laboratory scale selenomethionine-enriched bread. Selenium bioaccessibility.

    Science.gov (United States)

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Caímara, Carmen; Madrid, Yolanda

    2015-01-14

    This study focuses on the preparation at lab scale of selenomethionine-enriched white and wholemeal bread. Selenium was supplemented either by adding selenite directly to the dough or by using lab-made selenium-enriched yeast. The best results were obtained when using fresh selenium-enriched yeast. The optimum incubation time for selenomethionine-enriched yeast preparation, while keeping formation of selenium byproducts to a minimum, was 96 h. Selenium content measured by isotope dilution analysis (IDA)-ICP-MS in Se-white and Se-wholemeal bread was 1.28 ± 0.02 μg g–1 and 1.16 ± 0.02 μg g–1 (expressed as mean ± SE, 3 replicates), respectively. HPLC postcolumn IDA-ICP-MS measurements revealed that selenomethionine was the main Se species found in Se-enriched bread, which accounted for ca. 80% of total selenium. In vitro gastrointestinal digestion assay provided selenium bioaccessibility values of 100 ± 3% and 40 ± 1% for white and wholemeal Se-enriched bread, respectively, being selenomethionine the main bioaccessible Se species in white bread, while in wholemeal bread this compound was undetectable.

  2. Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium

    Energy Technology Data Exchange (ETDEWEB)

    Stabnikova, O.; Jing Yuan Wang; Hong Bo Ding; Joo Hwa Tay [Nanyang Technological Univ., Singapore (Singapore). School of Civil and Environmental Engineering

    2005-04-01

    Water extracts of cabbage, watermelon, a mixture of residual biomass of green salads and tropical fruits were used for yeast cultivation. These extracts contained from 1420 to 8900 mg/l of dissolved organic matter, and from 600 to 1800 mg/l of nitrogen. pH of the extracts was in the range from 4.1 to 6.4. Biomass concentration of yeast, Saccharomyces cerevisiae CEE 12 grown at 30 {sup o}C for 96 h in the sterilized extracts without any nutrient supplements was from 6.4 to 8.2 g/l; content of protein was from 40% to 45% of dry biomass. The yield was comparable with the yield of yeast biomass grown in potato dextrose broth. The biomass can be considered as the protein source. Its feed value was enhanced by incorporation of selenium in biomass to the level of 150 {mu}g/g of dry biomass. Therefore, it was recommended to transform the extracts from vegetable and fruit processing wastes into the yeast biomass enriched with selenium. (Author)

  3. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture

    Directory of Open Access Journals (Sweden)

    Marek Kieliszek

    2017-02-01

    Full Text Available Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV to organic derivatives (e.g., selenomethionine. Selenium introduced (20–30 mg Se4+∙L−1 to the experimental media in the form of sodium(IV selenite (Na2SeO3 salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.−1 was obtained after a 48-h culture in media containing 30 mg Se4+∙L−1. The highest content of selenomethionine (238.8 μg∙gd.w.−1 was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se4+∙L−1. Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L−1. The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans

  4. Enrichment of meat products with selenium by its introduction to mixed feed compounds for birds

    Directory of Open Access Journals (Sweden)

    А. Sobolev

    2017-07-01

    Full Text Available Selenium is a biologically active microelement, contained in a number of hormones and enzymes. In a bird or animal organism selenium performs the following functions: strengthens the immune system, stimulates formation of antibodies, macrophages and interferons. Also, it is a powerful antioxidant agent. It stimulates processes of metabolism in the organism, protects the organism against toxic manifestations of cadmium, lead, thalium and silver; stimulates reproductive function, decreases acute development of inflammatory processes; stabilizes functioning of the nervous system; normalizes functioning of the endocrine system. Furthermore, it stimulates synthesis of hemoglobin, takes part in secretion of erythrocutes, neutralizes toxins, prevents and stops development of malignant tumors. It also has a positive effect on the cardiovascular system of an animal organism: prevents myocardosis and decreases the risk of development of cardiovascular diseases. Deficiency of selenium in the organism causes (depending upon the extent of deficiency either physiological changes within the regulatory norm, significant disorders of the metabolism, or specific diseases. Around 75 different diseases and symptoms of pain are related to selenium deficiency. In most countries, the level of selenium consumption remains low (20–40 µg/day. There are several ways of improving of the selenium consumption of a population: consumption of selenium as a medication or dietary supplement, producing selenium-enriched bread, growing greens and vegetables rich in selenium, producing selenium-enriched beverages, products of animal origin, which would be rich in selenium. In the scientific-agricultural sphere studies have been made on the influence of adding different doses (0.2–0.6 mg/kg of selenium in mixed feeds and peculiarities of its depositing and distribution in the muscle tissues of young growth of different species of poultry. It has been found that feeding broiler

  5. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep

    Directory of Open Access Journals (Sweden)

    Zita Faixová

    2016-01-01

    Full Text Available The experiment was conducted to evaluate the effect of feeding a diet supplemented with different forms of selenium on the rumen fluid, blood and serum enzyme activity and osmotic fragility of red blood cells in sheep. The experiment was carried out on 18 sheep of the Valashka breed at the age of 18 months, divided into 3 groups. The first group was given basal diet (BD with a Se content of 0.17 mg/kg of dry matter (DM. The second group received BD supplemented with 0.4 mg Se/kg of (DM in the form of sodium selenite. The third group received BD supplemented with 0.4 mg Se/kg of (DM in the form of Se-yeast extract. Duration of the trial was 12 weeks. Selenium concentration in blood and total rumen fluid were elevated in both supplemented groups with the highest values in Se-yeast-treated sheep. Blood glutathione peroxidase (GPx activity was significantly increased, regardless of the source of selenium. Osmotic resistance of red blood cells was not affected by selenium supplementation. The results indicate that feeding a diet supplemented with selenium from Se-yeast or selenite improved selenium status in blood and total rumen fluid. Selenium from sodium selenite was as effective as selenium from Se-yeast in the availability of selenium for the blood GPx activity. The effect of selenium supplementation on the ruminal enzyme activity depends on the selenium form; GGT and GDH were significantly higher in the Se-yeast supplement group, AST and ALP were significantly higher in the selenite supplement group.

  6. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Bugel, Susanne; Krath, Britta

    2008-01-01

    -enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST...

  8. The fungistatic activity of organic selenium and its application to the production of cultivated mushrooms Agaricus bisporus and Pleurotus spp.

    Directory of Open Access Journals (Sweden)

    Savic Milena

    2012-01-01

    Full Text Available The activity of organic selenium against pathogenic molds and its use as a potential selenium source in the production of enriched mushrooms were examined. The effect of commercial selenized yeast on mycelia growth was examined using a method with mycelia disks and a well diffusion method. For mushroom enrichment, different concentrations of selenium were added to a growth substrate. The results presented in this paper suggest that the most suitable concentration of selenized yeast that inhibits the growth of the mycopathogenic molds is 70-100 mg/kg of selenium. With the addition of this concentration to the substrate, mushroom fruit bodies will uptake a high level of selenium, about 100 μg/g for Pleurotus spp., and 200 μg/g for Agaricus bisporus in dry weight of the mushroom. Thereby a double effect in the cultivation of mushrooms is achieved. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 and br. III46001

  9. Production of selenium-enriched milk and dairy products

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2015-01-01

    Full Text Available Until the middle of the last century, selenium was considered to be toxic, but recently it turned out to be a micronutrient with important physiological effects, whose lack impedes the functioning of several enzymes, while in the case of a prolonged deficiency, disease processes can also occur in the body. Hungary belongs to the selenium-deficient regions in Europe; therefore, our aim was to contribute to the improvement of selenium supply of the population through increasing the selenium content of milk and dairy products. A daily supplementation of 1-6 mg organic selenium to the feed of dairy cows increases the selenium content of milk from the value of 18 μg/kg to 94 μg/kg in 8 weeks, decreasing again to the initial value in 6 weeks after stopping the supplementation.

  10. Efficacy of selenium from hydroponically produced selenium-enriched kale sprout (Brassica oleracea var. alboglabra L.) in broilers.

    Science.gov (United States)

    Chantiratikul, Anut; Pakmaruek, Pornpan; Chinrasri, Orawan; Aengwanich, Worapol; Chookhampaeng, Sumalee; Maneetong, Sarunya; Chantiratikul, Piyanete

    2015-05-01

    An experiment was conducted to determine the efficacy of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on performance, carcass characteristics, tissue Se concentration, and physiological responses of broilers in comparison to that of Se from Se-enriched yeast and sodium selenite. Three hundred and sixty male broilers, 10 days of age, were assigned to 6 groups, 4 replicates of 15 broilers each, according to the completely randomized design. The dietary treatments were the following: T1: control diet; T2: control diet plus 0.3 mg Se/kg from sodium selenite; T3: control diet plus 0.3 mg Se/kg from Se-enriched yeast; and T4, T5, and T6: control diet plus 0.3, 1.0, and 2.0 mg Se/kg from HPSeKS, respectively. The results found that dietary Se supplementation did not (p > 0.05) alter performance and carcass characteristics of broilers. Se supplementation increased (p < 0.05) Se concentrations in the liver and kidney of broilers. Heart tissue Se concentration of broilers fed Se from sodium selenite was lower (p < 0.05) than that of broilers fed Se from HPSeKS and Se-enriched yeast. Selenium from HPSeKS increased higher (p < 0.05) GSH-Px activity when compared to Se from sodium selenite and Se-enriched yeast. The results indicated that the efficacy of Se from HPSeKS was comparable in increasing tissue Se concentration, but higher in improving GSH-Px activity in Rbc when compared to those of Se from Se-enriched yeast.

  11. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  12. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  13. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models.

    Science.gov (United States)

    Pfohl-Leszkowicz, A; Hadjeba-Medjdoub, K; Ballet, N; Schrickx, J; Fink-Gremmels, J

    2015-01-01

    The aim of this paper was to evaluate the capacity of several yeast-based products, derived from baker's and brewer's yeasts, to sequester the mycotoxin ochratoxin A (OTA) and to decrease its rate of absorption and DNA adduct formation in vivo. The experimental protocol included in vitro binding studies using isotherm models, in vivo chicken experiments, in which the serum and tissue concentrations of OTA were analysed in the absence and presence of the test compounds, and the profile of OTA-derived metabolites and their associated DNA adducts were determined. Additionally in vitro cell culture studies (HK2 cells) were applied to assess further the effects for yeast cell product enriched with glutathione (GSH) or selenium. Results of the in vitro binding assay in a buffer system indicated the ability of the yeast-based products, as sequester of OTA, albeit at a different level. In the in vitro experiments in chickens, decreased serum and tissue concentrations of treated animals confirmed that yeast-based products are able to prevent the absorption of OTA. A comparison of the binding affinity in a standard in vitro binding assay with the results obtained in an in vivo chicken experiment, however, showed a poor correlation and resulted in a different ranking of the products. More importantly, we could show that yeast-based products actively modulate the biotransformation of OTA in vivo as well as in vitro in a cell culture model. This effect seems to be attributable to residual enzymatic activities in the yeast-based products. An enrichment of yeast cell wall products with GSH or selenium further modulated the profile of the generated OTA metabolites and the associated pattern of OTA-induced DNA adducts by increasing the conversion of OTA into less toxic metabolites such as OTA, OTB and 4-OH-OTA. A reduced absorption and DNA adduct formation was particularly observed with GSH-enriched yeast, whereas selenium-enriched yeasts could counteract the OTA-induced decrease

  14. Targeted sulphur and selenium speciation in yeast by parallel elemental and molecular mass spectrometry

    DEFF Research Database (Denmark)

    Hillestrøm, Peter René; Mapelli, Valeria; Olsson, Lisbeth

    Selenium supplement, often selenized yeast, are currently the subject of intense study owing to their potential preventive effects against cancer. However, fundamental knowledge of the yeast’s metabolism is required for metabolic engineering biosynthetic production of potent Se-species. A method ...... determination of metabolites present. Selenium metabolites were detected by simultaneous ICP-MS and ESI-MS/MS while targeted sulphur species were determined by ESI-MS/MS.......Selenium supplement, often selenized yeast, are currently the subject of intense study owing to their potential preventive effects against cancer. However, fundamental knowledge of the yeast’s metabolism is required for metabolic engineering biosynthetic production of potent Se-species. A method...

  15. Productivity and selenium concentrations in egg and tissue of laying quails fed selenium from hydroponically produced selenium-enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chinrasri, Orawan; Chantiratikul, Piyanete; Maneetong, Sarunya; Chookhampaeng, Sumalee; Chantiratikul, Anut

    2013-12-01

    This study aimed to determine the effectiveness of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on productive performance, egg quality, and Se concentrations in egg and tissue of laying quails. Two-hundred quails, 63 days of age, were divided into four groups. Each group consisted of five replicates and each replicate had ten birds, according to a completely randomized design. The experiment lasted for 6 weeks. The dietary treatments were T1 (control diet), T2 (control diet plus 0.2 mg Se/kg from sodium selenite), T3 (control diet plus 0.2 mg Se/kg from Se-enriched yeast), T4 (control diet plus 0.2 mg Se/kg from HPSeKS). The findings revealed that productive performance and egg quality of quails were not altered (p > 0.05) by Se sources. Whole egg Se concentrations of quails fed Se from HPSeKS and Se-enriched yeast were higher (p  0.05), but higher (p < 0.05) than that of quails fed Se from sodium selenite. The results reveal that Se from HPSeKS did not change the performance and egg quality of quails. The effectiveness of Se from HPSeKS was comparable to that of Se-enriched yeast, which was higher than that of Se from sodium selenite.

  16. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    Science.gov (United States)

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  17. Enrichment of the African catfish Clarias gariepinus (Burchell) with functional selenium originating from garlic: effect of enrichment period and depuration on total selenium level and sensory properties

    NARCIS (Netherlands)

    Schram, E.; Schelvis-Smit, A.A.M.; Heul, van der J.W.; Luten, J.B.

    2010-01-01

    We wanted to optimize the procedure for the selenium enrichment of farmed African catfish, using garlic as dietary selenium source. In the first experiment we established the relation between the length of the selenium enrichment period and the resulting total selenium level in the fillet of the

  18. Selenium in edible mushrooms.

    Science.gov (United States)

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  19. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Porto, Barbara Abranches de Araujo

    2012-01-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  20. Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds

    International Nuclear Information System (INIS)

    Amoako, Prince O.; Uden, Peter C.; Tyson, Julian F.

    2009-01-01

    Speciation of selenium is of interest because it is both essential and toxic to humans, depending on the species and the amount ingested. Following indications that selenium supplementation could reduce the incidence of some cancers, selenium-enriched yeast and other materials have been commercialized as supplements. Most dramatically however, the SELECT trial that utilized L-selenomethionine as the active supplement was terminated in 2008 and there is much debate regarding both the planning and the results of efficacy studies. Further, since dietary supplements are not regulated as pharmaceuticals, there are concerns about the quality, storage conditions, stability and selenium content in selenium supplements. Enzymatic hydrolysis enabled selenium speciation profiles to be obtained by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and following derivatization gas chromatography with atomic emission detection (GC-AED). Coated fiber solid phase microextraction (SPME) was used to extract volatile selenium species for determination by GC-AED and GC-MS. Similar speciation patterns were observed between yeast-based supplements subject to extended storage and those heated briefly at elevated temperatures. All the yeast-based supplements and one yeast-free supplement formed S-(methylseleno)cysteine on heating. Evidence was obtained in support of the hypotheses that S-(methylseleno)cysteine is formed from a reaction between dimethyldiselenide and cysteine or cystine.

  1. Effect of Se-enriched Organic Fertilizers on Selenium Accumulation in Corn and Soil

    Directory of Open Access Journals (Sweden)

    LI Sheng-nan

    2015-12-01

    Full Text Available The effect of two Se-enriched organic fertilizers (cow dung and rice straw biochar on selenium accumulation of corn growing in selenium deficient soil was studied with pot experiment. The results showed that corn accumulated more selenium and the selenium was much easier to convert from root to shoot in the corn plant with the application of Se-enriched cow dung than Se-enriched rice straw biochar. With the application of more organic fertilizer such as 25 t·hm-2 Se-enriched cow dung or 40 t·hm-2 Se-enriched rice straw biochar, the accumulation of selenium and growth status of corn were getting better than the other treatments. At the same time, as the application amount of Se-enriched organic fertilizers (cow dung and rice straw biochar increased, the total selenium content in the soil also increased, which positively correlated with each other.

  2. The Protective Effect of Cell Wall and Cytoplasmic Fraction of Selenium Enriched Yeast on 1, 2-Dimethylhydrazine-induced Damage in Liver

    Directory of Open Access Journals (Sweden)

    Mitra Dadrass

    2014-02-01

    Full Text Available Background: 1, 2-Dimethylhydrazine (DMH enhances lipid peroxidation rate by tumor mitochondria than normal tissue counterpart and causes many disorders in antioxidant system in liver. It also increases the level of enzymes that metabolize toxin in liver and colon. The aim of this study was to evaluate the alteration of liver and its enzymes after DMH injection and evaluate protective effect of cell wall and cytoplasmic fractions of Saccharomyces cereviseae enriched with selenium (Se on these tissues. Materials and Methods: Forty eight female rats were prepared and acclimatized to the laboratory conditions for two weeks, and all animals received 1, 2- dimethyl hydrazine chloride (40 mg/kg body weight twice a week for 4 weeks except healthy control. At first colon carcinoma (aberrant crypt foci confirmed by light microscope. Then the changes resulting from injection of DMH on liver of animals in initial and advanced stages of colon cancer were examined. In addition, the protective effect of cell wall and cytoplasmic fractions of Selenium-enriched S. cerevisiae were investigated in two phases. First phase in initial stage and second phase in advanced stage of colon cancer were performed respectively. Forty weeks following the first DMH injection, all survived animals were sacrificed. Then, colon and liver removed and exsanguinated by heart puncture. For measuring the levels of enzymes (AST, ALT, and ALP, a commercial kit (Parsazmoon, Iran and an autoanalyzer (BT 3000 Pluse, Italy were used. Results: The results showed that subcutaneous injection of DMH increased the ALT, AST, and ALP levels up to 78.5, 161.38, and 275.88 U/L compared to the control, respectively. Moreover, statistical analysis in both phases of experiment revealed that the enzyme levels were decreased in the treated groups in comparison with the DMH-injected group, while the levels of these enzymes were lower in the control group. Conclusion: It should be concluded that

  3. Effects of Selenium Yeast on Blood Glucose and Antioxidant ...

    African Journals Online (AJOL)

    olayemitoyin

    Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes. Mellitus in Wistar Rats. ... Keywords: Cholesterol diet; Diabetes Mellitus; Selenium yeast; SOD; CAT; GPx. ©Physiological ..... relationship with different diseases. Science Tot.

  4. Effect of long-term selenium supplementation on mortality

    DEFF Research Database (Denmark)

    Rayman, Margaret P.; Winther, Kristian Hillert; Pastor-Barriuso, Roberto

    2018-01-01

    Background: Selenium, an essential trace element, is incorporated into selenoproteins with a wide range of health effects. Selenoproteins may reach repletion at a plasma selenium concentration of ∼ 125 μg/L, at which point the concentration of selenoprotein P reaches a plateau; whether sustained...... concentrations higher than this are beneficial, or indeed detrimental, is unknown. Objective: In a population of relatively low selenium status, we aimed to determine the effect on mortality of long-term selenium supplementation at different dose levels. Design: The Denmark PRECISE study was a single...... for extension of the study and mortality assessment. Participants were randomly assigned to treatment with 100, 200, or 300 μg selenium/d as selenium-enriched-yeast or placebo-yeast for 5 years from randomization in 1998-1999 and were followed up for mortality for a further 10 years (through March 31, 2015...

  5. Optimization of Selenium-enriched Candida utilis by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2014-12-01

    Full Text Available The fermentation conditions of selenium enrichment by Candida utilis were studied. Based on the results of the single factor experiment, three factors including the concentration of sodium selenite, inital pH and incubation temperature were selected. The response surface method was used to optimize the various factors. The optimal conditions were obtained as follows: incubation time was 30 h, time of adding selenium was mid-logarithmic, the sodium selenite concentration was 35 mg·L-1 with inital pH of 6.6, incubation concentration of 10%, incubation temperature of 27 ℃, the medium volume of 150 mL/500 mL, respectively. Under the optimal condition, the biomass was 6.87 g·L-1. The total selenium content of Candida utilis was 12 639.7 μg·L-1, and the selenium content of the cells was 1 839.8 μg·g-1, in which sodium selenite conversion rate was 79.1% and the organic selenium was higher than 90%. The actual value of selenium content was substantially consistent with the theoretical value, and the response surface methodology was applicable for the fermentation conditions of selenium enriched by Candida utilis.

  6. Speciation and bioavailability of selenium in yeast-based intervention agents used in cancer chemoprevention studies

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Marianne; Paulin, H.

    2004-01-01

    This study investigated the speciation and bioavailability of selenium in yeast-based intervention agents from multiple manufacturers from several time points. Sources of selenized yeast included Nutrition 21 (San Diego, CA), which supplied the Nutritional Prevention of Cancer (NPC) Trial from 1981......-1996; Cypress Systems (Fresno, CA; 1997-1999); and Pharma Nord (Vejle, Denmark; 1999-2000), which supplied the Prevention of Cancer by Intervention by Selenium (PRECISE) Trial pilot studies. The low-molecular-selenium species were liberated from the samples by proteolytic hydrolysis followed by separation...... Trial showed a higher concentration (p studied may explain this...

  7. Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, E.G.H.M. van den; Atherton, C.A.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews, H.M.; Luten, J.B.; Lorentzen, M.; Sieling, F.W.; Aken-Schneyder, P. van; Hoek, M.; Kotterman, M.J.J.; Dael, P. van; Firweather-Tail, S.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  8. Bioavailibility of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, van den E.G.H.M.; Atherton, C.A.; Luten, J.B.; Hoek-van Nieuwenhuizen, van M.; Kotterman, M.J.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  9. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing.

    Science.gov (United States)

    Juhász, Péter; Lengyel, Szvetlana; Udvari, Zsolt; Sándor, Alex Nagy; Stündl, László

    2017-09-01

    Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (~4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

  10. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus.

    Science.gov (United States)

    Xia, Shu Kai; Chen, Long; Liang, Jun Qing

    2007-03-21

    Se-enriched Lactobacillus bulgaricus (L. bulgaricus) was generated by administration of sodium selenite (0, 1, 4, 8, 16, 32, and 64 mg/L, respectively) in MRS medium and enriched selenium manifestation in L. bulgaricus was investigated using transmission electron microscopy and energy-dispersive X-ray spectrometry and alterations of essential elements and amino acids in the organism were evaluated. We demonstrate that administration of sodium selenite in the dosage of 1-16 mg/L is suitable for selenium enrichment in L. bulgaricus and can enhance nutritive value in the organism by elevating the contents of essential elements including P, Mg, Mn, Zn, Ca, and total amino acids as well as reducing selenite to insoluble elemental selenium, an electron-dense and amorphous Se (0) granule, thereby depositing it both in the cytoplasm and in the extracellular space of L. bulgaricus. Thus, Se-enriched Lactobacillus can provide a potential dietary source of nontoxic selenium and functional regulator used for food and medical industry.

  11. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  12. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala).

    Science.gov (United States)

    Long, Meng; Lin, Wang; Hou, Jie; Guo, Honghui; Li, Li; Li, Dapeng; Tang, Rong; Yang, Fan

    2017-09-01

    In order to explore the effects of dietary selenium yeast, tea polyphenols and their combination on growth of Wuchang bream (Megalobrama amblycephala) and its resistance to nitrite stress, 360 healthy Wuchang bream with initial body weight of (55.90 ± 2.60) g were randomly divided into four groups: a control group fed with basal diet and three treated groups fed with basal diets supplemented with 0.50 mg/kg selenium yeast, 50 mg/kg tea polyphenols, and the combination of 0.50 mg/kg selenium yeast and 50 mg/kg tea polyphenols, respectively. After 60 d of feeding, the growth performance of Wuchang bream was measured. Then 25 fish per tank were exposed to nitrite stress of 15.0 mg/L. The serum stress hormones, liver histology and hepatic antioxidant responses were evaluated before nitrite exposure (0 h) and at 6, 12, 24, 48 and 96 h after exposure. The results showed that before nitrite exposure, compared with the control, the weight gain, specific growth rate, liver total antioxidant capacity, the activities and transcriptional levels of hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in the selenium yeast and combination groups were significantly increased, while feed conversion rate was decreased significantly, which suggested that the combined use of selenium yeast and tea polyphenols as well as the single selenium yeast supplementation improved growth performance and enhanced antioxidant capacity in fish. After nitrite exposure, compared with the control, liver total antioxidant capacity as well as the activities and transcription levels of catalase superoxide dismutase and glutathione peroxidase in three treatment groups were significantly increased in varying degrees whereas serum cortisol contents and liver malondialdehyde levels were decreased significantly. By contrast, the combined use of selenium yeast and tea polyphenols was more effective than the single supplementation with selenium yeast or tea polyphenols. In

  13. Effects of Selenium Yeast on Blood Glucose and Antioxidant Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes Mellitus in Wistar Rats.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Adam, A; Ejeh, L; Mohammed, A; Ayo, J O

    2017-03-06

    Selenium is an antioxidant that prevents oxygen radical from damaging cells from chronic diseases that can develop from cell injury and inflammation such as diabetes mellitus. The aim of the study is to investigate the possible protective effect of selenium yeast on cholesterol diet induced type-2 diabetes mellitus and oxidative stress in rats. Twenty male wistar rats were divided in to four groups of five animals each: Group 1: (Negative control) received standard animal feed only, Group 2:  received cholesterol diet (CD) only, Group 3: received CD and 0.1 mg/kg selenium yeast orally, Group 4: Received CD and 0.2 mg/kg selenium yeast orally for six weeks. At the end of the study period, the animals were sacrificed and the serum samples were collected and evaluated for estimation of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). The results showed a significant decrease in blood glucose level in the groups  co-administered CD and selenium yeast when compared to CD group only. Antioxidant enzymes status recorded significant decrease in SOD, CAT and GPx activities in CD and selenium yeast administered when compared to CD group only. In Conclusion, Selenium yeast administrations prevent free radical formations which are potent inducer of diabetes mellitus.

  14. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    Science.gov (United States)

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Selenium speciation and isotope composition in 77Se-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sloth, Jens Jørgen; Hansen, M.

    2003-01-01

    using the enriched Se-77-selenite as substrate, were released by enzymatic hydrolysis using (I), a beta-glucosidase followed by a protease mixture, and (II), a commercial protease preparation. For selenium speciation the chromatographic selectivity of the cation exchange HPLC system was adjusted...

  16. Does selenium supplementation affect thyroid function?

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik

    2015-01-01

    OBJECTIVE: Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake....... DESIGN: The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast......=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. CONCLUSIONS: In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared...

  17. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    Science.gov (United States)

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  18. Antioxidant activity of water extracts from fruit body of Lentinus edodes enriched with selenium

    Directory of Open Access Journals (Sweden)

    Savić Milena D.

    2011-01-01

    Full Text Available Shiitake (Lentinus edodes belongs to medically important and delicious fungi. It is recognizable for its healing properties, excellent taste and rich aroma. According to the traditional Japanese and Chinese medicine, shiitake mushroom significantly increases the strength and vitality of the body. Shiitake contains immunostimulants, compounds that lower cholesterol, prevents clogging of blood vessels, regulates the pressure, balances blood sugar levels, regulates digestion, and improves the performance of respiratory organs by its antirheumatic and antiallergic activities. Shiitake is recommended to use as food, prevention and cure, usually in a form of a spice (dried and ground or tea. It can be consumed fresh, too. The objective of this study was to test the effect of enrichment in selenium on antioxidant, reducing and free radical scavenging activity of water extracts from fruit body of Lentinus edodes. The fungus was enhanced by adding organic selenium, zinc (II complex with the ligand 2.6-bis diacetylpyridine (selenosemicarbazon and inorganic compounds (Na2SeO3 of selenium in nutritional substrate where the fungus was grown. The total selenium content in fruit body was around 50 ppm for the sample enriched with selenium originating from organic sources, and 80 ppm for the sample enriched with selenium from inorganic sources. Samples were prepared by extraction of fruiting bodies in heated water. The results indicated that water extracts of whole fruit bodies, from both control and mushrooms supplemented with selenium, had quite good antioxidant activity. However, there was no significant difference between the samples supplemented with selenium content and those that were not.

  19. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication...

  20. 21 CFR 573.920 - Selenium.

    Science.gov (United States)

    2010-04-01

    ... section, or as selenium yeast, as provided in paragraph (h) of this section. (c) It is added to feed as... months.” (h) Selenium yeast is a dried, non-viable yeast (Saccharomyces cerevisiae) cultivated in a fed-batch fermentation which provides incremental amounts of cane molasses and selenium salts in a manner...

  1. Determination of total selenium and Se-77 in isotopically enriched human samples by ICP-dynamic reaction cell-MS

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Bügel, Susanne H.

    2003-01-01

    and the digested faecal samples were diluted using an aqueous diluent containing 0.5% Triton X-100, 2% nitric acid and 3% methanol. Selenium was detected as Se-76, Se-77 and Se-80 by ICP- DRC- MS. Selenium originating from the natural isotope abundance yeast and other selenium sources from the diet was determined...

  2. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    A method for the determination of total selenium in nutritional supplements and selenised yeast is described. The samples were ashed in nitric acid. Hydrochloric acid was used to prevent precipitation of, in particular, iron salts. After appropriate dilutions, the selenium was determined by Zeeman......-effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...... the content of selenium in a selenised yeast check sample. Accuracy was assured using this sample and by recovery experiments. Between-day random error showed a coefficient of variation of 4.2%. Results from the analysis of eight different commercial supplements were in good agreement with declared contents....

  3. Effect of Probiotic Preparation Enriched with Selenium on Qualitative Parameters of Table Eggs

    Directory of Open Access Journals (Sweden)

    Martin Mellen

    2014-05-01

    Full Text Available In this experiment the effects of the diet for laying hens supplemented with probiotic product with an organic form of selenium on egg weight, albumen quality, yolk quality and egg shell quality were studied. Isa Brown hens (n=90 were randomly divided at the age of 17 weeks into three groups (30 birds per group. Hens in all groups consumed the complete feed mixture ad libitum. In the control group water for drinking contained no additions. In the first experimental group probiotic product was added to the water, in the second experimental group the same probiotic preparation enriched with 0.8 to 1 mg of organic selenium per 1 g of the product was added to the water. The probiotic preparations were administered at the dose of 15 mg per 6 l of water daily, in both experimental groups. Monitored physical parameters of eggs: egg weight (g, specific egg weight (g/cm3​​, albumen weight (g, albumen height (mm, albumen index, Haugh units (HJ, yolk weight (g, yolk index, yolk color (°HLR, egg shell weight, egg shell specific weight (g/cm3, egg shell strength (N/cm2, the average eggshell thickness (µm. Experiment lasted 48 weeks. The results showed that egg weight was slightly higher in both experimental groups compared with the control group, differences between the groups were not statistically significant (P>0.05. The values ​​in the order of groups: 60.97 ± 4.97, 61.18 ± 5:00; 61.75 ± 5.89 (g ± SD. Was found insignificant impact of the add probiotic preparation and probiotic preparation enriched with selenium on the quality parameters of table eggs. Yolk index, albumen index, Haugh units and the average egg shell thickness were only slightly, statistically insignificant higher in the experimental groups (P> 0.05.

  4. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. The Cultivation and SeleniumEnrichment of SeleniumEnriched Earthworm

    Directory of Open Access Journals (Sweden)

    SUN Xiao-fei

    2014-12-01

    Full Text Available As a bio-carrier, Eisenia fetida was fed with cow dung that added with sodium selenite in order to transfer inorganic selenium(Se into organic selenium. Targeting on survival rate and selenium content, the effects of five Se concentrations(0, 20, 40, 60, 80, 100 mg·kg-1 and four cultivation periods(15, 30, 45, 60 don earthworm growth and Se contents were investigated. The cultivation method with high survival rate, high Se content of earthworm and short breeding time would be screened out. The experimental results showed that the earthworm survival rate decreased and the Se content in earthworm increased with the increase of Se application and the extension of breeding time. The most optimummethod was screened out when the Se concentration was 80 mg·kg-1 and the cultivation period was 45 days, Se content in earthworm was up to 33.25 mg·kg-1.

  6. Consumption of selenium-enriched broccoli increases cytokine production in human peripheral blood mononuclear cells stimulated ex vivo, a preliminary human intervention study.

    Science.gov (United States)

    Bentley-Hewitt, Kerry L; Chen, Ronan K-Y; Lill, Ross E; Hedderley, Duncan I; Herath, Thanuja D; Matich, Adam J; McKenzie, Marian J

    2014-12-01

    Selenium (Se) is a micronutrient essential for human health, including immune function. Previous research indicates that Se supplementation may cause a shift from T helper (Th)1- to Th2-type immune responses. We aim to test the potential health promoting effects of Se-enriched broccoli. In a human trial, 18 participants consumed control broccoli daily for 3 days. After a 3-day wash-out period, the participants were provided with Se-enriched broccoli containing 200 μg of Se per serving for 3 days. Plasma and peripheral blood mononuclear cell (PBMC) samples were collected at the start and end of each broccoli feeding period for analysis of total Se and measurement of cytokine production from PBMC stimulated with antigens ex vivo. Plasma Se content remained consistent throughout the control broccoli feeding period and the baseline of the Se-enriched broccoli period (1.22 μmol/L) and then significantly increased following 3 days of Se-enriched broccoli feeding. Interleukin (IL-2, IL-4, IL-5, IL-13, and IL-22) production from PBMC significantly increased after 3 days of Se-enriched broccoli feeding compared with baseline. This study indicates that consumption of Se-enriched broccoli may increase immune responses toward a range of immune challenges. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    Science.gov (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  8. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae; Influencia da acao oxidante do selenio na inducao da radiossensibilidade e morte celular na levedura Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Barbara Abranches de Araujo

    2012-07-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  9. Determination of selenium status using the nail biologic monitor in a canine model

    International Nuclear Information System (INIS)

    Steven Morris, J.; Spate, V.L.; Ruth Ann Ngwenyama; Waters, D.J.

    2012-01-01

    Toenails and fingernails are routinely used to estimate selenium status in epidemiological studies; however, literature validating nail selenium concentration as a surrogate for critical organs is limited. In this study diets of intact male dogs were selenium supplemented at two physiological levels (3 and 6 μg/kg/day) in two different forms, selenomethionine and selenium-enriched bioformed yeast. The selenium-adequate basal diet consumed by the treatment and control groups during the 4-week run-in period and throughout the trial contained 0.3 ppm selenium. After 7 months the dogs in the two treatment groups and the control group were euthanized. Representative tissue samples from prostate, brain, liver, heart and skeletal muscle were collected, rinsed and frozen. Toenail clippings from multiple toes were also collected. Selenium was determined by neutron activation analysis using Se77m (half life = 17.4 s) at the University of Missouri Research Reactor Center. NIST SRM 1577, Bovine Liver was analyzed as a quality control. The analysts were blinded to control and treatment group assignments. As expected, tissue selenium levels increased proportionally with supplementation. A slightly greater increase in tissue selenium was observed for the purified selenomethionine compared to the bioformed yeast; however this trend was significant only for brain tissue. Toenail selenium concentrations and tissue selenium were highly correlated (p < 0.003) with Pearson coefficients of 0.759 (skeletal muscle), 0.745 (heart), 0.729 (brain), 0.723 (prostate), and 0.632 (liver). The toenail biologic monitor accurately assesses selenium status in skeletal muscle, heart, brain, prostate, and liver in the canine model. (author)

  10. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    Science.gov (United States)

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p selenium supplementation on GPx activity (p selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  11. Use of enriched 74Se and 77Se in combination with isotope pattern deconvolution to differentiate and determine endogenous and supplemented selenium in lactating rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez Sanchez, M.L.; Garcia Alonso, J.I.; Sanz-Medel, A.

    2007-01-01

    A quantitative methodology has been developed to differentiate between endogenous and supplemented selenium in lactating rats using two enriched selenium isotopes. Lactating rats were fed for 2 weeks with formula milk containing one enriched Se isotope, 77 Se, as the metabolic tracer. The isotopic composition of selenium in serum and urine samples was then measured by collision cell ICP-MS after the addition of a solution containing another enriched isotope, 74 Se, as quantitation tracer, before analysis. Isotope pattern deconvolution allowed the transformation of measured Se isotopic abundances into concentrations of natural abundance (endogenous) selenium and enriched 77 Se (supplemented) present in the samples. The proposed methodology was validated using serum and urine reference materials spiked with both 77 Se and 74 Se. The obtained results are discussed in terms of selenium exchange and half-life in lactating rats (11-12 days) and selenium levels in serum in comparison with non-supplemented rats and control rats after maternal feeding. (orig.)

  12. EFFECT OF SELENIUM SUPPLEMENTATION ON PIG PRODUCTION PROPERTIES, ANTIOXIDANT STATUS AND MEAT QUALITY

    Directory of Open Access Journals (Sweden)

    Tomislav Šperanda

    2013-12-01

    Full Text Available Food containing functional ingredients to achieve a positive effect on health and reducing the risk of infection is increasing production. It is also very important to improve the quality of pork with respect to change the genetic makeup of pigs that raised leanness, being inversely correlated with the quality of meat. This study monitored the effectiveness of addition of higher doses of organic selenium in the diet of fattening pigs in relation to their growth, immunity, antioxidant power, the quality of meat and possibility of meat enriching with selenium. The experiment was carried out on 100 pigs (crossbred WJxSLxP of both sexes, from 28 kg to 98 kg body weight during a period of 98 days. Piglets fed the finished feed mixture for fattening up to 60 kg (ST-1 and a mixture for fattening up to 100 kg (DM-2 in addition, by the groups as follows: K-0. 3 mg/kg organic selenium, P1-0.5 mg/kg inorganic selenium, P2-0.5 mg/kg organic selenium, P3-0.5 mg/ kg organic selenium +0.2% zeolite clinoptilolite treated vibrotehnology and P4-gradual increase in selenium so that the concentration of the last month was 0.7 mg/ kg diet of organic selenium. All groups of pigs fed high concentration of organic selenium had a higher proportion of lymphocytes, especially CD4 T lymphocytes. Glutathione peroxidase activity was higher in all groups fed elevated selenium levels and significantly higher in the P3 and P4 groups 71st and 98th days of the trials. Glutathione reductase was significantly higher in the P3 and P4 group 98th days compared to the control. Antioxidant indicators suggested increased antioxidant protection in groups supplemented with 0.5 ppm organic selenium and selenium formulations of the same with the addition of zeolite under stress intensive pig production. No differences were found in the products of lipid peroxidation (TBARS in raw meat or in meat after a week in refrigerator storage. By histological examination statistically higher level of

  13. Production of urinary selenium metabolites in the rat following 75SeO32- administration

    International Nuclear Information System (INIS)

    Kiker, K.W.; Burk, R.F.

    1974-01-01

    Urinary metabolites of 75 Se were studied in male Holtzmann rats fed a Torula yeast diet with either no selenium (basal) or 0.5 ppM selenium (selenium) added as sodium selenite. The animals were anesthetized, a ureter was cannulated, and 20 μCi of 75 SeO 3 2- were injected intraportally. Only a small fraction (1.3 percent) of the injected 75 Se was excreted in 6 h by animals fed the basal diet but 13.3 percent was excreted by animals fed the selenium diet. Paper chromatography showed that both groups excreted mostly inorganic 75 Se in the first 10 min. A decrease in 75 Se excretion followed, and then, 70 min after the collection was started, the selenium diet group had an increase in 75 Se excretion which persisted for the rest of the 6 h and consisted mainly of the organic metabolites trimethylselenonium ion and U-2. 75 Se excretion remained low in the basal diet group. Liver uptake and release of 75 Se in the 1 h following intraperitoneal 75 SeO 3 2- injection was much greater in the selenium diet rats than in the basal diet rats. These results suggest that the greater excretion of 75 Se by rats fed the selenium diet than that by rats fed the basal diet was due to increased production of organic urinary selenium metabolites by the liver. (U.S.)

  14. Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang Black Goats.

    Science.gov (United States)

    Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin

    2018-07-01

    To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p kids by modulating testosterone synthesis in goats. More attention should be given to the potential role of maternal nutrition in improving reproductive performance of their offspring. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Selenium in diet

    Science.gov (United States)

    ... how much of the mineral was in the soil where the plants grew. Brazil nuts are a very good source of selenium. Fish, shellfish , red meat, grains, eggs, chicken, liver, and garlic ... soil have higher levels of selenium. Brewer's yeast, wheat ...

  16. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  17. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    Science.gov (United States)

    Chen, Tianfeng; Wong, Yum-Shing

    2008-06-25

    Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.

  18. Use of enriched {sup 74}Se and {sup 77}Se in combination with isotope pattern deconvolution to differentiate and determine endogenous and supplemented selenium in lactating rats

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Iglesias, H.; Fernandez Sanchez, M.L.; Garcia Alonso, J.I.; Sanz-Medel, A. [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain)

    2007-10-15

    A quantitative methodology has been developed to differentiate between endogenous and supplemented selenium in lactating rats using two enriched selenium isotopes. Lactating rats were fed for 2 weeks with formula milk containing one enriched Se isotope, {sup 77}Se, as the metabolic tracer. The isotopic composition of selenium in serum and urine samples was then measured by collision cell ICP-MS after the addition of a solution containing another enriched isotope, {sup 74}Se, as quantitation tracer, before analysis. Isotope pattern deconvolution allowed the transformation of measured Se isotopic abundances into concentrations of natural abundance (endogenous) selenium and enriched {sup 77}Se (supplemented) present in the samples. The proposed methodology was validated using serum and urine reference materials spiked with both {sup 77}Se and {sup 74}Se. The obtained results are discussed in terms of selenium exchange and half-life in lactating rats (11-12 days) and selenium levels in serum in comparison with non-supplemented rats and control rats after maternal feeding. (orig.)

  19. Preliminary Study on the Standard of Selenium Content in Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-yuan; YOU Yong; GUO Qing-quan; WANG Yong-hong; DENG Shi-lin

    2012-01-01

    With the improvement of living standards, people pay more attention to the agricultural products with health protection function, and the selenium-rich agricultural products attract more and more consumers. The main biological role of selenium is to resist oxidation and inflammatory response, mainly focusing on resisting aging, preventing cardiovascular disease, protecting eyesight, counteracting or destroying the toxic properties, preventing cancer and thyroid disease. In most areas of China, there is a widespread shortage of selenium, thus producing selenium-rich agricultural products to provide natural selenium-rich health food to the areas in need of selenium, has gradually become a new hot spot of China’s health food industry, but high content of selenium in food is detrimental to human body, even leads to selenium intoxication, and artificially adding inorganic selenium is difficult to guarantee that the selenium content of agricultural products is not exceeded. According to human body’s daily demand for selenium in dietetics and the content of selenium in agricultural products in the Chinese food composition table, we put forward the recommendations on the standard of selenium in agricultural products, in order to provide the basis for China to formulate the health standard of selenium content in selenium-rich agricultural products.

  20. The relationship between selenium and gastric cancer

    International Nuclear Information System (INIS)

    Shi Kuixiong; Ma Guansheng; Zhang Tingyu; Cheng Wufeng; Mao Dajuan; Pan Bixia; Xu Xiuxian

    1993-01-01

    Both sodium selenite and selenium yeast were chosen to block the MNNG mutagenesis. The inhibition rates were 66.5% and 37.9% respectively. The selenium levels in hair, serum and gastric juice, and the contents of nitrosamine in gastric juice were also determined. The results showed that the selenium levels were SG > CAG and Dys > GC (p CAG, Dyas and GC (p < 0.05). 19 cases of CAG patients treated with selenium yeast and 16 cases of the control were observed. After 10 weeks, the selenium levels in serum for the treated group were significantly increased. The symptoms of CAG patients seemed to be alleviated

  1. New challenge in the speciation of selenium. Measurement and production on nano selenium

    Energy Technology Data Exchange (ETDEWEB)

    Prokisch, J; Sztrik, A; Babka, B; Zommara, M; Daroczi, L [Debrecen University, Centre for Agricultural Sciences and Engineering, Debrecen (Hungary). Institute of Bio- and Environmental Energetics

    2009-07-01

    Complete text of publication follows. We have found that several species of probiotic bacteria also used in food industry for making yogurts is capable of producing spherical elemental selenium nanospheres having an average diameter in the range of 50-500 nm when 1-1000 mg/L selenium was added to the medium in the form of selenite ions. Elemental selenium produced thereby has a high degree of purity, is spherical, and its size and crystalline form depends on the bacterium species applied. We have found that some species of the probiotic yogurt bacteria (e.g. Bifidobacterium bifidum or Bifidobacterium longum) are capable of producing the grey crystalline form of elemental selenium which is so far unprecedented in the art for any bacteria capable of producing elemental selenium nanoparticles. Our finding, therefore, enables the first time the development of economical industrial bacterial fermentation based processes for the production of a high quality elemental selenium material comprising uniformly sized grey or red nanospheres having an average diameter in the range of 50-500 nm. The size and the crystalline form of the produced nanosized (50-500 nm) spherical particles is defined by the selected microorganism. This genetic pre-determination result in reproducible production of a material having individual characteristics which can be used in numerous fields of industry and research. The produced nano selenium could be a good raw material for a production of certified reference materials. The measurement of the produced elemental nanoselenium is a new challenge for the speciation analysis. A sample preparation and measurement method was developed and investigated for the analysis of different selenium forms by HPLC-AFS system. The atomic fluorescence (AFS) was a reliable and simple detection method for the elemental nano selenium. The elemental selenium can produce hydride in the system or can be converted to selenite with HCl/H{sub 2}O{sub 2} digestion.

  2. Determination of Proteinaceous Selenocysteine in Selenized Yeast

    Directory of Open Access Journals (Sweden)

    Katarzyna Bierla

    2018-02-01

    Full Text Available A method for the quantitation of proteinaceous selenocysteine (SeCys in Se-rich yeast was developed. The method is based on the reduction of the Se-Se and S-Se bridges with dithiotretiol, derivatization with iodoacetamide (carbamidomethylation, followed by HPLC-ICP MS. The chromatographic conditions were optimized for the total recovery of the proteinaceous selenocysteine, the minimum number of peaks in the chromatogram (reduction of derivatization products of other Se-species present and the baseline separation. A typical chromatogram of a proteolytic digest of selenized yeast protein consisted of up to five peaks (including SeMet, carbamidomethylated (CAM-SeCys, and Se(CAM2 identified by retention time matching with available standards and electrospray MS. Inorganic selenium non-specifically attached to proteins and selenomethionine could be quantified (in the form of Se(CAM2 along with SeCys. Selenocysteine, selenomethionine, inorganic selenium, and the water soluble-metabolite fraction accounted for the totality of selenium species in Se-rich yeast.

  3. Responses of growing Japanese quails that received selenium from selenium enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chantiratikul, Anut; Chinrasri, Orawan; Pakmaruek, Pornpan; Chantiratikul, Piyanete; Thosaikham, Withpol; Aengwanich, Worapol

    2011-12-01

    The objectives of this study were to determine the effect of selenium (Se) from Se-enriched kale sprout (Brassica oleracea var. alboglabra L.) on the performance and Se concentrations in tissues of growing Japanese quails. Two hundred quails were divided into five treatments. Each treatment consisted of four replicates and each replicate contained ten quails in a completely randomize design. The experiment was conducted for 5 weeks. The treatments were T1, control diet; T2, control diet plus 0.2 mg Se/kg from sodium selenite; T3, T4, and T5, control diet plus 0.2, 0.5, and 1.0 mg Se/kg from Se-enriched kale sprout. The results revealed that Se supplementation had no impact on feed intake, performance, and carcass characteristics of quails (p > 0.05). However, Se supplementation from both sodium selenite and Se-enriched kale sprout increased (p kale sprout. The results indicate that Se from Se-enriched kale sprout offers no advantage over Se from sodium selenite on tissue Se concentration.

  4. Stimulation of Egg Production in Japanese Quails by Enriching Feed with Residual Yeast

    Directory of Open Access Journals (Sweden)

    Letitia Oprean

    2010-05-01

    Full Text Available Quail eggs are more and more approved for consumers because they bring many benefits to the human body. Therefore, quails breeding for eggs production have become a very profitable business. Residual yeast may be a nutritional supplement, especially rich in vitamins and proteins. This article studies the influence of residual beer yeast on egg laying in Japanese quails. In order to be integrated into the diet of quails the yeast has undergone a process of autolysis; its influence has been examined on separate groups. The results were reported as a percentage compared with the control group, where the feed does not contain this supplement. Due to its content rich in vitamins and proteins, the residual beer yeast used in feeding the quails bred for eggs stimulates egg laying.

  5. Benefits of raising crops and animals naturally enriched with selenium in areas with selenium deficiency

    International Nuclear Information System (INIS)

    Dzhudich, I.S.

    2008-01-01

    Selenium (Se) is implicated in the protection of body tissues against oxidative stress, maintenance of defences against infection, and modulation of growth and development. The natural environment has a profound influence on its contents in the food chain and the development and distribution of Se responsive diseases. To overcome the Se deficiency problem and assure safe and adequate Se intakes, different methods were developed. Its efficiency depends on Se compounds absorption, its nutritional availability, long-term retention, convertibility of tissue Se stores into biologically active forms and the history of Se nutrition, influencing the proportion of absorbed retained, or excreted Se from diet. Since the dominant metabolically active Se forms are found in proteins as seleno analogues of sulphur amino acids, rather than selenotrisulphides and other acid labile Se compounds, we developed our own procedure for foliar enrichment of crops with Se, enabling the production of crops and animals with adequate Se content in low Se areas. By foliar application of Se salts, we optimize Se contents of many parameters important for plants quality, thus contributing to the better status of many essential, in diet often deficient nutrients. The utilization of these crops in animal nutrition, contributes to the nutritive value of animal products not only due to adequate Se content, but also higher values of other quality parameters. Consumption of such produced crops and animal products by humans in areas with low dietary Se intake has shown to have significant overall health benefits

  6. Selenium Nanoparticles for Stress-Resilient Fish and Livestock

    Science.gov (United States)

    Sarkar, Biplab; Bhattacharjee, Surajit; Daware, Akshay; Tribedi, Prosun; Krishnani, K. K.; Minhas, P. S.

    2015-09-01

    The fisheries and livestock sectors capture the highest share of protein-rich animal food and demonstrate accelerated growth as an agriculture subsidiary. Environmental pollution, climate change, as well as pathogenic invasions exert increasing stress impacts that lead the productivity momentum at a crossroads. Oxidative stress is the most common form of stress phenomenon responsible for the retardation of productivity in fisheries and livestock. Essential micronutrients play a determinant role in combating oxidative stress. Selenium, one of the essential micronutrients, appears as a potent antioxidant with reduced toxicity in its nanoscale form. In the present review, different methods of synthesis and characterization of nanoscale selenium have been discussed. The functional characterization of nano-selenium in terms of its effect on growth patterns, feed digestibility, and reproductive system has been discussed to elucidate the mechanism of action. Moreover, its anti-carcinogenic and antioxidant potentiality, antimicrobial and immunomodulatory efficacy, and fatty acid reduction in liver have been deciphered as the new phenomena of nano-selenium application. Biologically synthesized nano-selenium raises hope for pharmacologically enriched, naturally stable nanoscale selenium with high ecological viability. Hence, nano-selenium can be administered with commercial feeds for improvising stress resilience and productivity of fish and livestock.

  7. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    Science.gov (United States)

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST)

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Watt, Torquil; Bjørner, Jakob Bue

    2014-01-01

    Patients with chronic autoimmune thyroiditis have impaired health-related quality of life. The thyroid gland has a high selenium concentration, and specific selenoprotein enzyme families are crucial to immune function, and catalyze thyroid hormone metabolism and redox processes in thyroid cells......-enriched yeast or matching placebo tablets daily for 12 months. The experimental supplement will be SelenoPrecise(R). The primary outcome is thyroid-related quality of life assessed by the Thyroid Patient-Reported Outcome (ThyPRO) questionnaire. Secondary outcomes include serum thyroid peroxidase antibody...

  9. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    Science.gov (United States)

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  10. Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast ...

    African Journals Online (AJOL)

    Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast hydrolysate in ... The present study was designed to investigate the hypoglycemic effects of the daily ... in the area under curve (AUC) value of YH supplemented groups as compared ...

  11. EFFECTS OF DIFFERENT SUPPLEMENTS INCLUSION OF THE ENRICHED DIET ON PRODUCTIVE PERFORMANCE AND EGG STRUCTURE

    Directory of Open Access Journals (Sweden)

    Natasha Trajan Gjorgovska

    2016-04-01

    Full Text Available Nutritional manipulation and genetic selection for egg size and production may lead to changes in egg components. This experiment was carried out to analyze the egg structure parameters of eggs produced by Hisex Brown laying hens fed with diet with different supplements inclusion. The intensity of egg production was significantly higher in the groups fed with enriched feed with iodine (90.00%, vitamin E (90.00% and selenium (91.98%, and significantly lower in the group fed with DHA inclusion feed (76.00% in respect to the control group (82.00%, confidence interval of 95%. Concerning diet supplemented with selenium and diet supplemented with vitamin E, the egg yolk weight was statistically different compared with the control group (confidence interval of 95%. The yolk weight averaged 1.80 g and 1.29 g more than yolk weight in the control eggs, respectively. The egg shell weight was statistically different in diet enriched with iodine compared with the control. The egg shell weight averaged 1.48 g less per egg for the eggs enriched with iodine with 17.45% less underweight than the control eggs. Enriched eggs offer consumer a variety of value-added options for their egg purchase. Although enriched eggs may provide consumers with a specific quality attribute or healthful ingredient, they do not appear to provide quality and value in a traditional sense as defined by the standards of quality and grade.

  12. Impact of selenium enrichment on seed potato tubers

    Directory of Open Access Journals (Sweden)

    M. TURAKAINEN

    2008-12-01

    Full Text Available The aim of this study was to investigate the effect of Se enrichment on the growth of sprouts and growth vigour of seed potatoes (Solanum tuberosum L. stored for 2 to 8 months. Our results showed that Se did not affect the duration of dormancy. At the high addition levels (0.075 and 0.9 mg kg-1 quartz sand, Se had some positive effects on the growth of sprouts. The peak sprouting capacity was reached after 8 months of storage. The highest Se enrichment of tubers had some positive effect on the free putrescine content in sprouts. However, the better growth of sprouts was not consistent with the growth vigour of the seed tubers and yield produced. Selenium had no significant effect on the malondialdehyde (MDA or on the concentration of soluble sugars and starch. No significant effect of added Se on the early growth, stem and tuber numbers and yield parameters was observed. Irrespective of the level of Se added, the highest yield was harvested from plants produced with seed tubers stored for 6 months. Our results indicate that Se had some positive effects on the growth of sprouts, but it had no consistent effect on the growth vigour of seed tubers.;

  13. Cr-enriched yeast: beyond fibers for the management of postprandial glycemic response to bread.

    Science.gov (United States)

    Yanni, Amalia E; Stamataki, Nikoleta; Stoupaki, Maria; Konstantopoulos, Panagiotis; Pateras, Irene; Tentolouris, Nikolaos; Perrea, Despoina; T Karathanos, Vaios

    2017-06-01

    Efforts regarding the amelioration of postprandial glycemic response to bread are mainly focused in the addition of soluble dietary fibers. The current study presents another approach which is based on the supplementation of flour with Cr-enriched yeast. Cr is known for its beneficial effects on improvement of glucose tolerance and enhancement of insulin sensitivity. Twelve normoglycemic subjects were provided with white bread (WB, reference food) or whole wheat bread with Cr-enriched yeast (WWCrB, rich in insoluble fibers) or white wheat bread with Cr-enriched yeast (WCrB, poor in fibers) or whole wheat-rye-barley bread enriched with oat beta glucans (BGB, rich in soluble fibers) with 1-week intervals in amounts that yielded 50 g of available carbohydrates. Postprandial glucose, insulin and ghrelin responses as well as glycemic index (GI) were evaluated. Ingestion of WWCrB, WCrB and BGB elicited lower incremental area under the curve (iAUC) for 120-min glycemic response compared to WB (1033.02 ± 282.32, 701.69 ± 330.86 and 748.95 ± 185.42 vs 2070.87 ± 518.44 mg/dL min, respectively, P yeast induces milder postprandial glycemic response to bread without the necessity of high fiber amounts, providing with another strategy for the management of glycemic control.

  14. Effect of Gamma Radiation on The Microbial Production of Selenium Nanoparticles

    International Nuclear Information System (INIS)

    El Zahaby, D.A.T.M.

    2014-01-01

    Selenium is a trace element commonly found in materials of the earth's crust. Selenium is well known for its photoelectric, semiconductor, free-radical scavenging (HUANG et al., 2003), anti-oxidant(El-Batal et al., 2012 a) and anti-cancer properties(El-Batal et al., 2012 b ; El-Batal et al., 2012 c; Mansour et al., 2010; Zhang et al., 2004). Selenium occurs in different forms as red amorphous selenium (Se"0), highly water soluble selenate(SeO_4"2"-) and Selenite(SeO_3"2"-), and as gaseous selenide(Se"2"-). Amongst its various forms, the SeO_3"2"- is highly toxic, which adversely affect the cellular respiration and antioxidant system causes protein inactivation and DNA repair inhibition (Dong et al., 2003; Eustice et al., 1981; Turner et al., 1998). Therefore, detoxification of SeO_3"2"- has attracted a great deal of attention, particularly the reduction of this oxy anion by the microorganisms(Dwivedi et al., 2013). Most methods used to synthesize selenium nanoparticles (SeNPs) are physical and chemical methods, they are characterized by elevated temperatures, long growth times, high pressures, low yields and are also environmentally hazardous (Li et al., 2007). There is an interesting and exciting biogenic synthesis to prepare SeNPs, the synthesis of SeNPs by biological systems occurs at close to ambient temperatures and pressures and at neutral ph(Bharde et al., 2006). This method is a clean, nontoxic and environmentally friendly procedure. In addition, biological synthesis can present extra advantages over chemical methods such as higher productivity and lower cost (Parikh et al., 2008). Attempts have been made to synthesize SeNPs from such microorganisms as bacteria, fungi (Zare et al., 2013) and yeast (Hariharan et al., 2012). However, a bacterial system is preferred mainly due to reduced time of reaction, ease in handling, and easy genetic manipulation (Wang et al., 2010). The majority of studies on the biogenesis of SeNPs have focused on anaerobic systems

  15. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  16. Use of Se-enriched mustard and canola seed meals as potential bioherbicides and green fertilizers in strawberry production

    Science.gov (United States)

    New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...

  17. Enriched cultures of lactic acid bacteria from selected Zimbabwean fermented food and medicinal products with potential as therapy or prophylaxis against yeast infections

    Directory of Open Access Journals (Sweden)

    Alec Chabwinja

    2017-10-01

    Full Text Available Objective: To investigate the antifungal activity of crude cultures of putative strains of lactic acid bacteria (LAB from a selection of Zimbabwean traditional and commercial food/ medicinal products against yeasts (strains of environmental isolates of Candida albicans and Rhodotorula spp.. Methods: Cultures of putative LAB from our selection of fermented products were enriched in de Man, Rogosa and Sharpe and isolated on de Man, Rogosa and Sharpe agar. Results: The crude microbial cultures from the products that showed high antifungal activities (zone of inhibition, mm were as follows: supernatant-free microbial pellet (SFMP from an extract of Melia azedarach leaves [(27.0 ± 2.5 mm] > cell-free culture supernatants (CFCS from Maaz Dairy sour milk and Mnandi sour milk [approximately (26.0 ± 1.8/2.5 mm] > CFCS and SFMP from Amansi hodzeko [(25.0 ± 1.5 mm] > CFCS from Parinari curatellifolia fruit [(24.0 ± 1.5 mm], SFMP from Parinari curatellifolia fruit [(24.0 ± 1.4 mm] and SFMP from mahewu [(20.0 ± 1.5 mm]. These cultures also showed high tolerance to acidic conditions (pH 4.0 and pH 5.0. However, culture from WAYA LGG (shown elsewhere to harbour antimicrobial activities showed no antifungal activity. The LAB could have inhibited yeasts by either competitive exclusion or the release of antimicrobial metabolites. Conclusions: Our cultures of LAB from a selection of Zimbabwean fermented products, especially Ziziphus mauritiana and fermented milk products have great potential for use as antifungal probiotics against yeast infections. Studies are ongoing to determine the exact mechanisms that are employed by the putative LAB to inhibit Candida albicans.

  18. Influence of Selenium on the Production of T-2 Toxin by Fusarium poae.

    Science.gov (United States)

    Cheng, Bolun; Zhang, Yan; Tong, Bei; Yin, Hong

    2017-07-01

    The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.

  19. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    Science.gov (United States)

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  20. THE EFFECTS OF SODIUM SELENITE AND SELENIZED YEAST SUPPLEMENTATION INTO DIET FOR LAYING HENS ON SELECTED QUALITATIVE PARAMETERS OF TABLE EGGS

    Directory of Open Access Journals (Sweden)

    HENRIETA ARPÁŠOVÁ

    2009-10-01

    Full Text Available In this experiment the effects of supplementation of the diet for laying hens with sodium selenite (SS or selenized yeast (SY on whole egg and egg shell quality of layers were studied. The chickens of Shaver Starcross 288 strain were randomly divided at the day of hatching into 4 groups (n=12; in each. The birds were fed from Day 1 of life to 9 months of age with diets differing in amounts and/or forms of selenium. Control group received basal diet (BD containing selenium naturally occurring in feeds (0.1 mg Se/kg of dry matter (DM. First and second experimental group of chickens were fed with a same BD enriched with equivalent dose of Se 0.4 mg/kg DM in form of sodium selenite or selenized yeast, respectively. The feed for third experimental group of birds consisted of BD supplemented with selenized yeast to the final amount of selenium 1.0 mg/kg DM. The egg weight was significantly higher in the groups with SY supplementation only. On the contrary the egg shell ratio was significantly lower in the groups with SY supplementation in both amounts. The width of egg was significantly increased in the groups with selenium supplementation in both forms. The value of egg shell strength was significantly decreased in group with SY in the highest amount 0.9 mg/kg DM The average egg shell thickness was the highest in the experimental group with Se-yeast in amount 0.9 mg/kg DM, however different was not significant compared with control group. The results showed that the most of selected parameters of egg quality appeared to be significantly influenced by selenium supplementation into laying hen’s basal diet.

  1. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  2. EFFECTS OF DIFFERENT SUPPLEMENTS INCLUSION OF THE ENRICHED DIET ON PRODUCTIVE PERFORMANCE AND EGG STRUCTURE

    OpenAIRE

    Natasha Trajan Gjorgovska; Kiril Filev; Vesna Levkov; Rodne Nastova; Vasil Kostov; Srekjko Gjorgjievski; Svetlana Grigorova

    2016-01-01

    Nutritional manipulation and genetic selection for egg size and production may lead to changes in egg components. This experiment was carried out to analyze the egg structure parameters of eggs produced by Hisex Brown laying hens fed with diet with different supplements inclusion. The intensity of egg production was significantly higher in the groups fed with enriched feed with iodine (90.00%), vitamin E (90.00%) and selenium (91.98%), and significantly lower in the group fed with DHA inclusi...

  3. Selenium Accumulating Leafy Vegetables Are a Potential Source of Functional Foods

    Directory of Open Access Journals (Sweden)

    Petro E. Mabeyo

    2015-01-01

    Full Text Available Selenium deficiency in humans has been associated with various diseases, the risks of which can be reduced through dietary supplementation. Selenium accumulating plants may provide a beneficial nutrient for avoiding such illnesses. Thus, leafy vegetables such as Amaranthus hybridus, Amaranthus sp., Cucurbita maxima, Ipomoea batatas, Solanum villosum, Solanum scabrum, and Vigna unguiculata were explored for their capabilities to accumulate selenium when grown on selenium enriched soil and for use as a potential source of selenium enriched functional foods. Their selenium contents were determined by spectrophotometry using the complex of 3,3′-diaminobenzidine hydrochloride (DABH as a chromogen. The mean concentrations in the leaves were found to range from 7.90±0.40 to 1.95±0.12 μg/g dry weight (DW, with C. maxima accumulating the most selenium. In stems, the accumulated selenium content ranged from 1.12±0.10 μg/g in Amaranthus sp. to 5.35±0.78 μg/g DW in C. maxima and was hence significantly different (P<0.01. The cancer cell line MDA-MB-231 was used in cytotoxicity assays to determine the anticancer potential of these extracts. With exception of S. scabrum and S. villosum, no cytotoxicity was detected for the selenium enriched vegetable extracts up to 100 μg/mL concentration. Hence, following careful evaluation the studied vegetables may be considered as selenium enriched functional foods.

  4. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Thavarajah, D.; Vandenberg, A.; George, G.N.; Pickering, I.J.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentils is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.

  5. Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir.

    Science.gov (United States)

    Alzate, A; Fernández-Fernández, A; Pérez-Conde, M C; Gutiérrez, A M; Cámara, C

    2008-09-24

    The aim of the present study was to characterize, quantify, and compare the different selenium species that are produced when lactic fermentation with two different types of microorganisms, bacteria (Lactobacillus) and yeast (Saccharomyces), take place to produce yogurt and kefir, respectively, and to study the transformation process of these species as a function of time. These two dairy products were chosen for the study because they are highly consumed in different cultures. Moreover, the microorganisms present in the fermentation processes are different. While the bacteria Lactobacillus is the one responsible for yogurt fermentation, a partnership between bacteria and the yeast Saccharomyces causes kefir fermentation. A comparative study has been carried out by fermenting Se(IV) enriched milk in the presence of both types of microorganisms, where the concentration range studied was from 0.5 to 20 microg g (-1). Enzymatic extraction enabled selenium speciation profiles, obtained by anionic exchange and ion-pairing reversed phase high performance liquid chromatography (IP-RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection. Scanning electron microscopy (SEM) applied to the enriched samples showed segregated Se (0), at added concentrations higher than 5 microg g (-1). The main Se species formed depended on the type of microorganism involved in the fermentation process, SeCys 2 and MeSeCys being the main species generated in yogurt and SeMet in kefir. The results obtained are different for both kinds of samples. Lactic fermentation for yogurt produced an increment in selenocystine (SeCys 2) and Se-methylselenocysteine (MeSeCys), while fermentation to produce kefir also incremented the selenomethionine (SeMet) concentration. The Se species are stable for at least 10 and 15 days for kefir and yogurt, respectively. After this period, selenocystine concentration decreased, and the concentration of Se-methylselenocysteine was found to

  6. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  7. Experimental operation of a yeast-production shop

    Energy Technology Data Exchange (ETDEWEB)

    Ol' shanskaya, M I

    1981-01-01

    Fodder yeast is obtained from the mash left over after alcohol fermentation by cooling under vacuum in special columns, followed by various chemical and technology treatments including neutralization and lysine enrichment.

  8. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  9. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    Directory of Open Access Journals (Sweden)

    Hetland Harald

    2007-10-01

    Full Text Available Abstract Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle. The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5, DPA (22:5 and DHA (22:6, thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form may increase the concentration of very long-chain omega-3 fatty acids in muscle.

  10. Selenium

    Science.gov (United States)

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There

  11. Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins.

    Science.gov (United States)

    Godin, Simon; Bouzas-Ramos, Diego; Fontagné-Dicharry, Stéphanie; Bouyssière, Brice; Bueno, Maïté

    2017-08-01

    Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic ( 77 Se-selenite) and organic zwitterionic ( 76 Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  13. Selenium bioavailability from soy protein isolate and tofu in rats fed a torula yeast-based diet.

    Science.gov (United States)

    Yan, Lin; Graef, George L; Reeves, Philip G; Johnson, LuAnn K

    2009-12-23

    Selenium (Se) is an essential nutrient, and soy is a major plant source of dietary protein to humans. The United States produces one-third of the world's soybeans, and the Se-rich Northern Plains produce a large share of the nation's soybeans. The present study used a rat model to determine the bioavailability of Se from a protein isolate and tofu (bean curd) prepared from a soybean cultivar we recently developed specifically for food grade markets. The soybean seeds contained 2.91 mg Se/kg. Male Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet containing 5 microg Se/kg; after 56 days, they were replenished of Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 microg Se/kg from soy protein isolate or tofu. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the responses of Se-dependent enzyme activities and tissue Se contents, comparing those responses for each soy product to those for SeMet using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in dose-dependent increases in glutathione peroxidase activities in blood and liver and thioredoxin reductase activity in liver, as well as dose-dependent increases in the Se contents of plasma, liver, muscle, and kidneys. These responses indicated an overall bioavailability of approximately 97% for Se from both the protein isolate and tofu, relative to SeMet. These results demonstrate that Se from this soybean cultivar is highly bioavailable in this model and that high-Se soybeans can be good dietary sources of Se.

  14. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  15. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  16. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  17. Selenium content in tissues and meat quality in rabbits fed selenium yeast

    Czech Academy of Sciences Publication Activity Database

    Dokoupilová, A.; Marounek, Milan; Skřivanová, V.; Březina, P.

    2007-01-01

    Roč. 52, č. 6 (2007), s. 165-169 ISSN 1212-1819 Institutional research plan: CEZ:AV0Z50450515 Keywords : rabbits * selenium * meat Subject RIV: GH - Livestock Nutrition Impact factor: 0.633, year: 2007

  18. Effect of foliar application of selenium on its uptake and speciation in carrot

    DEFF Research Database (Denmark)

    Kápolna, Emese; Hillestrøm, Peter René; Laursen, K.H.

    2009-01-01

    Carrot (Daucus carota) shoots were enriched by selenium using foliar application. Solutions of sodium selenite or sodium selenate at 10 and 100 mu g Se ml(-1), were sprayed on the carrot leaves and the selenium content and uptake rate of selenium were estimated by ICP-MS analysis. Anion and cation......(-1) (dry mass) in the carrot root whereas the selenium concentration in the controls was below the limit of detection at 0.045 mu g Se g(-1) (dry mass). Selenate-enriched carrot leaves accumulated as much as 80 mu g Se g(-1) (dry mass), while the selenite-enriched leaves contained approximately 50 mu...... g Se g(-1) (dry mass). The speciation analyses showed that inorganic selenium was present in both roots and leaves. The predominant metabolised organic forms of selenium in the roots were selenomethionine and gamma-glutamyl-selenomethyl-selenocysteine, regardless of which of the inorganic species...

  19. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  20. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  1. Study of selenocompounds from selenium-enriched culture of edible sprouts.

    Science.gov (United States)

    Funes-Collado, Virginia; Morell-Garcia, Albert; Rubio, Roser; López-Sánchez, José Fermín

    2013-12-15

    Selenium is recognised as an essential micronutrient for humans and animals. One of the main sources of selenocompounds in the human diet is vegetables. Therefore, this study deals with the Se species present in different edible sprouts grown in Se-enriched media. We grew alfalfa, lentil and soy in a hydroponic system amended with soluble salts, containing the same proportion of Se, in the form of Se(VI) and Se(IV). Total Se in the sprouts was determined by acidic digestion in a microwave system and by ICP/MS. Se speciation was carried out by enzymatic extraction (Protease XIV) and measured by LC-ICP/MS. The study shows that the Se content of plants depends on the content in the growth culture, and that part of the inorganic Se was biotransformed mainly into SeMet. These results contribute to our understanding of the uptake of inorganic Se and its biotransformation by edible plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enrichment of African catfish with functional selenium originating from garlic

    NARCIS (Netherlands)

    Schram, E.; Pedrero, Z.; Camara, C.; Heul, van der J.W.; Luten, J.B.

    2008-01-01

    We wanted to create functional seafood with high concentrations of organic selenium (seleno-methyl-selenocysteine and ¿-glutamyl-seleno-methyl-selenocysteine) with anti-carcinogenic properties for human consumers. Garlic containing high concentrations of these organic selenium compounds was used as

  3. Selenium enrichment pattern in flowering Chinese cabbage, cabbage and asparagus

    NARCIS (Netherlands)

    Mo, H.Z.; Yang Zhu, Yang; Zhang, M.

    2006-01-01

    CONCLUSIONS - Within a certain range, selenium accumulation in three studied vegetables was lineally correlated with spraying concentration. However, a too high concentration caused the reduction of vegetable output and damage in quality. - Twice spraying with lower concentration of selenium was a

  4. Selenium-mediated protection in reversing the sensitivity of bacterium to the bactericidal antibiotics.

    Science.gov (United States)

    Li, Zhonglei; Tan, Jun; Shao, Lei; Dong, Xiaojing; Ye, Richard D; Chen, Daijie

    2017-05-01

    Inducing production of damaging reactive oxygen species (ROS) is an important criterion to distinguish the bactericidal antibiotics from bacteriostatic antibiotics. Selenoenzymes were generally recognized to be a powerful antioxidant capable of scavenging free radicals, protecting the cells from the harmful effects of ROS. Therefore, the present study was carried out to investigate the selenium (Se)-mediated protection in reversing antibiotic sensitivity and the role of selenoenzymes in alleviating the negative effects of oxidative stress. The cellular antioxidant activity of Se-enriched bacteria was analyzed, as well as intracellular ROS production and elimination when Se-enriched bacteria in the presence of various antibiotics. Compared to complete inhibition of the parental strain by bactericidal antibiotics, it only exhibited slight and reversible inhibition of Se-enriched Escherichia coli ATCC25922 and Staphylococcus aureus ATCC25923 at the same conditions, which indicated that intracellular selenium provided substantial protection against antibiotics. ROS generation caused by bactericidal antibiotics was confirmed by fluorescence spectrophotometry using 2', 7'-dichloro- uorescein diacetate (DCFH-DA) as substrate. The time course experiments of pretreatment with selenium showed significant decrease of ROS level at 2h. In summary, the present study provides experimental evidence supporting selenoenzymes has good scavenging effect to ROS and can protect bacteria from oxidative stress injury induced by bactericidal antibiotics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  6. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities.

    Science.gov (United States)

    Yang, Shengli; Zhang, Hui

    2016-01-01

    Thin stillage was used as the substrate to produce intracellular selenium-enriched polysaccharides (ISPS) from Cordyceps sinensis to increase the value of agricultural coproducts. Fermentation parameters were optimized using response surface methodology (RSM) to improve the production of ISPS. Then, the effects of ISPS on the antioxidant activities in vitro, as well as the glycosylated serum protein concentration, malondialdehyde level, and total antioxidant capacity of streptozotocin-induced diabetic rats were studied. The optimized conditions were as follows: sodium selenite concentration, 33.78 µg/L; incubation time, 8.24 days; and incubation temperature, 26.69°C. A maximum yield of 197.35 mg/g ISPS was obtained from the validation experiments, which was quite close to the predicted maximum yield of 198.6839 mg/g. FT-IR spectra indicated that ISPS has been successfully selenylation modified with similar structure to polysaccharide of intracellular polysaccharides. The in vitro scavenging effects of 1.0 mg/mL ISPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals were 74.62±4.05, 71.45±3.63, and 79.48±4.75%, respectively. The reducing power of ISPS was 0.45±0.01 (absorbance at 700 nm). Fasting blood glucose and glycosylated serum protein of group C (rats with diabetes that received drinking water with ISPS) were significantly lower than those of group B (rats with diabetes) (P<0.01) after treatment was administered for 2 and 4 weeks. Serum malonaldehyde content of group C was significantly lower than that of group B at 4 weeks (P<0.01). At 4 weeks, malonaldehyde contents in heart, liver, and kidney tissues of group C were significantly lower than those of group B; however, malonaldehyde content in pancreas tissue of group C was not significantly different. Total antioxidant capacities in liver, pancreas and kidney tissues of group C were significantly higher than those of group B, but total antioxidant capacity in heart tissue was not

  7. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-02-01

    Full Text Available Background: Thin stillage was used as the substrate to produce intracellular selenium-enriched polysaccharides (ISPS from Cordyceps sinensis to increase the value of agricultural coproducts. Methods: Fermentation parameters were optimized using response surface methodology (RSM to improve the production of ISPS. Then, the effects of ISPS on the antioxidant activities in vitro, as well as the glycosylated serum protein concentration, malondialdehyde level, and total antioxidant capacity of streptozotocin-induced diabetic rats were studied. Results: The optimized conditions were as follows: sodium selenite concentration, 33.78 µg/L; incubation time, 8.24 days; and incubation temperature, 26.69°C. A maximum yield of 197.35 mg/g ISPS was obtained from the validation experiments, which was quite close to the predicted maximum yield of 198.6839 mg/g. FT-IR spectra indicated that ISPS has been successfully selenylation modified with similar structure to polysaccharide of intracellular polysaccharides. The in vitro scavenging effects of 1.0 mg/mL ISPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals were 74.62±4.05, 71.45±3.63, and 79.48±4.75%, respectively. The reducing power of ISPS was 0.45±0.01 (absorbance at 700 nm. Fasting blood glucose and glycosylated serum protein of group C (rats with diabetes that received drinking water with ISPS were significantly lower than those of group B (rats with diabetes (P<0.01 after treatment was administered for 2 and 4 weeks. Serum malonaldehyde content of group C was significantly lower than that of group B at 4 weeks (P<0.01. At 4 weeks, malonaldehyde contents in heart, liver, and kidney tissues of group C were significantly lower than those of group B; however, malonaldehyde content in pancreas tissue of group C was not significantly different. Total antioxidant capacities in liver, pancreas and kidney tissues of group C were significantly higher than those of group B, but total

  8. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata

    Directory of Open Access Journals (Sweden)

    Gary S. Bañuelos

    2016-08-01

    Full Text Available Selenium (Se biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Considering the use of adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops. In this multi-year micro-plot study, we investigate growing carrots and broccoli in soils that had been previously amended with Se-enriched Stanleya pinnata Pursh (Britton three and four years prior to planting one and two, respectively. Results showed that total and extractable Se concentrations in soils (0-30 cm were 1.65 mg kg-1 and 88 µg L-1, and 0.92 mg kg-1 and 48.6 µg L-1 at the beginning of the growing season for planting one and two, respectively. After each respective growing season, total Se concentrations in the broccoli florets and carrots ranged from 6.99 to 7.83 mg kg-1 and 3.15 to 6.25 mg kg-1 in planting one and two, respectively. In broccoli and carrot plant tissues, SeMet (selenomethionine was the predominant selenoamino acid identified in Se aqueous extracts. In postharvest soils from planting one, phospholipid analyses (PLFA showed that amending the soil with S. pinnata exerted no effect on the microbial biomass, AMF (arbuscular mycorrhizal fungi, actinomycetes and Gram-positive and bacterial PLFA at both 0-5 and 0-30 cm, respectively, three years later. Successfully producing Se-enriched broccoli and carrots three and four years later after amending soil with Se-enriched S. pinnata clearly demonstrates its potential source as an organic Se enriched fertilizer for Se-deficient regions.

  9. Biofortification and phytoremediation of selenium in China

    Directory of Open Access Journals (Sweden)

    Zhilin eWu

    2015-03-01

    Full Text Available Selenium (Se is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. While Se phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.

  10. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determination of selenium via the fluorescence quenching effect of selenium on hemoglobin-catalyzed peroxidative reaction.

    Science.gov (United States)

    Chen, Ya-Hong; Zhang, Ya-Nan; Tian, Feng-Shou

    2015-05-01

    A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin-catalyzed reaction of H2 O2 and l-tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0 /F) and the concentration of selenium within the range of 0.16-4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se-enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Two-dimensional gel electrophoresis of selenized yeast and autoradiography of 75Se-containing proteins

    International Nuclear Information System (INIS)

    Chery, C.C.; Dumont, E.; Cornelis, R.; Moens, L.

    2001-01-01

    Two-dimensional high-resolution gel electrophoresis (2DE) has been applied to the fractionation of 75 Se-containing proteins in yeast, grown in 75 Se-containing medium, and autoradiography was used for detection of the 75 Se-containing proteins. Gel filtration and ultrafiltration were used to check whether the selenium side-chains were stable in the presence of the chemicals used for lysis and 2DE. The mass distribution of the selenium-containing proteins was estimated by use of gel filtration and the results were compared with the distribution obtained by 2DE. A 2DE map of selenium-containing proteins in yeast is presented, and compared with a total protein map of yeast. (orig.)

  13. The effect of hypocaloric diet enriched in legumes with or without L-arginine and selenium on anthropometric measures in central obese women

    Science.gov (United States)

    Alizadeh, Mohammad; Daneghian, Sevana; Ghaffari, Aida; Ostadrahimi, Alireza; Safaeiyan, Abdolrasoul; Estakhri, Rassul; Gargari, Bahram Pourghasem

    2010-01-01

    BACKGROUND: Identifying new ways to decrease adiposity will be very valuable for health. The aim of this study was to find out whether L-Arginine (Arg) and selenium alone or together can increase the effect of hypocaloric diet enriched in legumes (HDEL) on anthropometric measures in healthy obese women. METHODS: This randomized, double-blind, placebo-controlled trial was undertaken in 84 healthy premenopausal women with central obesity. After 2 weeks of run-in on an isocaloric diet, participants were randomly considered to eat HDEL, Arg (5 g/d) and HDEL, selenium (200 µg/d) and HDEL or Arg, selenium and HDEL for 6 weeks. The following variables were assessed before intervention and 3 and 6 weeks after it: weight, waist circumference, hip circumference, waist to hip ratio (WHR), body mass index (BMI), and fasting nitrite/nitrate (NOx) concentrations. Other variables (arm, thigh, calf and breast circumferences, subscapular, triceps, biceps and suprailiac skinfold thicknesses, sum of skinfold thicknesses (SSF), body density (D) and estimated percent of body fat (EPF)) were assessed before and after intervention. RESULTS: HDEL showed a significant effect in reduction of waist, hip, arm, thigh, calf and breast circumferences, triceps, biceps, subscapular and suprailiac skinfold thicknesses, WHR, SSF, D and EPF. HDEL + Arg + selenium significantly reduced suprailiac skinfold thicknesses; and there was no significant effect of HDEL, Arg, selenium and Arg plus selenium on weight, BMI and fasting NOx. CONCLUSIONS: The study indicates that HDEL + Arg + selenium reduce suprailiac skinfold thicknesses which represents the abdominal obesity reduction. PMID:21526106

  14. The effect of hypocaloric diet enriched in legumes with or without L- arginine and selenium on anthropometric measures in central obese women

    Directory of Open Access Journals (Sweden)

    Mohammad Alizadeh

    2010-01-01

    Full Text Available Background: Identifying new ways to decrease adiposity will be very valuable for health. The aim of this study was to find out whether L- Arginine (Arg and selenium alone or together can increase the effect of hypocaloric diet enriched in legumes (HDEL on anthropometric measures in healthy obese women. Methods: This randomized, double- blind, placebo- controlled trial was undertaken in 84 healthy premenopausal women with central obesity. After 2 weeks of run- in on an isocaloric diet, participants were randomly considered to eat HDEL, Arg (5 g/d and HDEL, selenium (200 μg/d and HDEL or Arg, selenium and HDEL for 6 weeks. The following variables were assessed before intervention and 3 and 6 weeks after it: weight, waist circumference, hip circumference, waist to hip ratio (WHR, body mass index (BMI, and fasting nitrite/nitrate (NOx concentrations. Other variables (arm, thigh, calf and breast circumferences, subscapular, triceps, biceps and suprailiac skinfold thicknesses, sum of skinfold thicknesses (SSF, body density (D and estimated percent of body fat (EPF were assessed before and after intervention. Results: HDEL showed a significant effect in reduction of waist, hip, arm, thigh, calf and breast circumferences, triceps, biceps, subscapular and suprailiac skinfold thicknesses, WHR, SSF, D and EPF. HDEL + Arg + selenium significantly reduced suprailiac skinfold thicknesses; and there was no significant effect of HDEL, Arg, selenium and Arg plus selenium on weight, BMI and fasting NOx . Conclusions: The study indicates that HDEL + Arg + selenium reduce suprailiac skinfold thicknesses which represents the abdominal obesity reduction.

  15. Between science and industry-applied yeast research.

    Science.gov (United States)

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  16. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds.

    Science.gov (United States)

    Bodnar, Malgorzata; Szczyglowska, Marzena; Konieczka, Piotr; Namiesnik, Jacek

    2016-01-01

    Selenium, a "dual-surface" element, maintains a very thin line between a level of necessity and harmfulness. Because of this, a deficiency or excess of this element in an organism is dangerous and causes health-related problems, both physically and mentally. The main source of selenium is a balanced diet, with a proper selection of meat and plant products. Meanwhile, the proper assimilation of selenium into these products depends on their bioavailability, bioaccessibility, and/or bioactivity of a given selenium compound. From the time when it was discovered that selenium and its compounds have a significant influence on metabolic processes and in many countries throughout the world, a low quantity of selenium was found in different parts of the environment, pressure was put upon an effective and fast method of supplementing the environment with the help of selenium. This work describes supplementation methods applied with the use of selenium, as well as new ideas for increasing the level of this element in various organisms. Based on the fact that selenium appears in the environment at trace levels, the determination of total amount of selenium or selenium speciation in a given sample demands the selection of appropriate measurement methods. These methods are most often comprised of a sample preparation technique and/or a separation technique as well as a detection system. The work presents information on the subject of analytical methods used for determining selenium and its compounds as well as examples in literature of their application.

  17. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    Science.gov (United States)

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  18. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  19. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  20. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    International Nuclear Information System (INIS)

    Di Tullo, Pamela; Pannier, Florence; Thiry, Yves; Le Hécho, Isabelle; Bueno, Maïté

    2016-01-01

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for "7"7Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas "7"7Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K_d distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  1. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    Energy Technology Data Exchange (ETDEWEB)

    Di Tullo, Pamela, E-mail: pamela.ditullo@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pannier, Florence, E-mail: florence.pannier@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Thiry, Yves, E-mail: yves.thiry@andra.fr [Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Le Hécho, Isabelle, E-mail: isabelle.lehecho@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Bueno, Maïté, E-mail: maite.bueno@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France)

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for {sup 77}Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas {sup 77}Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K{sub d} distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  2. Isolation of L-methionine-enriched mutant of a methylotrophic yeast, Candida boidinii No.2201

    International Nuclear Information System (INIS)

    Tani, Y.; Lim, W.J.; Yang, H.C.

    1988-01-01

    Six strains of methylotrophic yeast were examined for production of L-methionine-enriched cells. Candida boidinii (kloeckera sp.) No. 2201,which accumulated 0.54 mg/g-dry cell weight (DCW) of free L-methionine (pool methionine), was selected as the parental strain for breeding L-methionine-rich mutants. Ethionine-resistant mutants were derived from the strain by UV irradiation. A mutant strain, E500-78,which was resistant to 500 μg/ml of DL-ethionine, accumulated 6.02 mg/g-DCW of pool methionine. The culture conditions for mutant strain E500-78 to increase pool methionine accumulation were optimized. As a result, the mutant strain accumulated 8.80 mg/g-DCW of pool methionine and contained 16.02 mg/g-DCW total methionine

  3. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  4. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  5. Selenium for preventing cancer

    Directory of Open Access Journals (Sweden)

    Gabriele Dennert

    Full Text Available BACKGROUND: Selenium is a trace element essential to humans. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. OBJECTIVE: Two research questions were addressed in this review: What is the evidence for: 1. an aetiological relationship between selenium exposure and cancer risk in women and men?; 2. the efficacy of selenium supplementation for cancer prevention in women and men? SEARCH STRATEGY: We searched electronic databases and bibliographies of reviews and included publications. SELECTION CRITERIA: We included prospective observational studies to answer research question (a and randomised controlled trials (RCTs to answer research question (b. DATA COLLECTION AND ANALYSIS: We conducted random effects meta-analyses of epidemiological data when five or more studies were retrieved for a specific outcome. We made a narrative summary of data from RCTs. MAIN RESULTS: We included 49 prospective observational studies and six RCTs. In epidemiologic data, we found a reduced cancer incidence (summary odds ratio, OR, 0.69; 95% confidence interval, CI, 0.53 to 0.91 and mortality (OR 0.55, 95% CI 0.36 to 0.83 with higher selenium exposure. Cancer risk was more pronouncedly reduced in men (incidence: OR 0.66, 95% CI 0.42 to 1.05 than in women (incidence: OR 0.90, 95% CI 0.45 to 1.77. These findings have potential limitations due to study design, quality and heterogeneity of the data, which complicated the interpretation of the summary statistics. The RCTs found no protective efficacy of selenium yeast supplementation against non-melanoma skin cancer or L-selenomethionine supplementation against prostate cancer. Study results for the prevention of liver cancer with selenium supplements were inconsistent and studies had an unclear risk of bias. The results of the Nutritional Prevention of Cancer Trial (NPCT and SELECT raised concerns about possible harmful effects of selenium supplements. AUTHORS

  6. Arsenic and selenium in microbial metabolism

    Science.gov (United States)

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  7. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  9. Selenium sources in the diet of dairy cows and their effects on milk production and quality, on udder health and on physiological indicators of heat stress

    Directory of Open Access Journals (Sweden)

    Carlos E. Oltramari

    2014-02-01

    Full Text Available Twenty-four dairy cows, with daily average milk production of 18.1 kg, were fed diets containing different selenium (Se sources. The purpose of this paper is to evaluate the effects of such diets on milk production and quality, on the occurrence of mastitis, and on physiological variables. During the experimental period (124 days, all the cows received the same diet: a total mixed feed with 0.278 mg.kg- 1 DM of selenium. In the inorganic Se treatment, the selenium source was sodium selenite and in the organic Se treatment the source was selenium yeast (Saccharomyces cerevisiae CNCM I-3060. There were no significant differences in milk yield or in Se concentration in the milk. No significant differences between the treatments were observed in protein, lactose, solids-not-fat andpercentage of total solids. The animals subjected to the organic Se treatment presented higher (P=0.013 percentage of milk fat and lower (P=0.014 somatic cell count (SCC than those subjected to the inorganic Se treatment. There was no significant difference in subclinical mastitisas determined by the California Mastitis Test (CMT between the treatments. However, both Se sources reduced the incidence of mastitis (subclinical positive mastitis and strongly positive mastitis between the pre-experimental and experimental phases. There was no significant difference in rectal temperature (RT between the treatments. Respiratory frequency (RF was lower (P=0.027 in the inorganic treatment than in the organic one, whereas haircoat temperature (HT was lower (P=0.007 in the organic treatment than in the inorganic one.

  10. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves.

    Science.gov (United States)

    Wallace, L G; Bobe, G; Vorachek, W R; Dolan, B P; Estill, C T; Pirelli, G J; Hall, J A

    2017-06-01

    In newborn dairy calves, it has been demonstrated that supranutritional maternal and colostral Se supplementation using Se yeast or sodium selenite, respectively, improves passive transfer of IgG. In beef cattle, agronomic biofortification with Se is a more practical alternative for Se supplementation, whereby the Se concentration of hay is increased through the use of Se-containing fertilizer amendments. It has been previously demonstrated that agronomic Se biofortification is an effective strategy to improve immunity and performance in Se-replete weaned beef calves. The objective of this experiment was to determine the effects of feeding beef cows Se-enriched alfalfa () hay during the last 8 to 12 wk of gestation on passive transfer of antibodies to calves. At 10 wk ± 16 d before calving, 45 cows were assigned to 1 of 3 treatment groups with 3 pens (5 cows/pen) per treatment: Control cows were fed non-Se-fortified alfalfa hay plus a mineral supplement containing 120 mg/kg Se from sodium selenite, Med-Se cows were fed alfalfa hay fertilized with 45.0 g Se/ha as sodium selenate, and High-Se cows were fed alfalfa hay fertilized with 89.9 g Se/ha as sodium selenate; both the Med-Se and the High-Se groups received mineral supplement without added Se. Colostrum and whole blood (WB) were collected from cows at calving, and WB was collected from calves within 2 h of calving and at 12, 24, 36, and 48 h of age. Concentrations of IgG1 and J-5 antibody in cow colostrum and calf serum were quantified using ELISA procedures. Selenium concentrations linearly increased in WB ( cows and in WB of newborn calves ( cows fed Se-biofortified alfalfa hay, but J-5 antibody ( = 0.43) concentrations were not. Calf serum IgG1 ( = 0.43) and J-5 antibody ( = 0.44) concentrations during the first 48 h of age were not affected by prior Se treatment of cows. These data suggest that feeding Se-biofortified alfalfa hay promotes the accumulation of Se and antibodies in colostrum but does not

  11. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland.

    Science.gov (United States)

    Gudmundsdottir, Edda Y; Gunnarsdottir, Ingibjorg; Thorlacius, Arngrimur; Reykdal, Olafur; Gunnlaugsdottir, Helga; Thorsdottir, Inga; Steingrimsdottir, Laufey

    2012-01-01

    Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. The subjects were 96 randomly selected girls, aged 16-20, who answered a validated food frequency questionnaire (FFQ) for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90-208); nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P=0.002 and r=0.22; P=0.04, respectively) while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  12. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland

    Directory of Open Access Journals (Sweden)

    Ingibjorg Gunnarsdottir

    2012-08-01

    Full Text Available Background/objectives: Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. Design: The subjects were 96 randomly selected girls, aged 16–20, who answered a validated food frequency questionnaire (FFQ for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Results: Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90–208; nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P = 0.002 and r=0.22; P = 0.04, respectively while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. Conclusion: In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  13. Selenium and tellurium as carbon substitutes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1980-01-01

    This review has summarized structure-activity studies with 75 Se- and /sup 123m/Te-labeled radiopharmaceuticals in which the selenium or tellurium heteroatom has been inserted between carbon-carbon bonds. The agents that have been investigated in most detail include steroids for adrenal imaging and long-chain fatty acids, and a variety of other unique agents have also been studied. Because of the great versatility of the organic chemistry of selenium and tellurium, there is continuing interest in the preparation of radiopharmaceuticals labeled with 75 Se, 73 Se, and /sup 123m/Te. There are two important factors which will determine the extent of future interest in such agents. These include the necessity of a decrease in the cost of highly enriched 122 Te to make the reactor production of /sup 123m/Te cost effective. In addition, the potential preparation of large amounts of 73 Se should stimulate the development of 73 Se-labeled radiopharmaceuticals

  14. Response of selenium changes in blood using cyclic activation analysis

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Akanle, O.B.; Damyanova, A.A.

    1986-01-01

    A study was undertaken to investigate the response of selenium uptake and washout in whole blood and its components in healthy subjects, aged 20 to 30 yr, who were given selenium as a supplement to their usual diet, in the form of a yeast tablet (200 mg) containing 100 μg of the element together with vitamins A, C, and E (natural). Selenium has gained worldwide interest not only as an essential trace element but as a potent modifier of environmental hazards and as a naturally occurring toxicant. It is important therefore to investigate the character and the degree of the changes in healthy people on selenium supplementation. Cyclic activation analysis was used for the determination of selenium concentration through the detection of /sup 77m/Se (17.5 s), because of the increased sensitivity of the method and the large number of samples involved

  15. Microbial volatilization of inorganic selenium from landfill leachate; Mikrobiologische Volatilisierung von anorganischem Selen aus Deponiesickerwaessern bei umweltrelevanten Konzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael [Mainz Univ. (Germany). Inst. fuer Geowissenschaften

    2010-04-15

    Background, aim, and scope: Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods: Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar {sup registered} bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results: Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10 {mu}gL{sup -1} to 10 mgL{sup -1}), with volatilization rates of up to 10 mg m{sup -3}d{sup -1}. For selenium concentrations of 1 mgL{sup -1} in the nutrient broth, up to 7 % of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion: The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions: The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives: The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.

  16. Se metallomics during lactic fermentation of Se-enriched yogurt.

    Science.gov (United States)

    Palomo, María; Gutiérrez, Ana M; Pérez-Conde, M Concepción; Cámara, Carmen; Madrid, Yolanda

    2014-12-01

    Selenium biotransformation by lactic acid bacteria during the preparation of Se-enriched yogurt was evaluated. The study focused on the distribution of selenium in the aqueous soluble protein fraction and the detection of selenoamino acids. Screening of selenium in Tris-buffer-urea soluble fraction was carried out by sodium dodecyl sulphate polyacrylamide gel electrophoresis after pre-fractionating with asymmetric field flow fractionation using inductively coupled plasma-mass spectrometry as the detector. Selenium-containing fractions were identified by peptide mapping using nano LC-ESI/LTQMS. Proteins such as thioredoxin, glutaredoxin, albumin, β-lactoglobulin, and lactoperoxidase were identified in the selenium-containing fraction. All these proteins were detected in both the control and the selenium-enriched yogurt except chaperones, which were only detected in the control samples. Chaperones are heat-shock proteins expressed in response to elevated temperature or other cellular stresses. Selenium may have an effect on chaperones expression in Lactobacillus. For the amino acids analysis, selenocysteine was the primary seleno-containing species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Selenium content of foods purchased or produced in Ohio.

    Science.gov (United States)

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  18. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    Science.gov (United States)

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  20. SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    OpenAIRE

    Kapolna, Emese; Laursen, Kristian H.; Hillestrøm, Peter; Husted, Søren; Larsen, Erik H.

    2008-01-01

    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study.

  1. Selection of oleaginous yeasts for fatty acid production

    NARCIS (Netherlands)

    Lamers, Dennis; Biezen, van Nick; Martens, Dirk; Peters, Linda; Zilver, van de Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H.; Lokman, Christien

    2016-01-01

    Background: Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts

  2. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  5. Effects of vitamin E and organic selenium on oxidative stability of omega-3 enriched dark chicken meat during cooking.

    Science.gov (United States)

    Perez, T I; Zuidhof, M J; Renema, R A; Curtis, J M; Ren, Y; Betti, M

    2010-03-01

    The influence of vitamin E and selenomethionine (SeMet) on lipid oxidation in frozen-raw and cooked omega-3 enriched dark chicken meat was evaluated. Feed was supplemented with 2 levels of vitamin E (250 and 50 IU/kg of feed) and selenium (0.1 mg of sodium selenite/kg of feed and 0.3 mg of SeMet/kg of feed). An extruded linseed product was used as the alpha-linolenic acid source. Fatty acid (FA) profile, oxysterols, and thiobarbituric reactive acid substances (TBARs) were analyzed in frozen-raw, boiled, pan-fried, and roasted meat. After 6 mo of storage, oxysterols in frozen-raw meat remained stable with either high or low levels of dietary antioxidants. During cooking, high levels of vitamin E reduced oxysterol formation, whereas high levels of SeMet were inconsistent and even increased oxysterols during roasting. TBARs in frozen-raw meat stored for 6 mo were inhibited by high levels of either antioxidant. Conversely, no protective effect during cooking was observed at this time of storage. After 12 mo at -30 degrees C no antioxidant protection was observed.

  6. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Xylitol production from colombian native yeast strains

    Directory of Open Access Journals (Sweden)

    Isleny Andrea Vanegas Córdoba

    2004-07-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.

  8. Distribution and mode of occurrence of selenium in US coals

    Science.gov (United States)

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  9. The effect of dietary selenium supplementation on meat quality of broiler chickens

    Directory of Open Access Journals (Sweden)

    Miezeliene, A.

    2011-01-01

    Full Text Available Currently there is a focus on the development of functional poultry products capable of enrichment by selenium, vitamin E, iodine and fatty acids of the third order. Since there is a lack of data about various selenium sources and its synergistic effect on sensory and other properties of vitamin E enriched poultry, the objective of this research was to examine the effect of addition of selenium in broilers diet on meat quality. The amount of Se in the diet was increased from 0.15 mg.kg-1 feed (control group to 0.5 mg.kg-1 feed. Addition of Se had no significant effect (p > 0.05 on cooking and thawing losses, as well as on the majority of sensory attributes, adhesiveness, cohesiveness of chicken breast samples. Aftertaste (p < 0.05, hardness (p < 0.001 and resilience (p < 0.001 of the texture of the samples increased along with the increased amount of Se in bird diet. Mean values of the sensory attributes of thigh muscles showed no significant differences among the samples in case of intensities of odor and taste attributes; however, firmness and chewiness of the tested samples increased by increasing the amount of Se in the feed (p > 0.05. In addition, Se did not have significant influence on meat cooking or thawing losses. The results of this study showed that 0.15 mg and 0.5 mg of selenium in complex with 40 mg of vitamin E could be added to broiler diet without having negative effect on technological or sensory properties of the broiler meat and acceptability.

  10. Selenium and Human Health

    Directory of Open Access Journals (Sweden)

    M Abedi

    2013-04-01

    Full Text Available Introduction: Selenium is an essential element for human health and it is toxic at high concentrations. Selenium is a constituent component of selenoproteins that have enzymatic and structural roles in human biochemistry. Selenium is a best antioxidant and catalyst for production of thyroid hormone. This element has the key role in the immune function; prevention of AIDS progression and the deactivity of toxins. Furthermore, selenium is essential for sperm motility and can reduce abortions. Selenium deficiency was also associated with adverse mood states. The findings regarding cardiovascular disease risk related to selenium deficiency is unclear, though other conditions such as vascular inflammation, oxidative stress and selenium deficiency can cause this disease too. Moreover, consuming of 60 mg of selenium per day may be associated with reduction of cancer risk. In this study, a review of studies has been performed on the biochemical function of selenium toxicity, and its effects on human health. Furthermore, certain identified cancers associated with selenium have been discussed to absorb more attention to the status of this element and also as a guide for further studies. Selenium plays the dual character (useful and harmful in human health, and then it is necessary to determine the concentration of this element in body fluids and tissues. An appropriate method for routine measurement of selenium in clinical laboratories is electro thermal atomic absorption spectrometry (ETAAS with very low detection limit and good precision.

  11. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata

    Science.gov (United States)

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops needed in Se-deficient ...

  12. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Yeasts in foods and beverages: impact on product quality and safety.

    Science.gov (United States)

    Fleet, Graham H

    2007-04-01

    The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.

  14. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  15. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  16. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice.

    Science.gov (United States)

    Cao, Lei; Zhang, Li; Zeng, Huawei; Wu, Ryan Ty; Wu, Tung-Lung; Cheng, Wen-Hsing

    2017-10-01

    Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity. Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice. Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes. Results: Dietary selenium deficiency decreased ( P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 ( Dio2 ) and selenoprotein N ( Selenon ) in the kidneys of males. Age upregulated (11-44%; P selenium status and selenotranscriptomes because of dietary selenium deficiency and age. © 2017 American Society for Nutrition.

  17. Designing the selenium and bladder cancer trial (SELEBLAT, a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium

    Directory of Open Access Journals (Sweden)

    Goossens Maria E

    2012-03-01

    Full Text Available Abstract Background In Belgium, bladder cancer is the fifth most common cancer in males (5.2% and the sixth most frequent cause of death from cancer in males (3.8%. Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of bladder cancer. This suggests that selenium may also be suitable for chemoprevention of recurrence. Method The SELEBLAT study opened in September 2009 and is still recruiting all patients with non-invasive transitional cell carcinoma of the bladder on TURB operation in 15 Belgian hospitals. Recruitment progress can be monitored live at http://www.seleblat.org. Patients are randomly assigned to selenium yeast (200 μg/day supplementation for 3 years or matching placebo, in addition to standard care. The objective is to determine the effect of selenium on the recurrence of bladder cancer. Randomization is stratified by treatment centre. A computerized algorithm randomly assigns the patients to a treatment arm. All study personnel and participants are blinded to treatment assignment for the duration of the study. Design The SELEnium and BLAdder cancer Trial (SELEBLAT is a phase III randomized, placebo-controlled, academic, double-blind superior trial. Discussion This is the first report on a selenium randomized trial in bladder cancer patients. Trial registration ClinicalTrials.gov identifier: NCT00729287

  18. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  19. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  20. Occurrence and growth of yeasts in processed meat products - implications for potential spoilage

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Jacobsen, Tomas; Jespersen, Lene

    2008-01-01

    of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively......Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential...... role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon...

  1. The Slime Production by Yeasts Isolated from Subclinical Mastitic Cows

    Directory of Open Access Journals (Sweden)

    Süheyla Türkyılmaz

    2010-01-01

    Full Text Available The aim of this study was to isolate yeasts from subclinical mastitic cows and to investigate the slime production by the isolated yeasts. The material used in this study included 339 milk samples from 152 dairy cattle with subclinical mastitis. Milk was plated onto blood agar, MacConkey agar and Sabouraud dextrose agar. Forty-one samples (12.1% of total milk samples were found positive for the yeast by API 20 C AUX identification system. The isolated yeasts were classified into four genera of Candida, Trichosporon, Cryptococcus and Saccharomyces. The Candida species were following: C. krusei, C. kefyr, C. guilliermondii, C. famata, C. rugosa and C. utulis. Other yeasts were identified as Trichosporon mucoides, T. asahii, Cryptococcus laurentii, C.  neoformans and Saccharomyces cerevisiae. Slime production was tested on Congo red brain heart infusion agar and evaluated according to Congo red phenomenon. Fifteen (36.6% strains were slime factor positive: seven were C. krusei, four C. kefyr, one C. guilliermondii, one C. famata, one T. asahii, and one C. laurentii. The results of the present study indicate that yeast mastitis is significant for causing economic losses and slime production is mostly found in non-albicans Candida species. Therefore, non-albicans Candida species should be examined for slime production.

  2. METHOD FOR THE PRODUCTION OF HETEROLOGOUS POLYPEPTIDES IN TRANSFORMED YEAST CELLS

    DEFF Research Database (Denmark)

    2000-01-01

    The invention describes industrial fermentation of a $i(Saccharomyces) yeast species for production of a heterologous product encoded by a plasmid or DNA contained in said $i(Saccharomyces) yeast species with method utilizes the substrate more efficiently and without fermentative metabolism...... resulting in formation of ethanol and other unwanted primary products of fermentative activity whereby high yields of the heterologous product are obtained. The $i(Saccharomyces) yeast species is preferably a Crabtree negative $i(Saccharomyces species) in particular $i(Saccharomyces kluyveri)....

  3. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α......-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host...

  4. Selection of oleaginous yeasts for fatty acid production.

    Science.gov (United States)

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  5. Effect of L-arginine and selenium added to a hypocaloric diet enriched with legumes on cardiovascular disease risk factors in women with central obesity: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Alizadeh, Mohammad; Safaeiyan, Abdolrasoul; Ostadrahimi, Alireza; Estakhri, Rassul; Daneghian, Sevana; Ghaffari, Aida; Gargari, Bahram Pourghassem

    2012-01-01

    We aimed to discover if L-arginine and selenium alone or together can increase the effect of a hypocaloric diet enriched in legumes (HDEL) on central obesity and cardiovascular risk factors in women with central obesity. This randomized, double-blind, placebo-controlled trial was undertaken in 84 premenopausal women with central obesity. After a 2-week run-in period on an isocaloric diet, participants were randomly assigned to a control diet (HDEL), L-arginine (5 g/day) and HDEL, selenium (200 μg/day) and HDEL or L-arginine, selenium and HDEL for 6 weeks. Cardiovascular risk factors were assessed before intervention and 3 and 6 weeks afterwards. After 6 weeks, L-arginine had significantly reduced waist circumference (WC); selenium had significantly lowered fasting concentrations of serum insulin and the homeostasis model assessment of insulin resistance index; the interaction between L-arginine and selenium significantly reduced the fasting concentration of nitric oxides (NO(x)), and HDEL lowered triglycerides (TG) and WC and significantly increased the fasting concentration of NO(x). HDEL reduced high-sensitivity C-reactive protein levels in the first half of the study and returned them to basal levels in the second half. These data indicate the beneficial effects of L-arginine on central obesity, selenium on insulin resistance and HDEL on serum concentrations of NO(x) and TG. Copyright © 2012 S. Karger AG, Basel.

  6. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    Science.gov (United States)

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety

  7. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    Science.gov (United States)

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    The upper Blackfoot River in southeastern Idaho receives runoff from 12 large phosphate mines. Waste shales that are removed to access the phosphate ore are highly enriched with selenium, resulting in elevated selenium in runoff from the mine waste dumps. In 2001, in cooperation with the Bureau of Land Management, the U.S. Geological Survey (USGS) began monitoring streamflow, selenium, and other water-quality parameters at a single location near the outlet of the upper Blackfoot River to the Blackfoot Reservoir. Water samples primarily were collected by a flow triggered, automated pump sampler, supplemented by manual point and equal-width integrated manual samples.

  8. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  9. INFLUENCE OF DIETARY SELENIUM SUPPLEMENTATION OF EWES ON PRODUCTION TRAITS, ANTIOXIDANT STATUS AND METABOLIC PROFILE OF LAMBS

    Directory of Open Access Journals (Sweden)

    Josip Novoselec

    2013-12-01

    Full Text Available The aim of this study was to determine the effect of dietary selenium supplementation (organic, inorganic of high pregnant ewes on the production traits of lambs, the concentration of selenium in the blood of ewes and their lambs, indicators of antioxidant status in the blood of ewes and their lambs, the metabolic profile of ewes and their lambs and concentrations of thyroid hormones. Ewes were in the last third of pregnancy, the average age of four years, healthy and in good condition, divided into three groups of 10 animals. The research lasted 4 months respectively, 2 months with ewes during high pregnancy, 2 months with ewes during lactation and on their lambs during suckling period. Ewes ration from control group one was composed from 300 g/day/animal feed mixture without addition of selenium and 150 g/day/animal barley and alfalfa hay that they had ad libitum. Feed mixture from second group of ewes was supplemented with 0.3 mg/kg organic form of selenium (Sel-Plex®, and feed mixture from third group with the same amount inorganic form of selenium (sodium selenite. Selenium supplementation of ewes feed mixture did not significantly influence on the production traits of their lambs postpartum. Selenium supplementation of ewes and their lambs had influence on a significant (P<0.01; P<0.05 increase in the concentration of selenium, GSH-Px and SOD in whole blood compared to control group of ewes. Organic selenium supplement had a more significant impact on the increase in concentration of selenium and GSH-Px in the blood. In the ewes and lambs blood was determined decrease of MDA with increasing concentrations of selenium in the blood. Generally, the selenium supplementation led to an increase (P<0.05 in the number of WBC and lymphocytes in the blood of ewes and lambs. Also, the increase in the number of RBC, HGB content and MCV in lambs and MCH as well as MCHC in ewes that had a selenium supplement in feed mixture were determined

  10. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  11. The yeast stands alone: the future of protein biologic production.

    Science.gov (United States)

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  12. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  13. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  14. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    Energy Technology Data Exchange (ETDEWEB)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

  16. The occurrence of spoilage yeasts in cream-filled bakery products.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Cardinali, Federica; Pasquini, Marina; Aquilanti, Lucia; Clementi, Francesca

    2017-04-01

    Filling creams can provide an adequate substrate for spoilage yeasts because some yeasts can tolerate the high osmotic stress in these products. To discover the source of spoilage of a cream-filled baked product, end products, raw materials, indoor air and work surfaces were subjected to microbiological and molecular analyses. The efficacy of disinfectants against spoilage yeasts was also assessed. The analyses on end products revealed the presence of the closest relatives to Zygosaccharomyces bailii with counts ranging from 1.40 to 4.72 log cfu g -1 . No spoilage yeasts were found in the indoor air and work surfaces. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis, carried out directly on filling creams collected from unopened cans, showed the presence of bands ascribed to the closest relatives to Z. bailii sensu lato, although with counts products, reliable and sensitive methods must be used. Moreover, hygiene and the application of good manufacturing practices represent the most efficient way for the prevention and minimization of cross-contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Yeast strains designed for 2. generation bioethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, B.

    2013-04-15

    The aim of the project was to develop a suitable fermentation organism for 2G bioethanol production that would efficiently ferment all of the sugars in lignocellulosic biomass into ethanol at a commercially viable rate (comparable to yeast based 1G ethanol production). More specifically, a yeast strain would be developed with the ability to ferment also the pentoses in lignocellulosic biomass and thereby increase the ethanol yield of the process by 30-45% with a profound positive effect on the total process economy. The project has succeeded in developing a new industrial yeast strain V1. The yeast strain can transform the difficult C5 sugars to ethanol from waste products such as straw and the like from the agricultural sector. The classic issues relating to industrial uses such as inhibitor and ethanol tolerance and high ethanol production is resolved satisfactorily. The potential of the use of the new strain for 2nd generation bioethanol production is that the ethanol yields increase by 30-45%. With the increased ethanol yield follows a marked improvement in the overall process economics. (LN)

  18. Selenium content in the blood serum and urine of ewes receiving selenium-enriched unicellular alga Chlorella

    Czech Academy of Sciences Publication Activity Database

    Trávníček, J.; Písek, I.; Herzig, I.; Doucha, Jiří; Kvíčala, J.; Kroupová, V.; Rodinová, H.

    2007-01-01

    Roč. 52, - (2007), s. 42-48 ISSN 0375-8427 Grant - others:GA ČR(CZ) GD523/03/H076 Program:GD Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : sodium selenite * organically bound selenium * ewes Subject RIV: EE - Microbiology, Virology Impact factor: 0.645, year: 2007

  19. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  1. Seleksi khamir yang berbasis selenium sebagai sumber bahan bioaktif dan uji modulasi apoptosis seluler Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Titin Yulinery

    2012-02-01

    Full Text Available The selection of yeast from volcanic soil as bioactive source based on selenium and apoptosis modulation of Saccharomyces cerevisiae have been done. Isolation of yeast used the dilution method. Furthermore, the isolates were selected for resistance and accumulation test of selenium, catalyze test, resistance to high temperature and test of toxicity to garlic. The Inhibition activity was detected by using paper disc method. The result showed that 11 isolates from Kerinci and 4 isolates from Rinjani had been determined. 10 isolates were resistant to SeO2 toxicity, could accumulate Se, and had the activity of catalyze. Isolates 15 and 394.1 were sensitive to garlic toxicity, could inhibit 3.71 cm and 4.16 cm, respectively. All the isolates collected were mesophylic, and could grow at the temperature 28 €“30 °C. The highest Se concentration of the isolates was 0.92 ppm and 0.78 ppm, which produced by isolate 53 and 15 respectively. Isolate 15 were lower than isolate 53 in apoptosis modulation yeast LIPIMC strain and yeast BJ 3505 strain (10.54% and 14.24%, respectively. The highest frequent of petite was BJ 3505 strain.

  2. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  3. Production of fuel ethanol from molasses by thermotolerant yeast

    International Nuclear Information System (INIS)

    Hamad, S. H.

    2009-01-01

    A thermotolerant strain of the yeast Kluyveromyces marxians, isolated from Kenana sugar factory in the Sudan, was used for the production of ethanol from molasses. Fermentations were carried out in a bioreactor with 10-litre working volume at three temperatures and three sugar concentrations in batch and at one temperature and three feeding rates in fed-batch processes. In the batch fermentations, the best results were obtained at 40 o C and 20% sugar, where a maximum of 9.2% (w/v) ethanol concentration was produced in 30 hours with a yield of 90% of the theoretical and a maximum ethanol specific productivity of 0.65 g per gramme yeast and hour. In the fed-batch process at 40 o C , the best results were obtained at 0.5 1/h feeding rate of a substrate with 400 g/1 sugar. Under such conditions, the yeast produced up to 9.34% (w/v) ethanol with 91.6% of the theoretical yield in 14 hours of fermentation and a maximum specific ethanol productivity of 0.9 g per gramme yeast and hour. (Author)

  4. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  5. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    Science.gov (United States)

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  6. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  7. Selenium plating of aluminium and nickel surfaces

    International Nuclear Information System (INIS)

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  8. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls.

    Science.gov (United States)

    Hall, Jean A; Isaiah, Anitha; Estill, Charles T; Pirelli, Gene J; Suchodolski, Jan S

    2017-01-01

    Selenium (Se) is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa) hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45) were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16). Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha) and were 155, 345, and 504 ng/mL (PLinear Microbial DNA was extracted from nasal swabs and amplified and sequenced. Alpha rarefaction curves comparing the species richness (observed OTUs) and overall diversity (Chao1, Observed OTU, and Shannon index) between calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted UniFrac distances showed that calves

  9. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls

    Science.gov (United States)

    Hall, Jean A.; Isaiah, Anitha; Estill, Charles T.; Pirelli, Gene J.; Suchodolski, Jan S.

    2017-01-01

    Selenium (Se) is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa) hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45) were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16). Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha) and were 155, 345, and 504 ng/mL (PLinear calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted UniFrac distances showed that calves fed high Se-biofortified alfalfa hay clustered separately when compared with control calves in the PCoA plot (R = 0.216, P = 0.04). The bacterial orders Lactobacillales and Flavobacteriales were increased in healthy

  10. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  11. Dietary selenium in the Glasgow area

    International Nuclear Information System (INIS)

    Cross, J.D.; Raie, R.M.; Smith, H.

    1978-01-01

    A typical diet for people in the Glasgow area is analysed and an estimate is made of the daily intake of selenium for the average person (234 μg). Meat, poultry and bread products contribute 65% of the total selenium consumed. There is a significant loss of selenium on cooking but the concentration in the diet is high compared with the estimated requirement. Selenium levels in prepared infant foods, artificial milk and natural milk are reported. Those infants on artificial milk feeds have a selenium intake equivalent to that of adults (3 μg/kg) while those on natural milk or prepared infant foods have an intake of 6 μg/kg. Adult and infant tissue selenium levels are established and are shown to be in equilibrium with the diet. There is no concentration in man as a result of his position at the top of the food chain. Sudden infant death cannot be related to selenium levels in human tissue or diet. (author)

  12. Economic feasibility of invesment alternatives for reducing torula yeast' production cost

    International Nuclear Information System (INIS)

    Torres Fernández, Alfredo; Díaz de los Ríos, Manuel; Saura Laria, Gustavo

    2016-01-01

    The prices of ammonium salts which are used in the torula yeast production technology are very high nowadays. In the other hand, this technology has very high energy costs which are consumed by blowers in fermentation, separators machines and in the concentration and drying of yeast. In this paper, different technical alternatives are analyzed for reducing the production cost of torula yeast, through changes in production inputs, electric motors and the replacement of a portion of the fuel used for drying by biogas. Then, the economic feasibility in both currencies is evaluated for practical application. (author)

  13. ECONOMIC FEASIBILITY OF INVESMENT ALTERNATIVES FOR REDUCING TORULA YEAST' PRODUCTION COST

    Directory of Open Access Journals (Sweden)

    Alfredo Torres Fernández

    2016-01-01

    Full Text Available The prices of ammonium salts which are used in the torula yeast production technology are very high nowadays. In the other hand, this technology has very high energy costs which are consumed by blowers in fermentation, separators machines and in the concentration and drying of yeast. In this paper, different technical alternatives are analyzed for reducing the production cost of torula yeast, through changes in production inputs, electric motors and the replacement of a portion of the fuel used for drying by biogas. Then, the economic feasibility in both currencies is evaluated for practical application.

  14. Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Tsopelas, Fotios N.; Ochsenkuehn-Petropoulou, Maria Th.; Mergias, Ioannis G.; Tsakanika, Lambrini V.

    2005-01-01

    An analytical approach for selenium speciation using liquid chromatography (LC) coupled with ultra-violet (UV) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was developed. The separation of the investigated selenium species, selenites, selenates, selenomethionine, selenocystine, selenocystamine and dimethyldiselenide was accomplished in less than 6 min on a BIO Wide Pore RP-18 column using sodium salt of n-octanesulfonic acid as ion-pairing modifier. The on-line detection of the separated selenium species was performed using UV spectrometry at the optimum wavelength of 192 nm, obtained by the UV spectra of the investigated individual selenium species. ICP-AES was also used as element specific on-line detector, after its coupling with the chromatographic system. The UV and ICP-AES detectors were compared for their suitability, including sensitivity and detection limits, for the on-line quantification of the six selenium species. The developed LC-UV as well as LC-ICP-AES techniques were successfully applied to a selenized yeast candidate reference material, after its enzymatic extraction with protease XIV. It was found that the described LC-UV technique is suitable for the determination of selenomethionine, the main selenium compound in the yeast, with an accuracy of 5%, although the UV detector is not element specific and it is rarely used for selenium speciation. This finding can prove valuable for routine laboratories to perform selenium speciation in such materials

  15. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Nwe Nwe Soe Hlaing; Swe Zin Yu; San San Yu

    2011-12-01

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  16. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  17. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging

    OpenAIRE

    Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M. Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, J.Z.; Pozo-Bayón, Mª Ángeles

    2014-01-01

    The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the l...

  18. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  19. LIVE/DEAD YEAST VIABILITY STAINING AS A TOOL FOR IMPROVING ARTISANAL PILSNER BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Benedetta Bottari

    2014-10-01

    Full Text Available The production of an artisanal beer, made by brewers using traditional practices on a small scale, is founded on the empirical adjustment of parameters, including yeasts handling and serial repitching. The aim of this study was to monitor yeast viability during different stages of artisanal beer productions through the Live/Dead Yeast viability staining and to correlate it with fermentation dynamics in order to increase process standardization and to maintain the quality of final products. Yeast viability and fermentation activities were evaluated during seven fermentation cycles of an artisanal pilsner beer. Yeast inoculated with higher viability performed generally better in fermentation, resulting in faster sugar consumption, faster ethanol production and stability. Handling yeast and serial repitching based on Live/Dead viability measurements, could be the key way to ensure reliable manufacture of high quality beer and to improve process standardization particularly for microbreweries, where variability of production can be a challenging point.

  20. The Use Of Local Product Yeast For Substitution Torula Yeast In The Formulation Of Artificial Diet Fruit Fly Larvae Bactrocera Carambolae Drew and Hancock

    International Nuclear Information System (INIS)

    Sikumbang, I.; Nasution, A.I.; Indarwatmi, M.; Kuswandi, A.N.

    2000-01-01

    The use of local product yeast I.e brewer yeast, yeast of tapai (fermented cassava), yeast of tempe (fermented soy beam), and brem(intoxicating beverage made of fermented rice) after cooked and uncooked were used to substitute torula yeast to reduce cost production for mass-rearing of fruit fly had been carried out. Artificial diet formulation consisted of torula yeast, wheat bran, nipagin, sodium benzoate, cane sugar, water and HCI ti make pH of 4. One kilogram of diet was inoculated with 1 ml of fruit fly eggs. Parameters of the experiment were, the number of pupae, weight of pupae, percentage of pupae and the percentage of viable fly. The results showed that the number of pupae were 6356 for brewers yeast with cooked and 0.942 gram/100 pupae for brem. Percentage viable emergence fly were 70%, 18.25% and 15.25% for brewers yeast with cooked and uncooked respectively. Cost production for 1.000.000 using cooked brewer yeast was reduced about Rp.179,200 or cost efficiency were 55.56%

  1. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging.

    Science.gov (United States)

    Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, Juan; Pozo-Bayón, M Ángeles

    2014-02-12

    The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the low molecular weight fraction (loss of typical wine terpenes in model wines submitted to accelerated aging conditions. The g-IDY preparation did indeed release reduced GSH into the model wines, although this compound did not seem exclusively related to the protective effect on some aroma compounds determined in both model wines. The presence of other sulfur-containing compounds from yeast origin in g-IDY, and also the presence of small yeast peptides, such as methionine/tryptophan/tyrosine-containing tripeptide in both types of IDYs, seemed to be related to the antioxidant activity determined in the two permeates and to the minor loss of some terpenes in the model wines spiked with them.

  2. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  3. Environmental assessment of different strategies for production of stabilized yeast

    OpenAIRE

    Monclus, Vincent; Pénicaud, Caroline; Perret, Bruno; Fonseca, Fernanda

    2016-01-01

    Yeast are widely used for producing fermented (bread, beer...) and health benefit (probiotics) products. The production of stable and active yeast involves fermentation, concentration, protection, drying (stabilization) and storage. During the stabilization and storage steps, the cells face numerous stress which may deteriorate functional properties and cause cell death. Different strategies can be used to preserve cell survival, such as changing growth medium for fermentation or adapting pro...

  4. Improvement of Selenium Status of Pasture Crops

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1984-01-01

    Selenium was applied to pasture crops in a field experiment (1) by foliar application of 10 g Se/ha as selenite in the spring, (2) or by 5 g Se/ha in the spring plus 5 g in early August, (3) as selenite-enriched calcium ammonium nitrate (CAN) at 4 g Se/ha after each cut, and (4) as 4 g Se after...

  5. Development and utilization of protein enriched feed by yeast (Saccharomyces cerevisiae) fermentation in ruminants

    International Nuclear Information System (INIS)

    Wanapat, M.; Piadang, Nattayana; Boonnop, K.; Polyorach S; Nontaso, N.; Khampa, S.

    2006-09-01

    The two experiments have been carried out to investigate on the development and supplementation of yeast fermented cassava chip (YEFECAP) and yeast-fermented liquid (YEL) with coconut oil (CCO) in concentrate containing soybean meal or cassava hay in rumen ecology, digestibility, nitrogen balance and feed intakes in ruminants. This paper reports on the progress of the on-going work with in vivo digestion trials which are currently evaluating the protein value of the two sources and their effects on the rumen fermentation, microorganisms, fermentation end-products, blood metabolite, nitrogen balance nutrient digest abilities. Based on the preliminary data, the two proteins sources have potential protein and feeding values as protein sources and rumen enhancers for possible rumen fermentation and the subsequent ruminant productivity.

  6. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available Selenium (Se is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45 were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16. Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha and were 155, 345, and 504 ng/mL (PLinear < 0.0001. Microbial DNA was extracted from nasal swabs and amplified and sequenced. Alpha rarefaction curves comparing the species richness (observed OTUs and overall diversity (Chao1, Observed OTU, and Shannon index between calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted Uni

  7. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  8. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  9. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  10. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  11. Produção de biossurfactante por levedura Biosurfactants production by yeasts

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2008-01-01

    Full Text Available Biosurfactants are molecules extracellularly produced by bacteria, yeast and fungi that have significant interfacial activity properties. This review focuses on relevant parameters that influence biosurfactant production by yeasts. Many works have investigated the optimization of yeast biosurfactant production, mainly within the last decade, revealing that the potential of such microorganisms is not well explored in the industrial field. The main points to increase the process viability lays on the reduction of the production costs and enhancement of biosynthesis efficiency through optimization the culture conditions (carbon and nitrogen source, pH, aeration, speed agitation and the selection of inexpensive medium components.

  12. Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS

    International Nuclear Information System (INIS)

    Jiujiang Zhao; Chunying Chen; Peiqun Zhang; Zhifang Chai

    2004-01-01

    Selenium and mercury distribution in porcine tissues and their subcellular fractions from a mercury-polluted area of Guizhou Province and from a not mercury-exposed area of Beijing in China have been studied with neutron activation analysis and hydride generation-atomic fluorescence spectrometry. Both the selenium and mercury levels are higher in Guizhou porcine tissues and their subcellular fractions than those in Beijing. These two elements are highly enriched in kidney and liver of Guizhou pig, while selenium is only enriched in the kidney of Beijing pig. Exposure of mercury may result in redistribution of Se and Hg in vivo. The Hg/Se molar ratio of the subcellular fractions is very low in the case of relatively low mercury level and gradually reaches to a high constant value with increasing level of mercury, which implies that selenium and mercury may form some special complexes in the organisms. (author)

  13. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Johnson, LuAnn K

    2011-06-08

    This study determined the bioavailability of selenium (Se) from yellow peas and oats harvested from the high-Se soil of South Dakota, United States. The Se concentrations were 13.5 ± 0.2 and 2.5 ± 0.1 mg/kg (dry weight) for peas and oats, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 μg Se/kg from peas or oats, respectively. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for yellow peas and oats to those for l-selenomethionine (SeMet; used as a reference) by using a slope-ratio method. Dietary supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in Se concentrations of plasma, liver, gastrocnemius muscle, and kidneys. The overall bioavailability was approximately 88% for Se from yellow peas and 92% from oats, compared to SeMet. It was concluded that Se from naturally produced high-Se yellow peas or oats is highly bioavailable in this model and that these high-Se foods may be a good dietary source of Se.

  14. Developments in and applications of capillary electrophoresis inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Taylor, K.A.

    1999-08-01

    This project has set out to design and optimise a robust and efficient interface for capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and to investigate the application of the technique in elemental speciation studies. An interface was constructed using a commercial microconcentric nebuliser (MCN) and a cyclonic spray chamber. The cyclonic spray chamber was designed specifically to provide rapid sample response and washout and to minimise sample dispersion. Isoforms of the heavy metal binding protein, metallothionein, were separated and the bound metals detected to characterise the interface. Suction from the self-aspirating nebuliser was identified as the principal factor controlling electrophoretic resolution. To maintain resolution, two methods for counterbalancing the nebuliser suction were investigated. In the first method an optimised make-up flow was employed, and in the second a negative pressure was applied to the buffer vial during the separation. The negative pressure method was preferred because it did not significantly compromise sensitivity. The MCN was found to be prone to regular blocking which compromised the analytical precision of the system. A second interface was constructed using a glass MicroMist nebuliser. The MicroMist nebuliser was found to be less prone to blocking than the MCN and significantly improved the precision of the system to less than 4.3% RSD. The MicroMist nebuliser did, however, provide a lower sensitivity. The advantage of employing an electroosmotic flow marker to correct for migration time drifts was demonstrated. A CE-ICP-MS method was developed for the speciation of selenium in selenium enriched yeasts and nutritional supplements. Selenoamino acids and inorganic selenium species were separated, as anions, under strong electroosmotic flow conditions. Methods to enhance the selenium sensitivity were investigated. A proteolytic enzyme extraction method was employed and the effect of the

  15. Suitability of yeast autolyzates, potato pulp, and starch-factory water for addition to molasses mash in the acetone-butanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, S; Imielski, A; Zakrzewsda, I

    1960-01-01

    Addition of potato pulp, yeast extraction, and starch-factory water to fermenting molasses mash did not increase the final concentrations of acetone and butanol. Addition of 5% of yeast autolyzates to the mash enriched with 0.5 to 0.75% barley flour increased production by 4 to 10%.

  16. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    Science.gov (United States)

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  17. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    Science.gov (United States)

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; 85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration

  18. Selenium and Other Trace Element Mobility in Waste Products and Weathered Sediments at Parys Mountain Copper Mine, Anglesey, UK

    Directory of Open Access Journals (Sweden)

    Liam A. Bullock

    2017-11-01

    Full Text Available The Parys Mountain copper mining district (Anglesey, North Wales hosts exposed pyritic bedrock, solid mine waste spoil heaps, and acid drainage (ochre sediment deposits. Both natural and waste deposits show elevated trace element concentrations, including selenium (Se, at abundances of both economic and environmental consideration. Elevated concentrations of semi-metals such as Se in waste smelts highlight the potential for economic reserves in this and similar base metal mining sites. Selenium is sourced from the pyritic bedrock and concentrations are retained in red weathering smelt soils, but lost in bedrock-weathered soils and clays. Selenium correlates with Te, Au, Bi, Cd, Hg, Pb, S, and Sb across bedrock and weathered deposits. Man-made mine waste deposits show enrichment of As, Bi, Cu, Sb, and Te, with Fe oxide-rich smelt materials containing high Pb, up to 1.5 wt %, and Au contents, up to 1.2 ppm. The trace elements As, Co, Cu, and Pb are retained from bedrock to all sediments, including high Cu content in Fe oxide-rich ochre sediments. The high abundance and mobility of trace elements in sediments and waters should be considered as potential pollutants to the area, and also as a source for economic reserves of previously extracted and new strategic commodities.

  19. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2011-12-01

    Full Text Available Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.

  20. Production of baker's yeast using date juice.

    Science.gov (United States)

    Beiroti, A; Hosseini, S N

    2007-07-01

    Baker's yeast is an important additive among the products which improves bread quality and for present time is being produced in different countries by batch, fed batch or continuous cultures. Saccharomyces cerevisiae is used in fermentation of starch in dough, giving a favourable taste and produces a variety of vitamins and proteins. The main ingredient in yeast production is carbon source such as beet molasses, cane molasses, and so on. Since beet molasses has other major function as in high yield alcohol production and also due to the bioenvironmental issues and related wastewater treatment, the use of other carbohydrate sources may be considered. One of these carbohydrate sources is date which is wasted a great deal annually in this country (Iran) . In this study, the capability of date to act as a suitable carbon sources was investigated. The waste date turned into juice and consequently production and growth rate of Sacchromyces cervisiae were studied with this juice. A maximum possible yield of 50% was obtained by the optimum medium (P3), at pH 3.4, 30 degrees C, 1.4 vvm aeration rate and agitation of 500 r/min.

  1. Dietary vitamin E (α-tocopheryl acetate) and organic selenium ...

    African Journals Online (AJOL)

    enriched yeast) and vitamin E (α-tocopheryl acetate) supplementation, alone or together, on the performance and antioxidant status of broilers fed diets enriched in n-3 PUFAs using fish oil. Day-old Hubbard-JV strain broiler chicks allocated to one ...

  2. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  3. Glycobiology in yeast: production of bio-ative biopolymers and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Scheller, Henrik [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-30

    The accomplished goals of the CRADA were the establishment of a yeast strain capable of producing levels of vanillin suitable for commercial production and the identification of novel glycosyltransferases to construct the biosynthetic pathway of a gum Arabic-variant in yeast.

  4. Enriching Production: Perspectives on Volvo's Uddevalla plant as an alternative to lean production

    OpenAIRE

    Sandberg, Åke

    1995-01-01

    Enriching Production was first published by Avebury in 1995. The book was quickly sold out and is now made available again. Enriching Production was edited by professor Åke Sandberg, Arbetslivsinstitutet/ National Institute for Working Life and KTH The Royal Institute of Technology, Stockholm. Enriching Production was followed up by a symposium on the general theme of ‘Good work and productivity’. The papers were collected in a special issue of Economic and Industrial Democracy, Vol. 19, ...

  5. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  6. Biotechnological production of carotenoids by yeasts: an overview

    Science.gov (United States)

    2014-01-01

    Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates. PMID:24443802

  7. Effects of selenium supplementation on four agricultural crops.

    Science.gov (United States)

    Carvalho, Kathleen M; Gallardo-Williams, Maria T; Benson, Robert F; Martin, Dean F

    2003-01-29

    Agricultural crops can be used either to remediate selenium-contaminated soils or to increase the daily selenium intake of consumers after soil supplementation using inorganic or organic selenium sources. In this study, four agricultural crops were examined for potential selenium enhancement. Soils containing tomato, strawberry, radish, and lettuce plants were supplemented with either an inorganic or an organic form of selenium. Two different soils, i.e., low Se and high Se containing, were also used. Statistically significant differences in appearance, fruit production, and fresh weights of the fruit produced were studied. Next, the amount of selenium retained in the edible fruits, nonedible plant, and soil for each was analyzed by acid digestion followed by hydride generation atomic absorption analysis. Finally, inhibition effects on the seeds of the agricultural plants were studied. The results show that supplementation with an inorganic form of selenium led to higher retention in the plants, with a maximum of 97.5% retained in the edible portion of lettuce plants.

  8. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  9. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  10. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  11. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    Science.gov (United States)

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  12. Dynamic Analysis of Bioethanol Production from Corn Stover and Immobilized Yeast

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2016-05-01

    Full Text Available The use of low cost and abundant corn stover in yeast fermentation can reduce product costs. In this study, bioethanol was produced from a hydrolysate of corn stover using immobilized yeast. A kinetic model was established for the total reducing sugar consumption and the production of bioethanol. The parameter estimation for kinetic modeling considered the main process variables during bioethanol production from corn stover. Total reducing sugar concentrations decreased exponentially in the bioethanol fermentation for 6 h; consumption was more than 90%. To use kinetic modelling of yeast growth for bioethanol fermentation, the value of μmax reached 0.2891 h-1, and the matrix inhibition constant (KIS and production inhibition constant (KIP were 8.9154 g/dm3 and 0.00676 g/dm3, respectively. To use kinetic modelling of fermentation time on bioethanol, the maximum ratio of bioethanol production rate (qmax reached 1.427 g/g•L. However, KIS was 2.813 g/dm3, and KIP was 0.0149 g/dm3.

  13. Synthetic yeast based cell factories for vanillin-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas

    and controlled expression/overexpression of genes of interest. De novo biosynthetic pathway for vanillin-β-glucoside production was employed as a model system for several case studies in this project. In order to construct yeast cell factories fulfilling current demands of industrial biotechnology, methods......The yeast Saccharomyces cerevisiae is well a characterized microorganism and widely used as eukaryotic model organism as well as a key cell factory for bioproduction of various products. The latter comprise a large variety of scientifically and industrially relevant products such as low-value bulk...... chemicals and biofuels, food additives, high-value chemicals and recombinant proteins. Despite the recent achievements in the fields of systems biology and metabolic engineering together with availability of broad genetic engineering toolbox, the full potential of S. cerevisiae as a cell factory is not yet...

  14. Biogenesis of Selenium Nanoparticles Using Green Chemistry.

    Science.gov (United States)

    Shoeibi, Sara; Mozdziak, Paul; Golkar-Narenji, Afsaneh

    2017-11-09

    Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se 2- ) to SeNPs without charge (Se 0 ). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

  15. Biosurfactant production by yeasts isolated from hydrocarbon polluted environments.

    Science.gov (United States)

    Kaur, Kamalpreet; Sangwan, Seema; Kaur, Harpreet

    2017-11-03

    Thirty-two yeast isolates were retrieved from four soil samples collected from hydrocarbon-polluted locations of Hisar, Haryana, using enrichment culture technique with 1% (v/v) diesel as carbon source. Total nine isolates showing blood agar haemolysis were screened further for biosurfactant production. Yeast isolate, YK32, gave highest 8.4-cm oil displacement which was found to be significantly higher as compared to positive control, 0.2% (w/v) SDS (6.6 cm), followed by 6.2 and 6.0 cm by isolates YK20 and YK21, respectively. Maximum emulsification index was obtained in case of isolates YK20 and YK21 measuring 53.8%, after 6 days of incubation utilizing glucose as carbon source, whereas isolate YK32 was found to be reducing surface tension up to 93 dynes/cm and presented 99.6% degree of hydrophobicity. Olive oil has supported maximum surface tension reduction in isolates YK32 and YK21 equivalent to 53 and 48 dynes/cm and gave 88.3 and 88.5% degree of hydrophobicity, respectively. Diesel was not preferred as carbon source by most of the isolates except YK28 which generated 5.5-cm oil displacement, 25% emulsification index, reduced surface tension to the level of 38 dynes/cm and presented 89% degree of hydrophobicity. Conclusively, isolates YK20, YK21, YK22 and YK32 were marked as promising biosurfactant producers and were subjected to identification. Based on microscopic examination and biochemical peculiarities, isolates YK21 and YK22 might be identified as Candida spp., whereas, isolates YK20 and YK32 might be identified as Saccharomycopsis spp. and Brettanomyces spp., respectively. Interestingly it is the first report indicating Saccharomycopsis spp. and Brettanomyces spp. as a potential biosurfactant producer.

  16. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  17. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  18. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Ewa Jablonska

    2016-12-01

    Full Text Available The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast. Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG and significant down-regulation of seven genes: INSR, ADIPOR1, LDHA, PDHA, PDHB, MYC, and HIF1AN. These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects.

  19. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status.

    Science.gov (United States)

    Wang, Y; Yang, H M; Cao, W; Li, Y B

    2017-09-01

    The effects of dietary supplementation of sodium selenite (SS) on the reproductive performance and the concentration of selenium, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined, and expression of glutathione peroxidase 4 (GPx4) and bone morphogenic protein 15 (BMP15) was evaluated. Paired pigeons (n = 864) were fed: T1 received no SS, while T2, T3, and T4 received 0.5, 1.0, and 1.5 mg of SS/kg of dry matter (DM), respectively. Treatments were performed in triplicate with 72 pairs in each replicate. The results showed that selenium supplementation significantly affected pigeon reproductive performance. Birds fed 1.0 mg of SS/kg displayed higher egg production (P > 0.05), higher birth rate, and lower dead sperm rate than the control group (P Selenium and biochemical analyses revealed a higher selenium concentration in the 1.5 mg of SS/kg group than in the control group (P  0.05); however, in plasma, MDA was lower in the control group (P  0.05), while in ovary, BMP15 was down-regulated in the 1.5 mg of SS/kg group (P selenium concentration, and 0.5 mg of SS/kg up-regulated GSH-Px activity. © 2017 Poultry Science Association Inc.

  20. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  1. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  2. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    Science.gov (United States)

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the

  3. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  4. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  5. Ecological Importance of Insects in Selenium Biogenic Cycling

    Directory of Open Access Journals (Sweden)

    Nadezhda Golubkina

    2014-01-01

    Full Text Available Selenium is an essential trace element for animal and human beings. Despite the importance of insects in most ecosystems and their significant contribution to the biological cycling of trace elements due to high abundance, population productivity, and diverse ecosystem functions, surprisingly little information is available on selenium bioaccumulation by these arthropods. This review considers selenium essentiality and toxicity to insects as well as insects’ contribution to selenium trophic transfer through the food chains. Data on Se accumulation by insects of the Dniester River Valley with no anthropogenic Se loading reveal typically low Se content in necrophagous insects compared to predators and herbivores and seasonal variations in Se accumulation.

  6. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Fernanda Bovo

    2015-06-01

    Full Text Available This study aimed to verify the in vitro ability of beer fermentation residue (BFR containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1 from a citrate-phosphate buffer solution (CPBS. BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05 from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  7. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    Science.gov (United States)

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  8. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  9. Yarrowia lipolytica yeast use for the production of biomass and lipid

    Directory of Open Access Journals (Sweden)

    Aline da Silva Delabio

    2015-06-01

    Full Text Available Fuels from renewable energy are gaining space in a landscape where the unbridled use of fossil fuels endangers the world's energy future. Thus biofuels are possible substitutes for fossil fuels. The use of yeast in lipid synthesis is presented as an alternative since the lipids produced can serve as raw material for production of biodiesel. This study was conducted in order to assess the feasibility of production of lipid by Yarrowia lipolytica and a subsequent application as biodiesel. Yeasts of Yarrowia lipolytica were maintained in liquid medium, Yeast Extract Peptone Dextrose, and inoculated into medium containing agro-industrial waste (molasses and vinasse and other available waste (urban runoff. After inoculation the medium was incubated without agitation for a period of 7; 14 and 21 days. Three bottles every seven days were taken for quantification of lipids. The length greater oil production occurred after 21 days of incubation, while greater biomass production occurred 14 days of incubation. The production of lipids was less than reported in the literature but production can be increased with the appropriate study of each nutrient composition of the culture medium. The study was conducted in laboratory scale values probably biomass and lipids are major industrial scale.

  10. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria

    International Nuclear Information System (INIS)

    Beladel, B.; Nedjimi, B.; Mansouri, A.; Tahtat, D.; Belamri, M.; Tchanchane, A.; Khelfaoui, F.; Benamar, M.E.A.

    2013-01-01

    In this work, we have measured the selenium content in wheat produced locally in eight different regions of Algeria from east to west, and we have established the annual consumption of selenium for five socio-professional categories. Instrumental neutron activation analysis is used. The selenium levels in wheat samples varied from 21 (Tiaret) to 153 μg/kg (Khroub), with a mean value about 52 μg/kg. The mean of selenium daily consumption from ingestion of wheat per person in the eight regions varied from 32 to 52 μg/day which is close to the minimal FAO recommendation. - Highlights: ► Cereals and cereal products represent a staple food in Algeria. ► The objective of this study is to determine the Se intake in wheat produced locally. ► The concentration of Se in the wheat reflects the level of the Se in regional soils. ► The mean of Se daily consumption is close to the minimal WHO/FAO recommendation.

  12. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  13. Comparison of Selenium Treatments of Crops in the Field

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1986-01-01

    Field experiments with spring and winter barley and ryegrass were carried out to compare the effect of fertilizers enriched with selenate or selenite with foliar application on the selenium (Se) concentrations in the crops. Application of about 20 g Se/ha given as selenate or about 100 g as selen...... not occur. The choice of method thus depends on the farming practice in the individual cases....

  14. Controlling mercury and selenium emissions from coal-fired combustors using a novel regenerable natural product

    International Nuclear Information System (INIS)

    Schlager, R.J.; Marmaro, R.W.; Roberts, D.L.

    1995-01-01

    This program successfully demonstrated the key components that are needed for a practical, regenerable sorption process for removing and recovering mercury from flue gas streams: (1) a proprietary natural product removed mercuric chloride from synthetic flue gas, (2) several new noble metal sorbents were shown to capture elemental gas-phase mercury from synthetic coal combustion flue gas, and (3) both the natural product and the noble metal sorbents could be regenerated in the laboratory (chemical method for the natural product, thermal method for noble metal sorbents). Several sorbents were tested for their ability to collect selenium oxide during the program. These tests, however, were not definitive due to inconclusive analytical results. If follow-on testing is funded, the ability of the proposed sorbents to collect selenium and other metals will be evaluated during the field testing phase of the program. A preliminary economic analysis indicates that the cost of the process appears to be substantially less than the cost of the state-of-the-art method, namely injection of activated carbon, and it also appears to cost less than using noble metal sorbents alone

  15. Controlling mercury and selenium emissions from coal-fired combustors using a novel regenerable natural product

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Marmaro, R.W.; Roberts, D.L. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    This program successfully demonstrated the key components that are needed for a practical, regenerable sorption process for removing and recovering mercury from flue gas streams: (1) a proprietary natural product removed mercuric chloride from synthetic flue gas, (2) several new noble metal sorbents were shown to capture elemental gas-phase mercury from synthetic coal combustion flue gas, and (3) both the natural product and the noble metal sorbents could be regenerated in the laboratory (chemical method for the natural product, thermal method for noble metal sorbents). Several sorbents were tested for their ability to collect selenium oxide during the program. These tests, however, were not definitive due to inconclusive analytical results. If follow-on testing is funded, the ability of the proposed sorbents to collect selenium and other metals will be evaluated during the field testing phase of the program. A preliminary economic analysis indicates that the cost of the process appears to be substantially less than the cost of the state-of-the-art method, namely injection of activated carbon, and it also appears to cost less than using noble metal sorbents alone.

  16. [Selenium treatment in thyreopathies].

    Science.gov (United States)

    Sotak, Štefan

    Selenium (latin Selenium) is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet and geographic area. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. The literature suggests that selenium supplementation of patients with Hashimotos thyroiditis is associated with a reduction in antithyroperoxidase antibody levels. Selenium supplementation also in mild Graves orbitopathy is associated with delayed progression of ocular disorders. As a consequence of this observation The European Group on Graves Orbitopathy recommend six months selenium preparates supportive therapy for patients with mild form of Graves orbitopathy.Key words: Graves-Basedows disease - Hashimotos thyroiditis - selenium - supplementation.

  17. Selenium Dynamics in the Blood of Beef Cows and Calves Fed Diets Supplemented with Organic and Inorganic Selenium Sources and the Effect on their Reproduction

    Directory of Open Access Journals (Sweden)

    P. Slavík

    2008-01-01

    Full Text Available The objective of this study was to compare the effects of feed supplementation with sodium selenite or selenized yeast on serum Se levels and reproduction indicators in cattle. In three beef herds young heifers, cows in late pregnancy, and their calves were randomly grouped by 6. In Herd 1, the mean Se serum levels were 51.01 μg l-1 in heifers, 32.12 μg l-1 in cows in late pregnancy, and 29.07 μg l-1 in their calves. In Herd 2, 27.42 μg l-1 (heifers, Z22.9 μg l-1 (late pregnancy, and 23.46 μg l-1 (calves. In Herd 3, 27.07 μg l-1 (heifers, 22 μg l-1 (late pregnant cows, and 31.05 μg l-1 (calves. Over a 6-month period, the animals in Herd 1 were given selenium yeast supplement; in Herd 2 sodium selenite, whereas Herd 3 served as a negative control. Afterwards, a second blood sample was taken. The mean Se serum levels were as follows: Herd 1 (selenium yeast: 90.73 μg l-1 in late pregnant cows ( p -1 in calves (p -1 (late pregnant cows p -1 (calves p -1 (late pregnant cows, 32.85 μg l-1 (calves. A significant difference was also observed in the second blood sample taken in both the late pregnant cows and the calves between the Herds 1 and 2 (late pregnant cows p p < 0.01. No significant differences were demonstrated between the groups. Herds 1 and 2 showed an improvement in their health status, as compared with the previous period, neither in reproduction indicators nor in the weight gain of the calves.

  18. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.

    Science.gov (United States)

    Adrio, José L

    2017-09-01

    Oleaginous yeasts have a unique physiology that makes them the best suited hosts for the production of lipids, oleochemicals, and diesel-like fuels. Their high lipogenesis, capability of growing on many different carbon sources (including lignocellulosic sugars), easy large-scale cultivation, and an increasing number of genetic tools are some of the advantages that have encouraged their use to develop sustainable processes. This mini-review summarizes the metabolic engineering strategies developed in oleaginous yeasts within the last 2 years to improve process metrics (titer, yield, and productivity) for the production of lipids, free fatty acids, fatty acid-based chemicals (e.g., fatty alcohols, fatty acid ethyl esters), and alkanes. During this short period of time, tremendous progress has been made in Yarrowia lipolytica, the model oleaginous yeast, which has been engineered to improve lipid production by different strategies including increasing lipogenic pathway flux and biosynthetic precursors, and blocking degradation pathways. Moreover, remarkable advances have also been reported in Rhodosporidium toruloides and Lipomyces starkey despite the limited genetic tools available for these two very promising hosts. Biotechnol. Bioeng. 2017;114: 1915-1920. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Yeast dynamics during spontaneous fermentation of mawe and tchoukoutou, two traditional products from Benin

    DEFF Research Database (Denmark)

    Greppi, Anna; Rantisou, Kalliopi; Padonou, Wilfrid

    2013-01-01

    Mawe and tchoukoutou are two traditional fermented foods largely consumed in Benin, West Africa. Their preparations remain as a house art and they are the result of spontaneous fermentation processes. In this study, dynamics of the yeast populations occurring during spontaneous fermentations...... of mawe and tchoukoutou were investigated using both culture-dependent and -independent approaches. For each product, two productions were followed. Samples were taken at different fermentation times and yeasts were isolated, resulting in the collection of 177 isolates. They were identified by the PCR......-DGGE technique followed by the sequencing of the D1/D2 domain of the 26S rRNA gene. The predominant yeast species identified were typed by rep-PCR. Candida krusei was the predominant yeast species in mawe fermentation followed by Candida glabrata and Kluyveromyces marxianus. Other yeast species were detected...

  20. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    Science.gov (United States)

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Selenium

    Science.gov (United States)

    ... Health Information Supplement Fact Sheets Frequently Asked Questions Making Decisions What you Need To Know About Supplements Dietary ... understand how selenium in food and dietary supplements affects heart health. Cognitive decline Blood selenium levels decrease as people age, ...

  3. Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Heidi Goenaga; Hearn, Ruth; Catterick, Tim [LGC Limited, Teddington, Middlesex (United Kingdom)

    2005-06-01

    This document reviews the most relevant mass spectrometry approaches to selenium (Se) speciation in high-Se food supplements in terms of qualitative and quantitative Se speciation and Se-containing species identification, with special reference to high-Se yeast, garlic, onions and Brazil nuts. Important topics such as complexity of Se speciation in these materials and the importance of combining Se-specific detection and molecule-specific determination of the particular species of this element in parallel with chromatography, to understand their nutritional role and cancer preventive properties are critically discussed throughout. The versatility and potential of mass spectrometric detection in this field are clearly demonstrated. Although great advances have been achieved, further developments are required, especially if ''speciated''certified reference materials (CRMs) are to be produced for validation of measurements of target Se-containing species in Se-food supplements. (orig.)

  4. Selenium: its potential role in male infertility

    International Nuclear Information System (INIS)

    Oguntibeju, O.O.; Esterhuyse, J.S.; Truter, E.J.

    2009-01-01

    Currently, biomedical research is showing interest in the anti-oxidant activity of selenium. This could be due to compelling evidence that reported that oxidative damage to cells and cell membranes is one of the causative agents in the pathogenesis of many disease states including male infertility. Selenium is a trace element which may be found in soil, water and some foods and is considered to be an essential element which plays an active role in several metabolic pathways and is believed to perform several important roles in the human body. These roles include anti-oxidative activities at cellular level and participating in different enzyme systems. Selenium also serves as a vital component in the maintenance of muscle cell and red blood cell integrity, playing a role in the synthesis of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It has also been reported that selenium is essential in the detoxification of toxic metals in the human system, foetal respiration and energy transfer reactions as well as in the production of sperm cells. It is thought that male infertility can be the result of a selenium deficiency as the absence of selenium in the testicular tissues induces degeneration which results in the active impairment of sperm motility as the first indication of impending infertility. This review paper investigates the role of selenium in male infertility. (author)

  5. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  6. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health

    Directory of Open Access Journals (Sweden)

    Melanie Wiesner-Reinhold

    2017-08-01

    Full Text Available Selenium (Se is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys. The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.

  7. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kim, Yule; Kang, Hyun-Woo [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea); Chung, Bong-Woo [Department of Bioprocess Engineering, Chonbuk National University, 664-14, 1-Ga, Duckjin-Dong, Duckjin-Gu, Jeonju 561-156 (Korea)

    2010-08-15

    Two ethanol-producing yeast strains, CHY1011 and CHFY0901 were isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w v{sup -1}) ethanol at 30 C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1 + 2 regions suggested that they were novel strains of Saccharomyces cerevisiae. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. cerevisiae CHY1011 in YPD media containing 9.5% total sugars was 1.06 {+-} 0.02 g l{sup -1} h{sup -1} and 95.5 {+-} 1.2%, respectively, while those for S. cerevisiae CHFY0901 were 0.97 {+-} 0.03 g l{sup -1} h{sup -1} and 91.81 {+-} 2.2%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) starch in a 5 l lab-scale jar fermenter at 32 C for 66 h with an agitation speed of 2 Hz. Under these conditions, S. cerevisiae CHY1011 and CHFY0901 yielded a final ethanol concentration of 89.1 {+-} 0.87 g l{sup -1} and 83.8 {+-} 1.11 g l{sup -1}, a maximum ethanol productivity of 2.10 {+-} 0.02 g l{sup -1} h{sup -1} and 1.88 {+-} 0.01 g l{sup -1} h{sup -1}, and a theoretical yield of 93.5 {+-} 1.4% and 91.3 {+-} 1.1%, respectively. These results suggest that S. cerevisiae CHY1011 and CHFY0901 have potential use in industrial bioethanol fermentation processes. (author)

  8. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  9. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, Takashi

    1993-01-01

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  10. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.

    Science.gov (United States)

    Lara, Humberto H; Guisbiers, Gregory; Mendoza, Jonathan; Mimun, Lawrence C; Vincent, Brandy A; Lopez-Ribot, Jose L; Nash, Kelly L

    2018-01-01

    Candida albicans is a major opportunistic fungal pathogen. One of the most important virulence factors that contribute to the pathogenesis of candidiasis is its ability to form biofilms. A key characteristic of Candida biofilms is their resistance to antifungal agents. Due to significant morbidity and mortality rates related to biofilm-associated drug resistance, there is an urgency to develop novel nanotechnology-based approaches preventing biofilm-related infections. In this study, we report, for the first time, the synthesis of selenium nanoparticles by irradiating selenium pellets by nanosecond pulsed laser ablation in liquid chitosan as a capping agent. Synergy of the fungicidal effect of selenium nanoparticles and chitosan was quantified by the combination index theorem of Chou-Talalay. This drug combination resulted in a potent fungicidal effect against a preformed C. albicans biofilm in a dose-response manner. By advanced electron microscopy techniques, we documented the adhesive and permeabilizing properties of chitosan, therefore allowing selenium nanoparticles to enter as the cell wall of the yeast became disrupted and distorted. Most importantly, we demonstrated a potent quantitative synergistic effect when compounds such as selenium and chitosan are combined. These chitosan-stabilized selenium nanoparticles could be used for ex vivo applications such as sterilizers for surfaces and biomedical devices.

  11. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site

    International Nuclear Information System (INIS)

    Van Dyke, James U.; Hopkins, William A.; Jackson, Brian P.

    2013-01-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ( 15 N and 13 C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ 15 N and Se concentration. Instead, selenium concentrations decreased with increasing δ 13 C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position. -- Highlights: •Stable isotope results showed trophic separation among turtle species. •Selenium concentrations did not biomagnify with relative trophic position. •Selenium concentrations decreased with increasing δ 13 C among species. •Carbon source influenced Se bioaccumulation in an assemblage of related vertebrates. -- Stable isotope differences indicate that claw selenium concentrations differ among relative carbon sources, and not among relative trophic positions, in an assemblage of aquatic turtles

  12. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  13. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins

    Directory of Open Access Journals (Sweden)

    Laura Acevedo-Pacheco

    2016-10-01

    Full Text Available Background: One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. Objective: The aim was to determine and compare the essential amino acid (EAA scores, protein digestibility corrected amino acid scores (PDCAAS, and in vivo protein quality (protein digestibility, protein efficiency ratio (PER, biological values (BV, and net protein utilization (NPU values of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. Design: To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. Results: The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. Conclusions: The proposed enrichment of cereal-based foods with soybean proteins greatly

  14. Direct solution-phase synthesis of Se submicrotubes using Se powder as selenium source

    International Nuclear Information System (INIS)

    Yan Shancheng; Wang Haitao; Zhang Yuping; Li Shuchun; Xiao Zhongdang

    2009-01-01

    The selenium submicrotubes were directly prepared using Se powder as selenium source by microwave-assisted method. Field-emission scan electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were adopted to characterize the as-prepared products. The results of high-resolution transmission electron microscopy (HRTEM) and XRD pattern proved that the selenium submicrotubes were single crystalline in nature and [0 0 1] oriented. A possible growth mechanism of the selenium submicrotubes was proposed. The effects of the experimental conditions, such as alkaline concentration and solvent properties, on the morphology and dimension of the products have also been discussed

  15. ENRICHMENT OF POULTRY PRODUCTS WITH FUNCTIONAL INGREDIENTS

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2012-06-01

    Full Text Available Primary role of food is to provide nutritive stuffs in sufficient amounts to meet nutritive requirements. However, recent scientific findings confirm assumptions that particular food or its ingredients had positive physiological and psychological effects on health. Functional food is referred to food rich in ingredients, having beneficial effects on one or more functions in an organism. By consuming functional food consumers can expect some health benefits. Production of poultry products as functional food is getting more important on foreign markets while portion of such products on domestic food market is insignificant. The aim of this paper is to present possibilities for enrichment of poultry products, such as broiler and turkey meat and chicken eggs, as they can be characterized as functional food. Functional ingredients in poultry products are polyunsaturated fatty acids (LNA, EPA and DHA and antioxidants. Enrichment of poultry products with the stated ingredients that are beneficial for human health is subject of many researches, and only recently have researches been directed towards assessment of market sustainability of such products.

  16. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.

    Science.gov (United States)

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai

    2017-12-01

    The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Selenium Content, Influential Factors Within the Plant and the Transformation of Different Selenium Specification

    Directory of Open Access Journals (Sweden)

    LIU Yuan-yuan

    2014-12-01

    Full Text Available The paper collected relevant literatures on selenium and explored the function to plant, selenium content, influential factors and selenium specification and transformation. We believed that there should be more deep researches on function of selenium to plant. Approaches of molecular, genetic engineering and isotope could be employed to breed selenium rich crops and possibilities in practice. More efforts should be spent on the technologies research for improving selenium level in crops under natural soil conditions to sustainably utilize the selenium resources.

  19. Improved vanillin production in baker's yeast through in silico design.

    Science.gov (United States)

    Brochado, Ana Rita; Matos, Claudia; Møller, Birger L; Hansen, Jørgen; Mortensen, Uffe H; Patil, Kiran Raosaheb

    2010-11-08

    Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  20. Molecular neutron activation analysis of selenium metabolites in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Hansen, G.T.; Ebrahim, A.; Rack, E.P.

    1988-01-01

    Because of the biological importance of selenium in living biological systems, various analytical procedures have been developed for analysis of microquantities of elemental selenium, in urine, serum, and tissue. For urine selenium, these include atomic absorption spectrometry, solution absorption spectrometry, solution fluorescence spectrometry, volumetry, and neutron activation analysis. Of equal or greater importance is the determination of selenium metabolites present in urine for the purpose of describing the biological pathways for the metabolism of selenium in living organisms. While it is known from previous studies that trimethylselenonium ion (TMSe) is a major metabolite in urine, probably the result of reduction and methylation reaction, there are no definitive results in the literature indicating the nature or quantity of other selenium metabolic products in urine. Early techniques to measure TMSe levels in urine involved the use of the radiotracer 75 Se. Because of the long biological half-life of selenium and issues of radiation exposure, its use in humans has been limited. In this paper, the authors report the experimental procedure for the determination of total selenoamino acid concentration in urine and present total selenium values, and, where applicable, TMSe, SeO 2- 3 , and total selenoamino acid concentrations in the urine of normal and diseased subjects

  1. The use of selenium-enriched alga Scenedesmus quadricauda in a chicken diet

    Czech Academy of Sciences Publication Activity Database

    Skřivan, M.; Skřivanová, V.; Dlouhá, G.; Brányiková, Irena; Zachleder, Vilém; Vítová, Milada

    2010-01-01

    Roč. 55, č. 12 (2010), s. 565-571 ISSN 1212-1819 R&D Projects: GA MŠk(CZ) EUREKA No. OE0906; GA ČR GA525/09/0102; GA MŠk OE0906 Grant - others:Ministerstvo zemědělství ČR(CZ) MZE0002701404 Institutional research plan: CEZ:AV0Z50200510 Keywords : alga * selenium * Scendesmus Subject RIV: EE - Microbiology, Virology Impact factor: 1.190, year: 2010

  2. Effect of high levels of organic selenium on glutation-peroxidase (GSH-Px activity in blood plasma of broilers

    Directory of Open Access Journals (Sweden)

    Joksimović-Todorović Mirjana

    2005-01-01

    Full Text Available An experiment lasting 45 days was performed on 125 Hybro broilers divided into five groups. All compounds for broiler feed mixes used in the experiment contained 0.15 mg Se/kg, in the form of sodium selenite. The control group (K-group of broilers was fed mixes without added organic selenium, and the experimental groups with mixes to which selenium, in the form of selenized-yeast, was added in quantities of 2, 5, 10, or 15 mg/kg. Selenized yeast (ICN - Gaienika was obtained from beer yeast and contained 1.51, or 1.45 mg/g total, or organically bound selenium. At the beginning of the fattening period, GSH-Px plasma activity in broilers of the K-group ranged around 16.55 μkat/L, while GSH-Px plasma activity in broilers of experimental groups was statistically significantly higher, but without any major differences among the individual groups (on the average 25.53fjkat/L. In the blood plasma of K-group, GSH-Px activity dropped already in the second week of life and was maintained at a relatively constant level (about 10 μkat/L until the end of the experiment. The same phenomenon was observed in the experimental groups, but the trend of declining GSH-Px activity in blood plasma was more expressed, and, contrary to the control group, was expressed also in the later phases of the experiment. In the 3rd week of the fattening period, GSH-Px plasma activity in broilers of the control and experimental groups was relatively equal, and then the plasma activity of GSH-Px in broilers of the experimental groups decreased, but there were no major differences among the individual groups.

  3. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  4. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-10-01

    Full Text Available Background: Distiller's dried grains with solubles (DDGS and soybean meal were used as the substrates for the production of polyunsaturated fatty acids (PUFA in solid-state fermentation (SSF by Mortierella alpine. These fermented products were fed to laying hens. PUFA enrichment from chicken breasts was studied. Methods: The maximum productivity of PUFA was achieved under optimized process condition, including 1% w/w yeast extract as additive, an incubation period of 5 days at 12°C, 10% v/w inoculum level, 75% moisture content, and pH 6.0. The hens were then fed with ration containing soybean DDGS, rapeseed oil, soybean oil, and peanut oil. The control group was fed with basal ration. Results: Under the optimal condition, M. alpine produced total fatty acids (TFA of 182.34 mg/g dry substrate. It has better mycelial growth when soybean meal was added to DDGS (SDDGS. PUFA in fermentation product increased with higher soybean meal content. The addition of 70% soybean meal to DDGS substrate yielded 175.16 mg of TFA, including 2.49 mg eicosapentaenoic acid (EPA and 5.26 mg docosahexaenoic acid (DHA. The ratios of ω-6/ω-3 found in chicken breasts fat were all lower than that found in control by 36.98, 31.51, 18.15, and 12.63% for SDDGS, rapeseed oil, soybean oil, and peanut oil, respectively. Conclusions: This study identified an optimized SSF process to maximize PUFA productivity by M. alpine as the strain. This PUFA-enriched feed increased the PUFA contents as well as the proportions of ω-6 and ω-3 in chicken breasts and liver.

  5. Analysis of anomalous high concentration of lead and selenium and their origin in the main minable coal seam in the Junger coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Li Sheng-sheng; Ren De-yi [State Administration of Work Safety, Beijing (China)

    2006-07-01

    The concentration, occurrence, and geological origin of lead and selenium in the main minable coal seam from the Junger coalfield were studied using inductively coupled plasma mass spectrometry (CICP-MS), instrumental neutron activation analysis (CINAA), scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and optical microscope. The results show that the average concentrations of Pb and Se are as high as 35.7 {mu}g/g and 8.2 {mu}g/g, respectively, which are much higher than those of coals from North China, Guizhou, China, and USA. In addition, their enrichment factors are up to 2.4 and 68.1, respectively. Lead and selenium are significantly enriched in the seam. Lead and selenium mainly exist in galena, clausthalite, and selenio-galena which occur as cell-filling of coal-forming plants and are of chemical-sedimentary origin. 22 refs., 3 figs., 1 tab.

  6. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  7. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    Science.gov (United States)

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  8. Selenium speciation profiles in biofortified sangiovese wine.

    Science.gov (United States)

    Fontanella, Maria Chiara; D'Amato, Roberto; Regni, Luca; Proietti, Primo; Beone, Gian Maria; Businelli, Daniela

    2017-09-01

    Biofortification is an agronomic-based strategy, utilized by farmers, to produce selenium (Se)-enriched food products that may help reduce dietary deficiencies of Se occurring throughout susceptible regions of the world. The foliar exposure route application ensures a high efficiency of Se assimilation by the plant since it does not depend on root-to-shoot translocation. In this study we treated grapevines of Sangiovese variety in the pre-flowering period with sodium selenate (100mg Se L -1 ). Se content was measured in leaves, fruit at harvest time and in wine respectively in treated and not treated samples with ICP-MS. At harvest, a higher amount of Se in the treated leaves compared to untreated ones was found, 16.0±3.1mgkg -1 dry weight (dw) against 0.17±0.006mgkg -1 dw in the untreated ones. The treated grapes had a content of Se of 0.800±0.08mgkg -1 dw, while that untreated one 0.065±0.025mgkg -1 dw. Immediately after the malolactic fermentation, the wine obtained from treated and untreated vines had a Se content of 0.620±0.09mg Se L -1 and 0.024±0.010mg Se L -1 respectively. In our case the percentage of inorganic Se is 26% of the total Se in the untreated wine, while in Se enriched wine this percentage increase to 47.5% of the total Se. The Se(VI) was the inorganic chemical form more present in enriched wine, probably due to foliar application with selenate. Distributions of Se species suggested being careful to the choice of the enrichment solutions to promote a balanced distribution of different chemical forms, perhaps favouring the accumulation of organic forms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Selenium content of mushrooms.

    Science.gov (United States)

    Stijve, T

    1977-07-29

    The selenium contents of 83 species of wild mushrooms were determined by oxygen combustion of the sample, followed by conversion of selenite to bromopiazselenol and final estimation by electron capture gas-liquid chromatography. Selenium concentration were found to range from 0.012-20.0 mg/kg dry weight. Selenium content was species-dependent. High concentrations were found in Agaricaceae and in certain Boletaceae of the genus Tubiporus, whereas in Russulaceae, Amanitaceae and Cantharellaceae selenium-rich species were absent or rare. Ascomycetes and all mushrooms growing on wood had a very low selenium content. The highest selenium concentrations (up to 20 ppm) were found in Boletus (Tubiporus) edulis, a most popular edible mushroom. Analyses of various parts of carpophores of B. edulis, Suillus luteus and Amanita muscaria indicate that in all three species the stalk contains less selenium than the fleshy part of the cap. In Boletus and Suillus the highest selenium content was found in the tubes.

  10. Selenium and selenium species in feeds and muscle tissue of Atlantic salmon

    DEFF Research Database (Denmark)

    Sele, Veronika; Ørnsrud, Robin; Sloth, Jens Jørgen

    2018-01-01

    Selenium (Se) is an essential element for animals, including fish. Due to changes in feed composition for Atlantic salmon (Salmo salar), it may be necessary to supplement feeds with Se. In the present work, the transfer of Se and Se species from feed to muscle of Atlantic salmon fed Se supplemented...... diets was studied. Salmon were fed basal fish feed (0.35 mg Se/kg and 0.89 mg Se/kg feed), or feed supplemented either with selenised yeast or sodium selenite, at low (1–2 mg Se/kg feed) and high (15 mg Se/kg feed) levels, for 12 weeks. For the extraction of Se species from fish muscle, enzymatic...... cleavage with protease type XIV was applied. The extraction methods for Se species from fish feed were optimised, and two separate extraction procedures were applied, 1) enzymatic cleavage for organic Se supplemented feeds and 2) weak alkaline solvent for inorganic Se supplemented feeds, respectively...

  11. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  12. Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production

    Czech Academy of Sciences Publication Activity Database

    Skřivan, M.; Šimáně, J.; Dlouhá, G.; Doucha, Jiří

    2006-01-01

    Roč. 51, č. 4 (2006), s. 163-167 ISSN 1212-1819 Institutional research plan: CEZ:AV0Z50200510 Keywords : sodium selenite * se-yeast * se-chlorella Subject RIV: EE - Microbiology, Virology Impact factor: 0.421, year: 2006

  13. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  14. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus eryngii var. ferulae in Co-culture.

    Science.gov (United States)

    Guo, Chaolin; Zhao, Liting; Wang, Feng; Lu, Jian; Ding, Zhongyang; Shi, Guiyang

    2017-01-01

    Laccase is widely used in several industrial applications and co-culture is a common method for enhancing laccase production in submerged fermentation. In this study, the co-culture of four yeasts with Pleurotus eryngii var. ferulae was found to enhance laccase production. An analysis of sterilization temperatures and extraction conditions revealed that the stimulatory compound in yeasts was temperature-sensitive, and that it was fat-soluble. An LC-MS analysis revealed that the possible stimulatory compound for laccase production in the four yeast extracts was β-carotene. Moreover, the addition of 4 mg β-carotene to 150 mL of P. eryngii var. ferulae culture broth improved laccase production by 2.2-fold compared with the control (i.e., a monoculture), and was similar to laccase production in co-culture. In addition, the enhanced laccase production was accompanied by an increase of lac gene transcription, which was 6.2-time higher than the control on the fifth day. Therefore, it was concluded that β-carotene from the co-cultured yeasts enhanced laccase production in P. eryngii var. ferulae , and strains that produce β-carotene could be selected to enhance fungal laccase production in a co-culture. Alternatively, β-carotene or crude extracts of β-carotene could be used to induce high laccase production in large scale.

  15. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    Science.gov (United States)

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  16. Improved vanillin production in baker's yeast through in silico design

    Science.gov (United States)

    2010-01-01

    Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories. PMID:21059201

  17. Improved vanillin production in baker's yeast through in silico design

    Directory of Open Access Journals (Sweden)

    Hansen Jørgen

    2010-11-01

    Full Text Available Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1 were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  18. Activity of glutathione peroxidase (GGSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella

    Czech Academy of Sciences Publication Activity Database

    Trávníček, J.; Racek, J.; Trefil, L.; Rodinová, H.; Kroupová, V.; Illek, J.; Doucha, Jiří; Písek, L.

    2008-01-01

    Roč. 53, č. 7 (2008), s. 292-298 ISSN 1212-1819 Institutional research plan: CEZ:AV0Z50200510 Keywords : selenite * organic selenium * blood selenium Subject RIV: EE - Microbiology, Virology Impact factor: 0.735, year: 2008

  19. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    Science.gov (United States)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  20. Poultry products enriched with nutricines have beneficial effects on human health.

    Science.gov (United States)

    Kralik, Gordana; Kralik, Zlata

    2017-02-01

    The paper presents nutritive value of broiler meat and table eggs, as these animal products are used for human nutrition on a daily basis. In the Republic of Croatia, average consumption of poultry meat amounts to 18.3 kg and to 160 eggs per capita.The most quality parts of broiler carcass are breasts and drumsticks with thighs. Breast muscles contain 21-23% protein, 1.90-1.97% fat, 75.28-76.01% water and 0.74-0.77% collagen. Thigh muscles contain 4.70-6.05% fat, 19.03-19.93% protein and 0.91-1.13% collagen. White meat contains more potassium and magnesium and less zinc and iron than dark meat. In 100 g of edible egg part there is 12.5-13.5 g protein, 10.7-11.6 g fat and 1.0-1.1 g minerals. Caloric valueof eggs is 167 Kcal. Eggs contain high amount of essential amino acids, especially leucine, isoleucine, lysine, arginine, valine and phenylalanine. Furthermore, eggs contain many vitamins, especially A, D, E, K and B-complex, as well as various macroelements and microelements. Eggs and meat enriched with one or more functional ingredients - nutricines (polyunsaturated fatty acids n-3), eicosapentaenoic acid, docosahexaenoic acid, selenium and lutein) meet the criteria of functional food because of their added value and benefits for human health. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  1. Distribution of Iodine and Selenium in Selected Food Commodities

    Directory of Open Access Journals (Sweden)

    Strapáč I.

    2016-03-01

    Full Text Available The aim of this study was to investigate the distribution of the contents of iodine and selenium in selected food commodities. Fresh food commodities were mineralized and analysed for their iodine and selenium content by Inductively Coupled Plasma-Mass Spectrometry using the calibration curve as the method for determining the contents of the elements. The average fruit and vegetables concentrations of iodine were very low. The cow’s milk, other dairy products, eggs, poultry, fresh water fish, beef, liver, and mushrooms are frequently regarded as the most important natural source of dietary iodine from common foods. The higher concentrations of selenium were recorded in the kidney, liver, pork, beef, poultry, fresh water fish, hen’s eggs, cow’s milk, other dairy products, wheat flour, fats, coffee, peppers, mushrooms and potatoes.

  2. Screening of selenium containing proteins in the Tris-buffer soluble fraction of African catfish (Clarias gariepinus) fillets by laser ablation-ICP-MS after SDS-PAGE and electroblotting onto membranes

    NARCIS (Netherlands)

    Pedrero, Z.; Madrid, Y.; Camara, C.; Schram, E.; Luten, J.B.; Feldmann, I.; Waentig, L.; Hayen, H.; Jakubowski, N.

    2009-01-01

    The anti-carcinogenic properties of selenium against certain types of cancer when present in organic forms justify the increasing interest in development of selenium fortified food. In this particular study, African catfish (Clarias gariepinus) were fed with a Se-enriched diet in order to enhance

  3. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10

    International Nuclear Information System (INIS)

    Xie, RuiKai; Seip, Hans Martin; Wibetoe, Grethe; Nori, Showan; McLeod, Cameron William

    2006-01-01

    Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 μm (PM 10 ) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m -3 , respectively) were relatively high compared to what is reported elsewhere. Arsenic and selenium were found to be highly correlated (r=0.997), indicating an overwhelmingly dominant source. Correlation between these two chalcophile elements and the lithophile element Al is high (r is 0.75 and 0.72 for As and Se, respectively). This prompted the hypothesis that the particles were from coal combustion. The enrichment of the trace elements could be explained by the volatilization-condensation mechanism during coal combustion process. Even higher correlations of arsenic and selenium with PM 10 (r=0.90 and 0.88) give further support that airborne particulate pollution in Taiyuan is mainly a direct result of heavy coal consumption. This conclusion agrees with the results from our previous study of individual airborne particles in Taiyuan. (author)

  4. Effect of selenium on the Hg, Zn, Fe and Co content of yeast cells

    International Nuclear Information System (INIS)

    Czauderna, M.; Peplowski, A.; Smolinski, S.

    1992-01-01

    The yeast cells, Saccharomyces cerevisiae, were exposed to Hg 2+ ions (10 -4 M) and SeO 2 (2x10 -4 -10 -2 M) or Se-methionine (2x10 -4 M). Instrumental neutron activation analysis (INAA) was used to analyze changes in the Hg, Zn,Fe and Co levels in these cells. When the yeast was incubated in a medium containing 10 -3 M and 10 -2 M Se) 2 , the Hg content of the yeast markedly increased. It was also found that the uptake of Se and Hg influenced the levels of Zn, Fe and Co found in the cells. While the presence of Se-methionine (Se-Met), SeO 2 or Hg 2+ ions caused increases in the intracellular Zn levels, the combined presence of Hg 2+ and SeO 2 and their assumed interaction, reduced the efficiency of Se for increasing the Zn content of yeast. (author) 17 refs.; 3 tabs

  5. Utilization of Starch-Enriched Brewery (Rice Wine) Waste for Mixotrophic Cultivation of Ettlia Sp. YC001 Used in Biodiesel Production.

    Science.gov (United States)

    Kam, Yeji; Sung, Mina; Cho, Hoon; Kang, Chang-Min; Kim, Jungmin; Han, Jong-In

    2017-12-01

    Starch-enriched brewery waste (SBW), an unexplored feedstock, was investigated as a nutritious low-cost source for the mixotrophic cultivation of Ettlia sp. YC001 for biodiesel production. Stirring, autoclaving, and sonication were assessed for the SBW, in conjunction with pH. Stirring at 55 °C was found to be the best, in terms of the effectiveness of starch hydrolysis and yeast disintegration as well as cost. The treated solutions were found to support the mixotrophic growth of microalgae: 20 g/L of glucose medium resulted in the highest biomass production of 9.26 g/L and one with 10 g/L of glucose showed the best lipid productivity of 244.2 mg/L/day. The unsaturated fatty acids increased in the resulting lipid and thus quality well suited for the transportation fuel. All these suggested that SBW, when treated properly, could indeed serve as a cheap feedstock for microalgae-based biodiesel production.

  6. New scientific challenges - the possibilities of using selenium in poultry nutrition and impact on meat quality

    Science.gov (United States)

    Marković, R.; Glišić, M.; Bošković, M.; Baltić, M. Ž.

    2017-09-01

    Physiological stress is one of many concerns facing modern broiler production. In conditions when birds are exposed to stress, supplementation of selenium, which is a crucial glutathione peroxidase enzymatic cofactor, increases the antioxidant capacity of the animals and decreases the harmful effects of free radicals. Dietary selenium improves production performance and health of animals, and positively affects the immune system, the quality, selenium content and fatty acid composition of meat and eggs. There are several different forms of selenium, the most common dietary supplements being an inorganic form (sodium selenite) and anorganic form (selenomethionine). However, in recent years, new forms of selenium, such as a 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) and nanoselenium, which have more bioavailability, bioefficacy, and low toxicity have been designed. In this short comparative overview discusses the effects of inorganic, organic and nanoforms of selenium on production results, glutathione peroxidase activity, meat quality and level of toxicity in poultry.

  7. Binary mixtures of mercury/ selenium, and lead/selenium

    African Journals Online (AJOL)

    Physiologically-based biokinetic models have been developed for predicting simultaneously the Absorption, Distribution, Metabolism and Elimination (ADME) properties of lead (Pb) and selenium (Se), and mercury (Hg) and selenium in a number of target tissues of humans. This was done for three population groups, ...

  8. Recycling of high purity selenium from CIGS solar cell waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    2014-10-15

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.

  9. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  10. [Efficiency of application of the enriched bakery products in children nutrition].

    Science.gov (United States)

    Koryachkina, S Ya; Ladnova, O L; Lublinsky, S L; Kholodova, E N

    2015-01-01

    The results of the research devoted to an assessment of efficiency of application of the enriched bakery products in nutrition of school students have been presented. Composition and technology of the enriched bakery products have been developed. The influence of enrichers on the basis of proteins of whey, plasma of blood, hemoglobin, calcium and iodinated components and food fibers on the nutritive and energy value of bakery products has been defined. The consumption of 100 g of the enriched bakery products provides a significant amount of protein--12.5-23% of the recommended daily intake (RDI), to satisfy daily need of school students in calcium up to 13.4%, in iron--up to 20%, iodine--12.5% and food fibers--17.3%. When comparing blood hemoglobin content in school students after inclusion in a diet of the enriched bakery products, the lack of significant changes of this indicator in children with normal hemoglo- bin content has been determined that is the confirmation of safety of use of the products enriched with hem iron. At the same time, normalization of hemoglobin level in children (9.7%) with the initial threshold and lowered hemoglobin indicators is noted. The reliable increase in the content of hemoglobin in this group of children from 112 ± 3 to 131 ± 6 g/l was established (p ≤ 0.05). Positive dynamics of the content of iodine in urine at school students with initial deficiency of iodine under administration of the bread enriched with iodine has been defined. Ioduria indicators authentically increased from 88 ± 10 to 116 ± 9 mkg/l (p ≤ 0.05). Before diet correction in 53 from 59 children surveyed in the Stavropol region, a mild lack of iodine has been revealed (iodine levels less than 100 mkg/l urine), while after bread intake--only in 7 (11.9%) students.

  11. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  12. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  13. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... ... of these studies, the preferred candidate for industrial production of ethanol ... The yeast strains were isolated using the method of Ameh et al. (1989), on ... gas in the Durham tube during the incubation period. Fermentation ...

  14. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats

    International Nuclear Information System (INIS)

    Suzuki, Kazuo T.; Somekawa, Layla; Suzuki, Noriyuki

    2006-01-01

    Nutritional selenium compounds are transformed to the common intermediate selenide and then utilized for selenoprotein synthesis or excreted in urine mostly as 1β-methylseleno-N-acetyl-DD-galactosamine (selenosugar). Since the biological significance of selenosugar formation is unknown, we investigated their role in the formation of selenoenzymes in selenium deficiency. Rats were depleted of endogenous natural abundance selenium with a single stable isotope ( 82 Se) and then made Se-deficient. 76 Se-Selenosugar was administered intravenously to the rats and their urine, serum, liver, kidneys and testes were subjected to speciation analysis with HPLC inductively coupled argon plasma mass spectrometry. Most 76 Se was recovered in its intact form (approximately 80% of dose) in urine within 1 h. Speciation analysis revealed that residual endogenous natural abundance selenium estimated by 77 Se and 78 Se was negligible and distinct distributions of the labeled 76 Se were detected in the body fluids and organs without interference from the endogenous natural abundance stable isotope. Namely, intact 76 Se-selenosugar was distributed to organs after the injection, and 76 Se was used for selenoprotein synthesis. Oxidation to methylseleninic acid and/or hydrolysis of the selenoacetal group to methylselenol were proposed to the transformation of selenosugar for the reuse. Effective use of an enriched stable isotope as an absolute label in hosts depleted of natural abundance isotopes was discussed for application in tracer experiments

  15. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes involved

  16. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  17. Selenium essentials

    CERN Document Server

    Sams, Prashanth

    2015-01-01

    If you are a developer who wants to migrate from Selenium RC or any other automation tool to Selenium WebDriver, then this book is for you. Knowledge of automation tools is necessary to follow the examples in this book.

  18. Urea production by yeasts other than Saccharomyces in food fermentation

    NARCIS (Netherlands)

    Wu, Qun; Cui, Kaixiang; Lin, Jianchun; Zhu, Yang; Xu, Yan

    2017-01-01

    Urea is an important intermediate in the synthesis of carcinogenic ethyl carbamate in various food fermentations. Identifying urea-producing microorganisms can help control or reduce ethyl carbamate production. Using Chinese liquor fermentation as a model system, we identified the yeasts responsible

  19. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  20. Engineering yeast for high-level production of stilbenoid antioxidants

    DEFF Research Database (Denmark)

    Li, Mingji; Schneider, Konstantin; Kristensen, Mette

    2016-01-01

    engineered the yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral medium typically used for industrial production. We applied a pull-push-block strain engineering strategy that included overexpression of the resveratrol biosynthesis pathway, optimization of the electron transfer...... to the cytochrome P450 monooxygenase, increase of the precursors supply, and decrease of the pathway intermediates degradation. Fed-batch fermentation of the final strain resulted in a final titer of 800 mg l(-1) resveratrol, which is by far the highest titer reported to date for production of resveratrol from...

  1. Development of a yeast cell factory for production of aromatic products

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji

    2014-01-01

    There is much interest in aromatic chemicals in the chemical industry as these can be used for production of dyes, anti-oxidants, nutraceuticals and food ingredients. Yeast is a widely used cell factory and it is particularly well suited for production of aromatic chemicals via complex biosynthetic...... routes involving P450 enzymes. In Saccharomyces cerevisiae the fluxes towards aromatic acids (L-tryptophan, L-tyrosine and L-phenylalanine) are strictly controlled on transcriptional and kinetic levels and therefore are difficult to manipulate. We engineered S. cerevisiae for increased production...... of aromatic compounds by eliminating degradation, up-regulating the key enzyme encoding genes, and removing feed-back inhibition in the pathway. In order to test the strain performance we overexpressed heterologous pathway for coumaric acid production. We obtained 4-fold higher concentrations of coumaric acid...

  2. Effects of spent craft brewers’ yeast on fermentation and methane production by rumen microorganisms

    Science.gov (United States)

    Saccharomyces cerevisiae is a key component of beer brewing and a major by-product. The leftover, spent brewers’ yeast, from large breweries has been used for some time as a protein supplement in cattle, however the possible advantages of spent yeast from smaller craft breweries, containing much hig...

  3. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    Science.gov (United States)

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Null activity of selenium and vitamin e as cancer chemopreventive agents in the rat prostate.

    Science.gov (United States)

    McCormick, David L; Rao, K V N; Johnson, William D; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2010-03-01

    To evaluate the potential efficacy of selenium and vitamin E as inhibitors of prostate carcinogenesis, four chemoprevention studies using a common protocol were done in a rat model of androgen-dependent prostate cancer. After stimulation of prostate epithelial cell proliferation by a sequential regimen of cyproterone acetate followed by testosterone propionate, male Wistar-Unilever rats received a single i.v. injection of N-methyl-N-nitrosourea (MNU) followed by chronic androgen stimulation via subcutaneous implantation of testosterone pellets. At 1 week post-MNU, groups of carcinogen-treated rats (39-44/group) were fed either a basal diet or a basal diet supplemented with l-selenomethionine (3 or 1.5 mg/kg diet; study 1), dl-alpha-tocopherol (vitamin E, 4,000 or 2,000 mg/kg diet; study 2), l-selenomethionine + vitamin E (3 + 2,000 mg/kg diet or 3 + 500 mg/kg diet; study 3), or selenized yeast (target selenium levels of 9 or 3 mg/kg diet; study 4). Each chemoprevention study was terminated at 13 months post-MNU, and prostate cancer incidence was determined by histopathologic evaluation. No statistically significant reductions in prostate cancer incidence were identified in any group receiving dietary supplementation with selenium and/or vitamin E. These data do not support the hypotheses that selenium and vitamin E are potent cancer chemopreventive agents in the prostate, and when considered with the recent clinical data reported in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), show the predictive nature of this animal model for human prostate cancer chemoprevention.

  5. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    International Nuclear Information System (INIS)

    Freeman, Corey R.; Geist, William H.

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF 6 spins at high velocities in centrifuges to separate the molecules containing 238 U from those containing the lighter 235 U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF 6 gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  6. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  7. Use of starter cultures of lactic acid bacteria and yeasts as inoculum enrichment for the production of gowé, a sour beverage from Benin

    DEFF Research Database (Denmark)

    Vieira-Dalodé, G.; Madodé, Y.E.; Hounhouigan, J.

    2008-01-01

    Lactobacillus fermentum, Weissella confusa, Kluyveromyces marxianus and Pichia anomala, previously isolated during natural fermentation of traditional gowé, were tested as inoculum enrichment for controlled fermentation of gowé. The final product was subjected to chemical analysis and sensory eva...

  8. Effect of selenium treatment on biomass production and mineral content in common bean varieties

    Science.gov (United States)

    The mineral selenium is important to human health. The goal of the research was to evaluate common bean cultivars for their responses to and abilities to accumulate selenium. The experimental design was completely randomized and the treatments consisted of control (in modified Hoagland and Arnon's s...

  9. Why Nature Chose Selenium.

    Science.gov (United States)

    Reich, Hans J; Hondal, Robert J

    2016-04-15

    The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.

  10. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    Science.gov (United States)

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  11. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    Science.gov (United States)

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  12. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Náhlík, Jan; Hrnčiřík, Pavel; Mareš, Jan; Rychtera, Mojmír; Kent, Christopher A

    2017-05-01

    The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity-defined as percentage of ergosterol in the total sterols in the yeast-is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on-line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative-fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10 -6 g L -1 h -1 , more than three times higher than with standard baker's yeast fed-batch cultivations, which attained in average 32.14 × 10 -6 g L -1 h -1 . At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down-stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838-848, 2017. © 2017 American Institute of Chemical Engineers.

  13. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, J.N. de [Alagoas Univ., Maceio, AL (Brazil). Dept. de Engenharia Quimica]. E-mail: jnunes@ctec.ufal.br; Lopes, C.E. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos; Franca, F.P. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Bioquimica

    2004-09-01

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 {+-} 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars conversion was 74.61% at a dilution rate of 0.83 h{sup -1}. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h{sup -1} to 3.00 h{sup -1}. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h{sup -1}). (author)

  14. Effect of Selenium and Vitamin E Supplementation on Semen Quality in Dogs with Lowered Fertility

    Directory of Open Access Journals (Sweden)

    Domosławska Anna

    2015-04-01

    Full Text Available Thirty clinically healthy dogs with poor semen quality were used in the study. Fifteen dogs were supplemented daily with selenium (0.6 mg/kg organic selenium from yeast and vitamin E (5 mg/kg per os for 60 d. The control group (15 dogs was not supplemented. Semen was collected from all dogs by manual manipulation on days 0, 30, 60, and 90. The sperm concentration and motility parameters were evaluated with a Hamilton Thorne sperm analyser, version IVOS 12.3. For the assessment of sperm morphology, Diff-Quik stain was used. The percentage of live and dead spermatozoa was estimated on dried smears stained with eosin-nigrosin. The concentration of spermatozoa, most motility parameters determined (PMOT, VSL, VCL, ALH, BCF, RAPID, MEDIUM, SLOW, and STATIC, and the percentage of spermatozoa morphologically normal and live increased significantly (P < 0.05 after 60 d of supplementation. In the control group, there were no changes in motility parameters while the concentration and total sperm count decreased over the duration of the study. In conclusion, supplementation with selenium and vitamin E for 60 d can improve the quality of semen in dogs with lowered fertility.

  15. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.

    Science.gov (United States)

    Vieira-Dalodé, G; Jespersen, L; Hounhouigan, J; Moller, P L; Nago, C M; Jakobsen, M

    2007-08-01

    To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.

  16. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium.

    Science.gov (United States)

    Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg

    2015-07-01

    Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.

  17. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress.

    Science.gov (United States)

    Liu, J; Ye, G; Zhou, Y; Liu, Y; Zhao, L; Liu, Y; Chen, X; Huang, D; Liao, S F; Huang, K

    2014-06-01

    This study was conducted to evaluate the effects of supplemental common yeast culture (CY) and glycerol-enriched yeast culture (GY) on performance, plasma metabolites, antioxidant status, and heat shock protein 70 (HSP70) mRNA expression in lactating Holstein cows under heat stress. During summer months, 30 healthy multiparous lactating cows (parity 3.25 ± 0.48; 60 ± 13 d in milk [DIM]; 648 ± 57 kg BW; an average milk yield of 33.8 ± 1.6 kg/d) were blocked by parity, previous milk yield, and DIM and randomly allocated to 3 dietary treatments: no supplemental yeast culture (Control), 1 L/d of CY (33.1 g yeast) per cow, and 2 L/d of GY (153.2 g glycerol and 31.6 g yeast) per cow. During the 60-d experiment, values of air temperature and relative humidity inside the barn were recorded hourly every 3 d to calculate temperature-humidity index (THI). Weekly rectal temperatures (RT) and respiration rates and daily DMI and milk yield were recorded for all cows. Milk and blood samples were taken twice monthly, and BW and BCS were obtained on d 0 and 60. In this experiment, THI values indicated cows experienced a moderate heat stress. Cows supplemented with CY and GY had greater yields of milk, energy-corrected milk and milk fat, and milk fat percent but lower HSP70 mRNA expression in peripheral blood lymphocytes than Control cows (P cows. In conclusion, either CY or GY supplementation partially mitigated the negative effects of heat stress on performance and HSP70 mRNA expression of lactating cows, and GY supplementation provided additional improvements in energy status and HSP70 gene expression of lactating cows.

  18. Production of ethanol and polyethanol by yeasts isolated from date ...

    African Journals Online (AJOL)

    Linda

    valuation by biotechnological processes enables the production of high value added materials with low cost. In this regard, the objective of this study focused on the selection of yeasts ... produce ethyl alcohol from this waste used in many industries and ... fundamental economic interest. ..... Industrial enzymes from marine.

  19. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  20. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins.

    Science.gov (United States)

    Karakaya, Sibel; Simsek, Sebnem; Eker, Alper Tolga; Pineda-Vadillo, Carlos; Dupont, Didier; Perez, Beatriz; Viadel, Blanca; Sanz-Buenhombre, Marisa; Rodriguez, Alberto Guadarrama; Kertész, Zsófia; Hegyi, Adrienn; Bordoni, Alessandra; El, Sedef Nehir

    2016-08-10

    Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects. The aim of this study was to determine how the baking process and food matrix affect anthocyanin stability and bioaccessibility in bakery products in order to develop functional foods. Three well known regularly consumed bakery products (buns, breadsticks and biscuits) were enriched with anthocyanin (AC) isolated from grape skin alone or in combination with docosahexaenoic acid (AC + DHA) to reveal knowledge on AC as active ingredients in real food systems rather than pure compounds. Anthocyanin amounts added to the formulations of buns, breadsticks and biscuits were 34 mg per 100 g, 40 mg per 100 g and 37 mg per 100 g, respectively. The effect of processing, storage and the food matrix on AC stability and bioaccessibility was investigated. In addition, the sensory properties of bakery products were evaluated. Breadsticks enriched with AC and AC + DHA received the lowest scores in the pre-screening sensory test. Therefore breadsticks were excluded from further analysis. AC retentions, which were monitored by determination of malvidin 3-O-glucoside, in the bun and biscuit after baking were 95.9% (13.6 mg per 100 g) and 98.6% (15.2 mg per 100 g), respectively. Biscuits and buns enriched only with AC showed significantly higher anthocyanin bioaccessibilities (57.26% and 57.30%, respectively) than the same ones enriched with AC + DHA. AC stability in enriched products stored for 21 days was significantly lower than in products stored for 7 days (p products.

  1. Industrial plants for production of highly enriched nitrogen-15

    International Nuclear Information System (INIS)

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  2. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Aravind [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Rajiv Gandhi Centre for Biotechnology, Trivandrum (India); Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran, E-mail: sindhurgcb@gmail.com; Sukumaran, Rajeev K. [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Center for Innovative and Applied Bioprocessing, Mohali, Punjab (India); Castro, Galliano Eulogio [Dpt. Ingeniería Química, Ambiental y de los Materiales Edificio, Universidad de Jaén, Jaén (Spain)

    2017-04-25

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  3. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Raveendran Sindhu

    2017-04-01

    Full Text Available The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  4. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    International Nuclear Information System (INIS)

    Madhavan, Aravind; Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran; Sukumaran, Rajeev K.; Pandey, Ashok; Castro, Galliano Eulogio

    2017-01-01

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  5. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

    Science.gov (United States)

    Teh, Kwee-Yan; Lutz, Andrew E

    2010-05-17

    Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.

  6. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  7. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  8. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    International Nuclear Information System (INIS)

    Singh, Anchal; Rathaur, Sushma

    2005-01-01

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass ∼20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/μg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite

  9. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    International Nuclear Information System (INIS)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-01-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels

  10. Antioxidant, antifungal and anticancer activities of se-enriched Pleurotus spp. mycelium extracts

    Directory of Open Access Journals (Sweden)

    Milovanović Ivan

    2014-01-01

    Full Text Available The goal of this study was the evaluation of antifungal, antioxidant and anticancer potentials of Pleurotus eryngii, P. ostreatus and P. pulmonarius mycelial extracts, and the influence of mycelium enrichment with selenium on these activities. Both Se-amended and non-amended extracts showed the same or similar minimal inhibitory concentration for 14 studied micromycetes, while a fungicidal effect was not noted, contrary to ketoconazole, which had inhibitory and fungicidal effects at very low concentrations. Se-non-amended extracts exhibited antioxidant activity, especially at higher concentrations. Selenium enrichment influenced activity, its effects decreasing in P. eryngii and P. pulmonarius, while in P. ostreatus no effect was noted. The DPPH• radical scavenging capacity of the extracts was in direct correlation with their phenol and flavonoid contents. Cytotoxic activity against both HeLa and LS174 cell lines was very low compared with cis-DDP. These features suggest that mycelium should be an object of intensive studies. [Projekat Ministarstva nauke Republike Srbije, br. 173032

  11. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    Energy Technology Data Exchange (ETDEWEB)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. (Harvard-Med)

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  12. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  13. Effect of a dietary supplementation with linseed oil and selenium to growing rabbits on their productive performances, carcass traits and fresh and cooked meat quality.

    Science.gov (United States)

    Matics, Zs; Cullere, M; Szín, M; Gerencsér, Zs; Szabó, A; Fébel, H; Odermatt, M; Radnai, I; Dalle Zotte, A; Szendrő, Zs

    2017-08-01

    The present experiment tested a dietary supplementation with linseed oil and selenium to growing rabbits. The basal diet (B) contained 3% sunflower oil, while it was substituted with 3% linseed oil in the experimental feed (S). The selenium (Se) content of the two diets was 0.10 vs. 0.46 mg/kg. Rabbits were fed with B diet from the age of 18 days. One group was fed with the B diet until 11 weeks of age (group B), whereas the experimental groups were fed with S diet for 1, 2, 3 or 4 weeks (groups S1, S2, S3 and S4, respectively), before slaughtering (11 weeks of age). Live performance and carcass traits of rabbits, fatty acid (FA) profile and selenium content of their hind leg (HL) and Longissimus thoracis et lumborum (LTL) meat were considered in this study. In addition, the effect of two different cooking methods on the nutritional value of the enriched HL meat was also assessed. The tested dietary supplementation only minimally affected the live performance and carcass traits of rabbits. The S supplementation significantly reduced the Σ n-6 FA and increased the Σ n-3 FA of the HL meat and LTL meat, compared to the B diet (p meat and LTL meat of S fed rabbits were significantly enriched in Se reaching a twofold increase in both meat cuts (p meat. The heat treatment affected cooking loss, Se and vitamin E contents as well as the oxidative status of the HL meat (p < 0.001), with the different cooking methods providing different results. In addition, even if the beneficial C20:5 n-3 and C22:6 n-3 decreased with cooking, the n-6/n-3 ratio remained unaffected. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  14. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  15. Chemical processing for production of no-carrier-added selenium-73 from germanium and arsenic targets and synthesis of L-2-amino-4-([73Se]methylseleno) butyric acid (L-[73Se]selenomethionine)

    International Nuclear Information System (INIS)

    Plenevaux, A.; Guillaume, M.; Brihaye, C.; Lemaire, C.; Cantineau, R.

    1990-01-01

    The Ge( 4 He,xn) and 75 As(p,3n) reactions were compared as the best potential routes for routine production of selenium-73 ( 73 Se) for medical applications. With 26 MeV α particles, available with compact cyclotrons, the first reaction required an enriched 70 Ge target of sodium metagermanate to give a production yield of 1 mCi/μAh (0.037 GBq/μAh) in a 105 mg/cm 2 target. With 55 MeV protons the As(p,3n) reaction on natural arsenic yielded 20 mCi/μAh (0.74 GBq/μAh) in a 685 mg/cm 2 target. A simple method was developed and optimized for both targets in order to isolate and purify the no-carrier-added selenium in the elemental form with a radiochemical yield greater than 75% in less than 90 min. An automated radiochemical processing unit has been designed for the routine production of 100-150 mCi(3.7-5.5 GBq) batches of carrier-free 73 Se ready for radiopharmaceutical labeling. 30 mCi (1.11 GBq) (EOS) of L-2-amino-4-([ 73 Se]methylseleno) butyric acid (L-[ 73 Se]selenomethionine) ready for injection with a specific activity of 5 Ci/mmol (185 GBq/mmol) (EOS) were obtained through a fast chemical synthesis. Radiation absorbed dose estimates for L-[ 73 Se ]selenomethionine have been determined. A value of 0.70 rem/mCi (0.19 mSv/MBq) administered was calculated for the risk from irradiation in man. The first human PET investigation with [ 73 Se]selenomethionine showed a very good delineation between liver and pancreas. (author)

  16. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level p...

  17. Effects of Nitrogen Supplementation on Yeast (Candida utilis Biomass Production by Using Pineapple (Ananas comosus Waste Extracted Medium

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2007-01-01

    Full Text Available Pineapple waste medium was used to cultivate yeast, Candida utilis. It served as the sole carbon and energy source for the yeast growth. However, pineapple waste media contain very little nitrogen (0.003-0.015% w/v. Various nitrogen sources were incorporate and their effects on biomass, yield and productivity were studied. Significant (p<0.05 increment on biomass production was observed when nitrogen supplement (commercial yeast extract, peptone, ammonium dihydrogen phosphate, ammonium sulphate and potassium nitrate was added into fermentation medium. Commercial yeast extract, Maxarome® which increased 55.2% of biomass production at 0.09% (w/v nitrogen content, is the most suitable among the selected organic source. On the other hand, ammonium dihydrogen phosphate at 0.09% (w/v nitrogen content is comparable inorganic source which enhanced 53.7% of production. Total nitrogen content of each treatment at 0.05% (w/v showed that nitrogen supplied was not fully utilized as substrate limitation in the fermentation medium.

  18. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-10-01

    Full Text Available Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc on biomass production and viability of the antagonistic yeast, Candida diversa. Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg2+, Fe2+, and Zn2+ concentrations were adjusted in a minimal mineral (MM medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy.

  19. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.

    Science.gov (United States)

    Khoei, Nazanin Seyed; Lampis, Silvia; Zonaro, Emanuele; Yrjälä, Kim; Bernardi, Paolo; Vallini, Giovanni

    2017-01-25

    Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO 3 2- ) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO 3 2- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO 3 2- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties. Copyright © 2016 Elsevier B.V. All

  20. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    Science.gov (United States)

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  1. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    Science.gov (United States)

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  2. Selenium Supplementation in Fish: A Combined Chemical and Biomolecular Study to Understand Sel-Plex Assimilation and Impact on Selenoproteome Expression in Rainbow Trout (Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Davide Pacitti

    Full Text Available Selenium (Se is an essential oligonutrient, as a component of several Se-containing proteins (selenoproteins, which exert important biological functions within an organism. In livestock, Se-enriched products have been proposed as dietary supplements to be included into functional feeds for animal preventive health care. To this end, it is important to understand the optimal range of concentrations for supplementation and how long it takes to be assimilated into the organism.In this study, rainbow trout (Oncorhynchus mykiss were fed a control diet containing 0.9 g Kg-1 Se or the same diet supplemented with a Se-Yeast product (Sel-Plex to achieve Se concentrations ranging from 1.5-8.9 g Kg-1 for a period of ten weeks. Fish were sampled every two weeks for analysis. The kinetics of Se bioaccumulation and the effects on fish selenoprotein expression was determined in different tissues combining chemical and bimolecular techniques.The Sel-Plex enriched diets did not have any effect on survival and growth performance. The highest Se levels were found in liver and kidney followed by muscle and blood cells. Analysis of the Se concentration factor showed that liver is able to initially regulate the amount of Se accumulated. However, with higher dietary Se level (4.8 and 8.9 g Kg-1 and longer times of exposure (10 weeks, regulation is ineffective and the Se tissue concentration increases. The expression of the selected trout selenoprotein transcripts showed an inverse correlation with Sel-Plex augmentation in most cases. In liver, kidney and blood cells the highest up-regulation of the trout selenoprotein genes was seen mostly in the group fed the diet enriched with the lowest concentration of Sel-Plex (0.5 g Kg-1 for 10 weeks.Sel-Plex may represent an excellent Se supplement to deliver a high level of Se without provoking harm to the fish and to guarantee the maximal absorption of the element. According to our results, a dietary supplementation of Sel

  3. Biological selenium removal from wastewaters

    NARCIS (Netherlands)

    Lenz, M.

    2008-01-01

    In this thesis, microbial conversion of water-soluble, highly toxic forms of selenium (selenate, selenite) to less bioavailable elemental selenium was investigated. By the exploitation of different groups of microorganisms (selenium-respiring, nitrate-reducing and sulfate-reducing bacteria,

  4. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014 . Scientific Opinion on the safety of vitamin D - enriched UV - treated baker‘s yeast

    DEFF Research Database (Denmark)

    Tetens, Inge; Poulsen, Morten

    2014-01-01

    , fine pastry and food supplements. The Panel considers that the provided compositional data, the specification, the data from batch testing, data on the stability on the production process are sufficient and do not give rise to safety concerns. The Panel concludes that the data provided are sufficient...... and do not give rise to safety concerns.The applicant intends to use the NFI as an alternative source of vitamin D for food supplements and for fortification of yeast-leavened bread, rolls and fine pastry at maximum concentrations of 5 μg vitamin D2 per 100 g of these foods. The applicant provided....../100 g bread, rolls and fine pastry, it is highly unlikely that Tolerable Upper Intake Levels as established by EFSA (EFSA NDA Panel, 2012) are exceeded. The Panel considers that UV-treated baker’s yeast exhibiting an enhanced content of vitamin D2 is safe under the intended conditions of use....

  5. Impact of Selenium Addition to Animal Feeds on Human Selenium Status in Serbia

    Directory of Open Access Journals (Sweden)

    Zoran Pavlovic

    2018-02-01

    Full Text Available Research conducted during the 1980s demonstrated Se deficiency in humans. Increased inclusion of selenium in animal feeds started from the year 2000 onwards. The aim of this study was to estimate the effects of selenium inclusion in animal feeds on human selenium status and dietary habits of the Serbian population related to food of animal origin. Plasma selenium concentration in healthy adult volunteers, including residents of one of the regions with the lowest (Eastern Serbia, n = 60 and of one of the regions with the highest Se serum levels reported in the past (Belgrade, n = 82, was determined by hydride generation atomic absorption spectrometry. Multivariate analysis was employed to determine the correlation between Se plasma levels and dietary intake data derived from food frequency questionnaires and laboratory tests. The mean plasma Se level of the participants was 84.3 ± 15.9 μg/L (range: 47.3–132.1 μg/L, while 46% of participants had plasma Se levels lower than 80 μg/L. Frequency of meat, egg, and fish consumption was significantly correlated with plasma selenium level (r = 0.437, p = 0.000. Selenium addition to animal feed in the quantity of 0.14 mg/kg contributed to the improvement of human plasma selenium levels by approximately 30 μg/L.

  6. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    Science.gov (United States)

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  7. Production of Sophorolipid from an Identified Current Yeast, Lachancea thermotolerans BBMCZ7FA20, Isolated from Honey Bee.

    Science.gov (United States)

    Mousavi, Fereshteh; Beheshti-Maal, Keivan; Massah, Ahmadreza

    2015-08-01

    Biosurfactants are a family of diverse amphipathic molecules that are produced by several microorganisms such as bacteria, molds, and yeasts. These surface active agents have several applications in agriculture, oil processing, food, and pharmaceutical industries. In this research using YMG and YUG culture media, a native yeast strain, HG5, was isolated from honey bee. The oil spread test as a screening method was used to evaluate biosurfactant production by the yeast HG5 isolate. The 5.8s-rDNA analysis confirmed that the isolated yeast was related to Lachancea thermotolerans. We named this strain Lachancea thermotolerans strain BBMCZ7FA20 and its 5.8s-rDNA sequence was deposited in GenBank, NCBI under accession number of KM042082.1. The best precursor of biosurfactant production was canola oil and the sophorolipid amount was measured for 24.2 g/l. The thin layer chromatography and Fourier Transform Infrared Spectroscopy analysis showed that the extracted biosurfactant from Lachancea thermotolerans was sophorolipid. In conclusion, this is the first report of sophorolipid production by a native yeast Lachancea thermotolerans BBMCZ7FA20 we isolated from the honey bee gut collected from an apiary farm in Saman, Chaharmahal Bakhtiari province, Iran. We suggested that some cost-effective supplements such as canola oil, sunflower oil, and corn oils could be applied for increasing the sophorolipid production by this native yeast strain. According to several applications of biosurfactants in today world, the production of sophorolipid by Lachancea thermotolerans could be considered as a potential in the current industrial microbiology and modern microbial biotechnology.

  8. Determination of selenium in BCR single cell protein via destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Zegers, C.

    1978-10-01

    The amount of selenium in single cell protein (SCP), a product of BP Research Centre at Sunbury-at-Thames, England, was determined by neutron activation analysis. The SCP-samples were irradiated in the reactor of the Interuniversity Reactor Institute at Delft, in a neutron flux of 1.0 x 10 13 n/cm 2 s for 24 hours. After chemical destruction of the samples the amount of selenium was determined by measuring the γ-peaks of selenium-75

  9. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    Science.gov (United States)

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  10. Long-term selenium status in humans

    International Nuclear Information System (INIS)

    Baskett, C.K.; Spate, V.L.; Mason, M.M.; Nichols, T.A.; Williams, A.; Dubman, I.M.; Gudino, A.; Denison, J.; Morris, J.S.

    2001-01-01

    The association of sub-optimal selenium status with increased risk factors for some cancers has been reported in two recent epidemiological studies. In both studies the same threshold in selenium status was observed, below which, cancer incidence increased. To assess the use of nails as a biologic monitor to measure the long-term selenium status, an eight-year longitudinal study was undertaken with a group of 11 adult subjects, 5 women and 6 men. Selenium has been measured by instrumental neutron activation analysis. Differences between fingernails and toenails with be discussed. In addition, the results will be discussed in the context of the long-term stability of the nail monitor to measure selenium status during those periods when selenium determinants are static; and the changes that occur as a result of selenium supplementation. (author)

  11. The production of arabitol by a novel plant yeast isolate Candida parapsilosis 27RL-4

    Directory of Open Access Journals (Sweden)

    Kordowska-Wiater Monika

    2017-10-01

    Full Text Available Polyalcohol arabitol can be used in the food and pharmaceutical industries as a natural sweetener, a dental caries reducer, and texturing agent. Environmental samples were screened to isolate effective yeast producers of arabitol. The most promising isolate 27RL-4, obtained from raspberry leaves, was identified genetically and biochemically as Candida parapsilosis. It secreted 10.42– 10.72 g l-1 of product from 20 g l-1 of L-arabinose with a yield of 0.51 - 0.53 g g-1 at 28°C and a rotational speed of 150 rpm. Batch cultures showed that optimal pH value for arabitol production was 5.5. High yields and productivities of arabitol were obtained during incubation of the yeast at 200 rpm, or at 32°C, but the concentrations of the polyol did not exceed 10 g l-1. In modified medium, with reduced amounts of nitrogen compounds and pH 5.5-6.5, lower yeast biomass produced a similar concentration of arabitol, suggesting higher efficiency of yeast cells. This strain also produced arabitol from glucose, with much lower yields. The search for new strains able to successfully produce arabitol is important for allowing the utilization of sugars abundant in plant biomass.

  12. Marine Lipids (Omega-3 Oil) - Stability of Oil and Enriched Products During Production and Storage

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall

    2015-01-01

    The awareness of health benefits of marine lipids with a high content of omega-3 poly unsaturated fatty acids from fish and algae oil has led to an increased intake as oil and in products. However, these lipids are highly susceptible to lipid oxidation, which results in the formation of undesirable...... off-flavours and gives rise to unhealthy compounds such as free radicals and reactive aldehydes. Necessary prerequisites for successful development of omega-3 enriched products are that the oil used for enrichment is of a high quality and low in oxidation products and that oxidation of the lipids...

  13. Investigation of Antibacterial Properties of Yeast Strains Isolated from Iranian Richal and Traditional Dairy Products in Armenia

    Directory of Open Access Journals (Sweden)

    F Karimpour

    2016-09-01

    Full Text Available Background & aim:The use of bio preservative or strains as sources are interesting for food bioprocessing technologist,   and is one of the latest methods to increase the shelf life of food by the health authorities . The present study aimed to investigate the antibacterial activity of supernatants of yeasts isolated from Richal as a traditional dairy product and fermented dairy products in Armenia. Methods: In the present experimental study, the purified supernatant of 77 strains of Armenian yeast products and 12 strains from Iranian Richal were isolated. The purified supernatant were tested against three strains as food spoilages bacteria includes: B. subtilis 17-89, B. Thuringensis17-89, S.typhimuium G-38 , on 3media in 2 condition as aerobic and anaerobic. The inhibition zone of the supernatant were measured   and reported as antibacterial activity. Data were analyzed using statistical tests. Result: A total of 89 strains of yeasts, three species of Rachel and 9 strains of Armenian products (13.5% percent had demonstrated antibacterial activity. T86 strains of Armenian yeasts and FA1 (25 of Rachel had shown more ZOI and antibacterial activity on three media at both aerobic and anaerobic conditions. Comparing the mean of ZOI upon three corruption factors, Rachel strains were significantly different (p <0.05. The highest and lowest effect was observed on Bacillus subtilis effect and Salmonella typhimurium respectively. Conclusion: The results indicated that the yeast strains isolated in anaerobic and aerobic conditions on spoilage bacteria had antibacterial activity effect. Thus, it could be concluded that adding the yeast or its supernatant to food as a bio preservative, may introduce a operative product to the food industry.

  14. Dietary habits and selenium intake of residents in mountain and coastal communities in Japan.

    Science.gov (United States)

    Miyazaki, Yukiko; Koyama, Hiroshi; Sasada, Yoko; Satoh, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2004-10-01

    We used a Simple Food Frequency Questionnaire (SFFQ) in combination with other dietary approaches to estimate the selenium intake from different food groups based on the average long-term diet, in two rural communities in Japan, one in a mountain area and the other in a coastal area. The intake frequencies of rice and wheat products were significantly different in the two districts. The intake frequencies of fish, meat, and eggs, which are rich in selenium, were not significantly different. The mean dietary selenium intake, estimated from the SFFQ and the 24-h recall method, was 82.7 microg/d (n=234) (range 19.2-180.1 microg/d) in the mountain community. The mean dietary selenium intake estimated from the SFFQ and average value of the normal portion size was 118.0 microg/d (n=123) (range 22.6-255.3 microg/d) in the coastal community. These estimated mean values exceeded the Japanese RDA, although the range of daily selenium intake was large. In the mountain community, fish made the largest contribution to dietary selenium intake (48.2% of daily total), followed by eggs (24.3%), and meat (17.0%). In the coastal community, fish accounted for 57.7% of daily total selenium intake, followed by meat (17.5%), and eggs (16.1%). In both districts, the total contribution of rice and wheat products was around 10%. It was found that the contribution of fish to dietary selenium intake was high and the contribution of cereals was low among Japanese.

  15. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    Science.gov (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  16. Steamed bread enriched with quercetin as an antiglycative food product: its quality attributes and antioxidant properties.

    Science.gov (United States)

    Lin, Jing; Gwyneth Tan, Yuan Xin; Leong, Lai Peng; Zhou, Weibiao

    2018-06-06

    Quercetin, a natural antiglycative agent, was incorporated into steamed bread to produce a functional food that has high potential to lower the risk of diabetes. With the incorporation of quercetin at 1.20, 2.40, and 3.60%, the volume of steamed bread significantly decreased and the hardness of the crumb correspondingly increased with incremental quercetin content, while incorporation levels below 1.20% had no impact. Within this range of enrichment (1.2-3.6%), quercetin negatively affected the yeast activity with significantly less CO2 produced in dough during proofing. The wheat protein structure was altered by quercetin in terms of a higher level of β-sheets and a lower level of β-turns. The antioxidant capacity of the steamed bread with quercetin (0.05-0.2%) was significantly enhanced dose-dependently. A high inhibitory activity of quercetin-enriched steamed bread (0.05-0.2%) against fluorescent advanced glycation endproducts (AGEs) via several different mechanisms was observed. The inhibition of total AGEs from 0.2% quercetin-enriched steamed bread was around 40% during in vitro protein glycation. Overall, the results support quercetin-enriched steamed bread to be a promising functional food with high antioxidant and antiglycation properties.

  17. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    Science.gov (United States)

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  18. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT

    Directory of Open Access Journals (Sweden)

    Holly L. Nicastro

    2013-04-01

    Full Text Available The Selenium and Vitamin E Cancer Prevention Trial (SELECT was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention.

  19. Selenium for preventing cancer.

    Science.gov (United States)

    Vinceti, Marco; Filippini, Tommaso; Del Giovane, Cinzia; Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice Pa; Horneber, Markus; D'Amico, Roberto; Crespi, Catherine M

    2018-01-29

    This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently

  20. Improved vanillin production in baker's yeast through in silico design

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Matos, Cláudia; Møller, Birger L.

    2010-01-01

    Background: Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has...... recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results: Expression of a glycosyltransferase from Arabidopsis...

  1. Selenium and Lung Cancer: A Systematic Review and Meta Analysis

    Science.gov (United States)

    Fritz, Heidi; Kennedy, Deborah; Fergusson, Dean; Fernandes, Rochelle; Cooley, Kieran; Seely, Andrew; Sagar, Stephen; Wong, Raimond; Seely, Dugald

    2011-01-01

    Background Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies. Methods and Findings Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serumselenium (≥121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61–1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70–3.24); and all-cause-death, OR 0.93 (95%CI 0.79–1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy. Conclusions Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context. PMID:22073154

  2. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    Science.gov (United States)

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  3. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    Directory of Open Access Journals (Sweden)

    Alberto E. León

    2015-01-01

    Full Text Available The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  4. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Science.gov (United States)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  5. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto

    1991-01-01

    /l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium levels...

  6. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  7. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  8. Biofortification and phytoremediation of selenium in China

    Science.gov (United States)

    Biofortification is an agricultural process that increases the uptake and accumulation of specific nutrients, e.g. selenium (Se), in agricultural food products through plant breeding, genetic engineering, and manipulation of agronomic practices. The development and uses of biofortified agricultural ...

  9. Selection and Characterization of Potential Baker’s Yeast from Indigenous Resources of Nepal

    OpenAIRE

    Tika B. Karki; Parash Mani Timilsina; Archana Yadav; Gyanu Raj Pandey; Yogesh Joshi; Sahansila Bhujel; Rojina Adhikari; Katyayanee Neupane

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker’s yeast and compare them with the commercial baker’s yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wa...

  10. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  11. Selenium in food and health

    National Research Council Canada - National Science Library

    Reilly, Conor

    2006-01-01

    ...) to be a carcinogen and banned as an additive in food. Selenium is considered by some to be a serious hazard to the environment and to animal health. Selenium-contaminated water has brought deformity and death to wildlife in nature reserves in western USA. There is even concern that because of selenium contamination of soil, crops supplied to the great cities of California could become unfit for human consumption. In large areas of China, endemic selenium toxicity is a hazard for locals who depend on cr...

  12. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.

    Science.gov (United States)

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-03-28

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.

  13. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  14. Effect of chromium enriched fermentation product of barley and brewer’s yeast and its combination with rosiglitazone on experimentally induced hyperglycaemia in mice

    Directory of Open Access Journals (Sweden)

    Cekić Vlada

    2011-01-01

    Full Text Available Introduction. In the recent years, herbal preparations have been more used to treat diabetes. Dietetic supplement based on barley and beer yeast enriched with chromium (BBCr is registered in Serbia as a supplement in the treatment of type 2 diabetes. Objective. To investigate the effect of the preparation based on barley and brewer’s yeast with chromium (BBCr, rosiglitazone (R and their combination (BBCr+R on fasting glycaemia and glycaemia in mice after glucose, adrenalin and alloxan application. Methods. The animals were divided into three groups: glucose 500 mg/kg (I; adrenalin 0.2 mg/kg (II; and alloxan 100 mg/kg (III and into subgroups according to the substance they received (BBCr: 750 mg/kg, R: 0.75 mg/kg and BBCr+R. Each animal was its own control in respect of glycaemia before and after the treatment with test substances, except for group III which contained a placebo subgroup. Results. BBCr caused a significant decrease of fasting glycaemia and significant reduction of glycaemia after glucose load compared to the values before treatment (7.4±0.6 mmol/l vs 9.2±0.6 mmol/l; p=0.01. R and BBCr+R significantly decreased glycaemia after adrenalin load (R: 8.6±1.8 mmol/l vs 15.4±3.2 mmol/l; p=0.004; BBCr+R: 9.6±2.4 mmol/l vs 15.0±4.4 mmol/l; p=0.04. After alloxan application the glycaemia was significantly lower in the subgroups treated with BBCr, R and BBCr+R compared to placebo subgroup (10.1±8.0 mmol/l vs 6.8±2.7 mmol/l vs 13.5±9.7 mmol/l vs 24.5±4.7 mmol/l; p=0.001. Conclusion. Pretreatment with BBCr caused a significant reduction of fasting glycaemia and glycaemia after glucose load. Rosiglitazone and BBCr+R caused a significant reduction of glycaemia after adrenalin load. Pretreatment with BBCr, R and BBCr+R prevented the onset of experimental diabetes caused by alloxan, which was confirmed by histological analysis of pancreas tissue.

  15. Quantitative determination of selenium metabolites in human urine by LC-DRC-ICP-MS

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Bendahl, L.; Jacobsen, N.W.

    2005-01-01

    M ammonium acetate and 5% methanol with a pH of 9.25 and quantified by standard addition. Samples were collected from 8 volunteers before and after 5 days ingestion of 100 mu g Se day(-1) in form of selenized yeast. The average concentration of (SeGal-NH2) before and after selenium intake was 1.4 and 1.9 mu...... g Se L-1, respectively, while the average concentration of Se-Gal-N-Ac increased from 2.6 to 11.6 mu g Se L-1 before and after selenium consumption. Detection limits calculated on basis of three times the standard deviation on peak areas of 2 mu g Se L-1 solutions were 0.1 mu g Se L-1 for SeGal-NH2...... chromatographic system in which SeGal-NH3+ was separated from the trimethylselenonium ion. None of the samples contained TMSe+ in detectable amounts. Three sample introduction systems were compared-a microconcentric nebuliser in combination with a cyclonic spray chamber (MCN), a direct injection nebuliser (DIN...

  16. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  17. Selenium for preventing cancer

    Science.gov (United States)

    Vinceti, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice PA; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cinzia

    2015-01-01

    Background This review is an update of the first Cochrane publication on selenium for preventing cancer (Dennert 2011). Selenium is a metalloid with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for: an aetiological relation between selenium exposure and cancer risk in humans? andthe efficacy of selenium supplementation for cancer prevention in humans? Search methods We conducted electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2013, Issue 1), MEDLINE (Ovid, 1966 to February 2013 week 1), EMBASE (1980 to 2013 week 6), CancerLit (February 2004) and CCMed (February 2011). As MEDLINE now includes the journals indexed in CancerLit, no further searches were conducted in this database after 2004. Selection criteria We included prospective observational studies (cohort studies including sub-cohort controlled studies and nested case-control studies) and randomised controlled trials (RCTs) with healthy adult participants (18 years of age and older). Data collection and analysis For observational studies, we conducted random effects meta-analyses when five or more studies were retrieved for a specific outcome. For RCTs, we performed random effects meta-analyses when two or more studies were available. The risk of bias in observational studies was assessed using forms adapted from the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies; the criteria specified in the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the risk of bias in RCTs. Main results We included 55 prospective observational studies (including more than 1,100,000 participants) and eight RCTs (with a total of 44,743 participants). For the observational studies, we found lower cancer incidence (summary odds ratio (OR) 0

  18. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  19. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    glucose without a physical and chemical pre-treatment. The pre-treatment processes normally applied on the different substrates are acidic hydrolysis, steam explosion and wet oxidation. A problem for most pretreatment methods is the generation of compounds that are inhibitory towards the fermenting microorganisms, primarily phenols. Degradation products that could have inhibitory action in later fermentation steps are avoided during pre-treatment by wet oxidation. Followed by pre treatment, hydrolysed with enzymes known as cellulases and hemicellulases, which hydrolyse cellulose and hemicellulose respectively. The production of bioethanol requires two steps, fermentation and distillation. Practically all ethanol fermentation is still based on Saccharomyces cerevisiae . The fermentation using thermotolerant yeasts has more advantageous in that they have faster fermentation rates, avoid the cooling costs, and decrease the over all fermentation costs, so that ethanol can be made available at cheaper rates. In addition they can be used for efficient simultaneous saccharification and fermentation of cellulose by cellulases because the temperature optimum of cellulase enzymes (about 40 ° C to 45 ° C) is close to the fermentation temperature of thermotolerant yeasts. Hence selection and improvement of thermotolerant yeasts for bioconversion of lignocellulosic substrates is very useful.

  20. Molecular comparisons for identification of food spoilage yeasts and prediction of species that may develop in different food products

    Science.gov (United States)

    Spoilage of foods and beverages by yeasts is often characterized by objectionable odors, appearance, taste, texture or build-up of gas in packaging containers, resulting in loss of the product. Seldom is human health compromised by products spoiled by yeasts even though some spoilage is caused by sp...

  1. Continuous Production of Ethanol from Starch Using Glucoamylase and Yeast Co-Immobilized in Pectin Gel

    Science.gov (United States)

    Giordano, Raquel L. C.; Trovati, Joubert; Schmidell, Willibaldo

    This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silicaenzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/1 of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/1 of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/1/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10-4 cm/s.

  2. Production and characterization Te-peptide by induced autolysis of Saccharomyces cerevisiae.

    Science.gov (United States)

    Morya, V K; Dong, Shin Jae; Kim, Eun-ki

    2014-04-01

    Recently, the interest in mimicking functions of chalcogen-based catalytic antioxidants like selenoenzymes, has been increased. Various attempts had been done with selenium, but very few attempts were carried out with tellurium. Bio-complex formation and characterization of tellurium was not tried earlier by using any organism. The present study was focused on tellurium peptide production, characterization, and bioactivity assessment especially Mimetic to glutathione peroxidase (GPx). The production was achieved by the autolysis of total proteins obtained from Saccharomyces cerevisiae ATCC 7752 grown with inorganic tellurium. The GPx-like activity of the hydrolyzed tellurium peptide was increased when prepared by autolysis, but decreased when prepared by acid hydrolysis. Tellurium peptide produced by autolysis of the yeast cell showed increased GPx-like activity as well as tellurium content. Tellurium peptide showed little toxicity, compared to highly toxic inorganic tellurium. The results showed the potential of tellurium peptide as an antioxidant that can be produced by simple autolysis of yeast cells.

  3. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  4. Production of sophorolipids biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade

    Science.gov (United States)

    Sophorolipid production was tested for 26 strains representing 19 species of the Starmerella yeast clade, including S. bombicola and Candida apicola, which were previously reported to produce sophorolipids. Five of the 19 species tested showed significant production of sophorolipids: S. bombicola, ...

  5. EVALUACIÓN DEL CONTENIDO DE NUTRIENTES Y PRODUCCIÓN DE BIOMASA EN CEPAS DE LEVADURA COLOMBIANAS Y COMERCIALES EVALUATION OF THE NUTRIENT CONTENT AND BIOMASS PRODUCTION IN COLOMBIAN AND COMMERCIAL YEAST STRAINS

    Directory of Open Access Journals (Sweden)

    Nohora Patricia Manovacía Moreno

    2008-12-01

    Full Text Available En el presente estudio se evaluó la producción de biomasa, el contenido de algunos nutrientes (selenio, carbohidratos totales y proteína microbiana y el consumo de sustrato de cepas de levaduras comerciales y nativas pertenecientes al Banco de Germoplasma de la Nación Colombiana, manejado por la Corporación Colombiana de Investigación Agropecuaria, CORPOICA. Inicialmente se determinó el crecimiento de tres levaduras nativas seleccionadas al azar bajo diferentes condiciones de pH, temperatura y tiempo de fermentación usando un medio líquido de extracto de malta. Dentro de estas condiciones, las mejores respuestas se observaron a pH de 4,5, 25 °C y 24 horas de fermentación. Usando estas condiciones se evaluaron 100 accesiones de levaduras nativas y 4 comerciales por su producción de biomasa, contenido de selenio, carbohidratos totales y proteína microbiana y consumo de sustratos. De acuerdo con estas variables y un análisis de conglomerados fue posible agrupar las levaduras en grupos homogéneos. Hubo elevada variabilidad en la producción de biomasa entre las 104 cepas evaluadas, probablemente debido a la variabilidad biológica existente en la población estudiada. Los rendimientos de biomasa variaron entre 0,101 y 0,480 g de biomasa g-1 de azúcar consumido y las velocidades de producción de biomasa oscilaron entre 0,040 y 0,185 g L-1 h-1. El consumo promedio de nutrientes (g de nutrientes consumidos/ g de nutrientes disponibles fue de 91,6% en el caso de los carbohidratos y de 17,8% en el caso de la proteína. Se identificaron diez cepas de superior crecimiento y contenido de nutrientes, cuyo potencial prebiótico y probiótico será evaluado en futuros ensayos In vivo.In the present study biomass production and nutrient (selenium, total carbohydrate and microbial protein were evaluated in both commercial and native yeast isolates from the Colombian Germplasm Bank managed by the Colombian Corporation of Agricultural Research

  6. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  7. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  8. Tellurium Enrichment in Jurassic Coal, Brora, Scotland

    Directory of Open Access Journals (Sweden)

    Liam Bullock

    2017-11-01

    Full Text Available Mid-Jurassic pyritic coals exposed at the village of Brora, northern Scotland, UK, contain a marked enrichment of tellurium (Te relative to crustal mean, average world coal compositions and British Isles Carboniferous coals. The Te content of Brora coal pyrite is more than one order of magnitude higher than in sampled pyrite of Carboniferous coals. The Te enrichment coincides with selenium (Se and mercury (Hg enrichment in the rims of pyrite, and Se/Te is much lower than in pyrites of Carboniferous coals. Initial pyrite formation is attributed to early burial (syn-diagenesis, with incorporation of Te, Se, Hg and lead (Pb during later pyrite formation. The source of Te may have been a local hydrothermal system which was responsible for alluvial gold (Au in the region, with some Au in Brora headwaters occurring as tellurides. Anomalous Te is not ubiquitous in coal, but may occur locally, and is detectable by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS.

  9. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Liu, Lifang; Petranovic, Dina

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes....

  10. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  11. Aquatic Life Criterion - Selenium

    Science.gov (United States)

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  12. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Science.gov (United States)

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effect of Organic Selenium from Se-enriched Alga (Chlorella spp. on Selenium Transfer from Sows to Their Progeny

    Directory of Open Access Journals (Sweden)

    Martin Svoboda

    2009-01-01

    Full Text Available The study was conducted to determine the efficacy of organic Se from Se-enriched alga Chlorella spp. in placental transfer to piglets. In group A (n = 8 the sows were fed during the gestation a diet supplemented with inorganic Se (sodium selenite, 0.3 mg/kg. In group B (n = 8 the diet of the sows was supplemented with organic Se from Se-enriched alga (0.3 mg/kg. The Se concentrations in the whole blood (P P Chlorella spp. in sows resulted in greater transfer of Se to their progeny.

  14. Retention of health-related beneficial components during household preparation of selenium-enriched African catfish (Clarias gariepinus) fillets

    NARCIS (Netherlands)

    Mierke-Klemeyer, S.; Larsen, R.; Oehlenschlaeger, J.; Nunes, M.L.; Schram, E.; Luten, J.B.

    2008-01-01

    Industrial processing and heat treatment of fish muscle generally lead to losses of water-soluble components, some of which may have beneficial health effects. The aim of this work was to determine the retention of taurine, selenium and n-3 polyunsaturated fatty acids when preparing African catfish

  15. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  16. Screening of native yeast from Agave duranguensis fermentation for isoamyl acetate production

    Directory of Open Access Journals (Sweden)

    Gerardo Hernández-Carbajal

    2013-06-01

    Full Text Available In this work, fifty yeast strains, isolated from the spontaneous alcoholic fermentation of Agave duranguensis to produce mezcal, were tested using the double coupling system. These yeasts were from the genera Pichia, Torulaspora, Saccharomyces, Kluyveromyces, Deckera, Hanseniaspora, and Candida. P. fermentans ITD00165 was the best isoamyl acetate producer, yielding 0.38 g/L of ester after incubation for 24 h, while K. marxianus ITD00211 produced 0.32 g/L of ester. Thus P. fermentans TD00165 could be considered as an excellent choice for use in optimization studies of the culture medium and bioreactor operating conditions to develop a process for biotechnological production of isoamyl acetate.

  17. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  18. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    Science.gov (United States)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  19. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  20. Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Berntssen, M H G; Sundal, T K; Olsvik, P A; Amlund, H; Rasinger, J D; Sele, V; Hamre, K; Hillestad, M; Buttle, L; Ørnsrud, R

    2017-11-01

    Depending on its chemical form, selenium (Se) is a trace element with a narrow range between requirement and toxicity for most vertebrates. Traditional endpoints of Se toxicity include reduced growth, feed intake, and oxidative stress, while more recent finding describe disturbance in fatty acid synthesis as underlying toxic mechanism. To investigate overall metabolic mode of toxic action, with emphasis on lipid metabolism, a wide scope metabolomics pathway profiling was performed on Atlantic salmon (Salmo salar) (572±7g) that were fed organic and inorganic Se fortified diets. Atlantic salmon were fed a low natural background organic Se diet (0.35mg Se kg -1 , wet weight (WW)) fortified with inorganic sodium selenite or organic selenomethionine-yeast (SeMet-yeast) at two levels (∼1-2 or 15mgkg -1 , WW), in triplicate for 3 months. Apparent adverse effects were assessed by growth, feed intake, oxidative stress as production of thiobarbituric acid-reactive substances (TBARS) and levels of tocopherols, as well as an overall metabolomic pathway assessment. Fish fed 15mgkg -1 selenite, but not 15mgkg -1 SeMet-yeast, showed reduced feed intake, reduced growth, increased liver TBARS and reduced liver tocopherol. Main metabolic pathways significantly affected by 15mgkg -1 selenite, and to a lesser extent 15mgkg -1 SeMet-yeast, were lipid catabolism, endocannabinoids synthesis, and oxidant/glutathione metabolism. Disturbance in lipid metabolism was reflected by depressed levels of free fatty acids, monoacylglycerols and diacylglycerols as well as endocannabinoids. Specific for selenite was the significant reduction of metabolites in the S-Adenosylmethionine (SAM) pathway, indicating a use of methyl donors that could be allied with excess Se excretion. Dietary Se levels to respectively 1.1 and 2.1mgkg -1 selenite and SeMet-yeast did not affect any of the above mentioned parameters. Apparent toxic mechanisms at higher Se levels (15mgkg -1 ) included oxidative stress and

  1. Selenium in Graves' disease

    Directory of Open Access Journals (Sweden)

    Jadwiga Kryczyk

    2013-05-01

    Full Text Available The aim of this study was to present the current state of knowledge of the role of selenium in Graves’ disease. Recently, in the pathogenesis and course of this autoimmune disease, more attention has been paid to the relationship between oxidative stress and the antioxidant system, where selenium compounds play an important role. The thyroid is the organ with the highest selenium concentration in the human body. Selenium compounds, having antioxidant properties, protect thyrocytes against the destructive effects of reactive oxygen species (ROS, which are generated during the synthesis of thyroid hormones. Therefore, strengthening the body’s defense mechanisms, which protect against the formation and activity of ROS during medical treatment of Graves’ disease patients, may be an effective adjuvant in commonly used methods of therapy.

  2. Process for the production of protein enriched fractions from vegetable materials

    NARCIS (Netherlands)

    Dijkink, B.H.; Willemsen, J.H.A.

    2006-01-01

    The present invention provides a method for the production of a protein enriched fraction and a fibre enriched fraction from a vegetable material, wherein the vegetable material comprises a total fat content of 0.1 to 22.0 % by dry weight of the total vegetable material and a total starch content of

  3. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production.

    Science.gov (United States)

    Duarte, Whasley Ferreira; Dias, Disney Ribeiro; de Melo Pereira, Gilberto Vinicius; Gervásio, Ivani Maria; Schwan, Rosane Freitas

    2009-04-01

    The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml(-1). During indigenous fermentation, yeast population increased from 3.7 log CFU ml(-1) to 8.1 log CFU ml(-1) after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.

  4. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    Science.gov (United States)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  5. Acute selenium poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Gabbedy, B J; Dickson, J

    1969-10-01

    An outbreak of sodium selenite poisoning is reported in which 180 of 190 six-weeks-old lambs died. The estimated dose rate of the selenium was 6.4 mg/kg body weight. Liver concentrations of selenium at the time of poisoning averaged 64 ppM and 15 days later liver and kidney concentrations of selenium averaged 26 ppM and 7.4 ppM respectively.

  6. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  7. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  8. Effect of selenium supplementation on thyroid antibodies

    International Nuclear Information System (INIS)

    Kvicala, J.; Hrda, P.; Zamrazil, V.; Nemecek, J.; Hill, M.; Jiranek, V.

    2009-01-01

    Selenium is an essential component of selenoproteins, enzymes with extensive regulatory and protective effect in organism. Immunological effects of Se are documented and are distinct even above concentrations necessary for maximal activity of selenoenzymes. Therefore, we investigated effect of supplementation by 100 μg of yeast-bound Se on concentrations of thyroid autoantibodies TPOAb and TgAb in the group of 253 seniors living in the Asylum Houses of South Bohemia. Increase of serum selenium from 59 to 150 μg Se/L serum in supplemented group and from 59 to 72 μg Se/L serum in group with placebo were detected by Instrumental Neutron Activation Analysis (INAA) and proved increased Se intake during the trial. Autoantibodies were analyzed by ELISA at the beginning of the trial and after 1 year. Statistical evaluation of results in whole groups (regardless of increased autoantibodies) by ANOVA manifested significant decrease of TPOAb and TgAb in non-supplemented group while supplementation did not effect serum autoantibodies concentrations. Evaluation of groups of seniors created from those with increased autoantibodies, ANOVA demonstrated decrease of TPOAb in both groups but Se supplementation did not affect the decrease. In opposite, TgAb increased significantly and Se supplementation led to higher increase of TgAb. Recent results of possibility to decrease serum concentration of TPOAb proved this effect only for high TPOAb concentrations and for higher Se supplements. From this point of view, it is necessary to conduct subsequent trials with the patients with autoimmune thyreoiditis with different levels of autoantibodies and detect also serum Se levels. (author)

  9. Enrichment of fission products in ionic salt bath by countercurrent electromigration

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Takagi, Ryuzo; Okada, Isao; Fujita, Reiko.

    1997-01-01

    We have proposed to apply a countercurrent electromigration method to enrichment of fission products in ionic melts. In the test runs, for this purpose, we have enriched Cs, Sr and Gd from their dilute melts. All of Cs, Sr and Gd were much concentrated at the area near the anode in the migration tubes. Gd and Sr were more concentrated than Cs. It was found that the electromigration method can be applied to the salt bath refleshing process after an electrorefining process, which removes fission products of multivalent cations. (author)

  10. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  11. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  13. Technological characteristics of yeast-containing cakes production using waxy wheat flour

    Directory of Open Access Journals (Sweden)

    K. Iorgachova

    2016-12-01

    Full Text Available This article shows the feasibility of using waxy wheat flour, the starch of which doesn`t contain amylose, in order to stabilize the quality of yeast-containing cakes. The influence of the waxy wheat flour mass fraction and the stage of its adding on the physical, chemical and organoleptic characteristics of the products are studied. According to the technological properties of a new type of wheat flour, two methods of its adding are proposed ‒ adding the maximum amount of waxy wheat flour at dough kneading stage or using the mixture of waxy and bakery wheat flours for kneading sourdough and dough. It is shown that the replacement of 60 % bakery wheat flour with waxy wheat flour in the recipe of yeast-containing cakes at the dough kneading stage contributes to the production of products with higher quality and organoleptic characteristics compared to both the control and cakes based on a mixture of different types of wheat flour. These samples are characterized by increased by 1.7 – 11.3 % specific volume, porosity – 2.6 – 5.5 % and the total deformation of the crumb – 6.5 – 41.4 %.

  14. Trace Element Analysis of Selenium

    International Nuclear Information System (INIS)

    Soliman, M.S.A.

    2010-01-01

    The present thesis divided into four chapters as follows:Chapter (1):This chapter contains an introduction on different oxidation states of organic and inorganic species for selenium in environmental and biological samples, the process for separation of selenium from these samples and the importance of selenium as a component for these samples. Also gives notes about the techniques which are used in the elemental analysis for selenium species and the detection limits for selenium in these techniques, selenium species in human body and the importance of these species in protecting the body from the different types of cancer and the sources of selenium in environmental samples (soil and water) and distribution levels of selenium in these samples.Chapter (2):This chapter is divided into two parts :The first part deals with the sample collection process for environmental samples (underground water, soil) and the wet digestion ( microwave digestion ) process of soil samples. It also contains the theory of work of the closed microwave digestion system.The second part contains detailed information concerning the theoretical considerations of the used analytical techniques. These techniques include Hydride generation - Atomic Absorption Spectrometer (HG-AAS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Neutron Activation Analysis (NAA).Chapter (3): This chapter includes the methods of sampling, sample preparation, and sample digesition. The measures of quality assurance are disscused in this chapter. It describes in details the closed microwave digestion technique and the analytical methods used in this study which are present in Central Laboratory for Elemental and Isotopic Analysis (CLEIA) and the Egypt Second Research Reactor (ETRR-2). The described techniques are Atomic Absorption Spectrometer (AAS 6 vario, Analytical Jena GmbH, Germany), JMS-PLASMAX2 Mass Spectrometer (ICP-MS) and the Egypt Second Research Reactor (NAA).

  15. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Yang Yu; Bo-Hong Jiang; Kow-Jen Duan [Tatung University, Tapei, Taiwan (China). Department of Bioengineering

    2013-03-15

    Carrot pomace, a major agricultural waste from the juice industry, was used as a feedstock for bioethanol production by fermentation with the thermotolerant yeast Kluyveromyces marxianus. Treatment of the carrot pomace with Accellerase(TM) 1000 and pectinase at 50 °C for 84 h, resulted in conversion of 42% of its mass to fermentable sugars, mainly glucose, fructose, and sucrose. Simultaneous saccharification and fermentation (SSF) at 42 °C was performed on 10% (w/v) carrot pomace; the concentration of ethanol reached 18 g/L and the yield of ethanol from carrot pomace was 0.18 g/g. The highest ethanol concentration of 37 g/L was observed with an additional charge of 10% supplemented to the original 10% of carrot pomace after 12 h; the corresponding yield was 0.185 g/g. Our results clearly demonstrated the potential of combining a SSF process with thermotolerant yeast for the production of bioethanol using carrot pomace as a feedstock.

  17. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  18. Acute selenium poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Shortridge, E H; O' Hara, P J; Marshall, P M

    1971-01-01

    Three hundred and seventy-six (67%) of 557 calves of approximately 150-200 kg live-weight died following subcutaneous injection of a solution containing 100 mg selenium as sodium selenite. Eight per cent of the 254 heifer calves and 56% of the 303 steers died. The calves had endured the stress of being weaned twice and held in stockyards twice as well as encountering wet weather during the 4 days before receiving the selenium. The heifer calves were also vaccinated with Br. abortus strain 19 vaccine at the same time as receiving the selenium. The clinical signs and pathological findings of circulatory failure and myocardial damage were similar to those previously reported in acute selenium poisoning.

  19. Zinc-enriched (ZEN) terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Jo, S M; Danscher, G; Schrøder, H D

    2000-01-01

    The general distribution of zinc-enriched (ZEN) terminals in mouse spinal cord was investigated at light microscopic level by means of zinc transporter-3 immunohistochemistry (ZnT3(IHC)) and zinc selenium autometallography (ZnSe(AMG)). Staining for ZnT3(IHC) corresponded closely to the Zn...... dendrites. These ZEN terminals in the ventral horn were in general larger than those in the dorsal horn. This is the first description of the pattern of ZEN terminals in mouse spinal cord....

  20. The Evolving Role of Selenium in the Treatment of Graves' Disease and Ophthalmopathy

    Directory of Open Access Journals (Sweden)

    Leonidas H. Duntas

    2012-01-01

    Full Text Available Graves' disease (GD and ophthalmopathy (GO are organ-specific autoimmune-inflammatory disorders characterized by a complex pathogenesis. The inflammatory process is dominated by an imbalance of the antioxidant-oxidant mechanism, increased production of radical oxygen species (ROS, and cytokines which sustain the autoimmune process and perpetuate the disease. Recently, selenium, which is a powerful antioxidant, has been successfully applied in patients with mild GO, slowing the progression of disease, decreasing the clinical activity score, and appreciably improving the quality of life. The mechanisms of selenium action are variable. The aim of this review is to summarize the actions of selenium in GD and GO. Selenium as selenocysteine is incorporated in selenoproteins, such as glutathione peroxidase which catalyzes the degradation of hydrogen peroxide and lipid hydroperoxide that are increasingly produced in hyperthyroidism. Moreover, selenium decreases the formation of proinflammatory cytokines, while it contributes, in synergy with antithyroid drugs, to stabilization of the autoimmune process in GD and alleviation of GO. It is now to be clarified whether enforced nutritional supplementation has the same results and whether prolonging selenium administration may have an impact on the prevention of disease.

  1. Selenium Utilization Strategy by Microalgae

    Directory of Open Access Journals (Sweden)

    Hiroya Araie

    2009-11-01

    Full Text Available The diversity of selenoproteins raises the question of why so many life forms require selenium. Selenoproteins are found in bacteria, archaea, and many eukaryotes. In photosynthetic microorganisms, the essential requirement for selenium has been reported in 33 species belonging to six phyla, although its biochemical significance is still unclear. According to genome databases, 20 species are defined as selenoprotein-producing organisms, including five photosynthetic organisms. In a marine coccolithophorid, Emiliania huxleyi (Haptophyta, we recently found unique characteristics of selenium utilization and novel selenoproteins using 75Se-tracer experiments. In E. huxleyi, selenite, not selenate, is the main substrate used and its uptake is driven by an ATP-dependent highaffinity, active transport system. Selenite is immediately metabolized to low-molecular mass compounds and partly converted to at least six selenoproteins, named EhSEP1–6. The most (EhSEP2 and second-most abundant selenoproteins (EhSEP1 are disulfide isomerase (PDI homologous protein and thioredoxin reductase (TR 1, respectively. Involvement of selenium in PDI is unique in this organism, while TR1 is also found in other organisms. In this review, we summarize physiological, biochemical, and molecular aspects of selenium utilization by microalgae and discuss their strategy of selenium utilization.

  2. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    Science.gov (United States)

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  3. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    Science.gov (United States)

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  4. Effect of selenium on its content in milk and performance of dairy cows in ecological farming

    Directory of Open Access Journals (Sweden)

    Pavel Horký

    2015-08-01

    Full Text Available Currently, the ecological farming is increasingly spread in the European Union. The aim of this relatively young farming method is a friendly approach to agricultural production with an emphasis to deliver healthy raw materials and food to final consumer. Selenium is included in an essential trace micronutrients which are necessary for the proper process of physiological reactions. It is a part of glutathione peroxidase, which is a powerful antioxidant. At present,  selenium-deficiency can occur in feed and food in central Europe. Selenium deficiency is one cause of the higher occurrence of cardiovascular diseases. The aim of the experiment was to study whether the addition of selenium to the diet of dairy cows in ecological farming can increase its concentration in milk and affect quantitative (milk yield and quality (content of protein, fat, lactose, somatic cells and urea milk indicators. The experiment included twenty cows of Holstein breed. The first experimental group of cows (n = 10 was fed with selenium in an amount of 0.3 mg.kg-1 (as selenomethionine in the feed dose. The control group (n = 10 was not fed with the increased selenium in the feed dose. The basic feed dose contained 0.17 mg of Se/kg in the diet. For dairy cows, daily intake was of 20.5 kg of dry matter feed. The duration of the experiment was set at 45 days. The selenium concentration in milk was measured from 0.13 to 0.15 µg.mL-1 in the experimental group of cows during the evaluation. The control group of cows without the addition of selenium to the diet showed a selenium concentration below the detection limit. During the experiment, milk yield, lactose, fat and protein were not affected. A significant decrease (p <0.05 of somatic cells by 58% occurred in milk in the experimental group. The amount of urea was significantly lower in both groups in the experimental (by 52%; p <0.05 and control (50%; p <0.05. These results show that the addition of selenium may increase

  5. Effect of whole yeast cell product supplementation (CitriStim®) on immune responses and cecal microflora species in pullet and layer chickens during an experimental coccidial challenge.

    Science.gov (United States)

    Markazi, Ashley D; Perez, Victor; Sifri, Mamduh; Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2017-07-01

    Three separate experiments were conducted to study the effects of whole yeast cell product supplementation in pullets and layer hens. Body weight gain, fecal and intestinal coccidial oocyst counts, cecal microflora species, cytokine mRNA amounts, and CD4+ and CD8+ T-cell populations in the cecal tonsils were analyzed following an experimental coccidial infection. In Experiment I, day-old Leghorn layer chicks were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product (CitriStim®, ADM, Decatur, IL). At 21 d of age, birds were challenged with 1 × 105 live coccidial oocysts. Supplementation with whole yeast cell product decreased the fecal coccidial oocyst count at 7 (P = 0.05) and 8 (P product and challenged with 1 × 105 live coccidial oocysts on d 25 of whole yeast cell product feeding. Supplementation with whole yeast cell product decreased the coccidial oocyst count in the intestinal content (P product increased relative proportion of Lactobacillus (P product decreased CD8+ T cell percentages (P product and challenged with 1 × 105 live coccidial oocysts on d 66 of whole yeast cell product feeding. At 5 d post-coccidial challenge, whole yeast cell product supplementation down-regulated (P = 0.01) IL-10 mRNA amount. It could be concluded that supplementing whole yeast cell product can help minimize coccidial infection in both growing pullets and layer chickens. © 2017 Poultry Science Association Inc.

  6. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  7. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype

    Directory of Open Access Journals (Sweden)

    Joseph Loscalzo

    2013-01-01

    Full Text Available Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease.

  9. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.

    Science.gov (United States)

    Arrizon, Javier; Fiore, Concetta; Acosta, Guillermina; Romano, Patrizia; Gschaedler, Anne

    2006-01-01

    Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l(-1)) and low (30 g l(-1)) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l(-1) of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.

  10. Influence of Dietary Selenium Species on Selenoamino Acid Levels in Rainbow Trout.

    Science.gov (United States)

    Godin, Simon; Fontagné-Dicharry, Stéphanie; Bueno, Maïté; Tacon, Philippe; Prabhu, Philip Antony Jesu; Kaushik, Sachi; Médale, Françoise; Bouyssiere, Brice

    2015-07-22

    Two forms of selenium (Se) supplementation of fish feeds were compared in two different basal diets. A 12-week feeding trial was performed with rainbow trout fry using either a plant-based or a fish meal-based diet. Se yeast and selenite were used for Se supplementation. Total Se and Se speciation were determined in both diets and whole body of trout fry using inductively coupled plasma mass spectrometry (ICP MS) and high-performance liquid chromatography (HPLC). The two selenoamino acids, selenomethionine (SeMet) and selenocysteine (SeCys), were determined in whole body of fry after enzymatic digestion using protease type XIV with a prior derivatization step in the case of SeCys. The plant-based basal diet was found to have a much lower total Se than the fish meal-based basal diet with concentrations of 496 and 1222 μg(Se) kg(-1), respectively. Dietary Se yeast had a higher ability to raise whole body Se compared to selenite. SeMet concentration in the fry was increased only in the case of Se yeast supplementation, whereas SeCys levels were similar at the end of the feeding trial for both Se supplemented forms. The results show that the fate of dietary Se in fry is highly dependent on the form brought through supplementation and that a plant-based diet clearly benefits from Se supplementation.

  11. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  12. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Growth Rates of Bacillus Species Probiotics using Various Enrichment Media

    Directory of Open Access Journals (Sweden)

    Maryam Poormontaseri

    2017-03-01

    Full Text Available Background: Probiotics are well-known as valuable functional foods to promote specific health benefits to consumers. Some Bacillus bacteria have been recently considered as probiotic and food additives. We aimed to investigate the growing rate of probiotic B. subtilis and B. coagulans using several enrichment media incubated at 37 °C for 24 hours. Methods: Various enrichment media including nutrient broth (NB, tryptic soy broth (TSB, double strength TSB, Mueller Hinton broth (MH, brain-heart infusion broth (BHIB, de Man, Rogosa and Sharpe (MRS, and nutrient yeast extract salt medium (NYSM were used to enrich the probiotics and they were subsequently incubated for 18 h at 37 °C. The bacteria were then enumerated on TSA medium. Results: The results showed that B. subtilis ATCC 6633, B. subtilis PY79, and B. coagulans developed in TSB, double strength TBS, TSB yeast extract, BHIB and NYSM, respectively. Moreover, the formulas were achieved based on the optical density curve and the number of bacteria. Conclusion: Considering that the probiotics are significantly employed as food supplements, it is essential to identify appropriate enrichment media to proliferate these beneficial bacteria.

  14. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  15. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  16. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency

    Science.gov (United States)

    2014-01-01

    Introduction Low plasma selenium concentrations are frequent in critically ill patients. However, whether this is due to systemic inflammation, a deficient nutritional state or both is still not clear. We aimed to determine the factors associated with low plasma selenium in critically ill children while considering the inflammatory response and nutritional status. Method A prospective study was conducted in 173 children (median age 34 months) with systemic inflammatory response who had plasma selenium concentrations assessed 48 hours after admission and on the 5th day of ICU stay. The normal reference range was 0.58 μmol/L to 1.6 μmol/L. The outcome variable was ‘low plasma selenium’, which was defined as plasma selenium values below the distribution median during this period. The main explanatory variables were age, malnutrition, sepsis, C-reactive protein (CRP), and clinical severity scores. The data were analyzed using a Binomial Generalized Estimating Equations model, which includes the correlation between admission and 5th day responses. Results Malnutrition and CRP were associated with low plasma selenium. The interaction effect between these two variables was significant. When CRP values were less than or equal to 40 mg/L, malnutrition was associated with low plasma selenium levels (odds ratio (OR) = 3.25, 95% confidence interval (CI) 1.39 to 7.63, P = 0.007; OR = 2.98, 95% CI 1.26 to 7.06, P = 0.013; OR = 2.49, 95% CI 1.01 to 6.17, P = 0.049, for CRP = 10, 20 and 40 mg/L, respectively). This effect decreased as CRP concentrations increased and there was loose significance when CRP values were >40 mg/L. Similarly, the effect of CRP on low plasma selenium was significant for well-nourished patients (OR = 1.13; 95% CI 1.06 to 1.22, P selenium. This interaction should be considered when interpreting plasma concentrations as an index of selenium status in patients with systemic inflammation as well as in the decision

  17. Biomass production by Antarctic yeast strains: an investigation on the lipid composition

    International Nuclear Information System (INIS)

    Zlatanov, M.; Antova, G.; Angelova-Romova, M.; Pavlova, K.; Georgieva, K.; Rousenova-Videva, S.

    2010-01-01

    Psychrophilic yeast strains Rhodotorula glutinis AL_1_0_7, Sporobolomyces roseus AL_1_0_8, Cryptococcus albidus AL_5_5, Cryptococcus laurentii AL_5_6 and Cryptococcus laurentii AL_5_8 isolated from soil sample taken from the region of the Bulgarien base on Livingston Island, Antarctica, were studied. The biomass production was followed after cultivation of the yeasts in a medium with pH 5.3 at 15°C for 120 h. The biomass concentration by psychrophilic yeast strains was: R. glutinis AL_1_0_7-6.05 g/l, S. roseus AL108-5.78 g/l, Cr. albidus AL_5_5, Cr. laurentii AL_5_6 and Cr. laurentii AL_5_8-6.52 g/l, 6.84 g/l and 6.24 g/l, respectively. The extracted and separated lipids from the samples were supplied to analysis and the compositions of fatty acids, phospholipids, sterols as well as tocopherols were determined. Unsaturated fatty acids, mainly oleic (58.6-63.5%) and of saturated palmitic (18.2-24.5%), predominated in triacylglycerols. Sterols (0.1-0.3%) were valued in the dry yeast biomass. The content of phospholipids, mainly phosphatidylcholine, phosphatidylinositole and phosphatidylethanolamine was found to be in the range of 0.2-1.6%. The quantity of tocopherols was 0-26.3 mg/kg. All of tocopherol classes were established.

  18. The effects of an active live yeast product on the growth performance ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of a rumen-specific, active live yeast (Saccharomyces cerevisiae; SC CNCM I-1077), alone or in combination with an ionophore (lasalocid-Na) in standard feedlot diets, on production performance and carcass quality of lambs. Sixty South African (S.A.) Mutton Merino lambs, ...

  19. Monocyte enrichment from leukapheresis products by using the Elutra cell separator.

    Science.gov (United States)

    Kim, Sinyoung; Kim, Hyun Ok; Baek, Eun-Jung; Choi, Youjeong; Kim, Han-Soo; Lee, Min-Geul

    2007-12-01

    Dendritic cells (DCs), used in clinical trials for cancer immunotherapy, require processing on an expanded scale to conform to current good manufacturing practice guidelines. This study evaluated a large-scale monocyte enrichment procedure with a commercially available cell separator (Elutra, Gambro BCT) and analyzed the capacity of enriched monocytes to differentiate into DCs. Mononuclear cells were collected in two patients with malignant melanoma and seven healthy donors by leukapheresis. Continuous-counterflow elutriation with the Elutra was performed to enrich and purify monocytes from leukapheresis products. Purity and recovery of enriched monocytes were analyzed by flow cytometry. DCs were generated from the elutriated monocytes and characterized by phenotypic surface marker and stimulatory capacity in an allogeneic mixed lymphocyte reaction. In the leukapheresis products, the total MNC count was 7.3 x 10(9) +/- 0.7 x 10(9) and the mean percentage of CD14+ monocytes was 16.5 +/- 3.8 percent, which increased to 68.9 +/- 7.4 percent after elutriation with the Elutra. The mean monocyte recovery was 94.3 percent. Elutriated monocytes were successfully cultured into phenotypically and functionally mature DCs. These results indicate that the Elutra cell separator allows for fast and easy enrichment of monocytes within a closed system. Furthermore, these monocytes can be differentiated into functionally mature DCs. Compared to plastic adherence and immunomagnetic selection methods, the elutriation procedure is inexpensive, efficient, and very effective.

  20. Joint refinery selenium treatability study

    International Nuclear Information System (INIS)

    Meyer, C.L.; Folwarkow, S.

    1993-01-01

    The San Francisco Regional Water Quality Control Board recently established mass limits on discharges of selenium to the San Francisco Bay from several petroleum refineries. The refineries had been working independently to develop control strategies, including both source control and treatment options, for removal of selenium from their discharges. By January 1992, over fifty different combinations of treatment technologies, wastewater streams, and pretreatment steps had been investigated to determine their effectiveness and feasibility as selenium removal processes. No treatment process studied could achieve the required mass limits without serious negative environmental consequences, such as generation of large amounts of hazardous sludge. To better facilitate the development of a feasible selenium treatment process, the six Bay Area refineries shared results of their studies and identified several technologies that, with further work, could be developed further. This additional work is currently being carried out as part of a joint selenium treatability study sponsored by the Western States Petroleum Association. A review of the previous source control and treatment studies, along with a description of the current treatability studies will be discussed

  1. Fish burger enriched by olive oil industrial by-product.

    Science.gov (United States)

    Cedola, Annamaria; Cardinali, Angela; Del Nobile, Matteo Alessandro; Conte, Amalia

    2017-07-01

    Oil industry produces large volume of waste, which represents a disposal and a potential environmental pollution problem. Nevertheless, they are also promising sources of compounds that can be recovered and used as valuable substances. The aim of this work is to exploit solid olive by-products, in particular dry olive paste flour (DOPF) coming from Coratina cultivar, to enrich fish burger and enhance the quality characteristics. In particular, the addition of olive by-products leads to an increase of the phenolic content and the antioxidant activity; however, it also provokes a deterioration of sensory quality. Therefore, to balance quality and sensory characteristics of fish burgers, three subsequent phases have been carried out: first, the quality of DOPF in terms of phenolic compounds content and antioxidant activity has been assessed; afterward, DOPF has been properly added to fish burgers and, finally, the formulation of the enriched fish burgers has been optimized in order to improve the sensory quality. Results suggested that the enriched burgers with 10% DOPF showed considerable amounts of polyphenols and antioxidant activity, even though they are not very acceptable from the sensory point of view. Pre-treating DOPF by hydration/extraction with milk, significantly improved the burger sensory quality by reducing the concentration of bitter components.

  2. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer

    DEFF Research Database (Denmark)

    Denby, Charles M.; Li, Rachel A.; Vu, Van T.

    2018-01-01

    Flowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can...... be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to maximize product titers, tuning expression of pathway enzymes...

  3. Recovery of stream communities from experimental selenium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Swift, M.C.; Kuklinskal, B.; Ferkull, K. [Univ. of Minnesota, Monticello, MN (United States); Allen, K.N.; Hermanutz, R.O.; Roush, T.H.; Hedtke, S.F. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1994-12-31

    The effects of selenium on stream communities and their recovery from those effects were studied at MERS from 1987--1991. Selenium was dosed into two replicate streams each at concentrations of 30, 10, 2.5 and 0 (control) {mu}g L{sup {minus}1} for 18, 30, and 12 months, respectively. Recovery was monitored for three (30) or two (1 0, 2.5) years following cessation of selenium dosing. Selenium rapidly accumulated in the sediment, plants, macroinvertebrates and fish during dosing. Selenium concentrations in sediment, macroinvertebrates, and plants were as high as 2X--4X, 2X--4X, and 1X--1OX the dosed concentration in the 30, 10, and 2.5 treatments, respectively. Selenium decreased relatively rapidly following cessation of dosing. By two years after dosing ceased, selenium concentrations in plants and macroinvertebrates were little different from the controls; selenium in sediment from the 30 and 10 streams was still higher than in the control streams two years after dosing ceased. The macroinvertebrate community changed little during the dosing and recovery period. Commonly used indices of community structure showed no effect of selenium dosing. The isopod Asellus and oligochaetes in the family Tubificidae decreased rapidly following the onset of selenium dosing; their recovery following cessation of dosing was slow.

  4. Protection of methamphetamine nigrostriatal toxicity by dietary selenium.

    Science.gov (United States)

    Kim, H C; Jhoo, W K; Choi, D Y; Im, D H; Shin, E J; Suh, J H; Floyd, R A; Bing, G

    1999-12-18

    Multiple dose administration of methamphetamine (MA) results in long-lasting toxic effects in the nigrostriatal dopaminergic system. These effects are considered to be primarily due to oxidative damage mediated by increased production of hydrogen peroxide or other reactive oxygen species in the dopaminergic system. The present study was designed to determine the protective effects of dietary antioxidant selenium on MA-induced neurotoxicity in the nigrostriatal dopaminergic system. Male C57BL/6J mice were fed either selenium-deficient (methamphetamine neurotoxicity and that this protection involves GPx-mediated antioxidant mechanisms. Even though Cu,Zn-SOD activity was significantly elevated by MA treatment, the role of this enzyme in MA-mediated neurotoxicity is not yet clear.

  5. SCREENING OF SELECTED OLEAGINOUS YEASTS FOR LIPID PRODUCTION FROM GLYCEROL AND SOME FACTORS WHICH AFFECT LIPID PRODUCTION BY YARROWIA LIPOLYTICA STRAINS

    Directory of Open Access Journals (Sweden)

    Salinee Sriwongchai

    2013-04-01

    Full Text Available The ability of eight yeast strains to utilize glycerol as a sole carbon source and accumulate lipids in a chemically defined medium was screened. Among the yeasts, Yarrowia lipolytica strains DSM 70561 and JDC 335 grew to high cell densities on glycerol. These strains were further tested for lipid accumulation under varying nutritional conditions in Erlenmeyer flasks. The results showed that strains DSM 70561 and JDC 335 accumulated lipids up to 37.1 % and 54.4 % of total cell dry weight, respectively, when the defined medium was supplemented with 1 g/L urea and 2 g/L yeast extract. The lipids accumulated by the two yeasts contained a high proportion of C16:0, C18:1, C18:2 and C18:0 fatty acids. The results suggest that Y. lipolytica strains DSM 70561 and JDC 335 have the potential for converting crude glycerol into fatty acids which can in turn be utilized as substrate for biodiesel production.

  6. Dynamic behavior and control of product enrichment in a centrifuge cascade

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.

    1989-05-01

    It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and non-proliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)

  7. Dynamic behavior and control of product enrichment in a centrifuge cascade

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.

    1988-02-01

    It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and nonproliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)

  8. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    Science.gov (United States)

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  9. Selenium in Paleozoic stone coal (carbonaceous shale) as a significant source of environmental contamination in rural southern China

    Science.gov (United States)

    Belkin, H. E.; Luo, K.

    2012-04-01

    Selenium occurs in high concentrations (typically > 10 and up to 700 ppm) in organic-rich Paleozoic shales and cherts (called "stone coal" - shíméi), in southern China. Stone coals are black shales that formed in anoxic to euxinic environments and typically contain high concentrations of organic carbon, are enriched in various metals such as V, Mo, Pb, As, Cr, Ni, Se, etc., and are distinguished from "humic" coal in the Chinese literature. We have examined stone coal from Shaanxi, Hubei, and Guizhou Provinces, People's Republic of China and have focused our study on the mode of occurrence of Se and other elements (e.g. As, Pb, etc.) hazardous to human health. Scanning electron microscope, energy-dispersive analysis and electron microprobe wave-length dispersive spectroscopy were used to identify and determine the composition of host phases observed in the stone coals. Native selenium, Se-bearing pyrite and other sulfides are the hosts for Se, although we cannot preclude an organic or clay-mineral association. Stone coals are an important source of fuel (reserves over 1 billion tonnes), both domestically and in small industry, in some rural parts of southern China and present significant environmental problems for the indigenous population. The stone coals create three main environmental problems related to Se pollution. First, the residual soils formed on stone coal are enriched in Se and other metals contained in the stone coals and, depending on the speciation and bioavailability of the metals, may enrich crops and vegetation grown on them. Second, weathering and leaching of the stone coal contaminates the local ground water and/or surface waters with Se and other metals. Third, the local population uses the stone coal as a source of fuel, which releases the more volatile elements (Se and As) into the atmosphere in the homes. The ash will be extremely enriched with the balance of the heavy metal suite. Disposal of the ash on agricultural lands or near water

  10. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Science.gov (United States)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  11. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  12. Is selenium supplementation in autoimmune thyroid diseases justified?

    Science.gov (United States)

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  13. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  14. Kinetic spectrophotometric determination of trace amounts of selenium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A.; Sedghy, H.R.; Shams, E. [Dept. of Chemistry, Shiraz Univ. (Iran)

    1999-11-01

    A sensitive kinetic spectrophotometric method has been developed for the determination of Se(IV) over the range of 45 to 4000 ng in 10 mL of solution. The method is based on the catalytic effect of Se(IV) on the reduction reaction of bromate by hydrazinium dichloride, with subsequent reaction of Ponceau S with products of the above reaction (chlorine and bromine), causing color changing of Ponceau S. Method development includes optimization of time interval for measurement of slope, pH, reagents concentration, and temperature. The optimized conditions yielded a theoretical detection limit of 33 ng/10 mL of solution of Se(IV). The interfering effects were studied and removed. The method was applied to the determination of selenium in spiked water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has an inhibition effect on the catalyzed reaction of bromate and hydrazine by selenium. Using this effect, V(V) can be determined in the range of 70 to 2500 ng in 10 mL of solution. The optimization procedure includes pH and selenium concentration. An extraction method was used for interference removal. The method was applied to the determination of vanadium in petroleum. (orig.)

  15. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  16. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  17. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    OpenAIRE

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distributio...

  18. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    Science.gov (United States)

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants

    OpenAIRE

    Azadeh SAFFARYAZDI; Mehrdad LAHOUTI; Ali GANJEALI; Hassan BAYAT

    2012-01-01

    Selenium (Se) has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri�) plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control), 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like sh...

  20. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    Science.gov (United States)

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  1. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  2. Use of Several waste substrates for carotenoid-rich yeast biomass production

    International Nuclear Information System (INIS)

    Marova, I.; Carnecka, M.; Halienova, A.; Dvorakova, T.; Haronikova, A.

    2009-01-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, control ed physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. (Author)

  3. Absorption and retention of selenium from shrimps in man

    DEFF Research Database (Denmark)

    Bugel, S. H.; Sandstrom, B.; Larsen, Erik Huusfeldt

    2001-01-01

    This study was undertaken to evaluate the bioavailability of selenium in shrimps, a possible good source of selenium, by measurements of the absorption and retention of selenium and the effects on plasma selenium concentration and glutathione peroxidase activity. Twelve healthy young subjects (9F...... of the study, after 2, 4, and 6 weeks. The selenium intake increased from 39.4 +/- 15.3 mug/d to 127 +/- 5.5 mug/d with the addition of shrimps. The apparent absorption of selenium from shrimps was 83 +/- 4%, Faecal and urinary selenium excretion was 32.5 +/- 17.0 mug/d and 21.2 +/- 9.0 mug/d, re spectively...... and the total retention of selenium was 3.1 +/- 1.1 mg. Plasma selenium concentrations were 95.2 +/- 9.7 mug/L and 101.5 +/- 9.7 mug/L before and after six weeks of shrimp intake, respectively (p...

  4. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    NARCIS (Netherlands)

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  5. Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke.

    Science.gov (United States)

    Sung, Mina; Seo, Yeong Hwan; Han, Shin; Han, Jong-In

    2014-03-01

    Jerusalem artichoke was investigated as a cheap substrate for the heterotrophic production using a lab yeast strain Cryptococcus sp. Using Response Surface Method, 54.0% of fructose yield was achieved at 12% of dried Jerusalem artichoke powder, 0.57% of nitric acid concentration, 117°C of reaction temperature, and 49min of reaction time. At this optimal condition, nitric acid showed the best catalytic activity toward inulin hydrolysis and also the resulting fructose hydrolyte supported the highest microbial growth compared with other acids. In addition, lipid productivity of 1.73g/L/d was achieved, which is higher than a defined medium using pure fructose as a substrate. Lipid quality was also found to be generally satisfactory as a feedstock for fuel, demonstrating Jerusalem artichoke could indeed be a good and cheap option for the purpose of biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  7. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Selenium Level and Dyslipidemia in Rural Elderly Chinese

    Science.gov (United States)

    Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong

    2015-01-01

    Objective Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. Methods A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and selenium levels and the risk of dyslipidemia. Results Mean nail selenium concentration was 0.465μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. Conclusions Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association. PMID:26380972

  9. SELENIUM SUBSTITUTION – EFFECT ON THYROID FUNCTION

    Directory of Open Access Journals (Sweden)

    Milica Pešić

    2015-03-01

    Full Text Available The understanding of the essential role of selenium (Se in thyroid hormone synthesis, metabolism and action, as well as normal thyroid function, increased during the past decades. The thyroid gland is among the human tissues with the highest Se content per mas unit, similar to other endocrine organs and brain. Biological actions of Se are mediated, in most cases, through the expression of at least 30 selenoproteins coded by 25 selenoprotein genes in the human. Via the selenoproteins, selenium can influence the cell function through antioxidant activites, modifying redox status and thyroid hormone synthesis and metabolism. Selenoproteins iodothyronine deiodinases are present in most tissues and have a role to increase the production of bioactive tri-iodothyronine. Futhermore, Se has been shown to be important in the regulation of immune function. Se deficiency is accompained by the loss of immune competence. The links between Se deficiency, altered immune function and inflamation have prompted studies in humans to examine if Se suplementation can modify auto-antibodies production in patients with chronic autoimmune thyroiditis. Until now, several randomised prospective clinical trials have been performed in patients with established chronic autoimmune thyrioditis. The clinical endpoint of each study was the decrease in TPO antibodies concentration after 3-12 months of treatment. Ussualy, the dosage of daily Se supplementation was 200µg. Selenium suplemetation had no significant effect on the concentration of TSH or thyroid hormone concentrations. These studies indicate that Se treatment result in reduced inflammatory activity, but it does not cure chronc autoimmune process.

  10. Selenium in human milk: An Australian study

    International Nuclear Information System (INIS)

    Cumming, F.J.; Fardy, J.J.; Woodward, D.R.

    1991-01-01

    The aims of this Australian study were to determine (total) selenium concentration in breast milk and in maternal blood, and to assess the relationship between the two. The authors also aimed to assess the infants' selenium intake. Twenty lactating women from Brisbane (Queensland) participated in the study, at 6-12 weeks post-partum. Small samples (approximately 10 ml) of breast-milk were manually expressed at the beginning and end of a mid-morning feed, from the first breast offered at that feed. Venous blood samples (10 ml) were also collected from the mothers. Milk and blood samples were analyzed by neutron activation analysis. Babies' milk intake over a 24-hour period was estimated using a modified test-weighing technique. Infant selenium intakes were calculated directly for each infant, using his/her mother's milk selenium level and his/her own 24-hour breast milk intake. The mean selenium concentration in maternal blood was 101 (±SD 19) ng/g and in maternal serum 81 (±15) ng/g. Breast milk selenium concentrations (11.9 ± 3.5 ng/g) were fairly low by international standards. There was no correlation between selenium concentrations in milk and blood (or serum). The infants' 24-hour breast-milk intakes were 856 ± 172 g, and their selenium intakes were 10.7 ± 4.1 μg per day

  11. Is selenium supplementation in autoimmune thyroid diseases justified?

    DEFF Research Database (Denmark)

    Winther, Kristian H.; Bonnema, Steen; Hegedüs, Laszlo

    2017-01-01

    PURPOSE OF REVIEW: This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. RECENT FINDINGS: Epidemiological data suggest an increased prevalence of autoimmune thyroid...... diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing...... proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves’ disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism...

  12. EU REPRO: The Production of fish feed enriched with poly-unsaturated fatty acid

    CSIR Research Space (South Africa)

    Erasmus, C

    2007-01-01

    Full Text Available .2 The Production of Fish Feed enriched with poly-unsaturated fatty acids Corinda Erasmus Annali Jacobs Gerda Lombard Petrus van Zyl Judy Reddy Ntombikayise Nkomo Elizabeth Timme Partner 11 Slide 2 © CSIR 2006 www... www.csir.co.za FLOW DIAGRAM OF THE PRODUCTION OF EPA- ENRICHED FISH FEED BSG (SPENT GRAIN) Eicosapentaenoic Acid (EPA) Protein-rich BSG FISH FEED PELLETS MODIFICATION OF BSG (ENZYME/CHEMICAL/MECHANICAL) FERMENTATION (RECOVERY OF EPA...

  13. Determination of total selenium and selenium distribution in the milk phases in commercial cow's milk by HG-AAS

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Naveiro, Oscar; Dominguez-Gonzalez, Raquel; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar [University of Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela (Spain); Cocho, Jose A. [University Clinical Hospital, Laboratory of Metabolic and Nutritional Disorders, Santiago de Compostela (Spain); Fraga, Jose M. [University Clinical Hospital, Department of Pediatrics, Santiago de Compostela (Spain)

    2005-03-01

    A procedure has been developed for determining the selenium in cow's milk using hydride generation-atomic absorption spectrometry (HG-AAS) following microwave-assisted acid digestion. The selenium distributions in milk whey, fat and micellar casein phases were studied after separating the different phases by ultracentrifugation and determining the selenium in all of them. The detection limits obtained by HG-AAS for the whole milk, milk whey and micellar casein were 0.074, 0.065 and 0.075 {mu}g l{sup -1}, respectively. The accuracy for the whole milk was checked by using a Certified Reference Material CRM 8435 whole milk powder from NIST, and the analytical recoveries for the milk whey and casein micelles were 100.9 and 96.9%, respectively. A mass balance study of the determination of selenium in the different milk phases was carried out, obtaining values of 95.5-100.8%. The total content of selenium was determined in 37 milk samples from 15 different manufacturers, 19 whole milk samples and 18 skimmed milk samples. The selenium levels found were within the 8.5-21 {mu}g l{sup -1} range. The selenium distributions in the different milk phases were studied in 14 whole milk samples, and the highest selenium levels were found in milk whey (47.2-73.6%), while the lowest level was found for the fat phase (4.8-16.2%). A strong correlation was found between the selenium levels in whole milk and the selenium levels in the milk components. (orig.)

  14. L-tyrosine induces the production of a pyomelanin-like pigment by the parasitic yeast-form of Histoplasma capsulatum.

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Almeida-Silva, Fernando; Pinto, Gabriela Costa Maia; Almeida, Marcos de Abreu; Muniz, Mauro de Medeiros; Pizzini, Claudia Vera; Gerfen, Gary J; Nosanchuk, Joshua Daniel; Zancopé-Oliveira, Rosely Maria

    2018-06-01

    Melanization of Histoplasma capsulatum remains poorly described, particularly in regards to the forms of melanin produced. In the present study, 30 clinical and environmental H. capsulatum strains were grown in culture media with or without L-tyrosine under conditions that produced either mycelial or yeast forms. Mycelial cultures were not melanized under the studied conditions. However, all strains cultivated under yeast conditions produced a brownish to black soluble pigment compatible with pyomelanin when grew in presence of L-tyrosine. Sulcotrione inhibited pigment production in yeast cultures, strengthening the hyphothesis that H. capsulatum yeast forms produce pyomelanin. Since pyomelanin is produced by the fungal parasitic form, this pigment may be involved in H. capsulatum virulence.

  15. Production and optimization of carotenoid-enriched dried distiller's grains with solubles by Phaffia rhodozyma and Sporobolomyces roseus fermentation of whole stillage.

    Science.gov (United States)

    Ananda, Nanjundaswamy; Vadlani, Praveen V

    2010-11-01

    Whole stillage--a co-product of grain-based ethanol--is used as an animal feed in the form of dried distiller's grain with solubles (DDGS). Since animals cannot synthesize carotenoids and animal feed is generally poor in carotenoids, about 30-120 ppm of total carotenoids are added to animal feed to improve animal health, enhance meat color and quality, and increase vitamin A levels in milk and meat. The main objective of this study was to produce carotenoid (astaxanthin and β-carotene)-enriched DDGS by submerged fermentation of whole stillage. Mono- and mixed cultures of red yeasts, Phaffia rhodozyma (ATCC 24202) and Sporobolomyces roseus (ATCC 28988), were used to produce astaxanthin and β-carotene. Media optimization was carried out in shake flasks using response surface methodology (RSM). Macro ingredients, namely whole stillage, corn steep liquor and glycerol, were fitted to a second-degree polynomial in RSM. Under optimized conditions, astaxanthin and β-carotene yields in mixed culture and P. rhodozyma monoculture were 5 and 278, 97, and 275 μg/g, respectively, while S. roseus produced 278 μg/g of β-carotene. Since the carotenoid yields are almost twice the quantity used in animal feed, the carotenoid-enriched DDGS has potential application as "value-added animal feed or feed blends."

  16. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    Science.gov (United States)

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  17. Determinants of selenium in the toenail biomonitor

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Ngwenyama, R.A.

    2006-01-01

    The evaluation of human nails as a measure of selenium intake and to assess selenium status in critical tissues is now being used routinely to investigate hypotheses relating selenium status to chronic disease, especially cancer. In this study we report on our observations of the major determinants of toenail selenium concentrations. Toenail specimens (3575) were, under a protocol we provided, self-collected by adult females (1940, 54.3%) and males (1635, 45.7%) living in 111 of Missouri's 114 counties. The health-conscious participants ranged in age from 18 to 94 years with means of 53.7±14.1 and 56.4±14.2 years for females and males, respectively. Selenium supplement use was over represented, 39.1% and 42.7%, and smoking was under represented, 7.5% and 7.8%, for females and males, respectively. The major determinants of toenail selenium concentration were supplement use, sex and cigarette smoking. We found no overall correlations with age, body mass index or diet selection. (author)

  18. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem

    Science.gov (United States)

    W.F. Cross; J.B. Wallace; A.D. Rosemond; S.L. Eggert

    2006-01-01

    Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs...

  19. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified