WorldWideScience

Sample records for selenium x-ray laser

  1. X-Ray Lasers

    Science.gov (United States)

    Eder, David C.

    1998-05-01

    We provide an overview of the status of x-ray laser development worldwide with particular attention given to activities at LLNL. Since the demonstration of x-ray lasing 14 years ago there has been major progress in achieving shorter wavelengths, higher energies per pulse, higher efficiency, shorter pulse durations, etc. Original x-ray lasers used large kJ class lasers to achieve lasing in mid-Z materials with electron collisional pumping in the highly stripped ion being the most successful process for populating the upper-laser state. The two most common electron configurations for these collisional x-ray lasers are Ne-like and Ni-like ions. Through the use of prepulses and short picosecond driving pulses, transient collisional x-ray lasing schemes have been demonstrated using lasers with only a few Joules per pulse. An interesting aspect of these lasers is the time lag in reaching ionization equilibrium helps in obtaining high gain coefficients. A different approach to x-ray lasing is also being studied where lasing occurs in a singly ionized ion following innershell photoionization. The major requirement of the driving laser in this case is an ultrashort pulse duration (rise time to achieve lasing prior to collisional ionization of outershell electrons. In the area of applications, most of the work has been for single pulse experiments such as plasma and biological imaging. However, many of the new x-ray lasers achieve high average power by having a reasonable repetition rate of order 10 Hz and we briefly discuss relevant applications for these x-ray lasers. This work performed under the auspices of US DOE by LLNL under Contract No. W-7405-Eng-48.

  2. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  3. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  4. The Livermore X-ray Laser Program

    International Nuclear Information System (INIS)

    Matthews, D.L.

    1992-01-01

    I will report on the status of x-ray laser development and its applications at Livermore. I will review some of our recent results and comment on where our future research is headed including plans for developing a compact x-ray laser users facility. Finally, I will briefly summarize the results of an X-ray Laser Applications Workshop that was held in San Francisco in January 1992

  5. Applications of soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1993-01-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed

  6. Measurement of the spatial coherence of a soft x-ray laser

    International Nuclear Information System (INIS)

    Trebes, J.E.; Mrowka, S.; London, R.A.; Barbee, T.W.; Carter, M.R.; MacGowan, B.J.; Matthews, D.L.; Da Silva, L.B.; Stone, G.F.; Feit, M.D.; Nugent, K.A.

    1991-01-01

    The spatial coherence of a neon-like selenium x-ray laser operating at 206 and 210 Angstroems has been measured using a technique based on partially coherent x-ray diffraction. The time integrated spatial coherence of the selenium x-ray laser was determined to be equivalent to that of a quasi-monochromatic spatially incoherent disk source whose diameter is comparable to the line focus of the visible light laser pumping the x-ray laser. The spatial coherence was improved by narrowing the line focus width. 20 refs., 4 figs

  7. Muonic X-ray intensities in phosphorus- and selenium modifications

    International Nuclear Information System (INIS)

    Kaeser, K.; Robert-Tissot, B.; Schaller, L.A.; Schellenberg, L.; Schneuwly, H.

    1979-01-01

    Muonic X-ray intensity measurements have been performed at SIN on allotropic modifications of phosphorus (white, red and black) and of selenium (red and black). Structure effects have been found in the intensity ratios of the K-series between amorphous and crystalline modifications of the same element. The effect in the higher series (Se) is less pronounced. On the other hand, the two crystalline phosphorus modifications (red and black) show the same intensity behavior. The root-mean-square radii 2 >sup(1/2) of phosphorus and (natural) selenium were found to be 3.187(3) fm and 4.138(1) fm respectively. (Auth.)

  8. Blood selenium content determination by X-ray fluorescence

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    1987-01-01

    The presence of some elements in small amounts (traces) in the human body is of foremost importance for the prevention and treatment of several diseases. It has been recently shown that traces of selenium in blood are closely related to the occurrence of miotonic distrophy, a muscular disease that is affecting a significant percentage of the population. This work describes a simple procedure to determine selenium in human blood serum by energy dispersive X-ray fluorescence analysis. Final quantification is achieved through the addition of titanium as an internal standard. (Author) [es

  9. Second generation X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Fajardo, M.; Zeitoun, P.; Faivre, G.; Sebban, S.; Mocek, Tomáš; Hallou, A.; Aubert, D.; Balcou, P.; Burgy, F.; Douillet, D.; Mercere, P.; Morlens, A.S.; Rousseau, J. P.; Valentin, C.; Kazamias, S.; de Lachéze-Murel, G.; Lefrou, T.; Merdji, H.; Le Pape, S.; Ravet, M.F.; Delmotte, F.; Gautier, J.

    2006-01-01

    Roč. 99, 1-3 (2006), s. 142-152 ISSN 0022-4073 Grant - others:NEST-ADVENTURE FP6 EC(XE) project 012841 (TUIXS) Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * amplification * high harmonic generation * optical field ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006

  10. On X-ray laser

    International Nuclear Information System (INIS)

    Durrani, I.R.; Bhatti, Z.R.

    2000-01-01

    Although considerable efforts have been invested in the area of short wavelength lasers at the conceptual and theoretical level for approaching thirty years now it is only with in last two decades that significant progress has been made. The philosophy behind the preparation of this paper has been to indicate to the nonspecialist the fundamental requirements and associated difficulties of achieving laser action. Although we can look to inner shell transitions in neutral or weakly ionized action in this instance the discussion is restricted to the latter possibility. This is mainly because of successful experiments demonstrating amplification using laser produced plasma as a source of lasant ion species. (author)

  11. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  12. X-ray laser research at Palaiseau

    International Nuclear Information System (INIS)

    Jaegle, P.; Jamelot, G.; Carillon, A.; Klisnick, A.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We present the soft X-ray laser experiments performed at Greco ''Interaction Laser-Matiere'' (Palaiseau). They are mainly concerned with lithium-like ions of aluminium in plasmas produced by 1.06 μ Nd-laser. We describe the experimental set-up which performs time-dependent gain measurements. We report results showing a gain-length product of 2 - 2.5 for the 3d - 5f line at 105.7 A. Comparison is made between experiment and computational model. The possible limiting role of radiation trapping for long plasma column is discussed. We present the future projects regarding larger gains and new wavelengths

  13. Gas detectors for x-ray lasers

    International Nuclear Information System (INIS)

    Tiedtke, K.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Nunez, T.; Tschentscher, T.; Bobashev, S. V.; Sorokin, A. A.; Hastings, J. B.; Moeller, S.; Cibik, L.; Gottwald, A.; Hoehl, A.; Kroth, U.; Krumrey, M.; Schoeppe, H.; Ulm, G.; Richter, M.

    2008-01-01

    We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 μm for the photon-beam position were achieved at the Free-electron LASer in Hamburg (FLASH). An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford

  14. Gas detectors for x-ray lasers

    Science.gov (United States)

    Tiedtke, K.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Nunez, T.; Tschentscher, T.; Bobashev, S. V.; Sorokin, A. A.; Hastings, J. B.; Möller, S.; Cibik, L.; Gottwald, A.; Hoehl, A.; Kroth, U.; Krumrey, M.; Schöppe, H.; Ulm, G.; Richter, M.

    2008-05-01

    We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 μm for the photon-beam position were achieved at the Free-electron LASer in Hamburg (FLASH). An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford.

  15. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  16. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  17. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  18. Legacy of the X-Ray Laser Program

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  19. Charge exchange recombination x-ray laser

    International Nuclear Information System (INIS)

    Kawachi, Tetsuya; Namba, Shinichi; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Nagashima, Keisuke; Kato, Yoshiaki

    2001-01-01

    A recombining plasma x-ray laser using charge exchange recombination (CXR) is proposed. Fully stripped carbon ions collide with neutral He atoms and become excited hydrogenlike carbon ions, in which the excited levels with n=3 or 4 are mainly populated. We calculate the gain coefficients of the Balmer α and the Lyman β line of the hydrogenlike carbon ions by the use of a collisional-radiative model in which the CXR process is included. The calculated result shows that substantial gain can be generated for the Lyman β and Balmer α lines and that the gain of the Balmer α line can be strongly enhanced by the effect of CXR. We also report a preliminary experiment of this scheme. (author)

  20. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  1. Soft X-Ray amplification in laser plasmas

    International Nuclear Information System (INIS)

    Louis-Jacquet, M.

    1988-01-01

    The principles, experiments and theoretical models of soft x-ray, amplification, produced in laser plasmas, are studied. In the discussion of the principles, the laser plasma medium, the definition of the gain, the population inversions, saturation and superradiance are described. The results concerning recombination and collisional excitation experiments, as well as experimental devices are shown. A complete physical simulation to design and interpret x-ray laser experiments is given. Applications of x-ray lasers in grating production techniques, in contact microscopy and holography are considered

  2. X-ray laser '' oscillator-amplifier'' experiments

    International Nuclear Information System (INIS)

    Shimkaveg, G.M.; Carter, M.R.; Young, B.K.F.; Walling, R.S.; Osterheld, A.L.; Trebes, J.E.; London, R.A.; Ratowsky, R.P.; Stewart, R.E.; Craxton, R.S.

    1993-01-01

    We present results from experiments directed toward increasing the degree of transverse coherence in x-ray laser beams. We have concentrated on the neon-like yttrium (Z=39) collisionally-pumped x-ray laser as the test system for these studies because of its unique combination of brightness, monochromaticity, and high-reflectivity optics availability. Attempts at improving laser performance using proximate feedback optics failed. Modest success has been found to date in ''double foil'' experiments, involving two x-ray lasers spatially separated by 29 cm and shot sequentially in an ''oscillator-amplifier'' configuration

  3. Development of small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Kim, D.; Suckewer, S.; Princeton Univ., NJ; Skinner, C.H.; Voorhees, D.

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183 angstrom has been obtained with relatively low pump laser energies (as low as 6J) in a ''portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs

  4. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  5. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  6. Soft x ray emission from Alexandrite laser-matter-interaction

    Science.gov (United States)

    Burkhalter, P. G.; Harter, D. J.; Gabl, E. F.; Bado, P.; Newman, D. A.

    1993-07-01

    X-ray spectroscopy was used to quantify the plasma generated by a focused, Alexandrite laser as a potential alternative source in proximity lithography. An x-ray emission efficiency of 2 - 11% was determined by analysis of spectral data (10 - 14 A) from transition-metal targets.

  7. An x-ray technique for precision laser beam synchronization

    International Nuclear Information System (INIS)

    Landen, O.L.; Lerche, R.A.; Hay, R.G.; Hammel, B.A.; Kalantar, D.; Cable, M.D.

    1994-01-01

    A new x-ray technique for recording the relative arrival times of multiple laser beams at a common target with better than ± 10 ps accuracy has been implemented at the Nova laser facility. 100 ps, 3ω Nova beam are focused to separate locations on a gold ribbon target viewed from the side. The measurement consists of using well characterized re-entrant x-ray streak cameras for 1-dimensional streaked imaging of the > 3 keV x-rays emanating from these isolated laser plasmas. After making the necessary correction for the differential laser, x-ray and electron transit times involved, timing offsets as low as ± 7 ps are resolved, and on subsequent shots, corrected for, verified and independently checked. This level of synchronization proved critical in meeting the power balance requirements for indirectly-driven pulse-shaped Nova implosions

  8. X-ray laser interferometry: A new tool for AGEX

    International Nuclear Information System (INIS)

    Wan, A.S.; Moreno, J.C.; Libby, S.B.

    1995-10-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4--40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. By employing a shorter wavelength x-ray laser, as compared to using conventional optical laser as the probe source, we can access a much higher density regime while reducing refractive effects which limit the spatial resolution and data interpretation. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 mn, we have performed a series of soft x-ray laser interferometry experiments, operated in the skewed Mach-Zehnder configuration, to characterize plasmas relevant to both weapons and inertial confinement fusion. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics in the high-energy density regime, relevant to both weapons and inertial confinement fusion

  9. Review of soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the ''water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab

  10. Contact microscopy with a soft x-ray laser

    International Nuclear Information System (INIS)

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab

  11. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  12. 13th International Conference on X-Ray Lasers

    CERN Document Server

    Gautier, Julien; Ros, David; Zeitoun, Philippe

    2014-01-01

    These proceedings comprise of invited and contributed papers presented at the 13th International Conference on X-Ray Lasers (ICXRL 2012) which was held 11–15 June 2012 in Paris, in the famous Quartier Latin, inside the historical Center of Cordeliers. This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress towards practical devices and their applications are reported in these proceedings, including areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation. Recent achievements related to the increase of the repetition rate up to 100 Hz and shorter wavelength collisional plasma-based soft x-ray lasers down to about 7 nm are presented. Seeding the amplifying plasma with a femtosecond high-order harmonic of infrared laser was fore...

  13. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Nader, Michel N.; Foran, Kelly A.; Groskopf, Craig; Reno, Michael C.; Ware, Chris S.; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J.

    2017-01-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20 µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K α , selenium K α , arsenic K β , selenium K β , and bromine K α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K α peak only, ranged from 0.210±0.002 µg/g selenium under one condition of analysis to 0.777±0.009 µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3 min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. - Highlights: • Portable X-ray fluorescence was used to assess As and Se in nail clipping phantoms. • Calibration lines were consistent between two different conditions of data analysis. • This new XRF approach was sensitive and required only a single nail clipping.

  14. Theoretical Analysis of Efficient X-ray Lasers

    Science.gov (United States)

    Shlyaptsev, V. N.; Rocca, J. J.; Nickles, P. V.; Sandner, W.; Osterheld, A. L.

    1996-11-01

    In this paper we outline theoretical development related to the concept of downsized ("small-scale", "table-top" ) X-ray lasers. The present status and the main characteristics of collisional table-top X-ray lasers of next generation will be described. We will cover two novel schemes of downsized X-ray lasers recently demonstrated in capillary Z-pinch discharges and laser produced plasmas. One of them is based on a fast electrical discharge in capillaries, which has been proven to be an effective and simple realization of soft X-ray lasers.(J.J.Rocca, V.N.Shlyaptsev, F.G.Tomasel et al,) Phys.Rev.Lett.,73,2192 (1994) The second represents a combination of a "classical" nanosecond laser pulse for plasma formation with powerful picosecond laser excitation to take advantage of a new method of population inversion, transient inversion, that has a duration of the order of the atomic lifetimes.footnote P.V.Nickles, V.N.Shlyaptsev, M.P.Kalashnikov, et al, Subm. to Phys.Rev.Lett. The results of comprehensive modeling of the kinetics, gas-dynamics and radiation transport of X-ray lasers will be presented. Work partially supported by NSF.

  15. Feasibility of X-ray laser by Underwater Spark Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Takaaki [Department of Nuclear Engineering, Hokkaido University, Sapporo, Hokkaido (Japan)

    2000-03-01

    The method of Underwater Spark Discharges(USD) is one of the most effective ways for generating extremely compressed atomic clusters (called itonic clusters or micro Ball Lightning(BL)). It is also associated with energetic X-rays, which are caused by the break up of the itonic electrons. Despite of low voltage discharges of about 50 V, the high energy X-rays up to 150 keV can be generated. This paper proposed two methods of generating X-ray laser by using micro BL: (1) micro BL on surfaces of regularly arrayed wire cathodes and (2) gas of micro BL generated by USD. (author)

  16. Streaked x-ray microscopy of laser-fusion targets

    International Nuclear Information System (INIS)

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 μm and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10 7 cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils

  17. 11th International Conference on X-Ray Lasers

    CERN Document Server

    Lewis, Ciaran L. S; X-Ray Lasers 2008

    2009-01-01

    This book provides a thorough account of the current status of achievements made in the area of soft X-ray laser source development and of the increasingly diverse applications being demonstrated using such radiation sources. There is significant effort worldwide to develop very bright, short duration radiation sources in the X-ray spectral region – driven by the multitude of potential applications in all branches of science. This book contains updates on several different approaches for comparative purposes but concentrates on developments in the area of laser-produced plasmas, whereby transient population inversion and gain between ion states is pumped by optical lasers interacting with pre-formed plasmas. The most significant development here is the demonstrated increasing feasibility to produce useful soft X-ray laser beams with high repetition rates in a typical, small, university-class laboratory – as opposed to the requirement of access to a national facility some 20 years ago. Experimental progres...

  18. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    International Nuclear Information System (INIS)

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-01-01

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 μm a-Se layer with a maximum gain of ∼300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor

  19. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  20. 10th International Conference on X-Ray Lasers

    CERN Document Server

    Nickles, P.V; X-Ray Lasers 2006

    2007-01-01

    The search for table-top and repetitive pump schemes during the last decade has been the driving force behind the spectacular advances demonstrated during the 10th International Conference on X-Ray Lasers, organized in 2006 in Berlin. Since 1986, international experts have gathered every two years at this established conference to discuss the progress in theory, experiment and application of plasma-based soft X-ray lasers. Traditionally, the conference sessions devoted to complementary and alternative sources of short wavelength radiation, such as high harmonics, XFEL or incoherent X-rays are organized so as to emphasize the role of X-ray laser research in relation to the other short wavelength sources. Grazing incidence pumping (GRIP) and seeding with high harmonics were the dominant topics of the conference. High repetition rate and portable X-ray lasers were reported to have been applied in metrology and photochemistry for the first time. The proceedings of this series of conferences constitute a comprehen...

  1. Ultrafast x-ray diagnostics for laser fusion experiments

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1976-01-01

    Temporally, spectrally, and spatially resolved x-ray emission diagnostics are important tools in the study of the heating and compression of laser fusion targets by sub-nanosecond laser pulses. The use of the Livermore 15 psec resolution x-ray streak camera to make such measurements is reviewed. Temporal histories of spectrally resolved x-ray emission in the 1 to 10 keV range have been obtained. These data have served to further define the x-ray streak camera as a quantative diagnostic tool and have also provided data relating to the absorption and compression phases of laser heating. The x-ray streak camera has been used in conjunction with a specially designed pinhole imaging system to temporally record images of laser compressed targets with a spatial resolution of approximately 6 μm. Implosion characteristics are presented for experiments with glass microshell targets. The concept, development, and testing of an ultrafast framing camera for full two-dimensional time resolved imaging is discussed. A prototype camera, based on the image dissection-restoration concept, has achieved an approximately 200 psec frame period with a resolution of 50 μm

  2. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  3. Determination of cesium and selenium in cultivated mushrooms using radionuclide X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Racz, L.; Bumbalova, A.; Harangozo, M.; Toelgyessy, J.; Tomecek, O.

    2000-01-01

    Cesium and selenium intake of cultivated mushrooms (Agaricus bisporus), with these elements previously added to culture medium, has been examined from the viewpoint of health- and environmental protection. The process of measuring has been carried out by the radionuclide X-ray fluorescence technique. Treatments of the elementary substance with Se salt appears to influence the Se content of the mushrooms to a significant extent. Cs intake is of considerable importance, as this element is accumulated by mushrooms. (author)

  4. Pair creation and an x-ray free electron laser.

    Science.gov (United States)

    Alkofer, R; Hecht, M B; Roberts, C D; Schmidt, S M; Vinnik, D V

    2001-11-05

    Using a quantum kinetic equation we study the possibility that focused beams at proposed x-ray free electron laser facilities can initiate spontaneous electron-positron pair production from the QED vacuum. Under conditions reckoned achievable at planned facilities, repeated cycles of particle creation and annihilation will take place in tune with the laser frequency. The peak particle number density is insensitive to this frequency, and one can anticipate the production of a few hundred particle pairs per laser period.

  5. Laser induced x-ray `RADAR' particle physics model

    Science.gov (United States)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  6. Advanced laser driver for soft x-ray projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L.E.; Beach, R.J.; Dane, C.B.; Reichert, P.; Honig, J.N.; Hackel, L.A.

    1994-03-01

    A diode-pumped Nd:YAG laser for use as a driver for a soft x-ray projection lithography system is described. The laser will output 0.5 to 1 J per pulse with about 5 ns pulse width at up to 1.5 kHz repetition frequency. The design employs microchannel-cooled diode laser arrays for optical pumping, zigzag slab energy storage, and a single frequency oscillator injected regenerative amplifier cavity using phase conjugator beam correction for near diffraction limited beam quality. The design and initial results of this laser`s activation experiments will be presented.

  7. The History of X-ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  8. Lawrence Bragg, microdiffraction and X-ray lasers.

    Science.gov (United States)

    Spence, J C H

    2013-01-01

    We trace the historical development of W. L. Bragg's `law' and the key experimental observation which made it possible using polychromatic radiation at a time when neither X-ray wavelengths nor cell constants were known. This led, through his phasing and solving large mineral structures (without use of a computer), to work on metals, proteins, bubble rafts and his X-ray microscope. The relationship of this to early X-ray microdiffraction is outlined, followed by a brief review of electron microdiffraction methods, where electron-probe sizes smaller than one unit cell can be formed with an interesting `failure' of Bragg's law. We end with a review of recent femtosecond X-ray `snapshot' diffraction from protein nanocrystals, using an X-ray laser which generates pulses so short that they terminate before radiation damage can commence, yet subsequently destroy the sample. In this way, using short pulses instead of freezing, the nexus between dose, resolution and crystal size has been broken, opening the way to time-resolved diffraction without damage for a stream of identical particles.

  9. Progress in the applicability of plasma X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, T., E-mail: T.Kuehl@gsi.de; Aurand, B.; Bagnoud, V.; Ecker, B.; Eisenbarth, U. [GSI (Germany); Guilbaud, O. [Universite Paris Sud (France); Fils, J.; Goette, S. [GSI (Germany); Habib, J. [Universite Paris Sud (France); Hochhaus, D.; Javorkova, D. [GSI (Germany); Neumayer, P. [Extreme Matter Institute, EMMI (Germany); Kazamias, S.; Pittman, M.; Ros, D. [Universite Paris Sud (France); Seres, J.; Spielmann, Ch. [Friedrich Schiller-University (Germany); Zielbauer, B.; Zimmer, D. [GSI (Germany)

    2010-02-15

    Proposed as satellite-based weapons during the 1980s, X-ray lasing was for a long time only achieved with enormous amounts of pump energy in either nuclear explosions or at kilojoule-class laser installations. During the last few years a tremendous development was achieved, most visible in the realisation of the FEL lasers at DESY and SLAC. As important for a wider applicability is the enormous reduction in pump energy for laser pumped plasma X-ray lasers, which now brings such devices into the range of applications for diagnostics and spectroscopy even in smaller laboratories. Main developments were the transient excitation scheme and the optimized pumping concepts. This paper concentrates on developments at the GSI Helmholtzcenter at Darmstadt aiming towards reliable X-ray laser sources in the range from 50 to several 100 eV. The main driving forces for the laser development at GSI are the possible application for the spectroscopy of Li-like ions in the storage ring ESR and the future storage ring NESR at FAIR, and the interest in novel plasma diagnostics.

  10. 12th International Conference on X-Ray Lasers

    CERN Document Server

    Nam, Chang; Janulewicz, Karol

    2011-01-01

    This book provides a comprehensive review of the present status of achievements in the area of soft X-ray laser sources, supplemented by information about sources based on relativistic laser˗matter interaction and their future, and incoherent sources within a very broad spectral range. The diversity of demonstrated or planned applications presented in the book supports the thesis that such sources have now reached a mature stage of development. There is a significant effort worldwide to develop very bright, ultra-short duration, radiation sources in the extreme ultraviolet and X-ray spectral regions, driven by a diversity of potential applications in nearly all branches of science. This book updates the status in this field and focuses on developments in laser plasma-based methods. The scheme of transient inversion proves its robustness by being dominant in the area of repetitive X-ray lasers pumped at grazing-incidence-geometry by optical lasers of moderate energy at increasing repetition rates – these ch...

  11. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  12. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  13. X-ray calibration facility for plasma diagnostics of the MegaJoule laser

    International Nuclear Information System (INIS)

    Hubert, S.; Prevot, V.

    2013-01-01

    The Laser MegaJoule (LMJ) located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL). This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS) and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties. (authors)

  14. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  15. Harmonic lasing in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2012-08-01

    Full Text Available Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL facilities. In particular, Linac Coherent Light Source (LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25–30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV, to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy, allowing the use of the standard undulator technology instead of

  16. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    Science.gov (United States)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  17. Simulations of transient collisional x-ray lasers

    International Nuclear Information System (INIS)

    Sasaki, Akira; Utsumi, Takayuki; Moribayashi, Kengo; Kado, Masataka; Kawachi, Tetsuya

    2000-01-01

    We have developed an atomic kinetics model of transient collisionally excited x-ray lasers by integrating a detailed model for the Ni-like ion based on the atomic data calculated by the HULLAC code, and an averaged model using super levels for a wide range of charge states. Calculations of the temporal and spatial evolution of the gain of the Ni-like Ag laser are carried out using this code as a postprocessor of 1-dimensional hydrodynamics code to show qualitative agreement with experiments

  18. Ultrafast time-resolved X-ray diffraction using an optimized laser-plasma based X-ray source

    International Nuclear Information System (INIS)

    Lu, Wei

    2013-01-01

    Femtosecond X-ray pulses are invaluable tools to investigate the structural dynamics triggered by a femtosecond laser pulse. These ultrashort X-ray pulses can be provided by lab-sized laser-produced plasma X-ray sources. This thesis is dedicated to optimizing the X-ray emission from the X-ray source at the University of Duisburg-Essen and using this source to investigate ultrafast structural dynamics in laser excited materials. For these purposes, detailed investigations on how the laser intensities, target thicknesses, angles of incidence and different pre-pulse/pre-plasma conditions affecting the emission of Kα-photons from Cu and Ti targets were performed. The outcomes from these studies are applied to optimize the X-ray production of the existing X-ray source for time resolved X-ray diffraction (TRXD) experiments. In the mean time, in order to improve the measurement sensitivity/accuracy, and automatize and speed up the experimental procedures, several other improvements have been implemented in the experimental setup for TRXD experiments. These improvements of the setup are essential to achieve the results of the three TRXD experiments discussed in this thesis. In the first experiment, Debye-Waller effect in a thin laser-excited Au film was observed. The drop of measured diffraction signal with a decay time constant of 4.3±1 ps was measured for high excitation fluences. This result is in good agreement with previous experimental results as well as the Two-Temperature Model (TTM) calculations at high fluences. The second experiment extends the studies of coherent optical phonons in laser-excited Bi to a higher excitation fluence range that has not been investigated previously. Large amplitude coherent atomic motion and a complete softening of the A1g phonon mode were observed. These observations represents conclusive experimental evidence that the Peierls distortion, which defines the equilibrium structure of Bi, vanishes and the material is transformed into

  19. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  20. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    -quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  1. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Oliva, E [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Lu, L [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Berrill, Mark A [ORNL; Yin, Liang [Colorado State University, Fort Collins; Nejdl, J [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Proux, C [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique; Le, T. T. [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Dunn, James [Lawrence Livermore National Laboratory (LLNL); Ros, D [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Zeitoun, Philippe [École Polytechnique; Rocca, Jorge [Colorado State University, Fort Collins

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  2. High resolution X-ray spectromicroscopy of laser produced plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  3. Development of small scale soft x-ray lasers: Aspects of data interpretation

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-02-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Some aspects of data interpretation and gain measurements in such systems are discussed. 11 refs., 11 figs

  4. X-ray photoelectron microscope with a compact x-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Okamoto, Y.; Hara, T.; Takahashi, Z.; Nishimura, Y.; Sakata, A.; Watanabe, K.; Azuma, H.

    2004-01-01

    Full text: A laboratory-sized microscopic system of x-ray photoelectrons has been developing using a compact x-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where x-ray beam is micro-focused via a Schwartzschild optics. A compact laser-plasma x-ray source has been developed with a YAG laser system, a line-focus lens system, a tape-target driving system and a debris prevention system, that was operated at repetition rate of 10 Hz or 50 Hz. X-rays were delivered along line plasma whose length was 0.6 to 11 mm with higher intensity than that from a point-focused source. Because the transition line of Al V (13.1 nm) was prominent in the soft x-ray spectrum when the Al tape target irradiated at the lower power density of 10 11 W/cm 2 , the 13.1 nm x-ray was used as an excitation source. The Schwartzschild optics was set on the beamline at a distance about 1 m from the source, which was coated with Mo/Si multilayers for 13.1 nm x-ray. The designed demagnification is 224 that was confirmed in the previous experiment. Therefore, an x-ray micro spot of sub-micron size can be formed on a sample surface when the source size is less than about 0.2 mm. Samples were set on a two-axis high-precision piezo stage mounted to a four-axis manipulator. The electron energy analyzer was a spherical capacitor analyzer with mean diameter of 279.4 mm. The electron detector was a microchannel plate (MCP) with a phosphor screen and the optical image of electrons on the exit plane of the analyzer was taken and recorded by using an ultra low dark noise CCD camera, that was suited for detection of vast photoelectrons excited by x-ray pulse of ns-order duration. We performed spatial resolution test measurements by using a GaAs wafer coated with photo-resist that formed a stripe pattern. The spatial resolution less than 3 micron has been obtained from the variation of As 3d electron intensity along the position of the GaAs sample

  5. X-ray preionization for electric discharge lasers

    International Nuclear Information System (INIS)

    Lin, S.; Levatter, J.I.

    1979-01-01

    Using x rays of 60--200-keV photon energy (lambdaapprox.0.06--0.2 A) as an ionizing radiation source in a transmission-line-driven low-inductance discharge chamber, we have succeeded in generating spatially homogeneous pulsed avalanche discharges of several liter volume at greater than 1 atm pressure for up to 100-nsec duration. In concurrent laser generation experiments with relatively lossy windows, we have observed high-optical-quality pulsed uv laser output of up to 2 J/liter from such discharges in rare-gas/halogen mixtures, and IR laser output of up to 12.5 J/liter from a He/N 2 /CO 2 mixture

  6. X-ray diffraction from single molecules at the worlds first X-ray free-electron laser source

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan; Kuepper, Jochen; Chapman, Henry; Rolles, Daniel [Center for Free-Electron Laser Science (CFEL), DESY, Hamburg (Germany)

    2011-07-01

    The advent of the first X-ray Free-Electron Laser, the Linac Coherent Light Source (LCLS), opens up a new approach for diffractive imaging of even single molecules that cannot be crystallized into macromolecular crystals of sufficient size necessary for conventional X-ray crystallography. Here, we present the concept, the experimental parametric space that has to be addressed together with first experimental results of X-ray diffractive imaging of single molecules in the gas phase at LCLS. We use a supersonically cooled molecular beam to provide an ensemble of test-molecules, laser-align them, and subsequently probe them with the LCLS in order to get diffraction patterns of single molecules.

  7. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  8. Apparatus and method to enhance X-ray production in laser produced plasmas

    Science.gov (United States)

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  9. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  10. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  11. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  12. Scaling of x-ray emission and ion velocity in laser produced Cu ...

    Indian Academy of Sciences (India)

    has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency ...

  13. Ablative capillary discharge for x-ray laser pumping

    International Nuclear Information System (INIS)

    Vrbova, M.; Vrba, P.; Neger, T.

    2001-01-01

    Full text: Fast capillary discharges, created in initially evacuated Li 2 CO 3 and polyacetal capillaries, have been studied as potential pumping for soft x-ray lasers at TU Graz and CTU Prague. In both cases the inversion population between the levels of Balmer a transitions of hydrogen-like lithium or carbon ions is required and three-body recombination of fully ionized atoms plays a key role. Thus, the electric discharge should create high concentration of fully ionized atoms at the initial stage and then the electron component should be abruptly cooled. We compare here the experimental as well as the computational results obtained with Graz and Prague devices, and suggest further experiments with pre-filed capillaries where the Z-pinch effect would contribute to a more favorable evolution of the plasma electron temperature and density. (author)

  14. Techniques for soft x-ray absorption in laser-produced plasmas

    Science.gov (United States)

    Burkhalter, P. G.; Mehlman, G.; Newman, D. A.; Ripin, B. H.

    1990-10-01

    Interest in x-ray absorption derives from soft x-ray transport studies to characterize laser-solid-interaction effects. The object of this work was to determine whether x-ray absorption features were measurable in laser-produced plasmas from solid targets. X-ray emission was made using high-atomic-number microsphere targets irradiated with a focused beam of the Pharos laser while the laser-solid-interaction plasmas were generated by a second beam in Al foil targets. High-resolution, spatially resolved x-ray spectra were collected with instrumentation and geometry similar to previous tracer-dot spectroscopy measurements of plasma profile parameters. Soft x-ray absorption lines, observed at different distances from the aluminum target surface, may be related to density gradients in the laser-generated plasmas.

  15. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    The x-ray conversion efficiencies can be increased using short wavelength lasers whereas the desired x-ray spectral component can be maximized by creating a plasma that is populated predominantly with the relevant ions, that is, by optimizing the laser intensity. In this paper we optimize the laser intensity for maximum ...

  16. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  17. Inner-shell photo-ionized x-ray laser schemes for low-Z elements

    International Nuclear Information System (INIS)

    Moon, S. J.; Eder, D. C.; Strobel, G. L.

    1995-01-01

    Gain calculations for inner-shell photo-ionized lasing in C at 45 A are performed. An incident x-ray source represented by a 150 eV blackbody with a rise time of 50 fsec gives a gain of order 10 cm -1 . The x-ray source and thus the driving optical laser requirements are significantly reduced as compared to what is needed for Ne at 15 A. We expect that existing ultra-short pulse lasers can produce the required x-ray source and thus produce a table-top x-ray laser at 45 A

  18. The trickle before the torrent-diffraction data from X-ray lasers.

    Science.gov (United States)

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  19. Laser interaction with matter as a source of U.V. and soft X-ray radiation: application to X-ray cinematography

    International Nuclear Information System (INIS)

    Tonon, G.F.; Colombant, Denis; Delmare, Claude; Rabeau, Maxime

    A new detecting device is described. It allows one to get the frequency, the time and space resolution of pictures of U.V. and soft X ray emission of a laser created plasma in a single shot: X ray pictures of such a plasma are presented. After these preliminary results, it is possible to set up readily an X ray framing camera. A laser created plasma is an X ray source of special interest: the emitted power can be 10% of the laser intensity and the emitted spectrum is centered around 1A wavelength [fr

  20. An x-ray probe of nickel nanoparticles generated by laser ablation

    Science.gov (United States)

    Lehmann, C. S.; Doumy, G.; Southworth, S. H.; March, A. M.; Dichiara, A. D.; Gao, Y.; Kanter, E. P.; Krässig, B.; Moonshiram, D.; Young, L.; Chapman, K. W.; Chupas, P. J.

    2014-05-01

    A plume of nickel atoms and nanoparticles can be generated by an intense laser pulse hitting a solid nickel surface. We set up a Ni ablation source in a vacuum chamber on an x-ray beamline at the Advanced Photon Source and used x-ray absorption, x-ray emission, and ion spectroscopies to probe the ablation plume at x-ray energies above the Ni K-edge at 8.33 keV. The laser and x-ray pulses were overlapped in time and space with variable delay to measure the time evolution of the ablation plume. Measurements of the charge states produced by x-ray absorption were not possible due to the intense prompt ions ejected in the ablation process. However, Ni K α x-ray emission was measured as functions of laser fluence and pump-probe delay. The fluorescence yield was also used to record the near-edge x-ray absorption spectrum of the nanoparticles in the plume. The nanoparticles were collected and their diameters were determined to be ~9 nm from x-ray scattering pair-distribution-function measurements. The experiments demonstrate the use of x-ray techniques to characterize laser ablation processes. Work supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  1. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils.

    Science.gov (United States)

    Marguí, E; Floor, G H; Hidalgo, M; Kregsamer, P; Román-Ross, G; Streli, C; Queralt, I

    2010-09-15

    Selenium content of soils is an important issue due to the narrow range between the nutritious requirement and toxic effects upon Se exposure. However, its determination is challenging due to low concentrations within complex matrices that hamper the analysis in most spectroscopic techniques. In this study, we explored the possibilities of several analytical approaches combined with total reflection X-ray (TXRF) spectrometry for soil Se determinations. The direct analysis of a solid suspension using 20 mg of fine ground material (TXRF analysis of soil extracts due to the high Fe concentrations (∼700 mg/L). On the other hand, a dispersive liquid-liquid microextraction procedure (DLLME) before the TXRF analysis of the soil digest was also developed. The effects of various experimental parameters such as sample volume, effect of major elements present in the soil matrix (Fe), and Se concentration in the sample were investigated. The LOD using this analytical methodology (0.05 mg/kg of Se) was comparable to or lower than those obtained in previous works using other popular spectrometric techniques such as GFAAS, ICPMS, and AFS. The calculated Se concentration for JSAC-0411 ([Se] = 1.32 ± 0.27 mg/kg) using the combination of DLLME and TXRF ([Se] = 1.40 ± 0.23 mg/kg) was in agreement with the certified value.

  2. Optically-ionized plasma recombination x-ray lasers

    International Nuclear Information System (INIS)

    Amendt, P.; Eder, D.C.; Wilks, S.C.; Dunning, M.J.; Keane, C.J.

    1991-01-01

    Design studies for recombination x-ray lasers based on plasmas ionized by high intensity, short pulse optical lasers are presented. Transient lasing on n = 3 to n = 2 transitions in Lithium-like Neon allows for moderately short wavelengths (≤ 100 angstrom) without requiring ionizing intensities associated with relativistic electron quiver energies. The electron energy distribution following the ionizing pulse affects directly the predicted gains for this resonance transition. Efficiencies of 10 -6 or greater are found for plasma temperatures in the vicinity of 40 eV. Simulation studies of parametric heating phenomena relating to stimulated Raman and Compton scattering are presented. For electron densities less than about 2.5 x 10 20 cm -3 and peak driver intensity of 2 x 10 17 W/cm 2 at 0.25 μm with pulse length of 100 fsec, the amount of electron heating is found to be marginally significant. For Lithium-like Aluminum, the required relativistic ionizing intensity gives excessive electron heating and reduced efficiency, thereby rendering this scheme impractical for generating shorter wavelength lasing (≤ 50 angstrom) in the transient case. Following the transient lasing phase, a slow hydrodynamic expansion into the surrounding cool plasma is accompanied by quasi-static gain on the n = 4 to n = 3 transition in Lithium-like Neon. Parametric heating effects on gain optimization in this regime are also discussed. 18 refs., 6 figs

  3. Soft x-ray laser ablation of metals and dielectrics

    Science.gov (United States)

    Faenov, A.; Pikuz, T.; Ishino, M.; Inogamov, N.; Zhakhovsky, V.; Skobelev, I.; Hasegawa, N.; Nishikino, M.; Kando, M.; Kodama, R.; Kawachi, T.

    2017-05-01

    We present an overview of our systematic studies of the surface modifications resulting from the interactions of both single and multiple picosecond soft x-ray laser (SXRL) pulses with materials, such as gold (Au), copper (Cu), aluminum (Al), and lithium fluoride (LiF). We show experimentally the possibility of the precise nanometer size structures ( 10-40 nm) formation on their surfaces by ultra-low ( 10-30 mJ/cm2 ) fluencies of single picosecond SXRL pulse. Comparison experimental results with the atomistic model of ablation, which was developed for the single SXRL shot interaction with dielectrics and metals, is provided. Theoretical description of surface nanostructures is considered and is shown that such structures are formed after laser illumination in a process of mechanical spallation of ultrathin surface layer of molten metal. Spallation is accompanied by a strong foaming of melt, breaking of foam, and freezing of foam remnants. Those remnants form chaotic nanostructures, which are observed in experiments. Our measurements show that electron temperature of matter under irradiation of SXRL was lower than 1 eV. The model calculation also predicts that the ablation induced by the SXRL can create the significant low electron temperature. Our results demonstrate that tensile stress created in LiF and metals by short SXRL pulse can produce spallative ablation of target even for drastically small fluencies, which open new opportunities for material nano processing.

  4. Numerical Simulations of X-Ray Free Electron Lasers (XFEL)

    KAUST Repository

    Antonelli, Paolo

    2014-11-04

    We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].

  5. Cytogenetic studies with laser or X-ray exposures

    International Nuclear Information System (INIS)

    Bozduganov, A.; Genkov, P.

    1975-01-01

    Account is given of studies involving a total of 21 peripheral blood cultures given the following treatments: exposure to 20 0.13-joule pulses from an optic quantum generator (ruby), 9; exposure to 1000 R X-rays, 9; and unexposed controls, 3. Exposures were carried out on three cultures from each experimental series at each of three time intervals, namely 24 h, 48 h, and 72 h after initiation of cultures. On any day, 40 well-spread metaphases were examined. High quality metaphases were photographed and karyotyped in conformity to the Chicago Conference criteria. In the laser experiment, chromosome aberrations were observed in 65% of methaphases analyzed vs. 5.3% in controls. Anomalies encountered included aneuploidy, with hypoploid metaphases predominating, polyploidy (triploidy, tetraploidy, and partial endoreduplication), and structural alterations. The following structural chromosome rearrangements are found: acentric fragments, mostly pairs, occasionally single, including minute chromosomes; dicentric and tricentric chromosomes; interstitial deletions; and chromosome translocations. Most varied and abundant chromosome aberrations were seen in 72-h irradiated cultures. The data presented offer a new opportunity for assessing genetic lesions after laser exposure and may help to determine threshold doses. (author)

  6. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  7. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  8. X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

    Science.gov (United States)

    Alkhimova, M. A.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Pikuz, S. A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A. S.; Sagisaka, S.; Dover, N. P.; Kondo, Ko; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S. V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.

    2018-01-01

    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7–2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.2×1021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

  9. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  10. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    International Nuclear Information System (INIS)

    Nicoul, Matthieu

    2010-01-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γ e / γ i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A 1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  11. Characterization of high intensity Ni-like X-ray lasers and their application experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.J.; Daido, H.; Suzuki, M. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Yamagami, S.; Nagai, K.; Norimatsu, T.; Mima, K.; Yamanaka, T. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Kato, Y.; Sasaki, A.; Hasegawa, N. [Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Wang, S.; Gu, Y.; Huang, G. [National Lab. on High Power Laser and Physics, Shanghai, SH (China); Carillon, A.; Ros, D.; Fourcade, P.; Jamelot, G. [Lab. de Spectroscopie Atomique et Ionique, Univ. Paris-Sud, Orsay (France); Joyeux, D.; Phalippou, D. [Lab. Charles Fabry, CNRS, Inst. d' Optique, Orsay (France); Murai, K. [Osaka National Research Inst., Ikeda, Osaka (Japan); Butzbach, R.; Uschmann, I.; Foerster, E. [IOQ, Friedrich-Schiller Univ., Jena (Germany); Namikawa, K.; Tai, R. [Tokyo Gakugei Univ., Koganei (Japan); Koike, F. [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine; Takenaka, H. [NTT Advanced Technology, Musashino (Japan); Zhang, G. [Inst. of Applied Physics and Computational Mathematics, Beijing, BJ (China); Choi, I.W. [Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-07-01

    At the Institute of Laser Engineering, Osaka University, we have obtained Ni-like X-ray lasers of various atomic number elements, including many shorter wavelength Ni-like lasing lines around 5 nm. The saturated amplification of Ni-like Ag lasing line at the wavelength of 13.9 nm have been observed. Using these X-ray lasers, we are preparing the application experiments such as probing a laser-produced plasma with an X-ray laser interferometer. (orig.)

  12. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  13. Target focusing configuration for X-ray laser experiments

    International Nuclear Information System (INIS)

    Seppala, L.G.

    1985-01-01

    X-ray laser experiments imposed a new demand on the Novette focusing optics. These optics had to provide highly uniform, double-sided illumination on a target region 1.0 cm long by 100 to 200 μm wide. This line focus requirement had to be achieved without degrading the diagnostic reflection from the last surface of the focus lens and without potential ghost focus problems. The only optical configuration that preserves the diagnostic reflection is shown. A negative focal length cylinder lens is placed between the focus lens and the debris shield, with the concave surface facing toward the focus lens. Any ghost reflections from the cylinder lens or debris shield are degraded by astigmatism, making them less hazardous. In practice, the uniformity of illumination is probably about the same for a positive or a negative cylinder lens. The minimum Novette focused spot was approximately 50 to 75 μm in diameter, and the fabrication errors in the 80-cm-diam precision cylinder lens produced a line focus 25 μm wide. a negative cylinder lens design was chosen, however, to optimize the illumination uniformity in the case of line widths of several hundred microns

  14. King's College laser plasma x-ray source design

    Science.gov (United States)

    Alnaimi, Radhwan; Adjei, Daniel; Alatabi, Saleh; Appuhamilage, Indika Arachchi; Michette, Alan

    2013-05-01

    The aim of this work is to design and build a source for a range of applications, with optimized multilayer structures in order to use the source output as efficiently as possible. The source is built around a Nd:YAG laser with fundamental wavelength 1064 nm, frequency doubled 532 nm (green) and tripled 355 nm, with a pulse length of about 800 ps and a repetition rate up to 50 Hz. The target material is Mylar (C10H8O4) tape, which is cheap, readily available and has many benefits as explained in this article. A versatile cubic target chamber and a set of computer controlled stage motors are used to allow positioning of the X-ray emission point. A range of measures is used to protect delicate components and optics, including a glass slide between the focusing lens and the target to prevent the lens being coated with debris. A low pressure gas (typically 3-6 mbar) is used inside the chamber as collision of atomic size debris particles with gas molecules reduces their kinetic energy and consequently their adhesion to the surrounding surfaces. The gas used is typically helium or nitrogen, the latter also acting as a spectral filter. Finally, the chamber is continually pumped to ensure that more than 70% of the debris particles are pumped out of the chamber.

  15. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  16. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    Science.gov (United States)

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  17. X-ray laser resonator for the kilo-electron-volt range

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie [Department of Chemistry, University of California, Irvine, California 92697 (United States); Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M. [Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  18. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  19. The prospects for soft x-ray contact microscopy using laser plasmas as an x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Page, A.M.; Ford, T.W. [Univ. of London, Egham (United Kingdom). School of Biological Sciences

    1995-12-31

    Since its invention, a major concern of those using a microscope has been to improve the resolution without the introduction of artifacts. While light microscopy carries little risk of the introduction of artifacts, because the preparative techniques are often minimal, the resolution is somewhat limited. The advent of the electron microscope offered greatly improved resolution but since biological specimens require extensive preparation, the possibility of causing structural damage to the specimen is also increased. The ideal technique for structural studies of biological specimens would enable hydrated material to be examined without any preparation and with a resolution equal to that of electron microscopy. Soft x-ray microscopy certainly enables living material to be examined and whilst the resolution does not equal that of electron microscopy it exceeds that attainable by light microscopy. This paper briefly reviews the limitations of light and electron microscopy for the biologist and considers the various ways that soft x-rays might be used to image hydrated biological material. Consideration is given to the different sources that have been used for soft x-ray microscopy and the relative merits of laser-plasma sources are discussed.

  20. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    Science.gov (United States)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  1. Study of compact X-ray laser pumped by pulse-train laser. Double-target experiment

    International Nuclear Information System (INIS)

    Yamaguchi, Naohiro; Fujikawa, Chiemi; Hara, Tamio

    2000-01-01

    We have been developing a tabletop x-ray laser based on the recombination plasma scheme. An advanced experiment has been started to improve x-ray laser output substantially. Two 11-mm-long laser produced plasmas were produced so that their axis aligned into a line, the double-target configuration. X-ray intensity of the 15.47 nm transition line of the Li-like Al ion has been enhanced in the double-target configuration. (author)

  2. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [Univ. of California, Los Angeles, CA (United States)

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  3. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    Science.gov (United States)

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  4. Scaling of x-ray emission and ion velocity in laser produced Cu ...

    Indian Academy of Sciences (India)

    The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances ...

  5. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    been observed that x-ray emissions from ns duration plasma show a volume effect similar to sub- ... geometrical effect leading to x-ray enhancement for ns plasmas. ... 1–5 Joules. A plano convex lens, with /5.8 was used to focus the laser beam on to a massive slab target of oxygen free copper. These targets were well ...

  6. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.; Shu, D.; Shvyd' ko, Y.; Stoupin, S.; Maxwell, T.J.; Ding, Y.; Fawley, W. M.; Hastings, J.; Huang, Z; Krzywinski, J.; Marcus, G.; Qin, Weilun; Medvedev, N.; Zemella, J.; Blank, V.; Terentyev, S.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  7. X-ray diodes for laser fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.

    1981-02-01

    Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility

  8. Soft-X-Ray Laser Interferometry of a Dense Plasma using a Lloyd mirror.

    Science.gov (United States)

    Moreno, C. H.; Marconi, M. C.; Kanizay, K.; Rocca, J. J.

    1998-11-01

    X-Ray lasers can significantly expand the maximum plasma size and electron densities accessible to laser interferometry. Recently, a soft-x-ray laser pumped by the NOVA laser at LLNL was used in combination with a Mach-Zehnder interferometer to study large-scale laser-created plasmas(L.B. Da Silva et al), Phys. Rev. Lett. 74, 3991, (1995). The recent demonstration of saturated discharge-pumped soft x-ray laser(J.J. Rocca et al), Phys. Rev. Lett. 77, 1476, (1996) opened the possibility of conducting soft x-ray laser interferometry of dense plasmas with a table-top laser. The subsequent measurement of the spatial coherence of this laser(M. Marconi et al), Phys. Rev. Lett., 79, 2799, (1997) gave additional support to this possibility. In this communication we report the first demonstration of soft x-ray plasma interferometry experiment performed with a table-top laser. A capillary discharge-pumped 46.9 nm laser was used in combination with a Lloyd mirror to perform time resolved interferometry in a pinch discharge. Analysis of the interferograms allowed to quantify the spatial distribution of the electron density in the region adjacent to the cathode. This work was supported by DOE grant DE-FG03-98DP00208. We also acknowledge the support of NSF for the development of the laser.

  9. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Optimization of soft x-ray line emission from laser-produced carbon plasma with laser intensity. A CHOWDHURY, R A JOSHI, G P GUPTA*, P A NAIK and P D GUPTA. Laser Plasma Division, Centre for Advanced Technology, Indore 452 013, India. £Laser and Plasma Technology Division, Bhabha Atomic Research Centre, ...

  10. Mapping chemical bonding of reaction intermediates with femtosecond X-ray laser spectroscopy

    OpenAIRE

    Wernet, Ph.; Beye, Martin; Kunnus, K.; Leitner, T.; Mazza, T.; Meyer, M.; Nordlund, D.; Odelius, M.; Quevedo, W.; Radcliffe, P.; Rajkovic, I.; Schlotter, B.; de Groot, F.; Scholz, Mirko; Schreck, S.

    2013-01-01

    We determine the pathways in the photo-dissociation reactions of Fe(CO)$_5$ both in the gas phase and in solution by mapping the valence electronic structure of the reaction intermediates with femtosecond X-ray laser spectroscopy.

  11. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  12. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  13. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  14. Progress in compact soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers

  15. Size-selective extended X-ray absorption fine structure spectroscopy of free selenium clusters

    International Nuclear Information System (INIS)

    Nagaya, K.; Yao, M.; Hayakawa, T.; Ohmasa, Y.; Kajihara, Y.; Ishii, M.; Katayama, Y.

    2002-01-01

    In a recent paper [M. Yao et al., J. Synchrotron Radiat. 8, 542 (2001)], we proposed a new method for the size-selective EXAFS (extended x-ray absorption fine structure) of neutral-free clusters, in which not only the x-ray absorption process but also the deexcitation processes are utilized as the structural information. In order to verify this method experimentally, we have developed the synchronous measurements of EXAFS and photoelectron photoion coincidence and carried them out for a Se cluster beam by utilizing the third-generation intense x-ray source. The EXAFS spectra for Se small clusters have been obtained and compared critically with theoretical predictions

  16. X-ray calorimeters used for measurement in laser-fusion experiments

    International Nuclear Information System (INIS)

    Tang Daorun; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Lin Libin; Sun Kexu; Jiang Shaoen

    2005-01-01

    X-ray calorimeters are ready to measure the total soft X-ray energy emitted from the plasma produced by laser because of their bodily absorption, linear response, insensitivity to the electromagnetic disturbance, and so on. The calorimeters mainly include absorbers, thermocouples, bases and shrouds. When X-rays are deposited in the absorbers, photon energy absorbed is quickly converted into intrinsic energy which simultaneously dissipates by thermal conduction and radiation. The X-ray calorimeters were absolutely on-line calibrated in Shenguang-II laser facility with the X-ray diode array spectrometer which has been absolutely calibrated on Beijing Synchrotron Radiation Facility. 20 shots' experimental results show that the X-ray calorimeters are stable, the sensitivity of calorimeter is (84.1 ± 3.4) μv/mJ and the related combined standard uncertainty in the X-ray energy measure is about 31%. The calorimeters can be applied to measure the X-ray energy. (authors)

  17. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    Science.gov (United States)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  18. A Picosecond 14.7 nm X-Ray Laser for Probing Matter Undergoing Rapid Changes

    International Nuclear Information System (INIS)

    Dunn, J; Smith, R F; Nilsen, J; Nelson, A J; Van Buuren, T W; Moon, S J; Hunter, J R; Filevich, J; Rocca, J J; Marconi, M C; Shlyaptsev, V N

    2002-01-01

    With laser-driven tabletop x-ray lasers now operating in the efficient saturation regime, the source characteristics of high photon flux, high monochromaticity, picosecond pulse duration, and coherence are well-matched to many applications involving the probing of matter undergoing rapid changes. We give an overview of recent experiments at the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) laser using the picosecond 14.7 nm x-ray laser as a compact, ultrafast probe for surface analysis and for interferometry of laser-produced plasmas. The plasma density measurements for known laser conditions allow us to reliably and precisely benchmark hydrodynamics codes. In the former case, the x-ray laser ejects photo-electrons, from the valence band or shallow core-levels of the material, and are measured in a time-of-flight analyzer. Therefore, the electronic structure can be studied directly to determine the physical properties of materials undergoing rapid phase changes

  19. A picosecond 14.7 nm x-ray laser for probing matter undergoing rapid changes

    International Nuclear Information System (INIS)

    Dunn, J.; Smith, R.F.; Nilsen, J.; Nelson, A.J.; Van Buuren, T.W.; Moon, S.J.; Hunter, J.R.; Filevich, J.; Rocca, J.J.; Marconi, M.C.; Shlyaptsev, V.N.

    2002-01-01

    With laser-driven tabletop x-ray lasers now operating in the efficient saturation regime, the source characteristics of high photon flux, high monochromaticity, picosecond pulse duration, and coherence are well-matched to many applications involving the probing of matter undergoing rapid changes. We give an overview of recent experiments at the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) laser using the picosecond 14.7 nm x-ray laser as a compact, ultrafast probe for surface analysis and for interferometry of laser-produced plasmas. The plasma density measurements for known laser conditions allow us to reliably and precisely benchmark hydrodynamics codes. In the former case, the x-ray laser ejects photo-electrons, from the valence band or shallow core-levels of the material, and are measured in a time-of-flight analyzer. Therefore, the electronic structure can be studied directly to determine the physical properties of materials undergoing rapid phase changes

  20. Inner-Shell Photon-Ionized X-Ray Laser at 45(Angstrom)

    CERN Document Server

    Weber, F; Da Silva, A; Moon, S; Snavely, R

    2002-01-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Lab Wide (LW) project entitled, ''An Inner-Shell Photo-Ionized X-Ray Laser at 45 (angstrom)'', tracking code 99-LW-042. The most significant accomplishments of this project include the design of a suitable x-ray laser target, the invention of a measurement technique for the determination of rise times of x-ray pulses on the order of 50 femtoseconds, and a novel setup for generating a traveling wave with an ultrashort optical laser pulse. The pump probe technique for rise time measurement will allow us to detect ultrashort x-ray pulses, whose generation by means of a variety of 4th generation light sources is currently under planning elsewhere.

  1. Inner-Shell Photon-Ionized X-Ray Laser at 45(Angstrom)

    International Nuclear Information System (INIS)

    Weber, F; Celliers, P; Moon, S; Snavely, R; Da Silva, L

    2002-01-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Lab Wide (LW) project entitled, ''An Inner-Shell Photo-Ionized X-Ray Laser at 45 (angstrom)'', tracking code 99-LW-042. The most significant accomplishments of this project include the design of a suitable x-ray laser target, the invention of a measurement technique for the determination of rise times of x-ray pulses on the order of 50 femtoseconds, and a novel setup for generating a traveling wave with an ultrashort optical laser pulse. The pump probe technique for rise time measurement will allow us to detect ultrashort x-ray pulses, whose generation by means of a variety of 4th generation light sources is currently under planning elsewhere

  2. Spatially resolved x-ray laser spectra and demonstration of gain in nickel-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, D.A.; Keane, C.J.; MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.; Eckart, M.J.

    1987-09-25

    A recent series of experiments have provided spatially resolved near field images of several candidate x-ray lasing transition in neon-like, nickel-like, and hydrogen-like ions from laser-produced plasmas. From these time-gated, spatially, and spectrally resolved measurements the source size for the J = 0 - 1 and the J = 2 - 1 transitions in Ne-like selenium have been determined. Source regions as small as 50 ..mu..m have been observed on transitions with gain-length products >9. In addition, we have obtained the first experimental evidence for the amplification of spontaneous emission in the nickel-like ions of europium and ytterbium. Gains of order 1 cm/sup -1/ and gain-length products of up to 3.8 are observed on the J = 0 - 1, 4d-4p transitions in Eu + 35 at 65.26 and 71.00 A. Analogous transitions in Yb = +42 have been identified and some evidence for ASE has been observed. 7 refs., 11 figs.

  3. Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography

    Directory of Open Access Journals (Sweden)

    Zhen Huang

    2008-03-01

    Full Text Available Selenium derivatization (via selenomethionine of proteins for crystal structure determination via MAD phasing has revolutionized protein X-ray crystallography. It is estimated that over two thirds of all new crystal structures of proteins have been determined via Se-Met derivatization. Similarly, selenium functionalities have also been successfully incorporated into nucleic acids to facilitate their structure studies and it has been proved that this Se-derivatization has advantages over halogen strategy, which was usually used as a traditional method in this field. This review reports the development of site-specific selenium derivatization of nucleic acids for phase determination since the year of 2001 (mainly focus on the 2’-position of the ribose. All the synthesis of 2’-SeMe modified phosphoramidite building blocks (U, C, T, A, G and the according oligonucleotides are included. In addition, several structures of selenium contained nucleic acid are also described in this paper.

  4. Development of X-ray photoelectron microscope with a compact X-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Takahashi, Z.; Nishimura, Y.; Watanabe, K.; Okamoto, Y.; Sakata, A.; Azuma, H.; Hara, T.

    2005-01-01

    A laboratory-sized X-ray photoelectron microscope was constructed using a compact X-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where X-ray beam is micro-focused via Schwarzschild optics. A compact laser-plasma X-ray source has been developed with a YAG laser, a line-focus lens assembly, an Al tape-target driver and a debris prevention system. The 13.1 nm X-ray was delivered along line plasma whose length was 0.6 or 11 mm with higher intensity than that from a point-focused source. The Schwarzschild optics having the designed demagnification of 224, which was coated with Mo/Si multilayers for 13.1 nm X-ray, was set on the beamline 1 m distant from the source. The electron energy analyser was a spherical capacitor analyser with the photoelectron image detection system that was suited for detection of vast photoelectrons excited by an X-ray pulse of ns-order duration. The spatial resolution less than 5 μm has been confirmed from the variation of As 3d electron intensity along the position of the GaAs sample coated with a photo-resist test pattern

  5. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  6. Novel opportunities for time-resolved absorption spectroscopy at the X-ray free electron laser.

    Science.gov (United States)

    Patterson, B D; Abela, R

    2010-06-07

    Time-dependent X-ray Absorption Spectroscopy (XAS) measurements of chemical reaction dynamics have a time resolution which is limited by: (a) the speed and efficiency of the reaction initiation; (b) the duration of the X-ray pulses used for the measurement; and (c) the brightness of the X-ray source. X-Ray Free Electron Lasers (XFEL), which will deliver 20-100 fs pulses of X-rays, with a peak brightness which is 10(10) times that of a synchrotron, will alleviate limitations (b) and (c). Furthermore, by including a synchronized source of UV, visible, IR or THz pump radiation, the XFEL will contribute to the solution of limitation (a). The present article describes the XFEL operating principle and the generic design of an XFEL facility, emphasizing the features of particular interest to the XAS investigator.

  7. Imaging Macromolecules with X-ray laser pulses

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The short wavelength of X-rays allows us to resolve atoms, but in practise for biological materials the achievable resolution is limited by the destruction of the sample by the radiation that forms the image.  For over 100 years, the workaround to this problem of radiation damage has been to average signals from repeating copies of the object arranged in a large crystal.  It is now possible to overcome damage limits by using intense X-ray pulses that vaporise the sample, but which are short enough in duration to freeze any motion of the sample on the atomic scale.  With the advent of X-ray FELs we have been able to confirm this principle, and are now applying it to overcoming a major bottleneck for protein crystallography, which is the need for large well-diffracting crystals.  The intense pulses also open up opportunities to help solve the crystallographic phase problem.  In particular we have found that commonly-occurring disordered crystals that are usually not ...

  8. Selenium Speciation Assessed by X-Ray Absorption Spectroscopy of Sequentially Extracted Anaerobic Biofilms

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Farges, F.; Nikitenko, S.; Borca, C.N.; Grolimund, D.; Lens, P.N.L.

    2008-01-01

    Wet chemical methods such as sequential extraction procedures are commonly used to assess selenium fractionation in anoxic environments, allowing an estimation of the mobility and bioavailability of selenium. However, the interpretation can be biased by unselective extraction of targeted species and

  9. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Schlotter, W.F.; Turner, J.J.; Rowen, M.; Heimann, P.; Holmes, M.; Krupin, O.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Soufli, R.; Fernández-Perea, M.; Kelez, N.; Lee, S.; Coffee, R.; Hays, G.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Hau-Riege, S.; Juha, Libor; Chalupský, Jaromír; Hájková, Věra; Mancuso, A.P.; Singer, A.; Yefanov, O.; Vartanyants, I.A.; Cadenazzi, G.; Abbey, B.; Nugent, K.A.; Sinn, H.; Lüning, J.; Schaffert, S.; Eisebitt, S.; Lee, W.-S.; Scherz, A.; Nilsson, A.R.; Wurth, W.

    2012-01-01

    Roč. 83, č. 4 (2012), "043107-1"-"043107-11" ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * materials science * beamline * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  10. Development and applications of X-ray lasers at LSAI/LIXAM

    International Nuclear Information System (INIS)

    Klisnick, Annie; Jamelot, Gerard; Ros, David; Carillon, Antoine; Jaegle, Pierre; Boussoukaya, Mustapha; Guilbaud, Olivier; Kuba, Jaroslav; Smith, Raymond; Lagron, Jean-Claude; Vanbostal, Laurent; Joyeux, Denis; Phalippou, Daniel; Sebban, Stephane; Touati, Alain; Du Penhoat, Marie Anne Herve; Ballester, F.; Petit, E.-J.; Rus, Bedrich; Mocek, Tomas

    2002-01-01

    We present an overview of our research activity achieved since the last X-ray laser Conference in Saint-Malo. Our research program involves the development of laser-pumped collisional X-ray lasers under different regimes of irradiation, and the use of these sources for applications. The work presented involves a number of French and international collaborations and was carried out at different pump laser facilities: LULI (Ecole Polytechnique), LOA (ESNTA) in France; Rutherford Laboratory in U.K; PALS in Czech Republic

  11. Lasers and laser applications. Imaging implosion dynamics: The x-ray pinhole/streak camera

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    A Livermore-developed x-ray-sensitive streak camera was combined with a unique x-ray pinhole camera to make dynamic photographs of laser-irradiated fusion target implosions. These photographs show x radiation emitted from the imploding shell during its 100-ps implosion; they are the first continuous observations of an imploding laser-driven fusion capsule. The diagnostic system has a time resolution of 15 ps and a spatial resolution of about 6 μm. Results agree very well with those predicted by our LASNEX calculations, confirming that the essential physics are correctly described in the code and providing further confidence in the soundness of this approach to inertial confinement fusion

  12. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.; Ponomarenko, Olena; Gordon, Robert A.; Heald, Steve M.; Janz, David M.; Krone, Patrick H.; Coulthard, Ian; George, Graham N.; Pickering, Ingrid J.

    2015-02-17

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens

  13. Modeling of collisional excited x-ray lasers using short pulse laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Akira; Moribayashi, Kengo; Utsumi, Takayuki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-03-01

    A simple atomic kinetics model of electron collisional excited x-ray lasers has been developed. The model consists of a collisional radiative model using the average ion model (AIM) and a detailed term accounting (DTA) model of Ni-like Ta. An estimate of plasma condition to produce gain in Ni-like Ta ({lambda}=44A) is given. Use of the plasma confined in a cylinder is proposed to preform a uniform high density plasma from 1-D hydrodynamics calculations. (author)

  14. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  15. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  16. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-01-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers whose Z's range from 13 to 22 are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasma is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  17. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  18. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  19. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  20. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Forber, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  1. X-ray absorption in characterization of laser fusion targets

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-11-01

    Many plastic or metal coated targets are opaque, so their thickness and thickness uniformity cannot be obtained by optical means. Therefore, we have built and tested a new system using monochromatic X-ray absorption measurements. This system is also able to perform non-destructive measurements of argon fill pressure in glass microballoons. The X-ray source is a diffraction tube with a chromium target and fine focus (0.4 x 0.8 mm 2 ). Since monochromatic calculations are involved in this method, we use electronic discrimination to isolate the chromium Kα line (5.4 keV) from the bremsstrahlung spectrum. The detectors are xenon-filled proportional counters. The system is composed of two beams (10 μm in diameter), one used as a reference and the other as the measurement arm. A PET desk computer is coupled ot the experiment. We achieved a precision better than 10% for gold layers in the range of 0.1 to 1 μm, and better than 20% for argon pressures in the range of 5 - 13 bars

  2. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  3. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  4. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  5. Two-color monochromatic x-ray imaging with a single short-pulse laser

    Science.gov (United States)

    Sawada, H.; Daykin, T.; McLean, H. S.; Chen, H.; Patel, P. K.; Ping, Y.; Pérez, F.

    2017-06-01

    Simultaneous monochromatic crystal imaging at 4.5 and 8.0 keV with x-rays produced by a single short-pulse laser is presented. A layered target consisting of thin foils of titanium and copper glued together is irradiated by the 50 TW Leopard short-pulse laser housed at the Nevada Terawatt Facility. Laser-accelerated MeV fast electrons transmitting through the target induce Kα fluorescence from both foils. Two energy-selective curved crystals in the imaging diagnostic form separate monochromatic images on a single imaging detector. The experiment demonstrates simultaneous two-color monochromatic imaging of the foils on a single detector as well as Kα x-ray production at two different photon energies with a single laser beam. Application of the diagnostic technique to x-ray radiography of a high density plasma is also presented.

  6. Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser

    DEFF Research Database (Denmark)

    Öberg, H.; Gladh, J.; Dell'Angela, M.

    2015-01-01

    (~1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient...

  7. Studies of momentum transfer and X-ray spectra in a laser-produced plasma

    International Nuclear Information System (INIS)

    Leroy, Pierre

    Studies of momentum transfer from a ballistic pendulum appear to give satisfactory results for absorbed laser energies in excess of 200 mJ i.e. for fluxes in the 3.10 10 to 3.10 12 W.cm -2 range. A hard X-ray component attributed to fast electrons was revealed by an X-ray spectrometer with a PM system of greater sensitivity than PIN diodes. The laser energy is however too weak to enable studies to be conducted as a function of laser flux or measurements to be performed on targets of low Z [fr

  8. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y. [Institute of Laser Engineering (ILE), Osaka University, Suita, Osaka 565 (Japan); Murai, K. [DMP, ONRI, Ikeda, Osaka 563 (Japan); Weber, F.; Barbee, T.W.; DaSilva, L.B. [Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (United States)

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}

  9. Characterization of collisionally pumped optical-field-ionization soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Sebban, S.; Bettaibi, I.; Upcraft, L. M.; Balcou, P.; Breger, P.; Zeitoun, P.; Le Pape, S.; Ros, D.; Klisnick, A.; Carillon, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.

    2004-01-01

    Roč. 78, - (2004), s. 939-944 ISSN 0946-2171 Grant - others:HPRI(XE) 199900086 Institutional research plan: CEZ:AV0Z1010921 Keywords : X-ray lasers * optical-field-ionization * collisional excitation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.215, year: 2004

  10. Observation of enhanced soft x-ray emission using nitrogen clusters ionized by intense, femtosecond laser

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Park, J. J.; Kim, Ch. M.; Kim, H. T.; Lee, D. G.; Hong, K. H.; Nam, Ch. H.

    2003-01-01

    Roč. 93, č. 5 (2003), s. 3105-3107 ISSN 0021-8979 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : clusters * femtosecond laser s * x-ray spectroscopy Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.171, year: 2003

  11. Optimising hard X-ray generation from laser-produced plasmas

    International Nuclear Information System (INIS)

    Lindheimer, C.

    1995-04-01

    The aim of this work is to increase the X-ray yield for a laser produced plasma by optimising the focusing conditions and temporal shape of the laser pulses. The focusing conditions are improved by introducing a control system that secures the laser target surface to exact focus within a range of a few micrometers, allowing continuously high laser intensity for plasma generation. The temporal shape of the laser pulses is changed by introducing a saturable absorber in the laser beam. The laser produces a substantial pre-pulse that heats and expands the target material prior to main pulse arrival. The saturable absorber can increase the main pulse/pre-pulse ratio of the laser pulse up to four orders of magnitude and consequently reduce expansion of the target material before the main pulse. The belief is that an increase in target density at the time of main pulse arrival will change the energy distribution of the X-rays, towards a more efficient X-ray production in the hard X-ray region. This report and the work connected to it, includes the preliminary measurements and results for these improvements. 17 refs

  12. High Repetition Rate Krf Laser Plasma X-Ray Source for Microlithography

    NARCIS (Netherlands)

    F. Bijkerk,; E. Louis,; Turcu, E. C. I.; Tallents, G. J.

    1992-01-01

    As part of a development programme for a high-intensity laser-plasma X-ray source, experiments have been carried out using a high repetition rate excimer laser (up to 100 Hz; 249 nm, 300 mJ). Remedies are given to problems inherent to operating this type of source at high repetition rates. The

  13. Bessel spatial profile of a soft x-ray laser beam

    Czech Academy of Sciences Publication Activity Database

    Tissandier, F.; Sebban, S.; Ribière, M.; Gautier, J.; Zeitoun, Ph.; Lambert, G.; Goddet, J.P.; Burgy, F.; Valentin, C.; Rousse, A.; Nejdl, Jaroslav; Mocek, Tomáš; Maynard, G.

    2010-01-01

    Roč. 97, č. 23 (2010), 231106/1-231106/3 ISSN 0003-6951 Grant - others:AVČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : soft x-ray laser * beam transverse profile * far-field profile measurment * high-order harmonic Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.820, year: 2010

  14. Progress on collisionally pumped optical-field-ionization soft x-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Sebban, S.; Mocek, Tomáš; Bettaibi, I.; Cros, B.; Maynard, G.; Butler, A.; Gonsavles, A.J.; McKenna, C.M.; Spence, D.J.; Hooker, S.M.; Upcraft, L. M.; Breger, P.; Agostini, P.; Le Pape, S.; Zeitoun, P.; Valentin, C.; Balcou, P.; Ros, D.; Kazamias, S.; Klisnick, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.

    2004-01-01

    Roč. 10, - (2004), s. 1351-1362 ISSN 1077-260X Grant - others:EU(XE) HPRI-1999-CT-00086; EU(XE) HPMF-CT-2002-01554 Institutional research plan: CEZ:AV0Z1010921 Keywords : high intensity laser * laser plasma * optical field ionization (OFI) * x-ray laser (XRL) Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.048, year: 2004

  15. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    Science.gov (United States)

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using

  16. Investigation on non-equilibrium x-ray emission spectra from laser produced plasmas

    International Nuclear Information System (INIS)

    Pei Wenbing; Chang Tieqiang; Zhang Jun

    1995-01-01

    A statistical method for the ion configuration probability distribution in non-LTE plasmas based on the average-ion model is described. In this method, the ion configuration probabilities are obtained from the average level population probabilities of the ions according to the binomial distribution. The non-equilibrium ion configuration distribution and X-ray spectra emitted from Au plasmas produced by 1.06 μm laser are studied. The calculated X-ray emission spectra are in the same energy band range as the experimental results. We discuss the non-equilibrium characteristics of X-ray emission, and show that the contributions of the multiply excited ions to X-ray emission are important

  17. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  18. Sub-keV, subnanosecond measurements of x-ray spectra from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kornblum, H.N.; Koppel, L.N.; Slivinsky, V.W.; Glaros, S.S.; Ahlstrom, H.G.; Larsen, J.T.

    1977-01-01

    As part of the effort to extend our x-ray diagnostic capabilities, we have made x-ray spectral measurements of laser-produced plasmas for photon energies down to 100 eV with a time response of 0.5 nsec. Fast, windowless x-ray diodes were used in conjunction with critical angle reflecting mirrors and thin filters for energy definition for two channels, 300 to 600 eV and 800 to 1300 eV. A third channel, using only an x-ray diode and filter, provided spectral information in the 100 to 300 eV region. Results from exploding pusher targets will be presented and compared with those of other diagnostic techniques and Lasnex calculations. Future expansion and modifications of the present system will be discussed

  19. Soft X-ray laser interferometry/shadowgraphy of exploding wire plasmas

    International Nuclear Information System (INIS)

    Jankowska, E.; Hammarsten, E.C.; Szapiro, B.; Filevich, J.; Marconi, M.C.; Rocca, J.J.

    2002-01-01

    We present the first results from soft x-ray laser interferometry measurements of current-driven thin wire explosions obtained using a capillary discharge pumped 46.9 nm laser and an amplitude division interferometer based on diffraction gratings. We have obtained series of high-resolution soft x-ray interferograms/shadowgrams that depict the initial stage of the evolution of exploding Al wires 15 μm and 25 μm in diameter. The images show a dense vapor core that completely absorbs the probe beam during the initial part of the explosion, and a surrounding plasma shell where both a shift of the interference fringes and partial absorption of the soft x-ray laser probe beam are observed. The excitation of the 25 μm diameter wires at a current rate of 30 A/ns is observed to result in the uniform expansion. However, an increase of the rate of energy deposited per unit mass is observed to give rise to significant instabilities. The expansion velocity of the wire core was determined from the variation of the measured absorption width of the soft x-ray laser beam. The determination of the electron density and vapor density profile requires the combined analysis of the soft x-ray absorption and fringe shift data

  20. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  1. Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Demirci, Hasan; Sierra, Raymond G.; Laksmono, Hartawan; Shoeman, Robert L.; Botha, Sabine; Barends, Thomas R. M.; Nass, Karol; Schlichting, Ilme; Doak, R. Bruce; Gati, Cornelius; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Jogl, Gerwald; Dahlberg, Albert E.; Gregory, Steven T.; Bogan, Michael J.

    2013-01-01

    Serial femtosecond X-ray (SFX) diffraction extending beyond 6 Å resolution using T. thermophilus 30S ribosomal subunit crystals is reported. High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes

  2. K-edge x-ray-absorption spectroscopy of laser-generated Kr+ and Kr2+

    International Nuclear Information System (INIS)

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-01-01

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr + and Kr 2+ produced by laser ionization of Kr. Prominent 1s→4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr + 1s→4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr + 4p 3/2 and 4p 1/2 quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling

  3. Spectroscopy of L-series transitions for X-ray laser photopumping

    Science.gov (United States)

    Burkhalter, P. G.; Newman, D. A.; Hailey, C. J.; Rockett, P. D.; Charatis, G.

    1985-12-01

    Several transition metals considered for resonant photoexcitation X-ray laser applications were examined by high-precision X-ray spectroscopy to determine spectral line positions and radiant line intensity. A cylindrically focused 0.527-micron laser was used to generate the plasma source emission by irradiating thin foil targets; selected wave regions in the 10-17-A range were studied for possible line coincidences between K-series transitions in F, Ne, and O with emission from transition-metal targets. Exact spectral coincidences were found for Mn with the F H-beta line at 12.643 A and for both Mn and Cr with the F He-beta line at 14.458 A. The data obtained from this study have been used to design X-ray laser targets based on an F-gas lasant and a Mn-foil pump.

  4. Soft x ray emission spectra from laser-irradiated high-Z targets

    Science.gov (United States)

    Mehlman, G.; Burkhalter, P. G.; Newman, D. A.; Ripin, B. H.

    1990-06-01

    X ray data were acquired from mass-limited targets with the Pharos III laser system. Targets, mounted at the tip of thin glass stalks, were microscopic pieces of single or multiple high-Z element composition. The laser irradiance was 4 x 10(exp 14) W/sq cm with about 300J of focused 1.05 microns wavelength laser beam. A convex KAP crystal spectrograph was used for its capability to collect high resolution spectra in the 4 to 20 A soft x ray region. The recorded spectral film densities were microdensitometered and converted by computer-processing to absolute continuum and emission line intensities. The spectral features were identified with the aid of ab-initio atomic structure calculations. The continuum background was evaluated as a source of pseudo-continua for absorption studies of soft x rays.

  5. Overview of the program on soft x-ray lasers and their applications at Princeton

    International Nuclear Information System (INIS)

    Suckewer, S.; Ilcisin, K.; Princeton Univ., NJ

    1991-05-01

    In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very ''young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab

  6. Strategic Defense Initiative Program: Accuracy of Statements Concerning DOE’s X-Ray Laser Research Program

    Science.gov (United States)

    1988-06-01

    needed before the feasibility or potential of an X-ray laser weapon could be determined. Finally, in addition to communicating his views in his...goal could be achieved [in the foreseeable future]. Beyond that, development of a full X-ray laser weapon system would require an additional...submitted a Program Plan for X-ray Laser Weapon Technology Development in Support of the Strategic Defense Initiative to the DOE Office of Military

  7. Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification

    Czech Academy of Sciences Publication Activity Database

    Rus, Bedřich; Mocek, Tomáš; Präg R., Ansgar; Kozlová, Michaela; Jamelot, G.; Carillon, A.; Ros, D.; Joyeux, D.; Phalippou, D.

    2002-01-01

    Roč. 66, č. 6 (2002), s. 063806-1 - 063806-11 ISSN 1050-2947 R&D Projects: GA MŠk LN00A100; GA AV ČR IAA1010014 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray lasers * laser plasma * x-ray spectroscopy x-ray optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.986, year: 2002

  8. Multi-millijoule, deeply saturated x-ray laser at 21.2 nm for applications in plasma physics

    Czech Academy of Sciences Publication Activity Database

    Rus, Bedřich; Mocek, Tomáš; Präg R., Ansgar; Kozlová, Michaela; Hudeček, Miroslav; Jamelot, G.; Carillon, A.; Ros, D.; Lagron, J.C.; Joyeux, D.; Phalippou, D.

    2002-01-01

    Roč. 44, - (2002), s. B207-B223 ISSN 0741-3335 R&D Projects: GA MŠk LN00A100; GA AV ČR IAA1010014 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray lasers * laser plasma * x-ray spectroscopy * x-ray optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.121, year: 2002

  9. Control over high peak-power laser light and laser-driven X-rays

    Science.gov (United States)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  10. Comparing different approaches to characterization of focused X-ray laser beams

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Boháček, Pavel; Hájková, Věra; Hau-Riege, S.P.; Heimann, P.A.; Juha, Libor; Krzywinski, J.; Messerschmidt, M.; Moeller, S.P.; Nagler, B.; Rowen, M.; Schlotter, W.F.; Swiggers, M.L.; Turner, J.J.

    2011-01-01

    Roč. 631, č. 1 (2011), s. 130-133 ISSN 0168-9002 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GAP208/10/2302; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * X-ray ablation * beam focusing * beam characterization * beam profile measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  11. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P. J.

    2017-07-11

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  12. A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report

    International Nuclear Information System (INIS)

    Jernigan, J.G.

    1987-01-01

    An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)

  13. Interaction of short x-ray pulses 
with low-Z x-ray optics materials 
at the LCLS free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Hau-Riege, S.P.; London, R.A.; Graf, A.; Baker, S. L.; Soufli, R.; Sobierajski, R.; Burian, Tomáš; Chalupský, Jaromír; Juha, Libor; Gaudin, J.; Krzywinski, J.; Moeller, S.; Messerschmidt, M.; Bozek, J.; Bostedt, C.

    2010-01-01

    Roč. 18, č. 23 (2010), s. 23933-23938 ISSN 1094-4087 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray optics * optical materials * x-ray free electron laser Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.749, year: 2010

  14. Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M; Daido, H; Yogo, A; Sagisaka, A; Ogura, K; Orimo, S; Mori, M; Ma, J; Pirozhkov, A S; Kiriyama, H; Kanazawa, S; Kondo, S; Yamamoto, Y; Shimoura, T; Tanoue, M; Nakai, Y; Akutsu, A; Nagashima, A; Bulanov, S V; Esirkepov, T Z [Advanced Photon Research Center, JAEA, Kizugawa-shi, Kyoto (Japan)], E-mail: nishiuchi.mamiko@jaea.go.jp (and others)

    2008-05-01

    We have performed simultaneous proton and X-ray imaging with an ultra-short and high-intensity Ti: Sap laser system. More than 10{sup 10} protons, whose maximum energy reaches 2.5 MeV, were delivered within a {approx}ps bunch. At the same time, keV X-ray is generated at almost the same place where protons are emitted. We have performed the simultaneous imaging of the copper mesh by using proton and x-ray beams, in practical use of the characteristics of the laser produced plasma that it can provide those beams simultaneously without any serious problems on synchronization.

  15. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  16. High-power excimer laser-generated plasma source for x-ray microlithography

    Science.gov (United States)

    Shields, Harry; Powers, Michael F.; Turcu, I. C. Edmond; Ross, Ian N.; Maldonado, Juan R.; Burkhalter, Philip G.; Newman, D. A.

    1995-09-01

    This paper describes a high-intensity, high pulse-repetition-rate picosecond-pulse excimer laser system and plasma x-ray source, which generates up to 3 W of average x-ray power, into 2(pi) steradians, in a spectral band from 10-16 angstrom. The XeCl excimer laser system output, at 308 nm, consists of a train of 16 pulses, each approximately 45 ps in duration and spaced by 2 ns. The energy of each pulse in the train is approximately 25 mJ, and the pulse-train repetition rate is 60 Hz. Each pulse in the train is focused to a spot of < 10 micrometers diameter on a metal tape target, resulting in an intensity of 1 X 1015 W cm-2. Spectral and spatial characteristics of the x-ray emission have been studied, and the laser energy to x-ray dose conversion efficiency has been measured in an experiment which simulates the x-ray lithography process. Lithographic efficiencies of 5.9% and 10.9% have been measured for copper and stainless steel targets, respectively.

  17. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  18. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  19. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  20. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  1. Homogenious focusing with a transient soft X-ray laser for irradiation experiments

    Czech Academy of Sciences Publication Activity Database

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, Bedřich; Kozlová, Michaela; Stupka, Michal; Mocek, Tomáš; Douillet, D.; Zeitoun, P.; Joyeux, D.; Phalippou, D.

    2006-01-01

    Roč. 263, - (2006), s. 98-104 ISSN 0030-4018 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/05/2316 Institutional research plan: CEZ:AV0Z10100523 Keywords : soft X-Ray laser * focusing * laser plasma * UV radiation * beam profile Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.480, year: 2006

  2. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  3. Overview of the ARGOS X-ray framing camera for Laser MegaJoule.

    Science.gov (United States)

    Trosseille, C; Aubert, D; Auger, L; Bazzoli, S; Beck, T; Brunel, P; Burillo, M; Chollet, C; Gazave, J; Jasmin, S; Maruenda, P; Moreau, I; Oudot, G; Raimbourg, J; Soullié, G; Stemmler, P; Zuber, C

    2014-11-01

    Commissariat à l'Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an "air-box" that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  4. Overview of the ARGOS X-ray framing camera for Laser MegaJoulea)

    Science.gov (United States)

    Trosseille, C.; Aubert, D.; Auger, L.; Bazzoli, S.; Beck, T.; Brunel, P.; Burillo, M.; Chollet, C.; Gazave, J.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C.

    2014-11-01

    Commissariat à l'Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an "air-box" that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  5. Ultrafast laser pump X-ray probe experiments by means of asynchronous sampling

    International Nuclear Information System (INIS)

    Issenmann, D; Ibrahimkutty, S; Baumbach, T; Müller, A-S; Plech, A; Steininger, R; Göttlicher, J; Hiller, N

    2013-01-01

    A high time resolution in the picosecond range is required for the time-domain investigation of phonon dynamics in crystalline systems. Following a recently developed scheme in the visible spectrum, this resolution can be achieved by a method called asynchronous optical x-ray sampling (ASOXS). A pulsed femtosecond laser with high repetition rate is synchronized to the electron bunches in a storage ring. A slight frequency detuning changes the mutual delay continuously, resulting in a time-domain x-ray sampling of the laser-excited system. At the synchrotron radiation source ANKA a machine mode with low momentum compaction factor α c is available, which delivers ultra-short x-ray pulses in the picosecond range.

  6. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    Energy Technology Data Exchange (ETDEWEB)

    Trosseille, C., E-mail: clement.trosseille@cea.fr; Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Beck, T. [CEA, DEN, CADARACHE, F-13108 St Paul lez Durance (France); Gazave, J. [CEA, DAM, CESTA, F-33116 Le Barp (France)

    2014-11-15

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  7. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  8. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  9. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  10. Laser-Hole Boring into Overdense Plasmas Measured with Soft X-Ray Laser Probing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kodama, R. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Tanaka, K. A. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Hashimoto, H. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kato, Y. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Mima, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Weber, F. A. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Barbee, T. W. Jr. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Da Silva, L. B. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 {mu}m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10{sup 17} W /cm{sup 2} . Cross sections of the channel were obtained which show a 30 {mu}m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front. (c) 2000 The American Physical Society.

  11. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability.

    Science.gov (United States)

    Curti, E; Puranen, A; Grolimund, D; Jädernas, D; Sheptyakov, D; Mesbah, A

    2015-10-01

    Direct disposal of spent nuclear fuel (SNF) in deep geological formations is the preferred option for the final storage of nuclear waste in many countries. In order to assess to which extent radionuclides could be released to the environment, it is of great importance to understand how they are chemically bound in the waste matrix. This is particularly important for long-lived radionuclides such as (79)Se, (129)I, (14)C or (36)Cl, which form poorly sorbing anionic species in water and therefore migrate without significant retardation through argillaceous repository materials and host rocks. We present here X-ray absorption spectroscopic data providing evidence that in the investigated SNF samples selenium is directly bound to U atoms as Se(-II) (selenide) ion, probably replacing oxygen in the cubic UO2 lattice. This result is corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions. Because selenide is almost insoluble in water, our data indirectly explain the unexpectedly low release of Se in short-term aqueous leaching experiments, compared to iodine or cesium. These results have a direct impact on safety analyses for potential nuclear waste repository sites, as they justify assuming a small fractional release of selenium in performance assessment calculations.

  12. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  13. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  14. Line X-ray emission from Al targets irradiated by high-intensity, variable-length laser pulses

    Czech Academy of Sciences Publication Activity Database

    Limpouch, J.; Renner, Oldřich; Krouský, Eduard; Uschmann, I.; Förster, E.; Kalashnikov, M. P.; Nickles, P. V.

    2002-01-01

    Roč. 20, - (2002), s. 43-49 ISSN 0263-0346 R&D Projects: GA ČR GA202/01/0755 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser-produced plasma * line X-ray emission * X-ray sources * X-ray spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.487, year: 2002

  15. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  16. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    Science.gov (United States)

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  17. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  18. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  19. X-Ray Diagnostics of Laser-Produced Aluminum Plasmas

    Science.gov (United States)

    1976-06-01

    the test fit of the experimental absorption data to the transmissions 58 expected for Aluainum Bremsstrahlung. The contours of exp erimental data...Laser Created Plasmas," Phisics Letters, V.45A, p. 463-484, 5 November Fcwles, G.B., Introduction to Modern Optics, Holt, Rinehart and Hi est en,^I袟

  20. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...

  1. Strip velocity measurements for gated x-ray imagers using short pulse lasers

    Science.gov (United States)

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time- resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  2. X-ray free electron laser as a real-time probe of chemistry on surfaces

    International Nuclear Information System (INIS)

    Katayama, Tetsuo; Ogasawara, Hirohito

    2015-01-01

    X-ray free electron laser has opened up new possibilities for the study of surface chemical reactions on ultrafast time scale. This article reviews the recent work on the desorption of a molecule from a surface, which is one of the most fundamental surface chemical process. (author)

  3. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...

  4. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measur...

  5. Metrology for X-ray lasers; Metrologie fuer Roentgenlaser

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Fachbereich ' Radiometrie mit Synchrotronstrahlung' ; Gottwald, Alexander; Krumrey, Michael

    2014-09-15

    With free-electron lasers pulse-resolved experiments can be performed. In this article gas-monitor detectors are described, which are based on photoionization and can be used for real-time studies in such experiments. An experimental setup with a time-of-flight spectrometer is described, and the results on Xe-ion spectra obtained with this setup at a photon energy of 93 eV are presented. (HSI)

  6. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  7. Review of x-ray spectroscopy from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    1987-09-01

    Recent progress in x-ray spectroscopy from laser plasmas is reviewed. Advances in the use of K-shell spectra as a diagnostic tool is discussed. Much activity in understanding complex spectra especially from Ne I and Ni I isoelectronic series have been made. Much of the progress has been due to observation of amplification from Δn = O transitions from these configurations. The spectroscopy will be discussed and examples of spectra of the amplified lines will be shown. Finally, recent work on using x-ray spectroscopy to diagnose high density implosions will be discussed. 33 refs

  8. X-ray diffraction in laser-irradiated epsomite crystals grown in presence of borax

    International Nuclear Information System (INIS)

    Zaitseva, E.V.; Portnov, V.N.; Faddeev, M.A.; Chuprunov, E.V.

    1997-01-01

    Relative changes in the intensities ΔI/I of the (220) and (440) X-ray diffraction reflection during laser irradiation of epsomite (MgSO 2 ·7H 2 O) crystals grown from an aqueous solution in the presence of borax (Na 2 B 4 O 7 ·10H 2 O) were measured using the CoK α , CuK α , MoK α radiations. The intensities measured depend on the real crystal structure dependent on the borax content in the solution. The dependence of ΔI/I is studied as a function of borax in the solution and X-ray-radiation wavelength

  9. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-01-01

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY

  10. Soft x-ray microradiography and lithograph using a laser produced plasma source

    International Nuclear Information System (INIS)

    Cheng, P.C.

    1992-01-01

    Considering the hardware characteristics of the laser-induced plasma X-ray source and the limitations of the conventional cone-beam reconstruction algorithm, a general cone-beam reconstruction algorithm has been developed at our laboratory, in which the motion locus of the X-ray source is an arbitrary curve corresponding to at least a 2π continuous horizontal angular displacement in the coordinate system of the specimen. The preliminary simulation shows that the general cone-beam reconstruction algorithm consistently results in visually satisfactory images

  11. A Review of X-ray Free-Electron Laser Theory

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong; /SLAC; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  12. Output characteristics of soft x-ray laser pumped by capillary discharge

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Xiao, Yifan; Kakuya, Yuji; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2006-01-01

    Output characteristics of a capillary discharge 46.9 nm Ne-like Ar soft X-ray laser pumped by a current pulse (di/dt=300-460 A/ns, I max =15-26 kA) are reported. Using ceramics capillary with an inner diameter of 3 mm and a length of 200 mm or 350 mm, we confirmed a laser spike on the XRD signal. Moreover, using 350 mm capillary, we observed spikes on XRD signals twice in a single shot in particular condition. In classical Young's double slit experiment, using tungsten wire with a diameter of 50 μm or 100 μm, we also confirmed interference fringes of soft X-ray laser which indicate that the wavelength of the laser is about 46.9 nm. (author)

  13. Operation of an Extremely Compact Capillary Discharge Soft X-Ray Laser

    Science.gov (United States)

    Benware, B. R.; Moreno, C. H.; Burd, D. J.; Rocca, J. J.

    1996-11-01

    A major goal in ultrashort wavelength laser research is the development of practical laser sources that can impact applications. Of particular interest is the development of compact "table-top" amplifiers. We have previously reported the first observation of large soft x-ray amplification, at 46.9 nm in the J=0-1 line of Ne-like argon in a plasma column generated by a fast capillary discharge.(J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar, D. Hartshorn, and J. L. A. Chilla, Phys. Rev. Lett. 73), 2192 (1994). Herein we report the successful operation of an extremely compact table-top discharge driven 46.9 nm laser. Measurement of the soft x-ray laser output pulse energy, pulse duration and beam divergence will be reported. Work supported by the National Science Foundation.

  14. Key Laser Technologies for X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Kaertner, Franz [MIT

    2013-08-31

    In the final project period, we demonstrated sub femtosecond timing distribution over a 1.2 km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators (BOCs) for link stabilization. By eliminating polarization mode dispersion, link operation for 16 days maintained 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift, which corresponds to a stability level of 10-21. To improve the overall system efficiency and robustness, we developed fiber-coupled, hybrid-integrated BOCs using waveguides in periodically-poled KTiOPO4 (PPKTP). The measured second-harmonic conversion efficiency in the waveguides is a factor of 50 higher than that of bulk-optic crystals. Characterization of 1st-generation devices shows performance comparable to free-space BOCs, with the potential for significant improvement in future devices. For optical-to-RF conversion, we developed two balanced optical-microwave phase detectors (BOM-PD) based on the Sagnac and Mach-Zehnder interferometers. RF extraction using BOM-PDs in phase-locked loops yielded sub-10-fs residual timing jitter for locking bandwidths on the order of several hundred kHz. Finally, we characterized the timing jitter of ultralow-noise Ti:Sapphire oscillators, demonstrating an unprecedented 13 as of jitter integrated over the entire Nyquist band. Our measurements agreed well with theory, confirming our models for quantum-limited laser noise. Measurements of commercially available solid-state lasers at 1550 nm showed that there are laser sources already available with sufficiently low noise to achieve sub-femtosecond performance as master oscillators within a timing distribution system.

  15. Progress in optical-field-ionization soft x-ray lasers at LOA

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Sebban, S.; Bettaibi, I.; Zeitoun, P.; Faivre, G.; Cros, B.; Maynard, G.; Butler, A.; McKenna, C.M.; Spence, D.J.; Gonsavles, A.J.; Hooker, S.M.; Vorontsov, V.; Hallou, S.; Fajardo, M.; Kazamias, S.; Le Pape, S.; Mercere, P.; Morlens, A.S.; Valentin, C.; Balcou, P.

    2005-01-01

    Roč. 23, - (2005), s. 351-356 ISSN 0263-0346 Grant - others:EU(XE) HPRI-1999-CT-00086; EU(XE) HPMF-CT-2002-01554 Institutional research plan: CEZ:AV0Z10100523 Keywords : collisional excitation * femtosecond * guiding * high harmonic amplification * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.590, year: 2005

  16. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, Mariapompea; Kováčik, L.

    2017-01-01

    Roč. 50, č. 1 (2017), s. 51-60 ISSN 0017-1557 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Au nanoparticles * Laser * X-ray diagnostics * medical imaging * contrast medium Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.638, year: 2016

  17. Aberration-free laser beam in the soft x-ray range

    Czech Academy of Sciences Publication Activity Database

    Goddet, J.P.; Sebban, S.; Gautier, J.; Zeitoun, P.; Valentin, C.; Tissandier, F.; Marchenko, T.; Lambert, G.; Ribières, M.; Douillet, D.; Lefrou, T.; Iaquaniello, G.; Burgy, F.; Maynard, G.; Cros, B.; Robillard, B.; Mocek, Tomáš; Nejdl, Jaroslav; Kozlová, Michaela; Jakubczak, Krzysztof

    2009-01-01

    Roč. 34, č. 16 (2009), 2438-24 ISSN 0146-9592 R&D Projects: GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray laser * optical field ionization * spatial filtering * wavefront aberrations Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.059, year: 2009

  18. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses

    Science.gov (United States)

    Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; Berntsen, Peter; Bielecki, Johan; Daurer, Benedikt J.; DeMirci, Hasan; Fromme, Petra; Hantke, Max Felix; Maia, Filipe R. N. C.; Munke, Anna; Nettelblad, Carl; Pande, Kanupriya; Reddy, Hemanth K. N.; Sellberg, Jonas A.; Sierra, Raymond G.; Svenda, Martin; van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu; Aquila, Andrew; Zwart, Peter H.; Mancuso, Adrian P.

    2017-10-01

    We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.

  19. Sub-nanosecond plastic scintillator time response studies using laser produced x-ray pulsed excitation

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Tripp, G.R.; Lent, E.M.; Lerche, R.A.; Cheng, J.C.; Hocker, L.; Lyons, P.B.

    1976-01-01

    The light emission time response of quenched NElll plastic scintillators has been measured using a streak camera (20 ps resolution) and 100 to 180 ps, 1.06 μm, laser-produced, pulsed, low energy x-ray excitation. Each light output pulse was obtained by deconvolution from the film data using the x-ray temporal response measured with an x-ray sensitive streak camera (10 ps resolution). Time response parameters are presented for benzophenone and acetophenone, quenching agents which most effectively reduce the decay time of the singlet component. Full width-half-maximums less than or equal to 260 ps were observed for NElll samples quenched with greater than or equal to 2 percent benzophenone. Results are given for unquenched samples consisting of different concentrations of butyl-PBD in PVT and for the phosphor ZnO doped with Ga

  20. Sub-nanosecond plastic scintillator time response studies using laser produced x-ray pulsed excitation

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Tripp, G.R.; Lent, E.M.; Lerche, R.A.; Cheng, J.C.; Hocker, L.; Lyons, P.B.

    1977-01-01

    The light emission time response of quenched NE111 plastic scintillators has been measured using a streak camera (20 ps resolution) and 100 to 180 ps, 1.06 μm, laser-produced, pulsed, low energy x-ray excitation. Each light output pulse was obtained by deconvolution from the film data using the x-ray temporal response measured with an x-ray sensitive streak camera (10 ps resolution). Time response parameters are presented for benzophenone and acetophenone, quenching agents which most effectively reduce the decay time of the singlet component. Full width-half-maximums less than or equal to 260 ps were observed for NE111 samples quenched with greater than or equal to 2 percent benzophenone. Results are given for unquenched samples consisting of different concentrations of butyl-PBD in PVT and for the phosphor ZnO doped with Ga

  1. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    Science.gov (United States)

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Emerging opportunities in structural biology with X-ray free-electron lasers

    Science.gov (United States)

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  3. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  4. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi, E-mail: nakasako@phys.keio.ac.jp [Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo 679-5148 (Japan)

    2014-03-15

    The software suite SITENNO is developed for processing diffraction data collected in coherent X-ray diffraction imaging experiments of non-crystalline particles using an X-ray free-electron laser. Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  5. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    International Nuclear Information System (INIS)

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    The software suite SITENNO is developed for processing diffraction data collected in coherent X-ray diffraction imaging experiments of non-crystalline particles using an X-ray free-electron laser. Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles

  6. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike; Mann, Klaus [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen (Germany); Wieneke, Stefan [Hochschule für angewandte Wissenschaft und Kunst, Von-Ossietzky-Str 99, D-37085 Göttingen (Germany); Eusterhues, Karin [Friedrich-Schiller-Universität Jena, Fürstengraben 1, D-07743 Jena (Germany)

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well as at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.

  7. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  8. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  9. Neon in ultrashort and intense x-rays from free electron lasers

    Science.gov (United States)

    Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan

    2018-03-01

    We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.

  10. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    Science.gov (United States)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  11. Experimental studies and modeling of X-Rays multilayer mirrors damages under high X-Ray flux generated by a laser-plasma experiment

    International Nuclear Information System (INIS)

    Le Guern, F.

    1996-01-01

    We have been able with this work to point out characterize X-Rays multilayers mirrors damages. We have designed two experimental set-up which have been installed in the HELIOTROPE experimental chamber of the OCTAL facility located at the CEA in Limeil-Valenton. We have demonstrated that X-Rays multilayer mirrors properties were drastically modified by X-Rays emitted by a golden laser plasma. We have, more precisely, introduced the damage speed concept to quantify the expansion of the multilayer mirror period. We have been able to classify different multilayer mirrors in function of their resistance to damage and we have demonstrated that a silicate layer deposited on a mirror allowed to increase his resistance to damage. In a second part we have developed a simulation tool in order to simulate the X-Rays multilayer mirrors optical properties modifications. We have therefore coupled a thermo-mechanic code with an optical program. The results of the simulations are in a rather good agreement with the experiments and can be used to predict, before experiments, the multilayer mirror behavior under X-Rays irradiation. (author)

  12. Soft x-ray free-electron laser induced damage to inorganic scintillators

    Czech Academy of Sciences Publication Activity Database

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, J.; Özkan, C.; Coppola, N.; Farahani, S.D.; Schulz, J.; Sinn, H.; Tschentscher, T.; Gaudin, J.; Bajt, S.; Tiedtke, K.; Toleikis, S.; Chapman, H.N.; Loch, R.A.; Jurek, M.; Sobierajski, R.; Krzywinski, J.; Moeller, S.; Harmand, M.; Galasso, G.; Nagasono, M.; Saskl, K.; Sovák, P.; Juha, Libor

    2015-01-01

    Roč. 5, č. 2 (2015), 254-264 ISSN 2159-3930 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : fluorescent and luminescent materials * laser damage * free-electron lasers * soft x- rays * laser materials processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.657, year: 2015

  13. X-ray optics research for free electron lasers: study of material damage under extreme fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kuba, Jaroslav E-mail: kuba@llnl.gov; Wootton, Alan; Bionta, R.M.; Shepherd, Ronnie; Fill, E.E.; Ditmire, Todd; Dyer, Gilliss; London, R.A.; Shlyaptsev, V.N.; Dunn, James; Booth, Rex; Bajt, Sasa; Smith, R.F.; Feit, M.D.; Levesque, Rick; McKernan, Mark

    2003-07-11

    Free electron lasers operating in the 0.1-1.5 nm wavelength range have been proposed for the Stanford Linear Accelerator Center (USA) and DESY (Germany). The unprecedented brightness and associated fluence (up to 30 J cm{sup -2}) predicted for pulses <300 fs pose new challenges for optical components. A criterion for optical component design is required, implying an understanding of X-ray--material interactions at these extreme conditions. In our experimental effort, the extreme conditions are simulated by the currently available sources ranging from optical lasers, through X-ray lasers (XRLs) at 14.7 nm down to K-alpha sources ({approx}0.15 nm). In this paper, we present an overview of our research project on X-ray--matter interaction, including both computer modeling and preliminary results from optical laser experiments, the COMET tabletop high brightness ps XRL and a K-alpha experimental campaign carried out at the JanUSP laser facility at the Lawrence Livermore National Laboratory.

  14. X-ray optics research for free electron lasers: study of material damage under extreme fluxes

    International Nuclear Information System (INIS)

    Kuba, Jaroslav; Wootton, Alan; Bionta, R.M.; Shepherd, Ronnie; Fill, E.E.; Ditmire, Todd; Dyer, Gilliss; London, R.A.; Shlyaptsev, V.N.; Dunn, James; Booth, Rex; Bajt, Sasa; Smith, R.F.; Feit, M.D.; Levesque, Rick; McKernan, Mark

    2003-01-01

    Free electron lasers operating in the 0.1-1.5 nm wavelength range have been proposed for the Stanford Linear Accelerator Center (USA) and DESY (Germany). The unprecedented brightness and associated fluence (up to 30 J cm -2 ) predicted for pulses <300 fs pose new challenges for optical components. A criterion for optical component design is required, implying an understanding of X-ray--material interactions at these extreme conditions. In our experimental effort, the extreme conditions are simulated by the currently available sources ranging from optical lasers, through X-ray lasers (XRLs) at 14.7 nm down to K-alpha sources (∼0.15 nm). In this paper, we present an overview of our research project on X-ray--matter interaction, including both computer modeling and preliminary results from optical laser experiments, the COMET tabletop high brightness ps XRL and a K-alpha experimental campaign carried out at the JanUSP laser facility at the Lawrence Livermore National Laboratory

  15. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Tono, Kensuke, E-mail: tono@spring8.or.jp [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Nango, Eriko; Sugahara, Michihiro; Song, Changyong; Park, Jaehyun; Tanaka, Tomoyuki; Tanaka, Rie [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148 (Japan); Joti, Yasumasa; Kameshima, Takashi [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Ono, Shun; Hatsui, Takaki [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148 (Japan); Mizohata, Eiichi [Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Suzuki, Mamoru [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148 (Japan); Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shimamura, Tatsuro; Tanaka, Yoshiki [Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Iwata, So [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148 (Japan); Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Yabashi, Makina [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148 (Japan)

    2015-04-16

    An experimental platform for serial femtosecond crystallography using an X-ray free-electron laser and its applications at SACLA are described. An experimental system for serial femtosecond crystallography using an X-ray free-electron laser (XFEL) has been developed. It basically consists of a sample chamber, fluid injectors and a two-dimensional detector. The chamber and the injectors are operated under helium atmosphere at 1 atm. The ambient pressure operation facilitates applications to fluid samples. Three kinds of injectors are employed to feed randomly oriented crystals in aqueous solution or highly viscous fluid. Experiments on lysozyme crystals were performed by using the 10 keV XFEL of the SPring-8 Angstrom Compact free-electron LAser (SACLA). The structure of model protein lysozyme from 1 µm crystals at a resolution of 2.4 Å was obtained.

  16. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    International Nuclear Information System (INIS)

    Abare, A.C.; Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D.; Falcone, R.W.

    1993-04-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra a gas jet target. In obtained from the interaction of a picosecond Nd:glass laser with these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium

  17. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    International Nuclear Information System (INIS)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A.

    2016-01-01

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  18. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  19. Single-molecule X-ray free-electron laser imaging : Interconnecting sample orientation with explosion data

    OpenAIRE

    Östlin, Christofer

    2014-01-01

    X-ray crystallography has been around for 100 years and remains the preferred technique for solving molecular structures today. However, its reliance on the production of sufficiently large crystals is limiting, considering that crystallization cannot be achieved for a vast range of biomolecules. A promising way of circumventing this problem is the method of serial femtosecond imaging of single-molecules or nanocrystals utilizing an X-ray free-electron laser. In such an approach, X-ray pulses...

  20. Bent crystal X-ray optics for the diagnosis and applications of laser-produced plasmas

    International Nuclear Information System (INIS)

    Loetzsch, Robert

    2012-01-01

    The present thesis discussed several aspects of X-ray optics based on bent crystals and a number of applications of these optics. First, a deeper insight into the reflection properties of elastically bent perfect crystal optics was gained by the consideration of all deformation effects. It was shown that the reflection properties depend on the lateral position on the crystal, an effect that was not addressed before, neither experimentally nor theoretically. To investigate this effect, an apparatus for the measurement of Bragg angles of bent crystals with high angular resolution was built. It was measured that the lattice plane distances of two-dimensionally bent crystals vary laterally by up to 10 -4 . This effect has to be considered in high resolution X-ray spectroscopy and imaging with these bent crystals. It can explain discrepancies in theoretical and experimental spectrometer resolution with spherically bent crystals. Besides these principal investigations, in this thesis a number of X-ray optics were presented that demonstrate the application potential of bent crystal optics. This includes two optics that are used in the field of applications of laser-produced plasmas as high repeating hard X-ray sources. It was shown that an X-ray spectrometer based on full cylinder rings of highly oriented pyrolytic graphite is capable to record the rather weak single shot pulses from a high repeating 1 er-plasma X-ray source. This is possible due to the high collection efficiency of the instrument of up to 5.10 -4 . Furthermore, X-ray optics based on toroidally bent crystals that make it possible to spectrally select a bandwidth of ∝1 eV and focus the ultrashort X-ray pulses from such a laser-plasma source, were designed, prepared and characterized. It was shown that these bent crystals provide the calculated integrated reflectivity, the predicted bandwidth and focus to spot sizes smaller than 60 μm. A novel application of toroidally bent crystals was pointed out: a

  1. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    Science.gov (United States)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  2. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  3. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  4. Intense high-contrast femtosecond K-shell x-ray source from laser-driven Ar clusters.

    Science.gov (United States)

    Chen, L M; Liu, F; Wang, W M; Kando, M; Mao, J Y; Zhang, L; Ma, J L; Li, Y T; Bulanov, S V; Tajima, T; Kato, Y; Sheng, Z M; Wei, Z Y; Zhang, J

    2010-05-28

    Bright Ar quasimonochromatic K-shell x ray with very little background has been generated using an Ar clustering gas jet target irradiated with a 30 fs ultrahigh-contrast laser, with a measured flux of 2.2×10(11)   photons/J into 4π. This intense x-ray source critically depends on the laser contrast and intensity. The optimization of source output with interaction length is addressed. Simulations point to a nonlinear resonant mechanism of electron heating during the early stage of laser interaction, resulting in enhanced x-ray emission. The x-ray pulse duration is expected to be only 10 fs, opening the possibility for single-shot ultrafast keV x-ray imaging applications.

  5. Signature of externally introduced laser fields in X-ray emission of multicharged ions

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Sauvan, P.; Dalimier, E.; Riconda, C.; Rosmej, F.B.; Weber, S.; Nicolai, P.; Peyrusse, O.; Uschmann, I.; Höfer, S.; Loetzsch, R.; Förster, E.; Oks, E.

    2009-01-01

    Roč. 5, č. 3 (2009), s. 139-146 ISSN 1574-1818 R&D Projects: GA ČR GA202/06/0801 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * x-ray spectroscopy * atomic processes in plasmas * PIC and fluid simulations * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Optimized K (alpha) x-ray flashes from femtosecond-laser-irradiated foils

    Czech Academy of Sciences Publication Activity Database

    Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; von der Linde, D.; Mašek, Martin; Gibbon, P.; Teubner, U.

    2009-01-01

    Roč. 80, č. 2 (2009), 026404/1-026404/10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : copper * electron density * high-speed optical techniques * plasma density * plasma production by laser * plasma simulation * plasma x-ray sources * titanium Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.400, year: 2009

  7. Modelling of a Nitrogen X-ray Laser pumped by Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Bobrova, N. A.; Sasorov, P. V.

    2005-01-01

    Roč. 3, č. 4 (2005), s. 564-580 ISSN 1644-3608 R&D Projects: GA MŠk(CZ) 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : MHD simulations * Z-pinch * Ion kinetics * Recombination Pumping * X-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.524, year: 2005

  8. Route to Soft X-ray Laser Pumped by Gas-Filled-Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Řípa, Milan; Frolov, Oleksandr; Štraus, Jaroslav; Vrba, Pavel

    2004-01-01

    Roč. 34, - (2004), s. 154-157 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR(CZ) GA202/03/0711 Grant - others:GA MŠk1(CZ) LA 235 Keywords : fast capillary discharge * soft x-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Hasi, J.; Oh, A.; Zorzi, N.

    2013-01-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge

  10. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  11. KMSF x-ray laser experiments. Task No. 2. Final report

    International Nuclear Information System (INIS)

    Charatis, G.

    1984-07-01

    This report summarizes work done at KMS Fusion, Inc. in support of the x-ray laser experimental program at Lawrence Livermore National Laboratory. It follows an earlier report of Task No. 1 of the subject purchase order. As in that report, most of the original data has been reviewed by the LLNL technical staff, with much of it transferred to LLNL for analysis. Consequently, this report does not include a detailed presentation of the data

  12. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  13. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  14. Quantitative measurements with x-ray microscopes in laser-fusion experiments

    International Nuclear Information System (INIS)

    Marshall, F.J.; Su, Q.

    1995-01-01

    X-ray imaging of laser-fusion target implosions has been performed on the University of Rochester's OMEGA laser system by means of grazing-incidence optical imaging with Kirkpatrick--Baez (KB) microscopes. High spatial resolution imaging (∼5 μm) of hard x-ray emission (up to ∼7 keV) has been achieved. New grazing-incidence optics are currently being fabricated for the OMEGA Upgrade experimental laser-fusion facility. Projected performance indicates that resolution may be increased to ∼2 μm at the center of the field of view and sensitivity extended to ∼8 keV. Uses of KB microscopes on the OMEGA Upgrade will include hard x-ray imaging, grating-dispersed imaged spectroscopy, and framed imaging. A novel technique for monochromatic imaging with KB microscopes has also been demonstrated enabling images of target emission in a narrow energy band (10 to 20 eV) to be obtained

  15. Large-field high-resolution x-ray microscope for studying laser plasmas

    International Nuclear Information System (INIS)

    Sauneuf, R.; Dalmasso, J.; Jalinaud, T.; Le Breton, J.; Schirmann, D.; Marioge, J.; Bridou, F.; Tissot, G.; Clotaire, J.

    1997-01-01

    In 1948, P. Kirkpatrick and A. V. Baez developed an x-ray microscope (energy range about 100 eV endash 10 keV) composed of two concave spherical mirrors working at grazing incidence. That device, named KB microscope, presents a 3 endash 5 μm resolution within a field having a radius about 100 μm; outside that field, its resolution lowers rapidly when the object point recedes from the center. The adjunction of two similar mirrors can notably increase the useful field (typically, the resolution can be better than 10 μm within a 2-mm-diam field of view), which is necessary for studying laser plasmas. Its main advantage with respect to more simple optics, as the pinhole, is that it can be located far enough from the plasma to avoid any destruction during the shot. We describe such a microscope that we call KBA microscope and present some images of fine metallic grids. Those grids were backlighted by x-ray sources, either a cw one or a series of laser plasmas from the Octal endash Hacute eliotrope facility. Examining the films in detail shows that the experimental results are very close to the theoretical characteristics; hence the interest of this device for the x-ray diagnostics on the future powerful laser facilities. copyright 1997 American Institute of Physics

  16. Time-resolved X-ray diffraction on laser-excited metal nano-particles

    CERN Document Server

    Plech, A; Kurbitz, S; Berg, K J; Graener, H; Berg, G; Gresillon, S; Kaempfe, M; Feldmann, J; Von Plessen, G

    2003-01-01

    The lattice expansion and relaxation of noble-metal nano-particles heated by intense femtosecond laser pulses are measured by pump-probe time-resolved X-ray scattering. Following the laser pulse, shape and angular shift of the (111) Bragg reflection from crystalline silver and gold particles with diameters from 20 to 100 nm are resolved stroboscopically using 100 ps X-ray- pulses from a synchrotron. We observe a transient lattice expansion that corresponds to a laser-induced temperature rise of up to 200 K, and a subsequent lattice relaxation. The relaxation occurs within several hundred picoseconds for embedded silver particles, and several nanoseconds for supported free gold particles. The relaxation time shows a strong dependence on particle size. The relaxation rate appears to be limited by the thermal coupling of the particles to the matrix and substrate; respectively, rather than by bulk thermal diffusion. Furthermore, X-ray diffraction can resolve the internal strain state of the nano-particles to sepa...

  17. Image quality of digital chest X-rays: wet versus dry laser printers.

    Science.gov (United States)

    Zähringer, M; Wassmer, G; Krug, B; Winnekendonk, G; Gossmann, A; Lackner, K J

    2001-09-01

    The aim of this study was to compare the image quality of digital chest x-rays (Thoravision) obtained with 2 "wet" laser imagers of different matrix sizes and a "dry" system. Fifty chest x-rays in 2 planes were printed out in normal (100%) and reduced (61%) format using 3 different systems: 2 "wet" laser imagers (Agfa Matrix LR 3300, 4256 x 5174 pixels, 315 dpi; Agfa Scopix LR 5200, 8512 x 10348 pixels, 630 dpi), and one "dry" system (Agfa Drystar 3000,4352 x 5295 pixels, 330 dpi). All tests yielded normal findings. Anonymous images were evaluated by 4 independent reviewers on record forms rating the detectability of predefined anatomic structures. When the image quality of diagnosis-relevant, anatomic structures was evaluated on digital chest x-rays reproduced in normal and reduced format, the wet laser imagers did not show significant advantages over the dry system, Agfa Drystar 3000. The Agfa Drystar 3000 system is a feasible alternative for reproducing digital images, particularly for decentralized archives.

  18. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  19. Performance of soft x-ray laser pumped by capillary discharge

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Kakuya, Yuji; Xiao, Yifan

    2005-01-01

    We report the output characteristics of capillary discharge single-pass 46.9 nm Ne-like Ar soft-X-ray laser generated by a capillary z-pinch discharge. The coherence properties of the laser have shown to be improved with the increase of the length of laser amplifier from 20 up to 35 cm. The high degree of the spatial coherence of the laser beam produced by 35 cm long capillary is demonstrated by the results obtained in a classical Young's double-slit experiments. We found that the coherence length of the laser is 50 μm. For the 20 cm-long capillary, the diameter of a laser beam is in a range from 3.2 to 4.0 mm, which is corresponding to a range of divergence from 2.2 to 2.8 mrad. Finally, we introduce two spikes on X-ray diode (XRD) signal observed in a single shot. (author)

  20. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  1. Soft x-ray free electron laser microfocus for exploring matter under extreme conditions

    Czech Academy of Sciences Publication Activity Database

    Nelson, A.J.; Toleikis, S.; Chapman, H.; Bajt, S.; Krzywinski, J.; Chalupský, Jaromír; Juha, Libor; Cihelka, Jaroslav; Hájková, Věra; Vyšín, Luděk; Burian, T.; Kozlová, Michaela; Fäustlin, R.R.; Nagler, B.; Vinko, S.M.; Whitcher, T.; Dzelzainis, T.; Renner, Oldřich; Saksl, K.; Khorsand, A.R.; Heimann, P.A.; Sobierajski, R.; Klinger, D.; Jurek, M.; Pelka, J.; Iwan, B.; Andreasson, J.; Timneanu, N.; Fajardo, M.; Wark, J. S.; Riley, D.; Tschentscher, T.; Hajdu, J.; Lee, R. W.

    2009-01-01

    Roč. 17, č. 20 (2009), s. 18271-18278 ISSN 1094-4087 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : microfocus * multilayer mirror * off-axis parabola * x-ray free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.278, year: 2009

  2. X-ray laser studies using plasmas created by optical field ionization

    International Nuclear Information System (INIS)

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-α line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation

  3. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    Science.gov (United States)

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  4. Testing experiment of KBA X-ray microscope in laser prototype facility using Ni-grids

    International Nuclear Information System (INIS)

    Dong Jianjun; Cao Zhurong; Yuan Yongteng; Zhan Xiayu; Liu Shenye; Ding Yongkun

    2010-01-01

    The KBA microscope imaging is simulated by ray-tracing calculation which can determine the direction of optical axis and obtain geometrical modulation transfer function (GMTF) of KBA microscope. According to the simulation results, a new method is proposed for the aiming and adjustment of KBA microscope at the laser prototype facility using visible light as the simulated optical axis of KBA microscope. The precision of grazing angle is about 0.25 degree. Experiment of KBA microscope at the laser prototype facility is implemented using Ni-grids whose period is 20 μm, and clear X-ray image of grids is obtained by CCD camera. (authors)

  5. Self-consistent one-dimensional modelling of x-ray laser plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.

    1992-01-01

    This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation

  6. Investigating the interaction of x-ray free electron laser radiation with grating structure

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Ozkan, C.; Chalupský, Jaromír; Bajt, S.; Burian, Tomáš; Vyšín, Luděk; Coppola, N.; Dastjani-Farahani, S.; Chapman, H.N.; Galasso, G.; Hájková, Věra; Harmand, M.; Juha, Libor; Jurek, M.; Loch, R.A.; Möller, S.; Nagasono, M.; Störmer, M.; Sinn, H.; Saksl, K.; Sobierajski, R.; Schulz, J.; Sovak, P.; Toleikis, S.; Tiedtke, K.; Tschentscher, T.; Krzywinski, J.

    2012-01-01

    Roč. 37, č. 15 (2012), s. 3033-3035 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA MŠk LA08024; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : radiation damage * diffraction grating * amorphous carbon * soft x-rays * free-electron laser Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.385, year: 2012

  7. Radiography in the X-ray region of a laser implosed microball

    International Nuclear Information System (INIS)

    Launspach, J.; Bayer, C.; Billon, D.; Decroisette, M.; Juraszek, D.; Meynial, D.

    1981-05-01

    The OCTAL laser of the Limeil CEA Research Center was used to realize the implosion of small targets containing a mixture of DT and to produce thermonuclear fusion reactions. The experimental device in which the experiments were carried out is called Camelia. Its main component is a vacuum chamber upon which the following elements are fixed: - devices for adjusting the focussing lenses; - a device for positioning targets; - extensive diagnostic means enabling the maximum amount of information to be obtained from each shot. These experiments were performed in order to study laser implosion mechanisms and to measure the density and temperature characteristics that can be reached in this way. The X-ray radiography device is relatively simple. It consists of an X-ray source, the target to be analyzed, one or two stenopies and a detector which is either a simple film (Kodak Kodirex) for diagnostics without temporal resolution or a scanning camera with a slit when temporal resolution is required. The device can be used: - without an x-ray source for emission diagnostics with spatio-temporal resolution, - to study the pre-heating of targets by radiography of the dust at the beginning of the implosion, - for diagnostics of the plasma core by radiography of dust after the implosion [fr

  8. Aerosol Imaging with a Soft X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W. Henry; Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim

    2010-01-01

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10 12 photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  9. Assessing the quantum physics impacts on future x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now considered a resource in the international FEL community for assessing quantum effects in XFELs.

  10. Time-resolved imaging using x-ray free electron lasers

    International Nuclear Information System (INIS)

    Barty, Anton

    2010-01-01

    The ultra-intense, ultra-short x-ray pulses provided by x-ray free electron laser (XFEL) sources are ideally suited to time-resolved studies of structural dynamics with spatial resolution from nanometre to atomic length scales and a temporal resolution of 10 fs or less. With enough photons in a single pulse to enable single-shot measurements and short enough pulses to freeze atomic motion, researchers now have a new window into the time evolution ultrafast phenomena that are intrinsically not cyclic in nature. In this paper we recap some of the key time-resolved imaging experiments performed at FLASH and look ahead to a new generation of experiments at higher resolution using a new generation of new XFEL sources that are only just becoming available.

  11. Real-Time Observation of Surface Bond Breaking with an X-ray Laser

    DEFF Research Database (Denmark)

    Dell'Angela, M.; Anniyev, T.; Beye, M.

    2013-01-01

    Surface Molecules Not Quite Desorbing The dynamics of molecules desorbing from or adsorbing on surfaces requires that molecules rapidly gain or lose a large amount or translational and rotational energy to enter or leave the gas phase. An intermediate precursor state has long been invoked in which...... molecules interact weakly with the surface but translate along it and exchange energy without forming localized surface bonds. Dell'Angela et al. (p. 1302) found evidence for such a state in changes in x-ray absorption and emission spectra of CO molecules adsorbed on a ruthenium surface after optical...... excitation rapidly heated the surface. The use of a free electron laser provided high time resolution for x-ray spectroscopy studies. Density function theory and modeling of high temperature states revealed a state that forms from molecules that have not overcome the desorption barrier during heating...

  12. Soft tissue measurement of arsenic and selenium in an animal model using portable X-ray fluorescence

    Science.gov (United States)

    Fleming, David E. B.; Groves, John W.; Gherase, Mihai R.; George, Graham N.; Pickering, Ingrid J.; Ponomarenko, Olena; Langan, George; Spallholz, Julian E.; Alauddin, Mohammad; Ahsan, Habibul; Ahmed, Selim; La Porte, Paul F.

    2015-11-01

    The ingestion of trace amounts of arsenic (As) through drinking water is a relatively common pathway of exposure with potentially serious long-term health effects. Studies involving animal models have indicated that selenium (Se) may bind with As inside the body and facilitate excretion. A portable X-ray fluorescence (XRF) technique was previously developed to allow in vivo measurement of As and Se in human tissue. In the current paper, this portable XRF approach was tested for the first time using animal tissue. Seven female Lakeview Golden/LVG Syrian hamsters were dosed under either control, As-only, Se-only, or As and Se conditions. Minimum XRF detection limits in soft tissue of 1.00±0.05 ppm for As and 0.83±0.02 ppm for Se were determined from phantom calibration trials. For dosed hamsters, consistently higher concentrations of As and Se were found in the liver and gall bladder, with elevated levels also observed in the intestines. Concentrations ranged up to 26.4±1.4 ppm for As and 11.8±0.8 ppm for Se. The stomach and heart exhibited more moderate concentrations, while the brain, lung, and muscle demonstrated lower levels. For a given organ, As concentrations generally exceeded Se concentrations. A ratio of approximately 2.5:1 was observed for concentrations of As:Se when considering the same or similar tissue sites in dosed hamsters. Implications for potential in vivo human applications of the technique are briefly considered.

  13. Radiation properties of Ni-like molybdenum x-ray laser at PALS

    Science.gov (United States)

    Albrecht, M.; Kozlova, M.; Nejdl, J.

    2017-05-01

    We present lasing in Ni-like molybdenum x-ray laser (18.9 nm) demonstrated with grazing incidence pumping and complete diagnostics of the generated EUV beam. This source of EUV radiation was the first experimental realization of transient x-ray laser at the PALS laboratory. The experiment was performed on a 10 Hz Ti:Sapphire laser system with highly efficient grazing incidence pumping by single beam with profiled laser pulse which included a long prepulse followed by a short main pump pulse. The plasma column was created by focusing of the pumping laser beam on a slab target by a spherical mirror in two different off-axis configurations. Lasing close to saturation with EUV pulses of energy around 100 nJ was demonstrated with less than 500 mJ pumping energy on target. Experimental data from far-field images were analyzed by applying the generalized Van Cittert-Zernike theorem which in general relates field correlation function at the source with intensity in the far-field and can give information about the source size.

  14. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  15. Soft x-ray emission characteristics from laser produced plasmas using a double stream gas-puff nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki; Yamagami, Susumu; Mima, Kunioki [Osaka Univ., Institute of Laser Engineering, Suita, Osaka (Japan); Daido, Hiroyuki; Oketa, Takatsugu [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment; Fiedorowicz, Henrky; Bartnik, Andrzej [Military University of Technology, Institute of Optoelectronics, Kaliskiego, Warsaw (Poland); Nakayama, Takeyoshi [Kinki Univ., School of Science and Engineering, Osaka (Japan)

    2001-10-01

    We characterize a laser produced double-stream gas puff plasma for soft x-ray generation. The double-stream nozzle gas puff target could suppress sideway gas expansion by surrounding the gas from the outer nozzle. Therefore, the x-ray emission from a double nozzle Xe gas-puff target irradiated by a nano-second laser pulse is as strong as that using a solid target. In addition the x-ray source size is smaller than ordinary gas puff plasma. (author)

  16. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  17. Note: Diagnosing femtosecond laser-solid interactions with monochromatic Kα imager and x-ray pinhole camera

    International Nuclear Information System (INIS)

    Lin, X. X.; Li, Y. T.; Liu, F.; Du, F.; Wang, S. J.; Chen, L. M.; Zhang, L.; Zheng, Y.; Liu, X.; Liu, X. L.; Wang, Z. H.; Ma, J. L.; Wei, Z. Y.; Liu, B. C.; Zhang, J.

    2011-01-01

    An x-ray pinhole camera and a monochromatic K α imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditons, the K α emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.

  18. The application of photoconductive detectors to the measurement of x-ray production in laser produced plasmas

    International Nuclear Information System (INIS)

    Kania, D.R.; Bell, P.; Trebes, J.

    1987-08-01

    Photoconductive detectors (PCDs) offer an attractive alternative for the measurement of pulsed x-rays from laser produced plasmas. These devices are fast (FWHM ∼100 ps), sensitive and simple to use. We have used InP, GaAs, and Type IIa diamond as PCDs to measure x-rays emission from 100 eV to 100 keV. Specifically, we have used these detectors to measure total radiation yields, corona temperatures, and hot electron generated x-rays from laser produced plasmas. 5 refs., 4 figs

  19. Nanometric deformations of thin Nb layers under a strong electric field using soft x-ray laser interferometry

    Czech Academy of Sciences Publication Activity Database

    Jamelot, G.; Ros, D.; Carillon, A.; Rus, Bedřich; Mocek, Tomáš; Kozlová, Michaela; Präg R., Ansgar; Joyeux, D.; Phalippou, D.; Boussoukaya, M.; Kalmykow, M.; Ballester, F.; Jacques, E.

    2005-01-01

    Roč. 98, - (2005), 044308/1-044308/8 ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LN00A100; GA AV ČR IAA1010014 Grant - others:EU(XE) HPRI-00108 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray laser * x-ray interferometry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.498, year: 2005

  20. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  1. Soft x-ray emission from postpulse expanding laser-produced plasmas

    Science.gov (United States)

    Weaver, J. L.; Feldman, U.; Mostovych, A. N.; Seely, J. F.; Colombant, D.; Holland, G.

    2003-12-01

    A diagnostic spectrometer has been developed at the Naval Research Laboratory to measure the time resolved absolute intensity of radiation emitted from targets irradiated by the Nike laser. The spectrometer consists of a dispersive transmission grating of 2500 lines/mm or 5000 lines/mm and a detection system consisting of an absolutely calibrated Si photodiode array and a charge coupled device camera. In this article, this spectrometer was used to study the spatial distribution of soft x-ray radiation from low Z elements (primarily carbon) that lasted tens of nanoseconds after the main laser illumination was over. We recorded soft x-ray emission as a function of the target material and target orientation with respect to the incoming laser beam and the spectrometer line of sight. While a number of spectral features have been identified in the data, the instrument's combined temporal and spatial resolution allowed observation of the plasma expansion from CH targets for up to ˜25 ns after the cessation of the main laser pulse. The inferred plasma expansion velocities are slightly higher than those previously reported.

  2. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  3. X-rays generation induced by laser-powder flow interaction

    International Nuclear Information System (INIS)

    Servol, M.

    2005-11-01

    Fast development of brief lasers has permitted important progresses in the study of matter irradiated by an intense pulse. Brief X-ray generation, observed in this type of interaction, is interesting for imaging. Thanks to the short X-rays wavelength (0, 1 to 100 angstroms), matter can be probed with resolution of the order of interatomic distance, allowing a direct information about the atomic structure. The brief duration allows to probe the dynamic of ultrafast phenomena. We have studied the interaction of an intense and brief laser with a flow of powder. This work points out some advantages of this new target concept compared to conventional ones. Moreover, it gives a deeper insight about the interaction of a brief and powerful laser impinging on such a target. A first part of this work has been devoted to the development of an under vacuum flowing system and to the choice of powder allowing different interaction regimes. Next we have studied some characteristics of this source like size, spectrum and maximum repetition rate. Finally, we deduced some interaction characteristics from the analysis of obtained spectra. This work has shown the interest of using a flowing powder as a new type of laser target for X radiation production. For instance an aerogel powder has given an emissivity 2 times as high as a classic solid target

  4. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  5. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  6. X-Ray Thomson Scattering and Radiography from Spherical Implosions on the OMEGA Laser

    Science.gov (United States)

    Saunders, A. M.; Laziki-Jenei, A.; Doeppner, T.; Landen, O. L.; MacDonald, M.; Nilsen, J.; Swift, D.; Falcone, R. W.

    2017-10-01

    X-ray Thomson scattering (XRTS) is an experimental technique that directly probes the physics of warm dense matter by measuring electron density, electron temperature, and ionization state. XRTS in combination with x-ray radiography offers a unique ability to measure an absolute equation of state (EOS) from material under compression. Recent experiments highlight uncertainties in EOS models and the predicted ionization of compressed matter, suggesting more validation of models is needed. We present XRTS and x-ray radiography measurements taken at the OMEGA Laser Facility from directly-driven solid carbon spheres at densities on the order of 1x1024 g cm-3 and temperatures on the order of 30 eV. The results shed light on the equations of state of matter under compression. This work performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under the Stewardship Science Graduate Fellowship, Grant Number DE- NA0002135.

  7. X-ray free-electron lasers: from dreams to reality

    Science.gov (United States)

    Pellegrini, C.

    2016-12-01

    The brightness of x-ray sources has been increased one to ten billion times by x-ray free-electron lasers (XFELs) that generate high intensity coherent photon pulses at wavelengths from nanometers to less than one angstrom and a duration of a few to 100 femtoseconds. For the first time XFELs allow for experimental exploration of the structure and dynamics of atomic and molecular systems at the angstrom-femtosecond space and time scale, creating new opportunities for scientific research in physics, chemistry, biology, material science and high energy density physics. This paper reviews the history of this development, concentrating on the Linac Coherent Light Source (LCLS), the world’s first hard x-ray XFEL. It also presents the physical principles on which XFELs are based, their present status and future developments, together with some recent experimental results in physics, chemistry and biology. LCLS success has spurred the worldwide construction of more XFELs; SACLA in Japan, XFEL and FLASH in Germany, Swiss FEL, Korean XFEL, Fermi in Italy. The characteristics of these other sources are also discussed.

  8. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  9. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  10. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  11. The x-ray source application test cassette for radiation exposures at the OMEGA laser

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B.; Rekow, V.; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Fisher, J. H.; Newlander, C. D. [Fifth Gait Technologies, Inc., Huntsville, Alabama 35803 (United States); Horton, R. [Gray Research, Inc., Huntsville, Alabama 35806 (United States); Davis, J. [Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060 (United States)

    2012-10-15

    We have designed a sample cassette that can be used to position up to six samples in the OMEGA laser chamber. The cassette accommodates round samples up to 38.1 mm (1.5{sup Double-Prime }) in diameter and square samples up to 27 mm on a side, any of which can be up to 12.7 mm thick. Smaller specimens are centered with spacers. The test cassette allows each sample to have a unique filter scheme, with multiple filter regions in front of each sample. This paper will present mechanical design considerations and operational aspects of the x-ray source application cassette.

  12. Spectral tomographic analysis of Bremsstrahlung X-rays generated in a laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Rhee, Y.-J.; Nam, S. M.; Peebles, W.; Sawada, H.; Wei, M.; Vaisseau, X.; Sasaki, T.; Giuffrida, Lorenzo; Hulin, S.; Vauzour, B.; Santos, J.J.; Batani, D.; McLean, H. S.; Patel, P. K.; Li, Y.; Yuan, D. W.; Zhang, K.; Zhong, J. Y.; Fu, C. B.; Hua, N.; Li, K.; Zhang, Y.; Zhu, J. Q.; Kim, I. J.; Jeon, J. H.; Jeong, T.M.; Choi, I.W.; Lee, H. W.; Sung, J.H.; Lee, S.K.; Nam, C.H.

    2016-01-01

    Roč. 34, č. 4 (2016), s. 645-654 ISSN 0263-0346 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : Bremsstrahlung X-ray * filter stack spectrometer * laser-produced plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2016

  13. X-ray online detection for laser welding T-joint of Al-Li alloy

    Science.gov (United States)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  14. Performance of Laser Megajoule’s x-ray streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Burillo, M.; Gontier, D.; Moreau, I.; Oudot, G.; Rubbelynck, C.; Soullié, G.; Stemmler, P.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J. P.; Goulmy, C. [Photonis France SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-11-15

    A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm{sup 2} in the 0.05–15 keV spectral range, and a dynamic range greater than 100.

  15. Electron multiplier as a detector for soft x rays from synchrotron and laser plasma sources

    Science.gov (United States)

    Buckley, Christopher J.; Dermody, Geraint; Khaleque, Naz I.; Michette, Alan G.; Pfauntsch, Slawka J.; Turcu, I. C. Edmond; Allott, Ric M.

    1998-11-01

    An electron-tubes-LTD 129EM electron multiplier tube has been modified to act as a detector of soft x-rays. the first dynode was coated with 100 nm of CsI and the assembly was mounted in a small vacuum chamber with 100 nm thick silicon nitride entrance window. Initial tests show the detector is linear up to an input flux of approximately 1MHz on a synchrotron source and has proved effective in providing pulse height discrimination when used on a pulsed laser plasma source.

  16. Efficient production of the nickel-like soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Daido, H.; Kato, Y.; Murai, K.; Ninomiya, S.; Kodama, R.; Takabe, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228 (Japan)

    1996-05-01

    We have demonstrated efficient soft x-ray lasing in nickel-like lanthanide elements (Nd, Sm, Gd, Tb, and Dy) covering the spectral range between 6 nm and 8 nm. A curved slab target was pumped by 1.053 {mu}m-wavelength multiple laser pulses; two or three 100 ps duration pulses separated by 400 ps. A gain coefficient of 3.1 cm{sup {minus}1} and a gain-length product of 7.8 have been achieved at 7.97 nm in the Nd ions with 250 J pumping energy on a 2.5 cm length target. {copyright} {ital 1996 American Institute of Physics.}

  17. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    Czech Academy of Sciences Publication Activity Database

    Adjei, D.; Wiechec, A.; Wachulak, P.; Ayele, M. G.; Lekki, J.; Kwiatek, W. M.; Bartnik, A.; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, L.; Fiedorowicz, H.

    2016-01-01

    Roč. 120, MAR (2016), s. 17-25 ISSN 0969-806X R&D Projects: GA ČR GA13-28721S; GA ČR(CZ) GBP108/12/G108 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389005 Keywords : laser-produced plasma * soft X-rays * radiobiology * gas puff target * water window * DNA strand break Subject RIV: BO - Biophysics Impact factor: 1.315, year: 2016

  18. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Czech Academy of Sciences Publication Activity Database

    Adjei, D.; Ayele, M. G.; Wachulak, P.; Bartnik, A.; Wegrzynski, L.; Fiedorowicz, H.; Vyšín, Luděk; Wiechec, A.; Lekki, J.; Kwiatek, W. M.; Pina, L.; Davídková, Marie; Juha, Libor

    2015-01-01

    Roč. 364, Dec (2015), s. 27-32 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389005 Keywords : laser-produced plasma * soft X-rays * radiobiology * gas puff target * water window Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.389, year: 2015

  19. Absolute Soft X-ray Emission Measurements at the Nike Laser

    Science.gov (United States)

    Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.

    2002-11-01

    Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE

  20. ULTRA-SHORT X-RAY RADIATION COMING FROM A LASER WAKEFIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Leurent, V; Michel, P; Clayton, C E; Pollock, B; Doeppner, T; Wang, T L; Ralph, J; Pak, A; Joshi, C; Tynan, G; Divol, L; Palastro, J P; Glenzer, S H; Froula, D H

    2008-06-17

    A Laser Wakefield Accelerator (LWFA) is under development at Lawrence Livermore National Laboratory (LLNL) to produce electron bunches with GeV class energy and energy spreads of a few-percent. The ultimate goal is to provide a bright and compact photon source for high energy density physics. The interaction of a high power (200 TW), short pulse (50 fs) laser with neutral He gas can generate quasi-monoenergetic electrons beams at energies up to 1 GeV [1]. The laser pulse can be self-guided over a dephasing length of 1 cm (for a plasma density of 1.5 x 10{sup 18} cm{sup -3}) overcoming the limitation of vacuum diffraction. Betatron radiation is emitted while the accelerated electrons undergo oscillations in the wakefield electrostatic field. Here we present electron spectrum measurements with a two screen spectrometer allowing to fix the ambiguities due to unknown angle at the plasma exit. We have measured monoenergetic electron beams at energies around 110 MeV. Furthermore a forward directed x-ray beam is observed. The peak energy of the measured synchrotron spectrum is reconstructed based on the energy deposited after different sets of filters, assuming x-ray radiation described in the synchrotron asymptotic limit (SAL) and is found around 6 keV.

  1. Atomic number scaling of the nickel-like soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Daido, H.; Ninomiya, S.; Imani, T. [Osaka Univ., Suita, Osaka (Japan). Inst. of Laser Engineering] [and others

    1997-03-30

    The authors report the review of the experimental results obtained at the Institute of Laser Engineering, Osaka University, of the soft X-ray lasing in various Ni-like ions whose atomic numbers range from 47(Ag) to 66(Dy). The lasing wavelengths are between 14 nm and 5 nm. X-ray lasing in these materials were obtained when the plasma profiles were properly controlled in time and space by irradiation of curved slab targets with multiple laser pulses. They also describe the original work of the atomic physics calculations which provide the transition energies, transition probabilities and other atomic constants for Ni-like ion species whose atomic numbers range from 36 to 92 calculated with GRASP code (multi-configuration Dirac Fock code) and YODA code (relativistic distorted wave code). Based on these atomic constants, they have calculated the kinetics of the population inversion with a simplified rate equation model in conjunction with a one-dimensional hydrodynamic code to find out the desired pumping conditions. They show a possibility for significant improvement in the pumping efficiency with the use of a picosecond laser irradiating a properly configured preformed plasma. Finally, a simplified estimation of the pumping efficiency is described based on the atomic constants and plasma physics issues.

  2. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  3. Hot and dense plasma probing by soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Krůs, Miroslav; Kozlová, Michaela; Nejdl, Jaroslav; Rus, B.

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01004. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Plasma diagnostics - probes * Plasma generation (laser-produced, RF, x ray-produced) Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01004

  4. Application of x-ray lasers to current and future experiments in atomic and molecular physics

    International Nuclear Information System (INIS)

    Caldwell, C. Denise

    1995-01-01

    The use of intrinsically narrow-banded, intense x-ray lasers has the potential for a significant impact in atomic and molecular physics. As with any new technology, it is impossible to predict all the new information which may emerge as the technology develops. At least at the beginning it will be important for these lasers to have applicability to existing experimental methods, which can then exploit the new tool for experiments which are currently barely feasible with existing and planned sources of radiation in the high-energy regime. Examples of these are: resonant Auger decay, particularly of dilute species, studied with electron spectrometry; multi-photon processes involving the simultaneous utilization of two laser photons; and fragmentation experiments in which the high-energy photon is one of a pump-probe pair. Results from these experiments will go a long way to suggesting directions for future study

  5. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, R

    2004-02-02

    Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

  6. Ultrafast coherent diffractive imaging of nanoparticles using X-ray free-electron laser radiation

    International Nuclear Information System (INIS)

    Kassemeyer, Stephan

    2014-01-01

    Coherent diffractive imaging with X-ray free-electron lasers (X-FEL) promises high-resolution structure determination of single microscopic particles without the need for crystallization. The diffraction signal of small samples can be very weak, a difficulty that can not be countered by merely increasing the number of photons because the sample would be damaged by a high absorbed radiation dose. Traditional X-ray crystallography avoids this problem by bringing many sample particles into a periodic arrangement, which amplifies the individual signals while distributing the absorbed dose. Depending on the sample, however, crystallization can be very difficult or even impossible. This thesis presents algorithms for a new imaging approach using X-FEL radiation that works with single, non-crystalline sample particles. X-FELs can deliver X-rays with a peak brilliance many orders of magnitude higher than conventional X-ray sources, compensating for their weak interaction cross sections. At the same time, FELs can produce ultra-short pulses down to a few femtoseconds. In this way it is possible to perform ultra-fast imaging, essentially ''freezing'' the atomic positions in time and terminating the imaging process before the sample is destroyed by the absorbed radiation. This thesis primarily focuses on the three-dimensional reconstruction of single (and not necessarily crystalline) particles using coherent diffractive imaging at X-FELs: in order to extract three-dimensional information from scattering data, two-dimensional diffraction patterns from many different viewing angles must be combined. Therefore, the diffraction signal of many identical sample copies in random orientations is measured. The main result of this work is a globally optimal algorithm that can recover the sample orientations solely based on the diffraction signal, enabling three-dimensional imaging for arbitrary samples. The problem of finding three-dimensional orientations is

  7. Micro-focus x-ray inspection of the bearing pad welded by laser for CANDU fuel element

    International Nuclear Information System (INIS)

    Kim, W. K.; Kim, S. S.; Lee, J. W.; Yang, M. S.

    2001-01-01

    To attach the bearing pads on the surface of CANDU fuel element, laser welding technique has been reviewed to replace brazing technology which is complicate process and makes use of the toxic beryllium. In this study, to evaluate the soundness of the weld of the bearing pad of CANDU fuel element, a precise X-ray inspection system was developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The weld of the bearing pad welded by Nd:YAG laser has been inspected by the developed inspection system. Image processing technique has been applied to reduce random noise and to enhance the contrast of the X-ray image. A few defects on the weld of the bearing pads have been detected by the X-ray inspection process

  8. The source of X-rays and high-charged ions based on moderate power vacuum discharge with laser triggering

    Directory of Open Access Journals (Sweden)

    Alkhimova Mariya A.

    2015-06-01

    Full Text Available The source of X-ray radiation with the energy of quanta that may vary in the range hν = 1÷12 keV was developed for studies in X-ray interaction with matter and modification of solid surfaces. It was based on a vacuum spark discharge with the laser triggering. It was shown in our experiments that there is a possibility to adjust X-ray radiation spectrum by changing the configuration of the electrode system when the energy stored in the capacitor is varied within the range of 1÷17 J. A comprehensive study of X-ray imaging and quanta energy was carried out. These experiments were carried out for the case of both direct and reverse polarity of the voltage on the electrodes. Additionally, ion composition of plasma created in a laser-triggered vacuum discharge was analyzed. Highly charged ions Zn(+21, Cu(+20 and Fe(+18 were observed.

  9. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    Science.gov (United States)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  10. A setup for resonant inelastic soft x ray scattering on liquids at free electron laser light sources

    OpenAIRE

    Kunnus, K.; Rajkovic, I.; Schreck, S.; Quevedo, W.; Eckert, S.; Beye, M.; Suljoti, E.; Weniger, C.; Kalus, C.; Grübel, S.; Scholz, M.; Nordlund, D.; Zhang, W.; Hartsock, R.W.; Gaffney, K.J.

    2012-01-01

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak f...

  11. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of California, Berkeley, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galtier, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nagler, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fortmann, C. [QuantumWise A/S, Koebenhavn (Denmark); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mao, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. [Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turnbull, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, D. A. [AWE plc, Reading (United Kingdom); Univ. of Warwick, Coventry (United Kingdom); Gericke, D. O. [AWE plc, Reading (United Kingdom); Vorberger, J. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); White, T. [Univ. of Oxford, Oxford (United Kingdom); Gregori, G. [Univ. of Oxford, Oxford (United Kingdom); Wei, M. [General Atomics, San Diego, CA (United States); Barbrel, B. [Univ. of California, Berkeley, CA (United States); Falcone, R. W. [Univ. of California, Berkeley, CA (United States); Kao, C. -C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nuhn, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Welch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Zastrau, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Friedrich-Schiller-Univ., Jena (Germany); Neumayer, P. [GSI Helmhltzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  12. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    Science.gov (United States)

    Myllys, M.; Häkkänen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirviö, P.; Timonen, J.

    2015-04-01

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  13. X-ray diagnostics for laser matter interaction experiments; Diagnostics X pour les experiences d'interaction laser-matiere

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph

    2000-07-01

    Advances in the field of laser-driven inertially confined thermonuclear fusion research since the early 1990's are reviewed. It covers the experimental techniques used to study the interaction of laser radiation with matter and high density plasma. A high performance instrumentation (diagnostics) for observation of X radiation (from a few eV to a few keV) will be required to understand the physical processes involved in the interaction. This paper is a three-part: first part, describes diagnostics metrology realized around different X-ray sources (synchrotron, laser plasma...); a second part, synthesizes theoretical and experimental X-ray optics studies and show the interest for direct applications as X-ray spectroscopy and X-ray imaging around laser-produced plasma; a third part, is a review of high resolution X-ray imaging, performances of these optical system were summarized. (author)

  14. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  15. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    Science.gov (United States)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  16. High Resolution Imaging of a Dense Micro-capillary Plasma with a Table-top Soft X-Ray Laser.

    Science.gov (United States)

    Rocca, J. J.; Marconi, M. C.; Moreno, C. H.; Macchietto, C. D.; Shlyaptsev, V. N.

    1998-11-01

    We report the first use of a table-top soft x-ray laser in the imaging of dense plasmas. Due to their short wavelength, high brightness, short pulse duration and high degree of collimation, soft x-ray lasers are excellent radiation sources to perform shadowgraphy studies in dense plasmas. Recently, a Ne-like Y x-ray laser pumped by the Nova laser was used at Lawrence Livermore National Lab. to image with micrometer-scale resolution laser-accelerated and laser-exploded foils(R. Cauble et al), Phys. Rev. Lett. 74, 3816, (1995). Now, the advent of saturated table top soft x-ray lasers(J.J. Rocca et al), Phys. Rev. Lett. 77, 1476, (1996)^,(B. Benware et al), Opt. Lett. 22, 796, (1997) has opened the possibility to probe a wide variety of dense plasmas. We have obtained a sequence of high resolution (≈ 5 μm, 0.6-0.7 ns) shadowgrams that map the evolution of the plasma of a 380 μm micro-capillary discharge using a capillary discharge-pumped 46.9 nm laser backlighter. The measurements show that plasma evolves from an initially non-uniform distribution into a cylindrically symmetric plasma column with a density minimum on axis. This work was supported by DOE grant DE-FG03-98DP00208. We also acknowledge the support of NSF for the development of the laser.

  17. A beamline for x-ray laser spectroscopy at the experimental storage ring at GSI

    International Nuclear Information System (INIS)

    Winters, D F A; Bagnoud, V; Ecker, B; Eisenbarth, U; Götte, S; Kuehl, Th; Stöhlker, Th; Zielbauer, B; Neumayer, P; Spielmann, C

    2013-01-01

    By combining an x-ray laser (XRL) with a heavy-ion storage ring, precision laser spectroscopy of the fine-structure splitting in heavy Li-like ions will be possible. An initial study has been performed to determine the feasibility of a first experiment at the experimental storage ring at GSI in Darmstadt, which also has great potential for the experiments planned for FAIR. We plan to perform a unique, direct and precise measurement of a fine-structure transition in a heavy Li-like ion. Such a measurement will test state-of-the-art atomic structure calculations in strong fields. This endeavour will require that the existing infrastructure is complemented by a dedicated beamline for the XRL. In this paper, we will discuss the details of this project and outline a proof-of-principle experiment. (paper)

  18. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    Science.gov (United States)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  19. Beam profile control of line focus for x-ray laser experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, G.Y.; Jitsuno, T.; Nakatsuka, M.; Daido, H.; Kato, Y.; Nakai, S. [Osaka Univ., Suita, Osaka (Japan). Inst. of Laser Engineering

    1995-12-31

    A high aspect ratio line focus on a target for the x-ray laser experiments is required for obtaining a high gain-length product. A new line focus system is developed to generate a uniform line focus. The system consists of a deformable mirror of a continuous faceplate type which provides an appropriate wavefront distribution for compensating an aberration of a line focus optics. The width and intensity distribution of 18.2mm long line focus have been improved on 2 times diffraction limit. As other application, a rectangular beam shaping from a circular defocused beam is investigated by the experiment and the diffraction calculation. The controllability of intensity distribution of laser beam by deformable mirror has been demonstrated.

  20. Nitrogen Recombination X-Ray Laser Scheme in a Capillary Discharge Z-Pinch

    Science.gov (United States)

    Be'Ery, I.; Kampel, N.; Rikanati, A.; Avni, U.; Ben-Kish, A.; Fisher, A.; Ron, A.

    2006-10-01

    A recombination based X-Ray laser has a preferred energy scaling compared to collisional ionization scheme [1-3]. The difficulty in realizing this scheme lies in the required plasma cooling rate [4,5]. Implementing a nitrogen recombination laser at λ˜13.4 nm, requires initially Te˜140eV and Ne˜10^20cm-3, and than cooling to TeRocca J.J. et. al., PRL 73, 2192, (1994). [3] Ben-Kish A. et. al., PRL 87, 015002, (2001) [4] Lee K., Kim J. H., Kim D., Phys. of plasmas 9, 4749, (2002). [5] Vrba P., et. al., 6th Intl. Conf. on Dense Z-Pinches, 2005

  1. Applications of low-density foams for x-ray source studies and laser beam smoothing

    Czech Academy of Sciences Publication Activity Database

    Limpouch, J.; Renner, Oldřich; Borisenko, N.G.; Klír, D.; Kmetík, Viliam; Krouský, Eduard; Liska, R.; Mašek, Karel; Nazarov, W.; Ullschmied, Jiří

    2008-01-01

    Roč. 112, 042056 (2008), s. 1-4 ISSN 1742-6588. [The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007). Kobe, 09.09.2007-14.09.2007] R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/06/0801 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : plasma * x-ray generation * energy transport in plasma * bremsstrahlung * laser-light transmission through inhomogeneous plasma * laser-propagation in undercritical plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://www.iop.org/EJ/article/1742-6596/112/4/042056/jpconf8_112_042056.pdf

  2. Characterization of the 46.9-nm soft X-ray laser beam from a capillary discharge

    Science.gov (United States)

    Barnwal, S.; Prasad, Y. B. S. R.; Nigam, S.; Aneesh, K.; Sharma, M. L.; Kushwaha, R. P.; Tripathi, P. K.; Naik, P. A.; Chakera, J. A.; Navathe, C. P.; Gupta, P. D.

    2014-10-01

    Intense lasing had been obtained from argon plasma in the soft X-ray region from a capillary discharge plasma system. Different diagnostics have been used to characterize the lasing properties by recording the temporal, spatial, and spectral profiles of the emission. The divergence measurement indicates that the soft X-ray laser beam has good directionality with a divergence of 3.5 mrad. The spectrum of the laser beam measured using a transmission grating showed intense lasing line at 46.9 nm. Diffraction orders as high as 10th orders were observed. The temporal profile recorded with a vacuum diode showed a distinct laser peak with a pulse width ~1.2 ns (FWHM). In addition, the coherence of the X-ray laser beam was also confirmed from the high-contrast interference fringes (visibility ~85 %) recorded using double slits.

  3. Research in x-ray optics with the ultimate aim of constructing a synchrotron radiation pumped soft x-ray lithium laser

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1988-01-01

    One of the primary components of the proposed synchrotron radiation (SR) pumped Li X-Ray Laser which the present research (DOE Proposal No. DE-FG06-85ER-13309) undertook to develop, was a vacuum-based high density plasma of predominantly monatomic Lithium as the lasing medium. A monomer density in excess of 10 19 particles/cm 3 at temperatures > 1600 degree C, in volume of roughly 1cm x 0.001cm x 0.001cm was estimated as being necessary for attaining useful gain. Originally two different methods of achieving this were considered, namely: laser-driven ablation of solid Li, and steady-state thermal emission of Li gas from an orifice in a suitable chamber. Due to uncertainties associated with the first option, the resources of the present development program were focused primarily on the latter technique. 9 figs

  4. Study of plasmas created by X-ray laser-matter interaction

    International Nuclear Information System (INIS)

    Galtier, E.

    2010-11-01

    This thesis took advantage of the emerging newly developed 4. generation sources of light, namely the free electron lasers, to create and characterize a state of matter under extreme conditions which is still obscure: the warm dense matter (WDM). WDM is found in giant planets and is also produced in inertial fusion. An experiment allowed to study the transitions between the different phases, solid/WDM/plasma, and characterize the mechanism responsible for the equilibration. The laser pulse FLASH, of duration and energy equal to about 20 femto-seconds and 30 μJ respectively, is micro-focussed on a solid target producing an isochoric heating. The intensity, greater than 10 16 W.cm -2 , has never been reached in such an experimental context so far. Emission spectra from an aluminium plasma are studied with a code coupling a genetic algorithm and a code of atomic physics, in order to interpret the whole temporal evolution of the XUV laser-matter interaction for the first time, despite the time integration of the experimental spectra. The first experimental proof of the important contribution of the Auger effect in the isochoric heating of an aluminium target is established. The first observation of the X-ray emission of a boron nitride target under extreme conditions has been investigated by a preliminary study. Additionally, the effect of hot electrons on the electron population distribution in the energy levels of the ions is analysed and shows an important similarity with the photo-ionization process occurring in XUV/X-ray laser-matter interaction. (author)

  5. Timing and low-level rf system for an x-ray laser

    Directory of Open Access Journals (Sweden)

    Yuji Otake

    2016-02-01

    Full Text Available An x-ray free-electron laser (XFEL, SACLA, designed to open up new science, was constructed for generating coherent x rays with a peak power of more than 10 GW and a very short pulse of below 30 fs. This feature demands a very highly short-term temporal stability of less than 50 fs to the acceleration rf field of SACLA. For this reason, we developed a timing and low-level rf (LLRF system for SACLA based on that of the SPring8 compact SASE source (SCSS test accelerator for verifying the feasibility of an XFEL. The performance of the system using the in-phase and quadrature rf manipulation method was improved from SCSS’s system. Since the facility length of SACLA is 700 m, which is 10 times longer than that of the SCSS test accelerator, a phase-stabilized optical-fiber system designed to transmit time standard rf signals with low loss was also developed and deployed. This optical-fiber system equips fiber optical-length feedback control in order to mitigate environmental effects, such as temperature and humidity changes. On the other hand, the demanded maximum rf temporal stability is less than 50 fs, which is almost 10 times smaller than that of the SCSS test accelerator. Hence, reducing electric noise and increasing the temperature stability around timing and LLRF instruments were necessary and realized with a very low-noise power supply and a hemathermal 19-inch enclosure. The short-term temporal performance of the timing LLRF system finally attained a temporal stability of less than 13.6 fs in rms measured by a beam arrival-time measurement. This stability greatly helps to achieve the stable x-ray lasing of SACLA for routine operation during user experiments.

  6. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; MikoIajczyk, J.; Szczurek, A.; Szczurek, M.; Foeldes, I.B.; Toth, Zs.

    2005-01-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined

  7. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  8. X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy

    NARCIS (Netherlands)

    Robinson, J.M.; van Brussel, B.A.; de Hosson, J.T.M.; Reed, R.C.

    1996-01-01

    In this paper, we report on the residual stresses in laser surface melted Ti-6Al-4V, determined using X-ray diffraction methods. The principal result is that there is an increase in the transverse residual stress with each successive, overlapping laser track. The result can be used to explain the

  9. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser

    International Nuclear Information System (INIS)

    Emma, C.; Lutman, A.; Guetg, M. W.; Krzywinski, J.; Marinelli, A.

    2017-01-01

    Here, we report the generation of ultrahigh brightness X-ray pulses using the Fresh Bunch Self-Seeding (FBSS) method in an X-ray Free Electron Laser (XFEL). The FBSS method uses two different electron slices or bunches, one to generate the seed and the other to amplify it after the monochromator. This method circumvents the trade-off between the seed power and electron slice energy spread, which limits the efficiency of regular self-seeded FELs. The experiment, the performance of which is limited by existing hardware, shows FBSS feasibility, generating 5.5 keV photon pulses which are 9 fs long and of 7.3 ×10 –5 bandwidth and 50 GW power. FBSS performance is compared with Self Amplified Spontaneous Emission/self-seeding performance, measuring a brightness increase of twelve/two times, respectively. In an optimized XFEL, FBSS can increase the peak power a hundred times more than state-of-the-art to multi-TW, opening new research areas for nonlinear science and single molecule imaging.

  10. Nanostructured imaging of biological specimens in vivo with laser plasma X-ray contact microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cefalas, A.C.; Sarantopoulou, E.; Kollia, Z.; Argitis, P.; Tegou, E.; Ford, T.W.; Stead, A.D.; Danson, C.N.; Neely, D.; Kobe, S

    2003-01-15

    Soft X-ray contact microscopy (SXCM) enables the study of the ultrastructure of living hydrated specimens, without the need of dehydration or any other chemical pretreatment, by using suitable pulsed X-ray sources such as laser plasmas. The successful imaging of biological specimen requires the development of sensitive photoresist materials for image recording; these should have capabilities of high-resolution lithography and an extended grey scale. A very sensitive photoresist, used for the first time in SXCM, enabled the biological imaging with the specific source in single-pulse experiments in the water window spectral range. This photoresist is an epoxy novolac-based chemically amplified photoresist (EPR), which has been proven capable of resolving subtenth-micron features. The photoresist response was at least two orders of magnitude 'faster' than polymethyl methacrylate (PMMA), which is the standard resist used so far in SXCM. Atomic force microscopy (AFM) and scanning electron microscopy of the biological specimen images recorded in the resist clearly showed the flagella of the motile green alga, suggesting a lateral resolution better than 100 nm. The resist was also capable of providing height features, as small as 20 nm, in AFM depth profiles and discriminating the flagella intersection areas.

  11. Streaked spectrometry using multilayer x-ray-interference mirrors to investigate energy transport in laser-plasma applications

    International Nuclear Information System (INIS)

    Stradling, G.L.; Barbee, T.W. Jr.; Henke, B.L.; Campbell, E.M.; Mead, W.C.

    1981-08-01

    Transport of energy in laser-produced plasmas is scrutinized by devising spectrally and temporally identifiable characteristics in the x-ray emission history which identify the heat-front position at various times in the heating process. Measurements of the relative turn-on times of these characteristics show the rate of energy transport between various points. These measurements can in turn constrain models of energy transport phenomena. We are time-resolving spectrally distinguishable subkilovolt x-ray emissions from different layers of a disk target to examine the transport rate of energy into the target. A similar technique is used to measure the lateral expansion rate of the plasma spot. A soft x-ray streak camera with 15-psec temporal resolution is used to make the temporal measurements. Spectral discrimination of the incident signal is provided by multilayer x-ray interference mirrors

  12. Modeling of the interaction of an x-ray free-electron laser with large finite samples

    Science.gov (United States)

    Peyrusse, O.; André, J.-M.; Jonnard, P.; Gaudin, J.

    2017-10-01

    We describe a model for the study of the interaction of short x-ray free-electron laser (XFEL) pulses with large finite samples. Hydrodynamics is solved in one-dimensional planar geometry with consideration of the electron-ion energy exchange and of the possible elastoplastic behavior. From a time-dependent calculation of the complex refractive index and of the underlying atomic physics, XFEL energy deposition is modeled through a calculation of the radiation field in the material. In the case of hard x-ray irradiation, energetic electrons induced by the XFEL absorption can propagate and deposit their energy outside the interaction region. Simulations of the interaction of hard x-ray ultrashort pulses with solid materials Ru and Si at different grazing incidence angles are presented and discussed. The results obtained demonstrate the potential of this approach to predict damage dynamics for materials of interest for x-ray optics.

  13. Platform development of x-ray absorption-based temperature measurements above 100-eV on the OMEGA laser

    Science.gov (United States)

    Workman, Jonathan; Keiter, P.; Tierney, T.; Tierney, H.; Belle, K.; Magelssen, G.; Peterson, R.; Fryer, C.; Comley, A.; Taylor, M.

    2007-11-01

    Experiments were performed on the OMEGA laser system at the University of Rochester to measure radiation temperature in hohlraum-heated foams. Using x-ray absorption spectroscopy in the 3-6-keV x-ray range allows temperature determination in the range of 50-200-eV. Uranium, bismuth and gold M-shell x-ray emission were used as broadband backlighters. Backlighter absorption through heated chlorinated foam and scandium tracers were used to determine temperatures. The development of this technique in the temperature range of 100-200-eV will be used for platform development of future NIF experiments. We will present time-integrated and time-resolved measurements of x-ray emission from the backlighter materials as well as absorption measurements trough the heated tracer materials. We will also present future directions in the development of this platform.

  14. Efficient soft x-ray sources from laser-irradiated gold foam targets with well-controlled impurities

    Science.gov (United States)

    Dong, Yunsong; Yang, Jiamin; Song, Tianming; Shang, Wanli; Zhang, Lu; Huang, Chengwu; Zhu, Tuo; Zhang, Wenhai; Li, Zhichao; Zhan, Xiayu; Du, Huabing; Wang, Feng; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    As an important x-ray source, enhancement of x-ray emissions from laser-produced plasmas is significant for various applications. Due to less expanding kinetic loss, gold foam with low initial density can have an enhanced x-ray conversion efficiency compared with solid-density gold. However, low-Z impurities within gold foam targets will diminish the enhancement remarkably, and should be tightly controlled. This paper presents an experimental study of a high brightness laser plasma soft x-ray source, based on a 0.36 g cm-3 gold foam target with negligible impurities irradiated by nanosecond laser pulses with power density around 3  ×  1014 W cm-2 at the Shenguang II laser facility. A conversion efficiency, from multi-eV to multi-keV, of 51.2 % is achieved in the x-ray emissions—about 21% relative enhancement compared with a solid-density gold target, and the highest conversion efficiency for Au foam planar targets yet. Good agreement has been achieved between the semi-analytical model prediction and the experimental results.

  15. First observation of multi-pulse X-ray train via multi-collision laser Compton scattering

    International Nuclear Information System (INIS)

    Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.

    2009-01-01

    A compact hard X-ray source via laser Compton scattering (LCS) has been developed for biological and medical applications at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. The multi-collision LCS has been investigated in order to enhance the X-ray yields. The first observation of multi-pulse X-ray train with 6 pulses via the multi-collision LCS has been successfully demonstrated between the multi-bunch electron train with 6 bunches and the multi-pulse Ti:Sa laser train with 6 pulses. The 32 MeV electron train was generated from a Cs 2 Te photocathode rf gun with a multi-pulse UV laser and the S-band linac. The Ti:Sa laser train was obtained with the chirp pulse amplification (CPA) including the modified regenerative amplifier. The X-ray train with 6 pulses with 12.6 ns spacing was observed with the micro-channel plate (MCP). The maximum energy of the X-ray is analytically estimated to be about 24 keV and the total number of generated photons was calculated to be about 1.8x10 6 photons/train.

  16. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  17. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    International Nuclear Information System (INIS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained

  18. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.

    Science.gov (United States)

    Shehab, H; Desouza, E D; O'Meara, J; Pejović-Milić, A; Chettle, D R; Fleming, D E B; McNeill, F E

    2016-01-01

    In recent years, in vivo measurement systems of arsenic in skin by K-shell x-ray fluorescence (XRF) have been developed, including one which was applied in a pilot study of human subjects. Improved tube-based approaches suggest the method can be further exploited for in vivo studies. Recently, it has been suggested that selenium deficiency is correlated with arsenic toxicity. A non-invasive measurement of both elements could therefore be of potential interest. The main aim of this current study was to evaluate and compare the performance of an upgraded portable XRF system and an advanced version of the benchtop XRF system for both selenium and arsenic. This evaluation was performed in terms of arsenic and selenium Kα detection limits for a 4W gold anode Olympus InnovX Delta portable analyzer (40 kVp) in polyester resin skin-mimicking phantoms. Unlike the polychromatic source earlier reported in the literature, the benchtop tube-based technique involves monochromatic excitation (25 W silver anode, manufactured by x-ray optics, XOS) and a higher throughput detector type. Use of a single exciting energy allows for a lower in vivo dose delivered and superior signal-noise ratio. For the portable XRF method, arsenic and selenium minimum detection limits (MDLs) of 0.59  ±  0.03 ppm and 0.75  ±  0.02 ppm respectively were found for 1 min measurement times. The MDLs for arsenic and selenium using the benchtop system were found to be 0.35  ±  0.01 ppm and 0.670  ±  0.004 ppm respectively for 30 min measurement times. In terms of a figure of merit (FOM), allowing for dose as well as MDL, the benchtop system was found to be superior for arsenic and the two systems were equivalent, within error, for selenium. We shall discuss the performance and possible improvements of each system, their ease of use and potential for field application.

  19. Performance and design concepts of a free electron laser operating in the x-ray region

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1997-03-01

    We report on the Design Study of a Free-Electron-Laser experiment designed to produce coherent radiation at the wavelength of 1.5 Angstrom and longer. The proposed experiment utilizes 1/3 of the SLAC linac to accelerate electrons to 15 GeV. The high brightness electron beam interacts with the magnetic field of a long undulator and generates coherent radiation by self-amplified spontaneous emission (SASE). The projected output peak power is about, 10 GW. The project presents several challenges in the realization of a high brightness electron beam, in the construction and tolerances of the undulator and in the transport, of the x-ray radiation. The technical solutions adopted for the design are discussed. Numerical simulations are used to show the performance as a function of system parameters

  20. Saturation and kinetic issues for optical-field-ionized plasma x-ray lasers

    International Nuclear Information System (INIS)

    Eder, D.C.; Amendt, P.; Rosen, M.D.; Nash, J.K.; Wilks, S.C.

    1991-01-01

    Lasing between excited states and the ground state following optical-field ionization is studied. Saturation of an x-ray laser when the lower lasing level is a ground state of a H-like or Li-like ion is discussed. Efficiencies of 10 -5 to 10 -4 are calculated for the 3d 5/2 --2p 3/2 transition at 98 Angstrom in Li-like Ne. The assumption that the fine-structure levels are populated according to their statistical weights is shown to be justified through comparisons with calculations using a detailed atomic model. The effect of saturation by a given fine-structure transition on the populations of the fine-structure levels is analyzed. 4 refs., 2 figs

  1. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  2. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    International Nuclear Information System (INIS)

    Fratalocchi, A.; Ruocco, G.

    2011-01-01

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  3. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  4. Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation

    Directory of Open Access Journals (Sweden)

    D. Reschke

    2010-07-01

    Full Text Available The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY. The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semiautomated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational.

  5. Ways to discharge-based soft X-ray lasers with the wavelength <15 nm

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Frolov, Oleksandr; Štraus, Jaroslav

    2008-01-01

    Roč. 26, č. 2 (2008), s. 167-178 ISSN 0263-0346. [International Conference on the Frontiers of Plasma Physics and Technology/3rd./. Bangkok, Thailand , 05.03.2007-09.03.2007] R&D Projects: GA ČR GA202/06/1324; GA MŠk LA08024; GA AV ČR KAN300100702; GA AV ČR KJB100430702 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft X-ray * laser * fast high-current capillary discharge * exploding wire in water * focused shock wave in water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.420, year: 2008

  6. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  7. EFFECT OF COMBINED X-RAY AND LASER PULSE RADIATION ON THE PARAMETERS OF SILICON MOS-TRANSISTORS

    OpenAIRE

    Коман, Б. П.

    2012-01-01

    In this paper the influence of X-ray and pulsed laser (λ = 1,06 мкм, τ =10-3 с) radiation the parameters of silicon MOS-transistors with channel length 1…10 мкм. The results of the observed changes in the parameters are interpreted in the framework of positive integer charge in the bulk dielectric undergate SiO2. And defect-impurity nature of the interphase boundary Si-SiO2 ,the potential relief which undergoes a structural transformation under the influence of X-ray- laser treatment.

  8. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    Science.gov (United States)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is

  9. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  10. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  11. Experimental Studies on Transient Ni-Like Ag X-Ray Laser Pumped With the Picosecond Pulsed Laser Facility at NLHPLP

    Science.gov (United States)

    Sun, J. R.; Wang, Ch.; Fang, Z. H.; Wang, W.; Xiong, J.; Wu, J.; Fu, S. Z.; Gu, Y.; Wang, S. J.; Zhang, G. P.; Zheng, W. D.; Huang, G. L.; Guan, F. Y.; Xie, X. L.

    The results of experimental studies on transient Ni-like Ag soft X-ray laser with the picosecond pulsed laser facility at the National Laboratory of High Power Laser and Physics (NLHPLP), China, has been reported in this paper. An somewhat intense Ni-like Ag X-ray laser beam at 13.9 nm with output energy 5~10 nJ was obtained from the solid flat targets under the joint irradiation of a long pulse laser beam of several hundred picosecond duration and another 1ps ultra-short pulsed laser.

  12. Subnanometer-scale measurements of the interaction of ultrafast soft X-ray free-electron-laser pulses with matter

    Czech Academy of Sciences Publication Activity Database

    Hau-Riege, S.P.; Chapman, H.N.; Krzywinski, J.; Sobierajski, R.; Bajt, S.; London, R.A.; Bergh, M.; Caleman, C.; Nietubyc, R.; Juha, Libor; Kuba, J.; Spiller, E.; Baker, S.; Bionta, R.; Sokolowski-Tinten, K.; Stojanovic, N.; Kjornrattanawanich, B.; Gullikson, E.; Plonjes, E.; Toleikis, S.; Tschentscher, T.

    2007-01-01

    Roč. 98, č. 14 (2007), 145502/1-145502/4 ISSN 0031-9007 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * soft X-rays * multilayers * laser-matter interaction * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 6.944, year: 2007

  13. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  14. X-Ray Laser in an Ablative Capillary Discharge Driven by an m=0 Instability

    International Nuclear Information System (INIS)

    Kunze, H.J.

    2002-01-01

    The development of EUV and soft-X ray lasers made great progress during the last decade. In most cases powerful primary lasers in the UV-, visible and near-infrared spectral regions are employed to produce the dense hot plasmas needed as active media for the lasers. Widely spread applications require small table-top systems and here capillary discharges offer an alternative approach and are being studied by several groups. By selecting properly the transient discharge conditions, collisional excitation or three-body recombination are the effective mechanisms to achieve population inversion. At the Ruhr-University a different approach is pursued where charge exchange between different ions in colliding plasmas is utilized. The plasmas are produced in a small ablative capillary discharge made of polyacetal. In the second half cycle an m=O instability develops and results in hot plasmas in the neck regions which stream into the cold plasma outside and create overpopulation of the n=3 level of hydrogenic carbon leading to lasing on the Balmer-alpha line at 18.22 nm. A waved structure of the inner capillary wall induces reliably the instability and pinhole pictures give the clue why not all materials are useful. Double pass experiments using a multilayer mirror give an effective gain-length product of GL=4.3 for a 3 cm long capillary and a life-time of the inversion layers of 400 ps

  15. Spatial coherence measurement of the 13.9 nm Ni-like Ag soft x-ray laser pumped by a 1.5 ps, 20J laser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.; Daido, H.; Kishimoto, M. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kizu, Kyoto (JP)] [and others

    2002-07-01

    In this paper, we present the first measurement of the time-integrated transverse spatial coherence of the Ni-like Ag x-ray laser pumped by a 1.5 ps, 20J Nd glass laser, where the Transient Collisional Excitation (TCE) pumping scheme is realized. The time-integrated complex coherence factor (CCF) of the 13.9 nm Ni-like Ag x-ray laser has been determined from partially coherent diffraction patterns of a multi-slit array placed at 1m away from the x-ray laser source. The transverse coherence lengths at horizontal and vertical direction are both estimated to be within 100 {mu}m to 130 {mu}m respectively at the position 1m from the x-ray lasing source. The profile of the CCF is explained with a double disc source model. (author)

  16. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  17. Capillary-discharge sodium plasma for pulsed-power X-ray laser experiments

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Cooperstein, G.

    1986-01-01

    A capillary discharge plasma is being studied as a source of sodium plasma for Na/Ne x-ray laser experiments. The objective is to develop an intense x-ray pump of He-α emission from Na for matched-line photopumping of Ne. A uniform Na-bearing plasma (≅2-cm dia and ≅4-cm long) is to be injected into the anode-cathode gap of the Gamble II pulsed-power generator and imploded by MA-level currents to produce the intense sodium K-line radiation. Implosions of neon gas puffs have produced up to 50 GW of 0.92-keV He-α line emission, and similar x-ray power is expected from sodium implosions. Plasma from the capillary is produced by discharging current through an evacuated small hole in a plastic dielectric (≤ 3-mm dia and 1 to 2.5-cm long). A Na-bearing plasma is generated by forming the hole in NaF. Discharges of 30-kA (60-kA) peak current and 2-μs (2.6-μs) period are provided by a 0.6-μF (1.8-μF) capacitor bank charged to 25 kV. Diagnostics to evaluate plasma characteristics include witness plates, Faraday cups, photodiodes, open-shutter photographs, framing images, and visible light and near UV spectrographs. This plasma source emits visible light for 5-10 μs over a region extending - 1.5 cm from the capillary. Emission is more intense for capillary dia ≤ 0.8 mm. Spectroscopic measurements indicate that both positive ions and neutrals are present, including neutral Na from NaF capillaries. Velocities of≅2 cm/μs are deduced from Faraday cup measurements. For a 0.3-mm dia plastic capillary and 30-kA discharge current, ≅100 μg of capillary material is removed, which corresponds to≅10 μg/cm in the plasma

  18. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  19. Dual energy x-ray laser measurement of calcaneal bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Hakulinen, M A [Department of Applied Physics, University of Kuopio, Kuopio (Finland); Saarakkala, S [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, Kuopio (Finland); Toeyraes, J [Department of Applied Physics, University of Kuopio, Kuopio (Finland); Kroeger, H [Department of Surgery, Kuopio University Hospital, Kuopio (Finland); Jurvelin, J S [Department of Applied Physics, University of Kuopio, Kuopio (Finland)

    2003-06-21

    In dual energy x-ray absorptiometry (DXA) the photon attenuation is assumed to be similar in soft tissue overlying, adjacent to and inside the measured bone. In the calcaneal dual energy x-ray laser (DXL) technique, this assumption is not needed as attenuation by soft tissues at the local bone site is determined by combining DXA and heel thickness measurements. In the present study, 38 subjects were measured with DXL Calscan, Lunar PIXI and Lunar DPX-IQ DXA instruments and Hologic Sahara ultrasound instrument, and the performance and agreement of the instruments were analysed. Furthermore, numerical simulations on the effect of non-uniform fat-to-lean tissue ratio within soft tissue in heel were conducted. In vivo short-term precision (CV%, sCV%) of DXL Calscan (1.24%, 1.48%) was similar to that of Lunar PIXI (1.28%, 1.60%). Calcaneal areal bone mineral densities (BMD, g cm{sup -2}) measured using DXL Calscan and Lunar PIXI predicted equally well variations in BMD of femoral neck (r{sup 2} = 0.63 and 0.52, respectively) or lumbar spine (r{sup 2} = 0.61 and 0.64, respectively), determined with Lunar DPX-IQ. BMD values measured with DXL Calscan were, on average, 19% lower (p < 0.01) than those determined with Lunar PIXI. Interestingly, the difference in BMD values between instruments increased as a function of body mass index (BMI) (r{sup 2} = 0.17, p < 0.02) or heel thickness (r{sup 2} = 0.37, p < 0.01). Numerical simulations suggested that the spatial variation of soft tissue composition in heel can induce incontrollable inaccuracy in BMD when measured with the DXA technique. Theoretically, in contrast to DXA instruments, elimination of the effect of non-uniform soft tissue is possible with DXL Calscan.

  20. Design Studies for a VUV--Soft X-ray Free-Electron Laser Array

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.; Baptiste, K.; Byrd, J.M.; Denes, P.; Falcone, R.; Kirz, J.; McCurdy, W.; Padmore, H.; Penn, G.; Qiang, J.; Robin, D.; Sannibale, F.; Schoenlein, R.; Staples, J.; Steier, C.; Venturnini, M.; Wan, W.; Wells, R.; Wilcox, R.; Zholents, A.

    2009-08-04

    Several recent reports have identified the scientific requirements for a future soft X-ray light source [1, 2, 3, 4, 5], and a high-repetition-rate free-electron laser (FEL) facility responsive to them is being studied at Lawrence Berkeley National Laboratory (LBNL) [6]. The facility is based on a continuous-wave (CW) superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individualFELs may be configured for either self-amplified spontaneous emission (SASE), seeded highgain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG), or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. This new light source would serve a broad community of scientists in many areas of research, similar to existing utilization of storage ring based light sources. To reduce technical risks and constructioncosts, accelerator research, development, and design studies at LBNL target the most critical components and systems of the facility. We are developing a high-repetition-rate low-emittance electron gun, high quantum efficiency photocathodes, and have embarked on design and optimization of the electron beam accelerator, FEL switchyard, and array of FELs. We continue our work on precision timing and synchronization systems critical for time-resolved experiments using pump-probe techniques.

  1. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses.

    Science.gov (United States)

    Kantsyrev, V L; Schultz, K A; Shlyaptseva, V V; Petrov, G M; Safronova, A S; Petkov, E E; Moschella, J J; Shrestha, I; Cline, W; Wiewior, P; Chalyy, O

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 10^{18}-10^{19}W/cm^{2} heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (10^{7} or 10^{5}). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 10^{18}-10^{19}cm^{-3}. Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  2. X-ray laser measurements of direct drive imprint on vulcan

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Wolfrum, E.; Zhang, J.

    1997-01-01

    High gain direct drive inertial confinement fusion requires very uniform irradiation of a hollow spherical shell with a layer of fusionable deuterium and tritium on its inner surface. The intensity of laser irradiation builds up in several nanoseconds from an initial 'foot' at ∼10 13 W/cm 2 to more than 10 15 W/cm 2 during the main drive pulse. Laser ablation of the capsule surface produces a high pressure, accelerating the shell radially inward, and resulting in Rayleigh-Taylor (R-T) growth of surface perturbations originating from both the initial surface roughness of the capsule and from imprint of spatial non- uniformities in the laser drive intensity early in the laser pulse. The uniformity of illumination on a direct drive implosion capsule is determined on a large scale by the multi-beam irradiation geometry, and on a small scale by beam smoothing techniques. By using a large number of beams (such as the 60 beams of the Omega laser or 48 beam clusters for the NIF), large scale non-uniformities due to the overlap of the laser focal spots are adequately reduced. Random phase plates (RPPs) are introduced to smooth the individual beam focal spots. The spatial intensity variations of the individual beam speckle patterns may be smoothed by spectral dispersion (SD) with induced spatial incoherence (ISI) or by using partially coherent light. We performed experiments to study the imprint under conditions simulating the low intensity foot of the pulse on an ignition target, such as designed for the NIF. We used a 0.53 micrometer laser wavelength, and considered the imprint in thin Al foils due to both a broadband distribution of modes such as those in smoothed speckle patterns, and a single mode optical intensity variation. We characterized the laser imprint using a Ge x-ray laser and multilayer imaging optics, as described previously. In this paper we summarize and compare the multiple and single mode imprinting results. 9 refs., 7 figs

  3. German and U.S. laboratories to collaborate on the development of X-ray free electron lasers

    CERN Multimedia

    Calder, N

    2002-01-01

    Germany's leading particle physics and synchrotron radiation laboratory (DESY), and the U.S. Department of Energy's Stanford Linear Accelerator Center (SLAC), have signed a Memorandum of Understanding (MoU) to establish a unique international collaboration for the development of X-ray free-electron lasers (1 page).

  4. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    Science.gov (United States)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  5. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  6. A novel scheme for the generation of X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione

    1999-07-01

    In this paper are developed design considerations on the possibility of generating Free Electron Laser radiation in the X-ray region of the spectrum (50-60 AA), by exploiting a frequency multiplier scheme. It is proposed a Free Electron device consisting of a relatively low energy linac (750 MeV) and three sections: an oscillator at 150 nm, an amplifier tuned at the 5. harmonic of the first an a second amplifier operating at a sub-harmonic of the second amplifier. The seedless amplification is ensured by the e-beam bunching, induced in the oscillator and in the second section, which plays the role of amplifier and modulator. It is also explored the possibility of overcoming the problems associated with the bunching efficiency dilution, due to intracavity saturation of the first section, by discussing the regeneration of the bunching by the use of a cavity dumping, realized with a suitable e-beam energy or cavity detuning modulation. [Italian] In questo lavoro vengono sviluppate alcune considerazioni progettuali per estendere l'operazione dei laser ad elettroni liberi alla regione dei (50-60 AA), con l'utilizzo di schemi a moltiplicazione di frequenza. Si propone un sistema che consiste di un Linac ad energia relativamente basa (750 MeV) e tre sezioni: un oscillatore a 150 nm, un amplificatore alla quinta aromonica del primo e un secondo amplificatore operante ad una sub armonica del secondo amplificatore.

  7. Analysis of fine structure of X-ray spectra from laser-irradiated gold dot

    International Nuclear Information System (INIS)

    Yang Guohong; Zhang Jiyan; Zhang Baohan; Zhou Yuqing; Li Jun

    2000-01-01

    The X-ray emission spectra from highly stripped plasma of gold has been observed by focusing a Nd-glass frequency tripled laser beam onto the surface of the gold dot at the XINGGUANG II laser facilities. The spectra of gold ions in the range of 0.0003 nm-0.0004 nm was recorded using the plate PET (2d = 0.8742 nm) crystal spectrometer. The code of average energy of relativistic sub-arrays was built on the basis of the code MCDF (Multi-Configuration-Dirac-Fock). Using the spin-orbit-split-arrays (SOSA) formalism, mean wavelengths and full widths at half height of isolated peaks of sub-arrays of lower charged gold ions, isoelectronic with Cu, Zn, Ga and Ge, was calculated. Twenty-six lines are interpreted, they pertain mainly to transitions of 3d-nf (n = 5,6,7) of gold ions from Ni-like to As-like. These results of experiment and calculation have important application in plasma diagnostics and examination of high Z elemental atomic structure calculation

  8. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  9. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    Energy Technology Data Exchange (ETDEWEB)

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam (Germany); Rajkovic, Ivan; Quevedo, Wilson; Gruebel, Sebastian; Scholz, Mirko [IFG Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37070 Goettingen (Germany); Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Kalus, Christian [Abteilung Betrieb Beschleuniger BESSYII, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J. [PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kennedy, Brian [MAX-lab, PO Box 118, 221 00 Lund (Sweden); and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  10. Synchrotron topographic evaluation of strain around craters generated by irradiation with X-ray pulses from free electron laser with different intensities

    Czech Academy of Sciences Publication Activity Database

    Wierzchowski, W.; Wieteska, K.; Sobierajski, R.; Klinger, D.; Pelka, J.; Zymierska, D.; Paulmann, C.; Hau-Riege, S.P.; London, R.A.; Graf, A.; Burian, Tomáš; Chalupský, Jaromír; Gaudin, J.; Krzywinski, J.; Moeller, S.; Messerschmidt, M.; Bozek, J.; Bostedt, C.

    2015-01-01

    Roč. 364, Dec (2015), s. 20-26 ISSN 0168-583X Institutional support: RVO:68378271 Keywords : x-ray free electron laser * soft x-ray lasers * irradiation with femtosecond pulses * silicon Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.389, year: 2015

  11. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  12. Detailed hydrodynamic and X-ray spectrocsopic analysis of a laser-produced rapidly-explanding aluminium plasma

    Czech Academy of Sciences Publication Activity Database

    Chambers, D. M.; Glenzer, S. H.; Hawreliak, J.; Wolfrum, E.; Gouveia, A.; Lee, R. W.; Marjoribanks, R. S.; Renner, Oldřich; Sondhauss, P.; Topping, S.

    2001-01-01

    Roč. 71, - (2001), s. 237-247 ISSN 0022-4073 Grant - others:US DOE(US) DESG03-99D-P00297; US Department of Energy(US) W-7405 ENG 48 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser produced plasma * x-ray spectroscopy * Thomson scattering * hydrocode Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.493, year: 2001

  13. X-Ray and electron beam source characterization from Self-Modulated Laser Wakefield Acceleration experiments at Titan

    Science.gov (United States)

    King, Paul; Lemos, Nuno; Albert, Felicie; Shaw, Jessica; Milder, Avi; Marsh, Ken; Pak, Art; Hegelich, Bjorn; Joshi, Chan

    2017-10-01

    The development of a directional, low-divergence, and short-duration (ps and sub-ps) x-ray probes with energies of tens of keV is desirable for the fields of astrophysics, High Energy Density Science and Inertial Confinement Fusion. In this work we focused the Titan laser beam (1 ps and 150 Joules) into a 4mm helium gas jet to produce an electron beam that in turn generates an x-ray beam. The measured Raman Forward Scattering satellites present in the laser spectrum after the interaction, indicate the generation of a Self-modulated laser wakefield accelerator. This accelerator produced an electron beam with energies up to 250 MeV, a divergence of 16 x 40 mrad and a total charge of 6 nC. Using this high-charge relativistic electron beam we explored the combination of three mechanisms to produce an x-ray beam: Betatron, Compton scattering and Bremsstrahlung. We show the generation of a low divergence (mrad), small source size (um) broadband (keV to MeV) x-ray beam that can be used as a backlighter for time-resolved spectroscopy, imaging, and Compton radiography. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. [LLNL-ABS-734746].

  14. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    R. A. Kirian

    2015-07-01

    Full Text Available A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.

  15. Note: study of extreme ultraviolet and soft x-ray emission of metal targets produced by laser-plasma-interaction.

    Science.gov (United States)

    Mantouvalou, I; Jung, R; Tuemmler, J; Legall, H; Bidu, T; Stiel, H; Malzer, W; Kanngiesser, B; Sandner, W

    2011-06-01

    Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution. © 2011 American Institute of Physics

  16. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    Science.gov (United States)

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  17. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.

    Science.gov (United States)

    Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2017-04-01

    X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

  18. Experimental study and modelling of X-ray photo-triggering of a discharge for exciplex laser

    International Nuclear Information System (INIS)

    Louvet, Yolande

    1986-01-01

    As the excitation of the laser medium by using a photo-triggered discharge revealed to be more reliable that an excitation by pre-ionised discharge, this research thesis reports the use of such an excitation and the study of initiation mechanisms for discharges photo-triggered by X rays. The author first recalls the main characteristics of excimer and exciplex systems, and presents the principle of discharge photo-triggering. He presents the experimental set-up, and reports the use of an original method to characterise the X radiation. This method uses theoretical data related to Bremsstrahlung emission, and results are validated by experimental tests. Realistic data regarding X ray properties are introduced into the theoretical model which also takes X-ray-induced ionisation reactions and photo-electron energetic degradation into account. By using this model, the author determines the electron distribution function produced by the X pre-ionisation, and the resulting thermalized electron density [fr

  19. Investigation of hole-blocking contacts for high-conversion-gain amorphous selenium detectors for X-ray imaging

    NARCIS (Netherlands)

    Abbaszadeh, S.; Allec, N.; Ghanbarzadeh, S.; Shafique, U.; Karim, K.S.

    2012-01-01

    In this paper, we investigated different organic and inorganic hole-blocking contacts for amorphous selenium (a-Se)-based photodetectors: CeO2, TiO2, perylene tetracarboxylic bisbenzimidazole (PTCBI), and polyimide (PI). CeO2 has previously been used as a blocking layer for high-gain a-Se devices.

  20. Forensic analysis of laser printed ink by X-ray fluorescence and laser-excited plume fluorescence.

    Science.gov (United States)

    Chu, Po-Chun; Cai, Bruno Yue; Tsoi, Yeuk Ki; Yuen, Ronald; Leung, Kelvin S Y; Cheung, Nai-Ho

    2013-05-07

    We demonstrated a minimally destructive two-tier approach for multielement forensic analysis of laser-printed ink. The printed document was first screened using a portable-X-ray fluorescence (XRF) probe. If the results were not conclusive, a laser microprobe was then deployed. The laser probe was based on a two-pulse scheme: the first laser pulse ablated a thin layer of the printed ink; the second laser pulse at 193 nm induced multianalytes in the desorbed ink to fluoresce. We analyzed four brands of black toners. The toners were printed on paper in the form of patches or letters or overprinted on another ink. The XRF probe could sort the four brands if the printed letters were larger than font 20. It could not tell the printing sequence in the case of overprints. The laser probe was more discriminatory; it could sort the toner brands and reveal the overprint sequence regardless of font size while the sampled area was not visibly different from neighboring areas even under the microscope. In terms of general analytical performance, the laser probe featured tens of micrometer lateral resolution and tens to hundreds of nm depth resolution and atto-mole mass detection limits. It could handle samples of arbitrary size and shape and was air compatible, and no sample pretreatment was necessary. It will prove useful whenever high-resolution and high sensitivity 3D elemental mapping is required.

  1. Recent progress in discharge-based soft x-ray lasers at IPP ASci CR

    Science.gov (United States)

    Kolacek, Karel; Schmidt, Jiri; Prukner, Vaclav; Frolov, Oleksandr; Straus, Jaroslav

    2008-01-01

    Activity of our laboratory in the field of pulsed high-current proximity-wall-stabilised discharges - media for XUV/soft X-ray generation and amplification (XUV/soft X-ray lasing), and our effort to demonstrate lasing of discharge-based sources at the wavelength 60 kA).

  2. X-ray Sensitive Material

    Science.gov (United States)

    2015-12-01

    Reference 3), inorganic semiconductors (silicon [Si], cadmium zinc telluride [CdZnTe]) (Reference 4) and selenium (References 5 and 6), Ne-Xe...data showing photocurrent generation. Reports on other X-ray photoconductors, such as amorphous selenium , typically show such data (Reference 34). We...that BiI3 content does contribute to surface discharge; however, further work is warranted to measure the photocurrent. Selenium films used for

  3. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    Science.gov (United States)

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  4. The Sandia laser plasma extreme ultraviolet and soft x-ray (XUV) light source

    International Nuclear Information System (INIS)

    Tooman, T.P.

    1986-01-01

    Laser produced plasmas have been shown to be extremely bright sources of extreme ultraviolet and soft x-ray (XUV) radiation; however, certain practical difficulties have hindered the development of this source as a routinely usable laboratory device. To explore solutions to these difficulties, Sandia has constructed an XUV laser plasma source (LASPS) with the intention of developing an instrument that can be used for experiments requiring intense XUV radiation from 50-300 eV. The driving laser for this source is a KrF excimer with a wavelength of 248 nm, divergence of 200 μrad, pulse width of 23 ns at 20 Hz and typical pulse energy of 500 mJ which allows for good energy coupling to the plasma at moderate (10/sup 12/ W cm/sup 2/) power densities. This source has been pulsed approximately 2 x 10/sup 5/ times, demonstrating good tolerance to plasma debris. The source radiates from the visible to well above 1000 eV, however, to date attention has been concentrated on the 50-300 eV region. In this paper, spectral data and plasma images for both stainless steel and gold targets are presented with the gold target yielding a 200 μm plasma and reradiating 3.9% of the pump energy into 15-73 eV band, a flux of 1.22 x 10/sup 13/ photons/pulse/eV into 2π sr. Further efforts will expand these measurements to rare earth targets and to higher spectral energies. A special high throughput wide angle XUV (50-300 eV) monochromator and associated optics is being concurrently developed to collect the plasma radiation, perform energy dispersion and focus the radiation onto the experimental area

  5. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  6. X-ray generator

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1976-01-01

    An apparatus and a method are described for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly stripped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays

  7. Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas

    International Nuclear Information System (INIS)

    Pronko, J.G.; Kohler, D.

    1996-01-01

    An experiment has been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme uses the He- like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n=4 to n=2,3 states and the n=3 to n=2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began Jan. 1991; however circumstances made it impossible to pursue the research over the past 5 years, and it was decided not to pursue the research any further

  8. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  9. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    Science.gov (United States)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  10. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, IV, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marksteiner, Quinn R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  11. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    Plateau, G.

    2011-10-01

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  12. Sodium source development for pulsed power driven, photopumped NA/NE x-ray laser experiments

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Cooperstein, G.; Mosher, D.; Ottinger, P.F.; Scherrer, V.E.; Stephanakis, S.J.; Young, F.C.; Hinshelwood, D.D.; Mehlman, G.; Welch, B.L.; Jones, W.D.

    1988-01-01

    A sodium plasma source is being developed for a resonant photopumping x-ray laser scheme in which the 11A 1s 2 - 1s2rho 1 P 1 line in heliumlike Na X is used to pump the Ne IX n=4 singlet level. In their experiment the NRL Gamble II generator is used to produce two z-pinch plasmas in a side-by-side geometry. The sodium plasma is produced on axis and conducts the full 1 MA machine current. A fraction of this current returns through a neon gas puff located 5 cm from the sodium. This separation is determined by the need to prevent the plasmas from mixing and the need to have each plasma's azimuthal magnetic field as symmetric as possible. A minimum separation is desirable to increase coupling efficiency. To improve the pump source, a more confined source of pure sodium involving a coaxial plasma gun is being developed. They are currently studying both the operation of this source on a test stand and implosions of the resulting plasma on Gamble II. In initial experiments aluminum is substituted for sodium. Test stand diagnostics include photodiodes, witness plates, and current monitors designed to investigate the early motion of the annular plasma. Results from test stand and Gamble II experiments with both aluminum and sodium, as well as sodium handling techniques, are presented

  13. High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    J. Qiang

    2009-10-01

    Full Text Available In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs. We describe key features of a parallel macroparticle simulation code including three-dimensional (3D space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR wakefields, and treatment of radio-frequency (rf accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL, we show that a large number of macroparticles (beyond 100 million is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

  14. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    International Nuclear Information System (INIS)

    Pardini, L.; El Hassan, A.; Ferretti, M.; Foresta, A.; Legnaioli, S.; Lorenzetti, G.; Nebbia, E.; Catalli, F.; Harith, M.A.; Diaz Pace, D.; Anabitarte Garcia, F.; Scuotto, M.; Palleschi, V.

    2012-01-01

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the ‘Monetiere’ in Florence, revealed a striking connection between the ‘quality’ of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called ‘serrated’ denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: ► We studied a large collection of Roman republican silver denarii. ► XRF and LIBS allowed to determine the precious metal content of the coins. ► A correlation of the ‘quality’ of the alloy with some contemporary events was found. ► The study allowed to controvert a recent theory on the so called ‘serrated’ denarii.

  15. Population inversion and gain measurements for soft x-ray-laser development in a magnetically confined plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Voorhees, D.; Milchberg, H.; Keane, C.; Semet, A.

    1983-06-01

    We present population inversion and gain measurements from an experimental investigation of possibilities to obtain high gain and lasing action in the soft x-ray region. Our approach to soft x-ray-laser development is based on rapid plasma cooling after the laser pulse by radiation losses, leading to fast recombination and collisional cascade into upper excited levels of CVI, for example, while the lower excited levels depopulate rapidly by radiative transitions, thus creating population inversions and gain. A approx. = 0.5 kJ CO 2 laser was focused onto a target of solid carbon or teflon; or CO 2 , O 2 , Ne gas, and the resulting plasma confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics with absolute intensity calibration were used to measure level populations

  16. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)] [and others

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  17. Initial development of efficient, low-debris laser targets for the Sandia soft x-ray projection lithography effort

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, P.D.; Hunter, J.A. [Sandia National Labs., Albuquerque, NM (United States); Kubiak, G.D. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-03-01

    During the fiscal years 92-94 a joint group from Sandia/New Mexico and Sandia/California studied the development of new laser-plasma targets for projection x-ray or EUV (extreme ultraviolet) lithography. Our experimental and theoretical analyses incorporated target design as an integral part of the lithographic optical system. Targets studied included thick solid targets, thin-foil metal-coated targets, and cryogenic targets. Our complete measurement suite consisted of x-ray conversion efficiency measurements, source size imaging, source x-ray angular distribution measurements, debris collection, and source EUV spectrum. Target evaluation also included the variation of laser characteristics, such as, laser intensity, spot size, wavelength, pulselength, and pulseshape. Over the course of these experiments we examined targets using KrF (248nm), XeCl (308nm), and CO{sub 2} (10.6 {mu}m) lasers. While debris issues now dominate research in this area, final details were concluded on our understanding of material spectra and radiation transport of 13 run light in laser-plasmas. Additionally, conclusive results were obtained with 308 rim light, showing the pulselength threshold below which plumes no longer limited the transmission of (and thus the conversion efficiency to) 13 nm radiation.

  18. Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    C. Behrens

    2012-03-01

    Full Text Available The successful operation of x-ray free-electron lasers (FELs, like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH, makes unprecedented research on matter at atomic length and ultrafast time scales possible. However, in order to take advantage of these unique light sources and to meet the strict requirements of many experiments in photon science, FEL photon pulse durations need to be known and tunable. This can be achieved by controlling the FEL driving electron beams, and high-resolution longitudinal electron beam diagnostics can be utilized to provide constraints on the expected FEL photon pulse durations. In this paper, we present comparative measurements of soft x-ray pulse durations and electron bunch lengths at FLASH. The soft x-ray pulse durations were measured by FEL radiation pulse energy statistics and compared to electron bunch lengths determined by frequency-domain spectroscopy of coherent transition radiation in the terahertz range and time-domain longitudinal phase space measurements. The experimental results, theoretical considerations, and simulations show that high-resolution longitudinal electron beam diagnostics provide reasonable constraints on the expected FEL photon pulse durations. In addition, we demonstrated the generation of soft x-ray pulses with durations below 50 fs (FWHM after the implementation of the new uniform electron bunch compression scheme used at FLASH.

  19. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  20. Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro

    2018-03-12

    The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.

  1. Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-04-08

    Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

  2. Mapping the ionization state of laser-irradiated Ar gas jets with multiwavelength monochromatic x-ray imaging.

    Science.gov (United States)

    Kugland, N L; Döppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-10-01

    Two-dimensional monochromatic images of fast-electron stimulated Ar Kα and He-α x-ray self-emission have recorded a time-integrated map of the extent of Ar(≈6+) and Ar(16+) ions, respectively, within a high density (10(20) cm(-3) atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultrahigh intensity (10(19) W/cm(2), 50 TW) Ti:sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for Kα) and 201 (for He-α) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 μm long) region of plasma emits Kα primarily along the laser axis, while the He-α emission is confined to smaller hot spot (230 μm long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry indicate that the centroids of the Kα and He-α emission regions are separated by approximately 330 μm along the laser axis.

  3. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  4. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    A polished copper tip attached to a simple BNC connector was used as Langmuir probes. The probe is kept at a ... 300 ps duration. Two sets of x-ray data taken with 15 J and 11 J constant energy shots clearly shows that two lateral maxima appear in the x-ray signal plotted against the target position relative to the best focus ...

  5. Formation of nanostructures induced by capillary-discharge soft X-ray laser on BaF2 surfaces

    Science.gov (United States)

    Zhao, Yongpeng; Cui, Huaiyu; Zhang, Shuqing; Zhang, Wenhong; Li, Wei

    2017-02-01

    BaF2 was ablated by a capillary-discharge pumped soft X-ray laser at 46.9 nm focused by a toroidal mirror at a grazing incidence of 83°. The damaged area, induced by both single and multiple laser pulses, was determined to be covered with fringe-like nanostructures with spacings of approximately 400 nm and mastoid nanostructures with diameters of approximately 600 nm. In this study, we analyze the morphology of the detected damage patterns and discuss the damage mechanism. Results indicate that the depth of the nanostructures varies with different pulse numbers and laser power densities.

  6. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Vinko, S.M.; Ciricosta, O.; Cho, B.I.; Engelhorn, K.; Chung, H.-K.; Brown, C.R.D.; Burian, Tomáš; Chalupský, Jaromír; Falcone, R.W.; Graves, C.; Hájková, Věra; Higginbotham, A.; Juha, Libor; Krzywinski, J.; Lee, H.J.; Messerschmidt, M.; Murphy, C. D.; Ping, Y.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J.J.; Vyšín, Luděk; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Lee, R. W.; Heimann, P.A.; Nagler, B.; Wark, J. S.

    2012-01-01

    Roč. 482, č. 7383 (2012), s. 59-63 ISSN 0028-0836 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA ČR(CZ) GAP108/11/1312; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray laser * free-electron laser * hot dense plasmas * astrophysics * inertial fusion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 38.597, year: 2012

  7. Single-shot soft x-ray laser-induced ablative microstructuring of organic polymer with demagnifying projection

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Juha, Libor; Hájková, Věra; Chalupský, Jaromír

    2008-01-01

    Roč. 33, č. 10 (2008), s. 1087-1089 ISSN 0146-9592 R&D Projects: GA AV ČR KAN300100702; GA ČR GA202/05/2316; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray lasers * laser ablation * microstructuring Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.772, year: 2008

  8. Design and realization of a hard X-ray prototype imager with spectral selection for the Laser MegaJoule

    International Nuclear Information System (INIS)

    Dennetiere, David

    2012-01-01

    In the Laser MegaJoule (LMJ) project context, measurements need to be done by diagnostics in order to achieve ignition. Amongst these diagnostics, some of the X-ray imagers will have to observe hydrodynamics instabilities on the micron balloon surface. X-ray radiography or self-emission imaging are the techniques used to obtain such imaging. None of the existing X-ray imagers designed for LMJ is currently able to record this kind of image. The X-ray imager designed during this thesis will have to achieve a high resolution image at high energy and will have to meet all the requirements subsequent to its use on a large facility like LMJ. We have studied and optimized an already existing diagnostic: EHRXI. We have extended its covered spectral range up to 12 keV. We measured its resolution that is under 5 μm in a 1 mm diameter field of view. This diagnostic has been successfully used on laser experiments in ELFIE 100 TW and OMEGA. After analyzing the performances and weaknesses of EHRXI, we were able to design a LMJ diagnostic prototype: Merssix. This microscope will achieve a resolution under 5 μm in a 500 μm diameter field of view with a covered spectral range up to 22 keV. Merssix has been specifically designed for LMJ and adapted to fit its experimental framework. Its design allows it in particular to be used for radiography in a complex X-ray producing environment. (author) [fr

  9. High-brightness laser plasma soft X-ray source using a double-stream gas puff target irradiated with th Prague Asterix Laser System (PALS)

    Czech Academy of Sciences Publication Activity Database

    Fiedorowicz, H.; Bartnik, A.; Juha, Libor; Jungwirth, Karel; Králiková, Božena; Krása, Josef; Kubát, Pavel; Pfeifer, Miroslav; Pina, D.; Prchal, Pavel; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Horvath, M.; Wawer, J.

    2004-01-01

    Roč. 362, - (2004), s. 67-70 ISSN 0925-8388 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z4040901 Keywords : X-ray spectroscopy * laser processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.562, year: 2004

  10. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  11. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferretti, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Console, E.; Palaia, P.

    2007-12-01

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  12. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Via Salaria, km 29.300, c.p.10, 00016 Monterotondo St. - Roma (Italy); Cristoforetti, G.; Legnaioli, S. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Palleschi, V. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Salvetti, A.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Console, E. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)], E-mail: elena@teacz.191.it; Palaia, P. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)

    2007-12-15

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  13. Measurements of direct drive laser imprint in thin foils by XUV radiography using an X-ray laser backlighter

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Key, M.H.; DaSilva, L.B.

    1996-11-01

    In direct drive inertial confinement fusion, the residual speckle pattern remaining after beam smoothing plays an important role in the seeding of instabilities at the ablation front. We have used an x-ray laser as an XUV backlighter to characterize the imprinted modulation in thin foils for smoothing by random phase plate and spectral dispersion at both 0.35 pm and 0.53 pm irradiation, and induced spatial incoherence at 0.53 pm irradiation. We also demonstrate measurements of the modulation due to a single mode optical imprint generated by a narrow slit interference pattern, and modification of the imprint with a superposed smooth irradiation to study time dependence of the imprinting process. 8 refs., 10 figs

  14. Pinching discharge in nitrogen filled capillary as a tool for soft x-ray laser recombination pumping

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Bobrova, N. A.; Sasorov, P. V.

    2004-01-01

    Roč. 54, suppl. C (2004), C244-C249 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21./. Praha, 14.06.2004-17.06.2004] R&D Projects: GA MŠk LN00A100; GA MŠk ME 609 Keywords : soft x-ray laser, Z-pinch, collisional pumping Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  15. Influence of irradiation conditions on polytetrafluoroethylen ablation induced by soft x-rays emitted from laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Viskup, Richard; Juha, Libor; Krása, Josef

    2004-01-01

    Roč. 54, č. 3 (2004), s. 277-284 ISSN 0323-0465 R&D Projects: GA MŠk LA 055; GA MŠk 1P04LA235; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : ablation * X-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.513, year: 2004

  16. The use of high energy laser-plasma sources in soft X-ray contact microscopy of living biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Batani, D.; Botto, C.; Moret, M.; Milani, M.; Lucchini, G. [Universita degli Studi di Milano-Bicocca and INFM, Milano (Italy); Eidmann, K. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cotelli, F.; Lora Lamia Donin, C.; Poletti, G. [Universita di Milano (Italy); Ford, T.; Stead, A. [London Univ., Royal Holloway (United Kingdom)

    2002-11-01

    In this paper the results of an experiment on soft X-ray contact microscopy using a laser-plasma source are presented. A resolution of 50 nm has been achieved imaging pig sperm cells, while other specimens, such as algae and yeast cells, showed internal details, proving the technique to be a powerful tool for biological investigations. Original biological information has been obtained and the conditions for optimal image formation have been studied. (authors)

  17. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations1

    OpenAIRE

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-01-01

    This article describes the WavePropaGator (WPG) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimiz...

  18. Saturable absorption of an X-ray free-electron-laser heated solid-density aluminum plasma

    Czech Academy of Sciences Publication Activity Database

    Rackstraw, D.S.; Ciricosta, O.; Vinko, S.M.; Barbrel, B.; Burian, Tomáš; Chalupský, Jaromír; Cho, B.I.; Chung, H.-K.; Dakovski, G.L.; Engelhorn, K.; Hájková, Věra; Heimann, P.; Holmes, M.; Juha, Libor; Krzywinski, J.; Lee, R. W.; Toleikis, S.; Turner, J.J.; Zastrau, U.; Wark, J. S.

    2015-01-01

    Roč. 114, č. 1 (2015), "015003-1"-"015003-5" ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA14-29772S; GA MŠk(CZ) LG13029 Grant - others:AVČR(CZ) M100101221 Institutional support: RVO:68378271 Keywords : free electron laser * x-ray * ionization of plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.645, year: 2015

  19. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    Directory of Open Access Journals (Sweden)

    Bahige G. Abdallah

    2015-07-01

    Full Text Available The advent and application of the X-ray free-electron laser (XFEL has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors lead to the requirement of large data sets (and thus 10–100 mg of protein for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also

  20. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    NARCIS (Netherlands)

    Andreasson, J.; Iwan, B.; Andrejczuk, A.; Abreu, E.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Chalupsky, J.; Chapman, H. N.; Faustlin, R. R.; Hajkova, V.; Heimann, P. A.; Hjorvarsson, B.; Juha, L.; Klinger, D.; Krzywinski, J.; Nagler, B.; Palsson, G. K.; Singer, W.; Seibert, M. M.; Sobicrajski, R.; Tolcikis, S.; Tschentscher, T.; Vinko, S. M.; Lee, R. W.; Hajdu, J.; Timneanu, N.

    2011-01-01

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray

  1. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    Science.gov (United States)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  2. Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A.B.; Boyer, K.; Cameron, S.M.; Luk, T.S.; McPherson, A.; Nelson, T.; Rhodes, C.K.

    1999-01-01

    Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several

  3. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  4. Fast in situ phase and stress analysis during laser surface treatment: A synchrotron x-ray diffraction approach

    Science.gov (United States)

    Kostov, V.; Gibmeier, J.; Wilde, F.; Staron, P.; Rössler, R.; Wanner, A.

    2012-11-01

    An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin2ψ x-ray analysis method. For the in situ experiments a process chamber was designed and manufactured, which is described in detail. First measurements were carried out at the HZG undulator imaging beamline (IBL, beamline P05) at the synchrotron storage ring PETRA III, DESY, Hamburg (Germany). The laser processing was carried out using a 6 kW high power diode laser system. Two different laser optics were compared, a Gaussian optic with a focus spot of ø 3 mm and a homogenizing optic with a rectangular spot dimension of 8 × 8 mm2. The laser processing was carried out using spot hardening at a heating-/cooling rate of 1000 K/s and was controlled via pyrometric temperature measurement using a control temperature of 1150 °C. The set-up being established during the measuring campaign allowed for this first realization data collection rates of 10Hz. The data evaluation procedure applied enables the separation of thermal from elastic strains and gains unprecedented insight into the laser hardening process.

  5. Radiochromic film measurement of spatial uniformity for a laser generated x-ray environment

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J. H.; Newlander, C. D.; Horton, R.; Fournier, K. B.; Emig, J.; Patterson, R.; Davis, J. F.; Seiler, S.; Jenkins, P. P.

    2012-10-01

    n existing x-ray source application (XRSA) test cassette was modified to hold multiple x-ray filter materials followed by two radiochromic film types (FWT-60 and HD-810 Gafchromic® film) to qualitatively characterize the spectral-spatial uniformity over the XRSA sample field of view. Multiple sets of film were examined and nominal set was determined. These initial, qualitative measurements suggest a low-energy regime (E < 3 keV) spatial anisotropy and spatial isotropy at higher energies (E > 3 keV).

  6. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise

    International Nuclear Information System (INIS)

    Marinelli, A.; MacArthur, J.; Emma, P.; Guetg, M.; Field, C.

    2017-01-01

    In this letter, we report the experimental demonstration of single-spike hard-X-ray free-electron laser pulses starting from noise with multi-eV bandwidth. Here, this is accomplished by shaping a low-charge electron beam with a slotted emittance spoiler and by adjusting the transport optics to optimize the beam-shaping accuracy. Based on elementary free-electron laser scaling laws, we estimate the pulse duration to be less than 1 fs full-width at half-maximum.

  7. High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils

    Czech Academy of Sciences Publication Activity Database

    Rus, Bedřich; Mocek, Tomáš; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Fajardo, M.; Foord, M.E.; Chung, H.; Moon, S.J.; Lee, R. W.

    2011-01-01

    Roč. 7, č. 1 (2011), s. 11-16 ISSN 1574-1818 R&D Projects: GA ČR GA202/05/2316 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory X-ray lasers * volumetric heating * aluminum transmission * polyimide transmission * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.595, year: 2011 http://www.sciencedirect.com/science/article/pii/S1574181810000406

  8. Synchronization and sequencing of data acquisition and control electronics at the European X-ray free electron laser

    International Nuclear Information System (INIS)

    Gessler, Patrick

    2015-11-01

    The 3.5 km long European X-Ray Free Electron Laser, currently under construction in northern Germany, will deliver bursts of up to 2700 short X-ray pulses every 100 ms, providing wavelengths between 0.05 and 6 nm, and a repetition rate of 4.5 MHz to several experiment stations. It allows in-depth research in various scientific fields. In order to set-up the beam, position samples and capture the measured variables, information from the accelerator, diagnostic devices and detectors have to be digitized, converted, processed, transferred, concentrated, distributed, reorganized, controlled and saved. All these steps have to be accurately synchronized and sequenced relative to the actual electron bunch or photon pulse in order to guarantee correct data acquisition timings and unique identification of each bunch passing the beamlines. This document provides a complete description of the planning, design, realization and evaluation of the European XFEL Timing System, which implements the synchronization and sequencing of the data acquisition and control electronics for the European X-Ray Free-Electron Laser Facility.

  9. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  10. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    Science.gov (United States)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  11. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    Science.gov (United States)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  12. Eliminating the microbunching-instability-induced sideband in a soft x-ray self-seeding free-electron laser

    Science.gov (United States)

    Zhang, Kaiqing; Zeng, Li; Qi, Zheng; Feng, Chao; Wang, Dong

    2018-02-01

    Soft x-ray self-seeding has been proved to be a feasible method to improve the longitudinal coherence of high gain free-electron laser. However, a pedestal-like sideband in the spectrum has been observed in the experiment, which generally limits the purity of the radiation pulse and the user's application. The previous theoretical study indicates that the pedestal-like sideband is mainly induced by microbunching instability generated from LINAC. In this paper, three dimensional simulations have been performed to confirm the analytical results and show the formation process of the spectral sideband. A probable method is proposed to eliminate the pedestal-like sideband by simply inserting a magnetic chicane before the self-seeding FEL undulator. Theoretical and numerical simulations have been performed and the results show that the proposed method can efficiently eliminate the microbunching-instability-induced sideband in a soft x-ray self-seeding FEL.

  13. Toward compact and ultra-intense laser-based soft x-ray lasers

    Science.gov (United States)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  14. An Experimental Benchmark for Improved Simulation of Absolute Soft X-Ray Emission from Polystyrene Targets Irradiated With the Nike Laser

    National Research Council Canada - National Science Library

    Weaver, J. L; Busquet, M; Colombant, D. G; Mostovych, A. N; Feldman, U; Klapisch, M; Seely, J. F; Brown, C; Holland, G

    2005-01-01

    Absolutely calibrated, time-resolved spectral intensity measurements of soft x-ray emission from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include...

  15. Misconceptions regarding Second Harmonic Generation in X-Ray Free-Electron Lasers

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M V

    2005-01-01

    Nonlinear generation of coherent harmonic radiation is an important option in the operation of a X-ray FEL facility since it broadens the spectral range of the facility itself, thus allowing for a wider scope of experimental applications. We found that up-to-date theoretical understanding of second harmonic generation is incorrect. Derivation of correct radiation characteristics will follow our criticism.

  16. Soft x-ray laser gain measurements in a recombining plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Milchberg, H.; Keane, C.; Voorhees, D.

    1985-03-01

    An enhancement of approx. 100 of stimulated emission over spontaneous emission of the CVI 182 A line (one-pass gain approx. = 6.5) was measured in a recombining, magnetically confined plasma column by two independent techniques using intensity calibrated XUV monochromators. Additional confirmation that the enhancement was due to stimulated emission has been obtained with a soft x-ray mirror

  17. Localization of the Trace Elements Iron, Zinc and Selenium in Relation to Anatomical Structures in Bovine Ovaries by X-Ray Fluorescence Imaging.

    Science.gov (United States)

    Ceko, Melanie J; Hummitzsch, Katja; Bonner, Wendy M; Aitken, Jade B; Spiers, Kathryn M; Rodgers, Raymond J; Harris, Hugh H

    2015-06-01

    X-ray fluorescence (XRF) was used to image 40 histological cross-sections of bovine ovaries (n=19), focusing on structures including: antral follicles at different stages of growth or atresia, corpora lutea at three stages of development (II-IV), and capillaries, arterioles, and other blood vessels. This method identified three key trace elements [iron (Fe), zinc (Zn), and selenium (Se)] within the ovarian tissue which appeared to be localized to specific structures. Owing to minimal preprocessing of the ovaries, important high-resolution information regarding the spatial distribution of these elements was obtained with elemental trends and colocalizations of Fe and Zn apparent, as well as the infrequent appearance of Se surrounding the antrum of large follicles, as previously reported. The ability to use synchrotron radiation to measure trace element distributions in bovine ovaries at such high resolution and over such large areas could have a significant impact on understanding the mechanisms of ovarian development. This research is intended to form a baseline study of healthy ovaries which can later be extended to disease states, thereby improving our current understanding of infertility and endocrine diseases involving the ovary.

  18. High-resolution x-ray imaging of Kα volume radiation induced by high-intensity laser pulse interaction with a copper target

    Czech Academy of Sciences Publication Activity Database

    Galtier, E.; Moinard, A.; Khattak, F.Y.; Renner, Oldřich; Robert, T.; Santos, J.J.; Beaucourt, C.; Angelo, P.; Tikhonchuk, V.; Rosmej, F.B.

    2012-01-01

    Roč. 45, č. 20 (2012), s. 1-6 ISSN 0953-4075 R&D Projects: GA ČR GAP205/10/0814 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-matter interaction * x-ray spectroscopy * particle generation * x-ray imaging * Kα volume radiation * Cu targets Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.031, year: 2012

  19. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  20. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    Directory of Open Access Journals (Sweden)

    S. Namba

    2015-11-01

    Full Text Available To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  1. Investigation of the interaction of high intensity laser light with solids and hot plasma using X-ray spectroscopic technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1978-06-01

    This work investigates the properties of high power laser-produced plasmas by developing and applying x-ray spectroscopic methods which utilize spatial resolution. The shadow techniques which were developed in this work yield a high spatial resolution of 5-15μm together with an adequate X-ray spectral resolution for single shots of laser power flux of 2.10 13 W/cm -2 . The intensity distribution in the source is calculated from the partial shadow by numerical differentiation. The main advantage of the present method is the ability to obtain spatial information simultaneously for strong and weak spectral lines for a single shot of medium power laser. Plasma parameters were derived from H-like and He-like lines and their inner-shell satellites, which were obtained from Mg, Al and Si targets. Using shadow techniques, the sizes of the emitting regions of the various spectral lines were measured; the spatial variation of the ionization stage, the electron temperature and density were investigated. A constant electron temperature of (250+-50)eV and electron density scale-length of about 50μm were derived for an expanding plasma. An experimental investigation of the possible origin and the mechanisms responsible for the Ksub(α) radiation in laser-produced plasma was carried out. It is shown that the Ksub(α) radiation was generated by fast suprathermal electrons and originated inside the target behind the interaction zone of the shock and heat waves. Energy penetration depth and hot plasma expansion were tested by using multilayer targets, thin foils and achieving a two-dimensional spatially resolved X-ray Al spectrum. (B.G.)

  2. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Peyrusse, O.; Chalupský, Jaromír; Toufarová, Martina; Vyšín, Luděk; Hájková, Věra; Sobierajski, R.; Burian, Tomáš; Dastjani-Farahani, S.; Graf, A.; Amati, M.; Gregoratti, L.; Hau-Riege, S.P.; Hoffmann, G.; Juha, Libor; Krzywinski, J.; London, R.A.; Moeller, S.; Sinn, H.; Schorb, S.; Störmer, M.; Tschentscher, T.; Vorlíček, Vladimír; Vu, H.; Bozek, J.; Bostedt, C.

    2012-01-01

    Roč. 86, č. 2 (2012), "024103-1"-"024103-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903; GA MŠk EE.2.3.20.0087 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous carbon * phase transition * graphitization * x-ray laser * free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.767, year: 2012

  3. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source; Kurzzeit-Roentgenbeugung mit Hilfe einer Effizienz-optimierten, hochrepetierenden Laser-Plasma-Roentgenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaehle, Stephan

    2009-04-23

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10{sup 16} W/cm{sup 2} dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K{sub {alpha}} radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K{sub {alpha}} production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K{sub {alpha}} radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density. [German] Diese Arbeit befasst sich mit der Erzeugung und Anwendung ultrakurzer Roentgenimpulse. Zu Beginn werden verschiedene Moeglichkeiten zur

  4. X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation

    Science.gov (United States)

    Reich, Stefan; Göttlicher, Jörg; Letzel, Alexander; Gökce, Bilal; Barcikowski, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Plech, Anton

    2018-01-01

    Pulsed laser ablation in liquids (PLAL) as an attractive process for ligand-free nanoparticle synthesis represents a multiscale problem to understand the mechanisms and achieve control. Atomic and nanoscale processes interacting with macroscale dynamics in the liquid demand for sensitive tools for in-situ and structural analysis. By adding X-ray methods, we enlarge the available information on millimeter-scale bubble formation down to atomic-scale nanoparticle reactions. X-ray spectroscopy (XAS) can resolve the chemical speciation of the ablated material during the ablation from a zinc wire target showing a first oxidation step from zinc to zinc oxide within some 10 min followed by a slower reaction to hydrozincite. X-ray imaging investigations also give additional information on the bubble dynamics as we demonstrate by comparing the microsecond radiography and optical stroboscopy. We show different features of the detachment of the ablation bubble from a free wire. The location of the first collapse occurs in front of the target. While a first rebound bubble possesses an homogeneous interior, the subsequent rebound consists merely of a cloud of microbubbles.

  5. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    Science.gov (United States)

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  6. The effect of laser and X-rays on the invasive capability of the larvae of Fasciola hepatica L

    International Nuclear Information System (INIS)

    Bielecki, A.

    1986-01-01

    The material comprised eggs and larvae of F. hepatica and its hosts: intermediate - Galba truncatula (L.) and final (Mus. sp.). The eggs and larvae of F. hepatica were exposed to X-rays hard, 240 KV 20 R/s intensity and L-rays of a laser HE-Ne of low power 0.82 mW, light wave length 632.8 mm. The eggs were exposed at the first day of culture while the miracidia at the first hour of their life, using the doses of 1, 100, 200, 400, 600, 800, 1200 R in the case of X-rays and 5, 10, 15 and 30 min in the case of L-rays. In order to express the effect of irradiation on the invasive capability of the miracidia developing inside egg capsules those hatching of the eggs and of the adolescariae, the invasion index was calculated. In the case of miracidia all the doses of X-rays used in the experiment limit the number of adolescariae and adult flukes. The X-rays used at low doses in the case of adolescariae (1 R) increase the intensity of mouse infection with adult flukes, while higher doses (e.g. 1200 R) decrease the infection. The L-rays applied to miracidia cause an inrease in the number of cercariae developing per snail and the intensity of mouse infection also grows. In the case of adolescariae they decrease the intensity of mouse infection. In the flukes developing from larvae (miracidia, adolescariae) exposed to X- and L-rays the lack of eggs in the uterus was observed as well as the decrease of size. 43 refs., 5 figs., 6 tabs. (author)

  7. Open data set of live cyanobacterial cells imaged using an X-ray laser

    Czech Academy of Sciences Publication Activity Database

    van der Schot, G.; Svenda, M.; Maia, F.R.N.C.; Andreasson, Jakob

    2016-01-01

    Roč. 3, Aug (2016), 1-7, č. článku 160058. ISSN 2052-4463 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : imaging * X- rays Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.836, year: 2016

  8. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  9. Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert [Deputy Director, Advanced Light Source

    2009-07-07

    Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.

  10. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses.

    Science.gov (United States)

    Jin, Cheng; Wang, Guoli; Le, Anh-Thu; Lin, C D

    2014-11-17

    High harmonics extending to X-rays have been generated from gases by intense lasers. To establish these coherent broadband radiations as an all-purpose tabletop light source for general applications in science and technology, new methods are needed to overcome the present low conversion efficiencies. Here we show that the conversion efficiency may be drastically increased with an optimized two-color pulse. By employing an optimally synthesized 2-µm mid-infrared laser and a small amount of its third harmonic, we show that harmonic yields from sub- to few-keV energy can be increased typically by ten-fold over the optimized single-color one. By combining with favorable phase-matching and together with the emerging high-repetition MHz mid-infrared lasers, we anticipate efficiency of harmonic yields can be increased by four to five orders in the near future, thus paving the way for employing high harmonics as useful broadband tabletop light sources from the extreme ultraviolet to the X-rays, as well as providing new tools for interrogating ultrafast dynamics of matter at attosecond timescales.

  11. Fabrication of Cryogenic Manganite Bolometers to Measure the Total Energy at the LCLS Free Electron X-ray Laser

    Energy Technology Data Exchange (ETDEWEB)

    Drury, O B; Yong, G J; Kolagani, R M; Liang, Y; Gardner, C; Ables, E; Fong, K W; Bionta, R M; Friedrich, S

    2008-06-14

    We are developing cryogenic bolometers to measure the total energy of the Linac Coherent Light Source (LCLS) free electron X-ray laser that is currently being built at the Stanford Linear Accelerator Center. LCLS will produce ultrashort {approx}200 fs X-ray laser pulses with {approx}10{sup 13} photons at 0.8 keV up to {approx}10{sup 12} photons at 8 keV per pulse at a repeat interval as short as 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. Our bolometer consists of a 375 {micro}m thick Si absorber and a Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} sensor operated at its metal-insulator transition. It will measure the total energy of each pulse with a precision of <1%, and is designed to meet the conflicting requirements of radiation hardness, sensitivity, linearity over a dynamic range of three orders of magnitude, and readout speed compatible with the LCLS pulse rate. Here we discuss bolometer design and fabrication, and the photoresponse of prototype devices to pulsed optical lasers.

  12. Extracting ion emission lines from femtosecond-laser plasma x-ray spectra heavily contaminated by spikes

    International Nuclear Information System (INIS)

    Gasilov, S. V.; Faenov, A. Ya.; Pikuz, T. A.; Villoresi, P.; Poletto, L.; Stagira, S.; Calegari, F.; Vozzi, C.; Nisoli, M.

    2007-01-01

    Nowadays charged-coupled device (CCD) detectors are widely used for the registration of multicharged ions x-ray spectra. These spectra are generated in a plasma during interaction of ultrashort, ultraintense laser pulses with solid targets. Strong parasitic radiation from the plasma affects CCD detectors and contaminates resulting spectra, so that spectral features can be completely covered by noise even during measurements with a very short accumulation time. In this work we propose a ''mean to median'' (M2M) algorithm for noise suppression in femtosecond laser plasma x-ray spectra. Series of spectra is necessary for the identification of corrupted data points by the developed method. The algorithm was tested with model spectra which reflect main features of experimental data. In practice we used it for extracting information about spectral lines of Ne-like Fe ions and He-like Al ions which allowed us to calculate plasma parameters. It is demonstrated that M2M method is able to clean spectra with more than 10% of corrupted pixels. Fluctuations in intensity of spectral lines induced by laser instability do not affect validity of the proposed method

  13. Ultrafast dynamics driven by intense light pulses from atoms to solids, from lasers to intense X-rays

    CERN Document Server

    Gräfe, Stefanie

    2016-01-01

    This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of...

  14. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  15. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  16. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  17. The value of calcaneal bone mass measurement using a dual X-ray laser Calscan device in risk screening for osteoporosis.

    Science.gov (United States)

    Kayalar, Gulseren; Cevikol, Alev; Yavuzer, Gunes; Sanisoglu, Yavuz; Cakci, Aytul; Arasil, Tansu

    2009-01-01

    To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL) correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA). A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO), dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT), covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (penergy X-ray laser T-score and age (r= -0.465, p=0.001), body mass index (BMI) (r=0.223, p=0.001), number of live births (r= -0.229, p=0.001), breast feeding time (r= -0.064, p=0.001), and age at menarche (r= -0.050, p=0.008). The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001) and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001) at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001) and calcaneal DXL and DXA Z-scores (r=0.33, p=0.001) at the femoral neck were statistically significant. Bone mineral density measurements in the calcaneus using a dual energy X-ray laser are valuable

  18. Micron-scale resolution radiography of laser-accelerated and laser-exploded foils using an yttrium x-ray laser

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.; Celliers, P.; Moreno, J.C.; Mrowka, S.; Perry, T.S.; Wan, A.S.

    1994-09-01

    The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 angstrom, 80 eV, ∼200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility

  19. Measurement of 2-5 keV x-ray emission from laser-target interactions by using fluor-MCP and CsI-XRD detectors

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Tirsell, K.G.; Leipelt, G.R.; Laird, W.B.

    1981-01-01

    For inertial confinement fusion plasma diagnostics, x-ray diode (XRD) detectors using conventional cathodes are not sensitive enough to measure x-rays above approx. 1.5 keV. However, for laser driver fusion targets, x-rays in the range of 2 to 5 keV are important because of their mobility in the target. We have successfully used fluor-microchannel plate (MCP) detectors to obtain absolute x-ray measurements in the 2 to 5 keV range. Recent data obtained from experiments on the Shiva laser system are presented. In addition, designs for a variety of channels in the range using fluor-MCP and CsI-XRD's above 1.5 keV will be discussed

  20. Uniform line focus and multi-target coupling for the creation of near water window Nickel like x-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.; Daido, H.; Sebban, S. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering] (and others)

    2000-03-01

    To demonstrate high gain saturated amplification in soft x-ray lasing, uniform and long amplification medium must be created by novel focusing and target set-up technique. We report on the cylindrical lens array and multi target coupling system for creating uniform line focus. Through these methods, series of x-ray lasing with the wavelength towards the water window are obtained at the GekkoXII Nd glass laser facility in ILE, Osaka University. (author)

  1. In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?

    Science.gov (United States)

    Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G

    2014-07-17

    The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Generation of femtosecond soft x-ray pulse by interaction between laser and electron beam in an electron storage ring

    CERN Document Server

    Inoue, T; Amano, S; Mochizuki, T; Yatsuzaka, M

    2002-01-01

    A femtosecond synchrotron radiation pulse train can be extracted from an electron storage ring by interaction between an ultrashort laser pulse and an electron beam in an undulator. Generation system of a femtosecond soft x-ray pulse by the slicing technique was studied with numerical calculations for its performance, as applicable for the NewSUBARU synchrotron radiation facility at LASTI. The femtosecond electron pulse, that is energy-modulated with a Ti:sapphire laser at a pulse energy of 100 mu J, a pulse width of 150 fs, and repetition frequency of 20 kHz, can be sufficiently separated in a bending magnet. A femtosecond soft x-ray pulse (the critical photon energy of 0.69 keV and a pulse width of 250 fs) is obtained with a collimator (diameter of 800 mu m phi), and it has an average brightness 3 x 10 sup 6 photons/s/mm sup 2 /mrad sup 2 /0.1 %BW and an average photon flux 10 sup 5 photons/s/0.1 %BW. (author)

  3. Relaxation behavior of laser-peening residual stress under tensile loading investigated by X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Akita, Koichi; Suzuki, Hiroshi; Moriai, Atsushi; Hayashi, Kengo; Takeda, Kazuya; Ohya, Shin-ichi; Sano, Yuji

    2014-01-01

    Compressive residual stresses induced by peening techniques improve the strength properties of steels, such as fatigue and stress corrosion cracking. However, the compressive residual stress might be reduced owing to thermal and mechanical loading in-service. In this study, the behavior of surface and internal residual stresses of a laser-peened ferritic steel under quasi-static tensile loading was investigated by X-ray and neutron diffraction. The complementary use of these diffraction techniques provided decisive experimental evidence for elucidating the relaxation process. As the applied tensile stress increases, the inside of the sample yields before the surface yielding at the critical applied stress (the applied stress for the onset of relaxation of the surface residual stress). The internal yielding causes the redistribution of residual stress, resulting in the relaxation of the surface compressive residual stress. Therefore, the relaxation of the surface compressive residual stress under tensile loading starts before the surface yielding. The critical applied stress of peened samples subjected to a tensile loading can be estimated from the von Mises yield criterion with the maximum tensile residual stress inside the sample. The FWHM of X-ray diffraction profile of the sample surface was increased by laser-peening, and it was further increased by further plastic deformation after peening. (author)

  4. Towards Gotthard-II: development of a silicon microstrip detector for the European X-ray Free-Electron Laser

    Science.gov (United States)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2018-01-01

    Gotthard-II is a 1-D microstrip detector specifically developed for the European X-ray Free-Electron Laser. It will not only be used in energy dispersive experiments but also as a beam diagnostic tool with additional logic to generate veto signals for the other 2-D detectors. Gotthard-II makes use of a silicon microstrip sensor with a pitch of either 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to adaptive gain switching readout chips. Built-in analog-to-digital converters and digital memories will be implemented in the readout chip for a continuous conversion and storage of frames for all bunches in the bunch train. The performance of analogue front-end prototypes of Gotthard has been investigated in this work. The results in terms of noise, conversion gain, dynamic range, obtained by means of infrared laser and X-rays, will be shown. In particular, the effects of the strip-to-strip coupling are studied in detail and it is found that the reduction of the coupling effects is one of the key factors for the development of the analogue front-end of Gotthard-II.

  5. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    Science.gov (United States)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  6. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    International Nuclear Information System (INIS)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.

    2005-01-01

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm 2 , it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm 2 , we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix

  7. Opacity effects in a solid-density aluminium plasma created by photo-excitation with an X-ray laser

    Czech Academy of Sciences Publication Activity Database

    Rackstraw, D.S.; Vinko, S.M.; Ciricosta, O.; Cho, B.I.; Engelhorn, K.; Chung, H.-K.; Brown, C.R.D.; Burian, Tomáš; Chalupský, Jaromír; Falcone, R.W.; Graves, C.; Hájková, Věra; Higginbotham, A.; Juha, Libor; Krzywinski, J.; Lee, H.J.; Messerschmidt, M.; Murphy, C.; Ping, Y.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J.J.; Vyšín, Luděk; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Nagler, B.; Lee, R. W.; Heimann, P.A.; Wark, J. S.

    2014-01-01

    Roč. 11, JUN (2014), s. 59-69 ISSN 1574-1818 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GA13-28721S; GA MŠk(CZ) LG13029; GA ČR GAP208/10/2302; GA MŠk EE2.3.30.0057 Grant - others:AVČR(CZ) M100101221; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : opacity * X-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.234, year: 2014

  8. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  9. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA. The capab......The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...

  10. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Philip

    2017-07-15

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  11. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, M.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Turk, G.; Darbon, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2011-07-01

    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  12. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    International Nuclear Information System (INIS)

    Roedig, Philip

    2017-07-01

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  13. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data.

    Science.gov (United States)

    Ginn, Helen Mary; Brewster, Aaron S; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M; Sauter, Nicholas K; Sutton, Geoff; Stuart, David Ian

    2015-06-01

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R(split) value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.

  14. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  15. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  16. Feasibility of using a high power CO2 laser as an alternative source to test high heat load x-ray optics

    International Nuclear Information System (INIS)

    Fernandez, P.B.

    1993-01-01

    To determine the feasibility of using the CO 2 laser at LAL as an alternative heat source for x-ray optics tests, we have studied the absorption of the 10.6-micron laser light in silicon for two different dopant concentrations, using the resistivity as a predictor for the absorption length. We describe the results from these tests in this report

  17. X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion

    Science.gov (United States)

    Kar, A.; Radha, P. B.; Edgell, D. H.; Hu, S. X.; Boehly, T. R.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.

    2017-10-01

    Side-on x-ray radiography of shock waves transiting through the planar plastic ablator and cryogenic fuel layer will be used to study shock timing, shock coalescence, shock breakout, and hydrodynamic mixing at the ablator-fuel interface. The injection of ablator material into the fuel can potentially compromise implosion target performance. The difference in refractive indices of the ablator and the fuel can be exploited to image shocks transiting the interface. An experiment to probe the ablator-fuel interface and a postprocessor to the hydrodynamic code DRACO that uses refraction enhanced imaging to view shocks are presented. The advantages of this technique to view shocks are explored and additional applications such as viewing the spatial location of multiple shocks, or the evolution of nonuniformity on shock fronts are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Ultraviolet photochemical reaction of [Fe(III(C2O43]3− in aqueous solutions studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Ogi

    2015-05-01

    Full Text Available Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III(C2O43]3− in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s, and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III(C2O43]3−. The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III is upon excitation immediately photoreduced to Fe(II, followed by ligand dissociation from Fe(II. Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2•Fe(II(C2O42]3− and subsequently [Fe(II(C2O42]2−.

  19. Focusing X-ray free-electron laser pulses using Kirkpatrick–Baez mirrors at the NCI hutch of the PAL-XFEL

    Science.gov (United States)

    Kim, Hyo-Yun; Park, Jaehyun; Kim, Sangsoo; Kim, Sunam; Rah, Seungyu; Lim, Jun

    2018-01-01

    The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick–Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2–11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM. PMID:29271778

  20. Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. II. Tolerance analysis

    International Nuclear Information System (INIS)

    Bennett, Guy R.; Folta, James A.

    2001-01-01

    Two example ultrahigh-spatial resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-μm spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible. Existing ICF imaging diagnostics approach ∼2 μm spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolution, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique

  1. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Helen Mary [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Brewster, Aaron S.; Hattne, Johan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Evans, Gwyndaf; Wagner, Armin [Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Grimes, Jonathan M. [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Sutton, Geoff [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David Ian, E-mail: dave@strubi.ox.ac.uk [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom)

    2015-05-23

    An updated partiality model and post-refinement algorithm for XFEL snapshot diffraction data is presented and confirmed by observing anomalous density for S atoms at an X-ray wavelength of 1.3 Å. Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R{sub split} value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will

  2. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    International Nuclear Information System (INIS)

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-01-01

    An updated partiality model and post-refinement algorithm for XFEL snapshot diffraction data is presented and confirmed by observing anomalous density for S atoms at an X-ray wavelength of 1.3 Å. Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R split value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will

  3. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    Science.gov (United States)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  4. Method to eliminate the damage aroused by intrinsic prepulse of Blumlein transmission line in capillary discharge soft X-ray laser system

    Science.gov (United States)

    Wang, Q.; Xie, Y.; Zhao, Y. P.; Zhu, Q. S.; Mo, M. Z.; Yang, D. W.

    2009-10-01

    To raise the utilization ratio of the energy power, and meanwhile, guarantee the waveform of the main discharge current to obtain X-ray laser, our capillary discharged Ne-like Ar soft X-ray laser system adopts Blumleim transmission line (BTL) and a 300 kV-Marx generator; and by using our self-developed intrinsic-prepulse elimination device and extrinsic-prepulse generator, we successfully removed the intrinsic prepulse of BTL, and thus eliminated its deteriorative effect towards Z-pinch plasma. By this means, we obtained stable X-ray laser output; and the voltage transmission rate of our system nearly reaches 122%, which provides a guarantee for the miniaturization of the power source and the whole system.

  5. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  6. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Absolute measurement for He- resonance (1s2 10-1s2p 11, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈ 1.3 × 1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr-1 pulse-1. Since this line lies in ...

  7. Laser-induced surface recrystallization of polycrystalline PbI2 thick films for X-ray detector application

    Science.gov (United States)

    Sun, Hui; Zhao, Beijun; Zhu, Xinghua; Zhu, Shifu; Yang, Dingyu; Wangyang, Peihua; Gao, Xiuyin

    2018-01-01

    In this work, laser-induced surface recrystallization process was developed to improve the surface properties and device performance of the polycrystalline PbI2 thick films prepared by using close space vapor deposition method. A continuous polycrystalline PbI2 recrystallized layer with a better mechanical strength and reflectivity improved from 2% to 4%-6% was obtained by this recrystallization process for the films with mechanical pretreatment. Other polytypes is absent in the recrystallized layer with the 2H-polytype remaining before and after treatment and obtaining improved electrical and X-ray photoelectric response performance. The pretreatment such as mechanical cutting/polishing and hydrogenation is necessary to lower the non-wetting crystallization behavior during the recrystallization process due to the rough surface state and oxygen contamination.

  8. Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.

    Science.gov (United States)

    Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin

    2014-01-01

    We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.

  9. Spectroscopic analysis of sodium-bearing Z-pinch plasmas for their x-ray-laser pumping efficiency

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Mehlman, G.; Davis, J.; Rogerson, J.E.; Scherrer, V.E.; Stephanakis, S.J.; Ottinger, P.F.; Young, F.C.

    1987-01-01

    Using axially resolved spectra, we have derived temperature and density profiles of sodium-bearing Z-pinch plasmas produced on the Naval Research Laboratory's Gamble-II generator. The variations in the output power of the Na X 1s 2 1 S 0 --1s2p 1 P 1 line which can be used to pump a Ne IX x-ray laser, are analyzed as functions of mass loading, temperature, and density. The fractional conversion of plasma energy to lasing lines is projected as 10/sup -3/ if an optimum neon lasant plasma can be prepared and pumped to saturation. This would require an increase in load current of less than or equal to 50% from the present 1.2 MA

  10. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    Science.gov (United States)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  11. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser.

    Science.gov (United States)

    Gorkhover, T; Adolph, M; Rupp, D; Schorb, S; Epp, S W; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Rolles, D; Rudek, B; Rudenko, A; Andritschke, R; Aquila, A; Bozek, J D; Coppola, N; Erke, T; Filsinger, F; Gorke, H; Graafsma, H; Gumprecht, L; Hauser, G; Herrmann, S; Hirsemann, H; Hömke, A; Holl, P; Kaiser, C; Krasniqi, F; Meyer, J-H; Matysek, M; Messerschmidt, M; Miessner, D; Nilsson, B; Pietschner, D; Potdevin, G; Reich, C; Schaller, G; Schmidt, C; Schopper, F; Schröter, C D; Schulz, J; Soltau, H; Weidenspointner, G; Schlichting, I; Strüder, L; Ullrich, J; Möller, T; Bostedt, C

    2012-06-15

    The plasma dynamics of single mesoscopic Xe particles irradiated with intense femtosecond x-ray pulses exceeding 10(16)  W/cm2 from the Linac Coherent Light Source free-electron laser are investigated. Simultaneous recording of diffraction patterns and ion spectra allows eliminating the influence of the laser focal volume intensity and particle size distribution. The data show that for clusters illuminated with intense x-ray pulses, highly charged ionization fragments in a narrow distribution are created and that the nanoplasma recombination is efficiently suppressed.

  12. First Results from Laser-Driven MagLIF Experiments on OMEGA: Time Evolution of Laser Gas Heating Using Soft X-Ray Diagnostics

    Science.gov (United States)

    Barnak, D. H.; Betti, R.; Chang, P.-Y.; Davies, J. R.

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising inertial confinement fusion scheme comprised of three stages: axial magnetization, laser heating of the deuterium -tritium gas fill, and compression of the gas by the liner. To study the physics of MagLIF, a scaled-down version has been designed and implemented on the OMEGA-60 laser. This talk will focus primarily on the heating process of a MagLIF target using a 351-nm laser. A neon-doped deuterium gas capsule was heated using a 2.5-ns square pulse delivering 200 J of laser energy. Spectral analysis of the x-ray emission from the side and the laser entrance hole of the capsule is used to infer the time evolution of the gas temperature. The x-ray spectra for a grid of possible gas temperatures and densities are simulated using Spect3D atomic modeling software. The simulation results are then used to deconvolve the raw signals and obtain density and temperature estimations. A gas temperature lower bound of 100 eV at 1.3 ns after the start of the laser pulse can be inferred from these estimations. The estimations are then compared to 2-D hydrocode modeling. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  13. X-ray microscopy of living multicellular organisms with the Prague Asterix Iodine Laser System

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernadinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Juha, Libor; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2003-01-01

    Roč. 21, č. 4 (2003), s. 511-516 ISSN 0263-0346 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : atomic force miscroscopy, laser-produced plasmas, multicellular microorganisms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.646, year: 2003

  14. Imprinting a focused x-ray laser beam to measure its full spatial characteristics

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Boháček, Pavel; Burian, Tomáš; Hájková, Věra; Hau-Riege, S.P.; Heimann, P.A.; Juha, Libor; Messerschmidt, M.; Moeller, S.P.; Nagler, B.; Rowen, M.; Schlotter, W.F.; Swiggers, M.L.; Turner, J.J.; Krzywinski, J.

    2015-01-01

    Roč. 4, č. 1 (2015), "014004-1"-"014004-11" ISSN 2331-7019 R&D Projects: GA MŠk(CZ) LH14072; GA MŠk(CZ) ME10046 Institutional support: RVO:68378271 Keywords : free-electron laser * phase-recovery code * PHARE Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.061, year: 2015

  15. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  16. Towards a Table-Top Laser Driven XUV/X-Ray Source

    Science.gov (United States)

    2015-08-27

    surface  of  the   wires  are  injected  into  the   laser  pulse  and...phase,   laser -­‐irradiated  micro-­‐engineered   Si  micro-­‐ wire   arrays  were   investigated.   An   order   of   magnitude...summarize  how  the   mechanism  works:   hot  electrons  generated  from  the   laser -­‐plasma  interaction  near

  17. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    Science.gov (United States)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  18. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    International Nuclear Information System (INIS)

    Zielbauer, B.

    2007-01-01

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  19. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    Energy Technology Data Exchange (ETDEWEB)

    Zielbauer, B.

    2007-10-24

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  20. Investigations concerning the applicability of X-ray flash interference and laser technology to shock-induced solidification of organic liquids

    International Nuclear Information System (INIS)

    Krehl, Peter; Schaaffs, Werner

    By a dielectric discharge through a thin layer of liquid a hot plasma is created, which expands very fast and builds up around a compression ring of very highly compressed matter. X-ray flash interferences and laser light are applied to investigate the structure of the compression rings. To perform investigation of the fine structure, an X-ray flash machine was developed which permits to obtain with a single flash in less than 1μs Laue patterns of monocrystals, and Debye-Scherrer patterns of polycrystalline substances. The investigation of the compression rings in diverse substances by laser light resulted that the optical transparency and solidification is different in different regions of the compression ring. Therefore important hints for experiments with X-ray flash interferences were obtained